
Squeezed-limit bispectrum,
Non-Bunch-Davies vacuum,
Scale-dependent bias, and

Multi-field consistency relation
Eiichiro Komatsu (Texas Cosmology Center, Univ. of Texas at Austin)

“Pre-Planckian Inflation,” University of Minnesota, Minneapolis
October 7, 2011



This talk is based on...
• Squeezed-limit bispectrum

• Ganc & Komatsu, JCAP, 12, 009 (2010)

• Non-Bunch-Davies vacuum

• Ganc, PRD 84, 063514 (2011)

• Scale-dependent bias

• Ganc & Komatsu, in preparation

• Multi-field consistency relation

• Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (2011)
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Motivation

• Can we falsify inflation?
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Falsifying “inflation”

• We still need inflation to explain the flatness problem!

• (Homogeneity problem can be explained by a bubble 
nucleation.)

• However, the observed fluctuations may come from 
different sources.

• So, what I ask is, “can we rule out inflation as a 
mechanism for generating the observed fluctuations?”

4



First Question:

• Can we falsify single-field inflation?
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• Single-field inflation = One degree of freedom.

• Matter and radiation fluctuations originate from a 
single source.

= 0

* A factor of 3/4 comes from the fact that, in thermal 
equilibrium, ρc~(1+z)3 and ργ~(1+z)4.

Cold 
Dark Matter

Photon
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An Easy One: Adiabaticity



Non-adiabatic Fluctuations

• Detection of non-adiabatic fluctuations immediately 
rule out single-field inflation models.

The data are consistent with adiabatic fluctuations:

< 0.09  (95% CL)
| |

Komatsu et al. (2011)
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Single-field inflation looks good
(in 2-point function)

• ns=0.968±0.012 (68%CL; 
WMAP7+BAO+H0)

• r < 0.24 (95%CL; 
WMAP7+BAO+H0)
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Komatsu et al. (2011)



So, let’s use 3-point function

• Three-point function!

• Bζ(k1,k2,k3) 
= <ζk1ζk2ζk3> = (amplitude) x (2π)3δ(k1+k2+k3)b(k1,k2,k3)
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model-dependent function
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MOST IMPORTANT, for falsifying 
single-field inflation



Single-field Theorem 
(Consistency Relation)

• For ANY single-field models*, the bispectrum in the 
squeezed limit is given by

• Bζ(k1,k2,k3) ≈ (1–ns) x (2π)3δ(k1+k2+k3) x Pζ(k1)Pζ(k3)

• Therefore, all single-field models predict fNL≈(5/12)(1–ns).

• With the current limit ns=0.96, fNL is predicted to be 0.017.

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

* for which the single field is solely responsible for driving 
inflation and generating observed fluctuations. 11



Understanding the Theorem

• First, the squeezed triangle correlates one very long-
wavelength mode, kL (=k3), to two shorter wavelength 
modes, kS (=k1≈k2):

• <ζk1ζk2ζk3> ≈ <(ζkS)2ζkL>

• Then, the question is: “why should (ζkS)2 ever care 
about ζkL?”

• The theorem says, “it doesn’t care, if ζk is exactly 
scale invariant.”
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ζkL rescales coordinates

• The long-wavelength 
curvature perturbation 
rescales the spatial 
coordinates (or changes the 
expansion factor) within a 
given Hubble patch:

• ds2=–dt2+[a(t)]2e2ζ(dx)2

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2
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ζkL rescales coordinates

• Now, let’s put small-scale 
perturbations in.

• Q. How would the 
conformal rescaling of 
coordinates change the 
amplitude of the small-scale 
perturbation?

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2

(ζkS1)2 (ζkS2)2
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ζkL rescales coordinates

• Q. How would the 
conformal rescaling of 
coordinates change the 
amplitude of the small-scale 
perturbation? 

• A. No change, if ζk is scale-
invariant. In this case, no 
correlation between ζkL and 
(ζkS)2 would arise. 

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2

(ζkS1)2 (ζkS2)2
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Real-space Proof
• The 2-point correlation function of short-wavelength 

modes, ξ=<ζS(x)ζS(y)>, within a given Hubble patch 
can be written in terms of its vacuum expectation value 
(in the absence of ζL),  ξ0, as:

• ξζL ≈ ξ0(|x–y|) + ζL [dξ0(|x–y|)/dζL]

• ξζL ≈ ξ0(|x–y|) + ζL [dξ0(|x–y|)/dln|x–y|]

• ξζL ≈ ξ0(|x–y|) + ζL (1–ns)ξ0(|x–y|)

Creminelli & Zaldarriaga (2004); Cheung et al. (2008)

3-pt func. = <(ζS)2ζL> = <ξζLζL>
= (1–ns)ξ0(|x–y|)<ζL2>

• ζS(x)

• ζS(y)
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This is great, but...
• The proof relies on the following Taylor expansion:

• <ζS(x)ζS(y)>ζL = <ζS(x)ζS(y)>0 + ζL [d<ζS(x)ζS(y)>0/dζL]

• Perhaps it is interesting to show this explicitly using the in-in 
formalism.

