Cosmic Microwave Background: Fossil of the Fireball Universe

Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) Landeskunde Japan, January 14, 2016

Basic Research in Germany

 I feel very fortunate to be in Germany for doing my research because both State of Bavaria and Federal government strongly support basic research

• Basic research = Research usually useless for daily life

- Max-Planck-Institute, which is funded almost entirely by public funding (~50% from State and ~50% from Federal), enjoyed the budget increase of ~4-5% over the last five years
 - The other counties, such as USA and Japan, had either budget decrease or flat budget in the same period in basic research

Max Planck Institute

- There are 76 Max Planck Institutes throughout Germany, and 5 in foreign countries
- World-class achievements in basic research
- Total annual budget ~ 1.5 Milliarde Euro
 - About the same as the budget of University of Tokyo

Max-Planck-Institut für Astrophysik (MPA)

- Located in Garching [U6 Garching Forschungszentrum]
- Specialised in theoretical and computational astrophysics
 - MPA has about 90 scientists
- I came to Germany to become one of four directors at MPA in 2012
 - I was a professor at the University of Texas at Austin before coming to Germany [lived in USA for 13 years]

Seeing the Early Universe

- Astronomers often talk about the early Universe as if they were there to see it...
 - The stories told by astronomers are remarkable, but aren't they just imaginations of astronomers?
- Although we cannot be there physically, we can observe the phenomena in the early Universe using powerful telescopes
 - We are not making stuff up!

Seeing the Early Universe

- The goal of my presentation is to show you how we are seeing and studying the early Universe directly using the light from the epoch of the fireball Universe
- For the next 20 minutes, you will be hearing the wellestablished results from a series of observations and measurements made over the last half century
 - So, please sit back and enjoy learning about what it is like to see the early Universe

Fireball Universe

Timę

Fireball Universe

Timę

Expansion Space

Definitive Result

- Those photons which filled the fireball Universe are still with us
- There are 410 such photons per cubic centimetre

 Due to the expansion of space and cooling down, these photons are cold, and their wavelength is in the radio/microwave region

All you need to do is to detect radio waves. For example, 1% of noise on the TV is from the fireball Universe

Sky in the visible light [~500nm]

courtesy University of Arizona

Sky in the microwaves [~1mm]

courtesy University of Arizona

Sky in the microwaves [~1mm]

Light from the fireball Universe filling our sky

The Cosmic Microwave Background (CMB)

courtesy University of Arizona

Temperature of CMB

$-270.5^{\circ}C$

2.7K in absolute temperature

The real detector system used by Penzias & Wilson The 3rd floor of Deutsches Museum

Donated by Dr. Penzias,

who was born in Munich

F Imme

Hornantennenanschluss

Schreiber

Fireball Universe, Observed

- The **Planck spectrum** is achieved only when matter and radiation are exchanging energies frequently
 - Called "thermal equilibrium"
 - Imagine a blast furnace (Hochofen)

Max Planck (1858-1947)

Today's Universe is not in thermal equilibrium (we die otherwise), which means that the Universe was in thermal equilibrium in the past - fire ball Universe [Urknalls]

Origin of CMB

- When matter and radiation were hotter than 3000 K, matter was completely ionised. The Universe was filled with plasma, which behaves just like a soup
- The main ingredients of this soup include:
 - Photons, Protons, electrons, and helium nuclei

Helium Nuclei

Protons

Electrons Photons

380,000 years (temperature is 3000K)

Time

WMAP Science Team July 19, 2002

- WMAP was launched on June 30, 2001
- The WMAP mission ended after 9 years of operation

WMAP Spacecraft

No cryogenic components

Our Origin

 WMAP taught us that galaxies, stars, planets, and ourselves originated from tiny fluctuations in the early Universe

Kosmische Miso Suppe

- When matter and radiation were hotter than 3000 K, matter was completely ionised. The Universe was filled with plasma, which behaves just like a soup
- Think about a Miso soup (if you know what it is). Imagine throwing Tofus into a Miso soup, while changing the density of Miso
- And imagine watching how rippes are created and propagate throughout the soup

Data Analysis

- Decompose temperature fluctuations in the sky into a set of waves with various wavelengths
- Make a diagram showing the strength of each wavelength

Cosmic Pie Chart

- WMAP determined the abundance of various components in the Universe
- As a result, we came to realise that we do not understand 95% of our Universe...
 - 🜒 H&He

- **Dunkle Materie**
- Dunkle Energie

Current Question: Origin of Fluctuations

Who dropped those Tofus into the cosmic Miso soup?

Summary

- We are seeing physical conditions of the early Universe using CMB
- Our origin goes back to tiny fluctuations that existed in the early Universe

Origin of fluctuations?

 To understand the origin of fluctuations? We are trying to launch another CMB satellite with colleagues in Japan: LiteBIRD

JAXA + possibly NASA

LiteBIRD 2025– [proposed]