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Lecture Slides

e Avalilable at

e https:.//wwwmpa.mpa-garching.mpg.de/~komatsu/
lectures--reviews.html

e Or, just find my website and follow “LECTURES &
REVIEWS” link


https://wwwmpa.mpa-garching.mpg.de/~komatsu/lectures--reviews.html
https://wwwmpa.mpa-garching.mpg.de/~komatsu/lectures--reviews.html

Planning: Day 1 (today)

e Lecture 1
e Brief introduction of the CMB research

e Temperature anisotropy from gravitational effects

e Power spectrum basics



Planning: Day 2 & 3

e Lecture 2

e Temperature anisotropy from hydrodynamical effects
(sound waves)

e Lecture 3

e Cosmological parameter dependence of the
temperature power spectrum

e Polarisation of the CMB

e Gravitational waves and their imprints on the CMB



Hot, dense, opaqgue universe
-> “Decoupling” (transparent universe)
-> Structure Formation

From “Cosmic Voyage™



courtesy University of Arizona



courtesy University of Arizona
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All you need to do is to detect radio
waves. For example, 1% of noise on
the TV is from the fireball Universe






1:25 model of the antenna at Bell Lab

The 3rd floor of Deutsches Museum




The real detector system used by Penzias & Wilson
The 3rd floor of Deutsches Museum
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2 YouTube ™ horizon edge of the visible universe

Full-dome movie for planetarium
Director: Hiromitsu Kohsaka

HORIZON

Won the Best Movie Awards at
“FullDome Festival” at Brno, June 5-8, 2018

Pl o) 227/25

HORIZON :Beyond the Edge of the Visible Universe [Trailer]



1989 COBE
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 WMAP was launched on June 30, 2001

* The WMAP mission ended after 9 years of operation







Concept of “Last Scattering Surface”



Today: Light Propagation Dark Energy

| ] Accelerated Expansion
Afterglow Light 1IN a Clump¥ Universe
Pattern Dark Ages evelopment of

380,000 yrs. Galaxies, Planets, etc. ‘-‘L
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Tomorrow: Hydrodynamics at LSS Dark Energy

Accelerated Expansion
Afterglow Light

Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

Inflation




Topics not covered by this lecture Dark Energy

Accelerated Expansion

Afterglow Light
Pattern Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

Inflation

Quantur n
Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansi

“

13.7 billion years



Notation

e Notation in my lectures follows that of the text book
“Cosmology” by Steven Weinberg
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Cosmological Parameters

e Unless stated otherwise, we shall assume a spatially-flat
A Cold Dark Matter (A\CDM) model with

QBh2 = ().022 [baryon density]

(03Y h? = (0.14 [total mass density]

v = 0.3

which implies:

2, =0.7, 2ph?=0.118, N2 = 0.04714

Hy =100 h km s~' Mpc™'; Hp = 68.31 km s~! Mpc™!



How light propagates in a
clumpy universe?

* Photons gain/lose energy by gravitational blue/redshifts
this lecture

* Photons change their directions via gravitational lensing

not covered




Distance between
two points In space

e Static (i.e., non-expanding) Euclidean space

e In Cartesian coordinates = = (z, v, 2)

ds* = dx? + dy® + dz*



Distance between
two points In space

e Homogeneously expanding Euclidean space

* In Cartesian comoving coordinates = = (z,v, 2)

ds* =\a*(t)(dz* + dy* + dz*)



Distance between
two points In space

e Homogeneously expanding Euclidean space

* In Cartesian comoving coordinates = = (z,v, 2)

3

ds® =a*(t) > Z 8 dx*da?

1=1 7=

5 . =1 for i=j

=0 otherwise



Distance between
two points In space

 |[nhomogeneous curved space

e |n Cartesian comoving coordinates z= = (z,y, 2)

ds® =a’ z Z (6;5 +H hij)dx'da?

1=—1 j “metric perturbation”
-> CURVED SPACE!