• Such a calculation would shed light on the limitation of the 
above Taylor expansion.

• Indeed it did - we found a non-trivial “counter-
example” (more later) 17



An Idea

• How can we use the in-in formalism to compute the 
two-point function of short modes, given that there is a 
long mode, <ζS(x)ζS(y)>ζL?

• Here it is!

S S
(3)

18

ζL

Ganc & Komatsu, JCAP, 12, 009 (2010)



• Inserting ζ=ζL+ζS into the cubic action of a scalar 
field, and retain terms that have one ζL and two ζS’s. 

S S
(3)
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ζL

(3)

Ganc & Komatsu, JCAP, 12, 009 (2010)

Long-short Split of HI



Result

• where

Ganc & Komatsu, JCAP, 12, 009 (2010)
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Result

• Although this expression looks nothing like (1–nS)P(k1)ζkL, 
we have verified that it leads to the known consistency 
relation for (i) slow-roll inflation, and (ii) power-law inflation. 

• But, there was a curious case – Alexei Starobinsky’s exact 
nS=1 model. 

• If the theorem holds, we should get a vanishing 
bispectrum in the squeezed limit. 
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Starobinsky’s Model

• The famous Mukhanov-Sasaki equation for the mode 
function is

where

•The scale-invariance results when

So, let’s write z=B/η

Starobinsky (2005)



Result

• It does not vanish! 

• But, it approaches zero when Φend is large, meaning the 
duration of inflation is very long.

• In other words, this is a condition that the longest 
wavelength that we observe, k3, is far 
outside the horizon.

• In this limit, the bispectrum approaches zero.

Ganc & Komatsu, JCAP, 12, 009 (2010)
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Vacuum State

• What we learned so far: 

• The squeezed-limit bispectrum is proportional to 
(1–nS)P(k1)P(k3), provided that ζk3 is far outside the 
horizon when k1 crosses the horizon.

• What if the state that ζk3 sees is not a Bunch-Davies 
vacuum, but something else?

• The exact squeezed limit (k3->0) should still obey 
the consistency relation, but perhaps something 
happens when k3/k1 is small but finite. 24



Back to in-in

• The Bunch-Davies vacuum: uk’ ~ ηe–ikη (positive frequency mode)

• The integral yields 1/(k1+k2+k3) -> 1/(2k1) in the squeezed limit
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Back to in-in

• Non-Bunch-Davies vacuum: uk’ ~ η(Ake–ikη + Bke+ikη)

• The integral yields 1/(k1–k2+k3), peaking in the folded limit

• The integral yields 1/(k1–k2+k3) -> 1/(2k3) in the squeezed limit

negative frequency 
mode

Chen et al. (2007); Holman & Tolley (2008)

Agullo & Parker (2011)
Enhanced by k1/k3: this can be a big factor!



How about the consistency 
relation?

• When k3 is far outside the horizon at the onset of 
inflation, η0 (whatever that means), k3η0->0, and thus 
the above additional term vanishes.

• The consistency relation is restored. Sounds familiar!

Agullo & Parker (2011)
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k3/k1<<1



Checking 
“Not-so-squeezed Limit”

• Creminelli, D’Amico, Musso & Norena, arXiv:1106.1462 
showed that all single-field models have the next-to-
leading behavior of the squeezed bispectrum given by

The non-Bunch-Davies vacuum case seems to violate this: 
the solution is that, in order for their result to hold, k3 must be 

small enough so that k3 is already far outside the horizon.

We already saw that, in this limit, the non-Bunch-Davies 
vacuum result reproduces the standard result. But... 28



Checking 
“Not-so-squeezed Limit”

• The Taylor expansion of the second term yields O
(k1k3η02), which is not the same as (k3/k1)2. Hmm...

29

k3/k1<<1



Anyway, an interesting possibility:
• What if k3η0 = O(1)?

• The squeezed bispectrum receives an enhancement of 
order εk1/k3, which can be sizable. 

• Most importantly, the bispectrum grows faster 
than the local-form toward k1/k3 -> 0!

• B(k1,k2,k3) ~ 1/k33 [Local Form]

• B(k1,k2,k3) ~ 1/k34 [non-Bunch-Davies]

• This has an observational consequence – particularly a 
scale-dependent bias. 30



Scale-dependent Bias

• A rule-of-thumb: 

• For B(k1,k2,k3) ~ 1/k3p, the scale-dependence of the 
halo bias is given by b(k) ~ 1/kp–1

• For a local-form (p=3), it goes like b(k)~1/k2

• For a non-Bunch-Davies vacuum (p=4), would it go like 
b(k)~1/k3?

Dalal et al. (2008); Matarrese & Verde (2008); Desjacques et al. (2011)

B
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It does! Ganc & Komatsu (in prep)

Wavenumber, k [h Mpc–1]

Δb
(k

)/
b ~k–3

~k–2

Local 
(fNL=10)

non-BD 
vacuum

(ε=0.01; Nk=1)
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CMB?

• The expected contribution to fNLlocal as measured by 
CMB is typically fNLlocal < 2(ε/0.01).

• A lot bigger than (5/12)(1–nS), but still small enough.

Ganc, PRD 84, 063514 (2011)
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How about...

• Falsifying multi-field inflation?
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Strategy

• We look at the local-form four-point function 
(trispectrum).

• Specifically, we look for a consistency relation between 
the local-form bispectrum and trispectrum that is 
respected by (almost) all models of multi-field inflation.

• We found one: 

Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (2011)
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provided that 2-loop and higher-order terms are ignored.



Which Local-form Trispectrum?
• The local-form bispectrum:

• Βζ(k1,k2,k3)=(2π)3δ(k1+k2+k3)fNL[(6/5)Pζ(k1)Pζ(k2)+cyc.]

• can be produced by a curvature perturbation in position space in 
the form of:

• ζ(x)=ζg(x) + (3/5)fNL[ζg(x)]2

• This can be extended to higher-order: 

• ζ(x)=ζg(x) + (3/5)fNL[ζg(x)]2 + (9/25)gNL[ζg(x)]3

36
This term (ζ3) is too small to see, so I 

will ignore this in this talk.



Two Local-form Shapes
• For ζ(x)=ζg(x) + (3/5)fNL[ζg(x)]2 + (9/25)gNL[ζg(x)]3, we 

obtain the trispectrum:

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4) {gNL[(54/25)Pζ(k1)
Pζ(k2)Pζ(k3)+cyc.] +(fNL)2[(18/25)Pζ(k1)Pζ(k2)(Pζ(|k1+k3|)
+Pζ(|k1+k4|))+cyc.]}

k3

k4

k2

k1

gNL

k2

k1

k3

k4

fNL2 37



Generalized Trispectrum

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4) {gNL[(54/25)
Pζ(k1)Pζ(k2)Pζ(k3)+cyc.] +τNL[Pζ(k1)Pζ(k2)(Pζ(|
k1+k3|)+Pζ(|k1+k4|))+cyc.]}

k3

k4

k2

k1

gNL

k2

k1

k3

k4

τNL 38

The single-source local form consistency relation, 
τNL=(6/5)(fNL)2, may not be respected – 

additional test of multi-field inflation!



(Slightly) Generalized 
Trispectrum

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4) {gNL[(54/25)
Pζ(k1)Pζ(k2)Pζ(k3)+cyc.] +τNL[Pζ(k1)Pζ(k2)(Pζ(|
k1+k3|)+Pζ(|k1+k4|))+cyc.]}

k3

k4

k2

k1

gNL

k2

k1

k3

k4

τNL 39

The single-source local form consistency relation, 
τNL=(6/5)(fNL)2, may not be respected – 

additional test of multi-field inflation!



Tree-level Result
(Suyama & Yamaguchi)

• Usual δN expansion to the second order

gives:
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Now, stare at these.
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Change the variable...

(6/5)fNL=∑IaIbI

τNL=(∑IaI2)(∑IbI2)42



Then apply the 
Cauchy-Schwarz Inequality

• Implies

But, this is valid only at the tree level!

(Suyama & Yamaguchi 2008)
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Harmless models can violate 
the tree-level result

• The Suyama-Yamaguchi inequality does not always hold 
because the Cauchy-Schwarz inequality can be 0=0. For 
example:

In this harmless two-field case, the Cauchy-Schwarz inequality 
becomes 0=0 (both fNL and τNL result from the second term).

In this case, 

(Suyama & Takahashi 2008) 44



“1 Loop”

• kb=min(k1,k2,k3)
45

Fourier transform this,
and multiply 3 times

pmin=1/L



Ignoring details...

• I don’t have time to show you the derivation (you can 
look it up in the paper), but the result is somewhat 
weaker than the Suyama-Yamaguchi inequality:

Detection of a violation of this relation can potentially falsify inflation 
as a mechanism for generating cosmological fluctuations.

Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (2011)
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A Comment
• Even without using the physics argument, the statistics 

argument can give a bound (Smith, LoVerde & 
Zaldarriaga, arXiv:1108.1805):

47

≠0

The statistics argument does not preclude a physical 
violation of the Suyama-Yamaguchi inequality



Summary

• A more insight into the single-field consistency relation 
for the squeezed-limit bispectrum using in-in formalism.

• Non-Bunch-Davies vacuum can give an enhanced 
bispectrum in the k3/k1<<1 limit, yielding a distinct form 
of the scale-dependent bias.

• Multi-field consistency relation between the 3-point and 
4-point function can be used to rule out multi-field 
inflation, as well as single-field.
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