Not just space...

e Einstein told us that a clock ticks slowly when gravity is
strong...

e Space-time distance, dss, is modified by the presence of
gravitational fields

dsj = —exp(2P)dt* + a’ exp(—2¥) 3 3" [exp(D)];;dx"dx?
i=1j=1

@ : Newton’s gravitational potential

J/ : Spatial scalar curvature perturbation

Dz’ ;i Tensor metric perturbation [=gravitational waves]



Tensor perturbation Di:
Area-conserving deformation

e Determinant of a matrix

1 3 1
[eXp(D)]ij = 523 +Dij+§ 2 Dszky+6 Z Dz'kamij'l_ ©
k=1 km

is given by exp(z D;;)

e Thus, Dij must be trace-less Z D.; =0

If it is area-conserving deformatlon of two points In space

e * g3
- a »



Not just space...

e Einstein told us that a clock ticks slowly when gravity is
strong...

e Space-time distance, dss, is modified by the presence of
gravitational fields

ds% = — exp(2P)dt* + a* exp(— Y. > lexp(D)];jdx" dx’

=1 9=1

@ : Newton’s gravitational potential

gp' : Spatial scalar curvature perturbation
Is a perturbation to the determinant of spatial metric



Evolution of
photon’s coordinates

e Photon’s path is determined such that the distance
traveled by a photon between two points is minimised.
This yields the equation of motion for photon’s

coordinates rH — (t,xi) R
y
d?z? \ dxt dx”
du? Z E Y g dn =0
U —0 v=0 U (o “u” labels
photon’s path>
X

This equation is known as the “geodesic equation”.
The second term is needed to keep the form of the equation unchanged
under general coordinate transformation => GRAVITATIONAL EFFECTS!



Evolution of
photon’s momentum

e |t is more convenient to write down the geodesic equation
In terms of the photon momentum:

Ph = dxH
then du y

dp* p“p
Z Z =0
dt =0 =0 p “u” labels
photon’s path>

Magnitude of the photon momentum is equal to the photon energy: X

p° —L ngpp’

1=1 3=




Some calculations...

A 3 3 oV
AN P3|y A AP
dt | uyl 0
p=0r= P
With ds? = 3 g, datda” 7000w~
4 o Iuv gij = a? exp(—2%)[exp(D)];;
3
= 1 Ap 9o 990  OGuuv
Uy — Z g 5 !
Scalar perturbation [valid to all orders] Tensor perturbation [valid to 1st order in D]
=2, Iy = (i)i , I, = exp(29) Zg” jjz I, = a 5% + = ZJ”"D Iy = dqm + ;D,J
~ D D,f‘_," D.".l
o = ( ‘ﬁ) &%, Ty =exp( 2¢)( ‘f’) Jij » I é‘? (ﬁw Brt amf)’
ko ke ‘N’ & O g O¥
ti = ‘)”zg:" e A




Recap

Math may be messy but the concept is transparent!

* Requiring photons to travel between two points in
space-time with the minimum path length, we obtained
the geodesic equation

 The geodesic equation contains F,;\,, that is required to
make the form of the equation unchanged under
general coordinate transformation

e EXpressing Fl;\,, In terms of the metric perturbations, we
obtain the desired result - the equation that describes
the rate of change of the photon energy!

5 3‘ 3‘ ;o
P =D > gD
i=1 =1




Sachs & Wolfe (1967)

The Result

1 dp a - 1 .
— } !p Z D’L (|
;ax% 2% i

p dt a

v' is a unit vector of the direction of
photon’s momentum:

> () =1

0

e Let’s interpret this equation physically



Sachs & Wolfe (1967)

The Result

1 dp al . 1 0P . 1 L
—|-Z @ e D i

Z

v' is a unit vector of the direction of
photon’s momentum:

> (1) =1

0

* Photon’s wavelength is stretched in proportion to the
scale factor, and thus the photon energy decreases as

p<><a—1



Sachs & Wolfe (1967)

The Result

ldp  a
pdt  a

. . 1 : L
- v D;i~yty7
;axz QZZJ i

e The spatial metric is given by ds* = a°(t) exp(—2¥)dx?

e Thus, locally we can define a new scale factor:
a(t,x) = a(t) exp(—V)
e Then the photon momentum decreases as

poxcal



Sachs & Wolfe (1967)

The Result

1 dp a -1 1 ob .| 1 .
— - A D,y
p dt a a ; ozi | | 2 % i1
* Gravitational blue/redshift ( )
N N

i/

Potential well (¢ < 0)



Sachs & Wolfe (1967)

The Result

1 dp a - 1 od .| 1 .
— | Ep . ¢ D’L (Y,
 dt a a?@xzv 27;23- i1
* Gravitational blue/redshift ( )
he hy O
Dij=1| hyxy —hy O

0 0 0



Sachs & Wolfe (1967)

The Result

— - 108 D'y
p dt a a;(%ﬂ 2% T
Y
» Gravitational blue/redshift ( )
hy hyxy O

Dij =1 hy —hy 0
0 0 O




Sachs & Wolfe (1967)

Formal Solution (Scalar)

“L” for “Last scattering surface” ptg . .
In(ap)(te) = In(ap)(ts) +B(ts) ~ Blto) + [ dt (64 )
lr
or 1 0P , db .
AT () ST(ty,, frp) To T
L L ~
— — - D(tg,, — P(to, 0
T (i) (tr,nrr) — P(to,0)
to . .
+ / dt (D +V¥)(t,nr) Line-of-sight direction
| tL At — —'Yi
+2/dt P +®(tr) Coming distance (r)
NP NN —_— N TN ; ni
%/ W e
to /
_ 0=
5T (t1) ¢ a(t’)

T(tr)



Sachs & Wolfe (1967)

Formal Solution (Scalar)

AT(’fL) 5T(tL, fLT’L)
— — FD(tr,, 7 — P(to, 0
T (i) (tr,rr) — D(to, 0)
to . .
+ / dt (D +V¥)(t,nr) Line-of-sight direction
| tr At — _,Yi
+2/dt P +®(tr) Coming distance (r)
NN L N ; .
w w o
to dt/
(T :/
&) ¢ a(t’)




Sachs & Wolfe (1967)

Formal Solution (Scalar)

Gravitational Redshit

Line-of-sight direction

A7 ()

n' = —vy

Comoving distance (r)

xt =n'r

0= [




Sachs & Wolfe (1967)

Formal Solution (Scalar)

. Line-of-sight direction |

At — _,Yz

. Coming distance (r)

xt =n'r

to dt p
, t) = ;
| ) /t a(t’)




Initial Condition

+2](1t P +P(tr,)
0T (tr)
T(tr)

® "|Vere photons hot or cold at the bottom of the potential well at
the last scattering surface?”

 This must be assumed a priori - only the data can tell us!



“Adiabatic” Initial Condition

o Definition: “Ratios of the number densities of all species are
equal everywhere initially”

 For ith and jth species, ni(x)/nj(x) = constant

 For a quantity X(t,x), let us define the fluctuation, 6X, as

0X(t,x) = X(t,x) — X (1)
e Then, the adiabatic initial condition is

5”73 (tinitiala X) o 5”3’ (tinitiab X)

i (Tinitial ) 1 (tinitial )




Example:
Thermal Equilibrium

e \WWhen photons and baryons were in thermal equilibrium in
the past, then

® Nphoton ~ T2 @and Nparyon ~ T3

 That is to say, thermal equilibrium naturally gives the
adiabatic initial condition

+ This gives 35T(t@,w) - opp(ti, )
T'(t;) pB(ti)

o “B” for “Baryons”
e pis the mass density




Big Question

e How about dark matter?

e |f dark matter and photons were in thermal equilibrium in

the past, then they should also obey the adiabatic initial
condition

* |f not, there is no a priori reason to expect the adiabatic
Initial condition!

e The current data are consistent with the adiabatic initial
condition. This means something important for the nature
of dark matter!

We shall assume the adiabatic initial

condition throughout the lectures



Adiabatic Solution

+2/(1t d +®(tr)
N e Y N N

o\

5T (tr)

T(tr)

e At the last scattering surface, the temperature fluctuation
IS given by the matter density fluctuation as

5T(tL7 X) _ 1 5/0M (tLa X)

T(tr) 3 pul(to)




Adiabatic Solution

+2/dt d +®(tr)
N e Y N N

N NV

5T (tr)

T(tr)

 On large scales, the matter density fluctuation during the
matter-dominated era is given by §p,; /pyr = —2P; thus,

o1 (tr,x) B 1 oprr(tr,x) _ 2<I>(t X)
9 L

Hot at the bottom of
the potential well, but...

T(tr) 3 pul(to)



Over-density = Cold spot

(H P

W W

()T fL

e Therefore: AT(n) 1
— (L, 7

This is negative in an over-density region!










Data Analysis

e Decompose temperature
fluctuations in the sky into a
set of waves with various
wavelengtns

* Make a dilagram showing the
strength of each wavelength



Long Wavelength #~\ Short Wavelength

TT

100 500

|80 degrees/(angle in the sky)

1000










e N{(81n 6 cos ¢, sin 6 sin ¢, cos 6)




Spherical Harmonic

Transform
AT(7) = X2 z_ aem ;" ()

e \/alues of am depend on coordinates, but the squared
amplitude, Z , does not depend on coordinates

(Lo (1 .
m=—~¢

(,m)=(1,0) (,m)=(1,1)




(I,m)=(2,0)

(,m)=(2,2)

For |=m, a half-
wavelength, Ae/2,

corresponds to rt/l.

Therefore, 7\.9=2T[/ |




(,m)=(3,0) (,m)=(3,1)

-
o,
o .

(,m)=(3,2) (,m)=(3,3)

0.70 —— oemmm (.70 00 e— s 0.00



am of the SW effect

e Using the inverse transform azy,, = / dQAT(n)Y,"*(n)

on the Sachs-Wolfe (SW) formula AT () 1(1)(t .
= — r
T() 3 Ly L

and Fourier-transforming the potential, we obtain:

ik A
a?'r\ry _ 30 d2'y,” 'n,)/ (27)3 b, exp(iq - firy)

*q is the 3d Fourier wavenumber

The left hand side is the coefficients of 2d spherical waves,

whereas the right hand side is the coefficients of 3d plane
waves. How can we make the connection?




Spherical wave decomposition
of a plane wave

0

¢
exp(iq - ry) = 4m EZ ije(qry) S e Y (R) Y™ ()
=0 m=—

* This “partial-wave decomposition formula” (or Rayleigh’s
formula) then gives

em 3 (27)3

Pgje(qre)Ye™ (q)

 This is the exact formula relating 3d potential at the last
scattering surface onto am. How do we understand this?



q -> | projection

ATyt d°q , s
i = —=- /( 3 Pdie(qro)¥,""(9)

tem = 3 277)

* A half wavelength, /2, at the last scattering surface
subtends an angle of A/2r.. Since g=211/A, the angle is given
by 60=rt/gr.. Comparing this with the relation 60=rt/I (for

I=m), we obtain I=qr|_. How can we see this?

* For I>>1, the spherical Bessel function, jl(qu), peaks

at |=qu and falls gradually toward gr.>l. Thus, a given g
mode contributes to large angular scales too.






More Intuitive approach:
Flay-sky Approximation

e Not all of us are familiar with spherical bessel functions...

e The fundamental complication here is that we are trying
to relate a 3d plane wave with a spherical wave.

e More intuitive approach would be to relate a 3d plane
wave with @ 2d plane wave



Decomposition

e Full sky

e Decompose temperature fluctuations using spherical
harmonics

 Flat sky

e Decompose temperature fluctuations using Fourier
transform

e The former approaches the latter in the small-angle limit



n = (sin 6 cos ¢, sin # sin ¢, cos 0)

“Flat sky”,
If © is small




2d Fourier Transform

AT (n) = / d2§2 ag exp(if - 0)

o0 27T
/ Edﬁ/ dPe ag exp(il - 0)

C.1., -
( AT(R) =3 Y amYy™(R) )

/=1 m=—/¢



a(l) of the SW effect

e Using the inverse 2d Fourier transform

on the Sachs-Wolfe (SW) formula AT(#) 1@@ .
— — r
T() 3 Ly"L

and Fourier-transforming the potential, we obtain:

T,
a," = 50 / d’0 exp(—il - 0)

d° . .
X / (27:)13 P4 exp(iqLrr - 0 + iq)rricosb)

flat-sky approx.



Flat-sky Result

T > dq E
aSW L0 il

q=/0?/r; +q7 ie, q > K/’I“L
C.f., \/ o

A7 Tyit d’
SW 0 q m
( Apm — 3 / (27‘_)3 gpq.]ﬁ(qu)Y (Q) )

* Itis NOW Manifest that only the

perpendicular wavenumber contributes to |,

.e., I=qperpr|_, giving l<qr.




Angular Power Spectrum

e The angular power spectrum, C;, quantifies how much
correlation power we have at a given angular separation.

1 14

Cy = m
DY Z O T

* More precisely: it is |(2|+1 )C|/4'I'[ that gives the

fluctuation power at a given angular separation, ~tt/I.
We can see this by computing variance:

df? o 20+ 1
/ ATQ( ) Z E af'maﬁm: Z il CE

4 AT (o m="¢ (=2 Am




Bennett et al. (1996)

COBE 4- year Power Spectrum

(- 17 T 1 | L
COBE DMR powerspectrum
1500
o2
:K\ -
= -
(I— o _
E 1000 - - T
Q_ 1 1 T - T The SW formula
o aall T —e— I Il allows us to determine
i ] e R G _ the 3d power
= 500 - " __ sl spectrum of ¢ at
i . . ' the last scattering
—— scale—1nvariant -
_ surface from C..
--- ACDM
I | N A I . &+ 1 & [ & |1 @' |
0 12345678 01011121314151617181920212223 But how?
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