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This talk is based on...
• Squeezed-limit bispectrum

• Ganc & Komatsu, JCAP, 12, 009 (2010)

• Non-Bunch-Davies vacuum

• Ganc, PRD 84, 063514 (2011)

• Scale-dependent bias [and μ-distortion]

• Ganc & Komatsu, in preparation

• Multi-field consistency relation

• Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (2011)
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Motivation

• Can we falsify inflation?
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Falsifying “inflation”

• We still need inflation to explain the flatness problem!

• (Homogeneity problem can be explained by a bubble 
nucleation.)

• However, the observed fluctuations may come from 
different sources.

• So, what I ask is, “can we rule out inflation as a 
mechanism for generating the observed fluctuations?”
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First Question:

• Can we falsify single-field inflation?
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• Single-field inflation = One degree of freedom.

• Matter and radiation fluctuations originate from a 
single source.

= 0

* A factor of 3/4 comes from the fact that, in thermal 
equilibrium, ρc~(1+z)3 and ργ~(1+z)4.

Cold 
Dark Matter

Photon
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An Easy One: Adiabaticity



Non-adiabatic Fluctuations

• Detection of non-adiabatic fluctuations immediately 
rule out single-field inflation models.

The data are consistent with adiabatic fluctuations:

< 0.09  (95% CL)
| |

Komatsu et al. (2011)
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Single-field inflation looks good
(in 2-point function)

• Pscalar(k)~k4–ns

• ns=0.968±0.012 
(68%CL; 
WMAP7+BAO+H0)

• r=4Ptensor(k)/Pscalar(k)

• r < 0.24 (95%CL; 
WMAP7+BAO+H0)

8

Komatsu et al. (2011)



So, let’s use 3-point function
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model-dependent function

k1

k2

k3

• Three-point function!

• Bζ(k1,k2,k3) 
= <ζk1ζk2ζk3> = (amplitude) x (2π)3δ(k1+k2+k3)b(k1,k2,k3)



MOST IMPORTANT, for falsifying 
single-field inflation



Curvature Perturbation
• In the gauge where the energy density is uniform, 
δρ=0, the metric on super-horizon scales (k<<aH) is 
written as

                 ds2 = –N2(x,t)dt2 + a2(t)e2ζ(x,t)dx2

• We shall call ζ the “curvature perturbation.”

• This quantity is independent of time, ζ(x), on super-
horizon scales for single-field models.

• The lapse function, N(x,t), can be found from the 
Hamiltonian constraint.
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Action

• Einstein’s gravity + a canonical scalar field:

•S=(1/2)∫d4x√–g [R–(∂Φ)2–2V(Φ)]
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Maldacena (2003)

(3)3 3

Quantum-mechanical 
Computation of the Bispectrum
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Initial Vacuum State

• Bunch-Davies vacuum, ak|0>=0:

ζ

[η: conformal time]
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• Bζ(k1,k2,k3) 
= <ζk1ζk2ζk3> = (amplitude) x (2π)3δ(k1+k2+k3)b(k1,k2,k3)

Maldacena (2003)
Result

k1

k2

k3

• b(k1,k2,k3)=

x{ }
15Complicated? But...



• Bζ(k1,k2,k3) 
= <ζk1ζk2ζk3> = (amplitude) x (2π)3δ(k1+k2+k3)b(k1,k2,k3)

Maldacena (2003)

k1

k2

k3

• b(k1,k1,k3->0)=

x{ }
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Taking the squeezed limit
(k3<<k1≈k2)

2k13 k13 k13 2k13



Maldacena (2003)

k1

k2

k3

• b(k1,k1,k3->0)=

17

Taking the squeezed limit
(k3<<k1≈k2)

[2 ]k13k33
1

• Bζ(k1,k2,k3) 
= <ζk1ζk2ζk3> = (amplitude) x (2π)3δ(k1+k2+k3)b(k1,k2,k3)

=

=1–ns

(1–ns)Pζ(k1)Pζ(k3)



Single-field Theorem 
(Consistency Relation)

• For ANY single-field models*, the bispectrum in the squeezed 
squeezed limit (k3<<k1≈k2) is given by

• Bζ(k1,k1,k3->0) = (1–ns) x (2π)3δ(k1+k2+k3) x Pζ(k1)Pζ(k3)

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

* for which the single field is solely responsible for driving 
inflation and generating observed fluctuations. 18
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Single-field Theorem 
(Consistency Relation)

• For ANY single-field models*, the bispectrum in the squeezed 
squeezed limit (k3<<k1≈k2) is given by

• Bζ(k1,k1,k3->0) = (1–ns) x (2π)3δ(k1+k2+k3) x Pζ(k1)Pζ(k3)

• Therefore, all single-field models predict fNL≈(5/12)(1–ns).

• With the current limit ns=0.96, fNL is predicted to be 0.017.

Maldacena (2003); Seery & Lidsey (2005); Creminelli & Zaldarriaga (2004)

* for which the single field is solely responsible for driving 
inflation and generating observed fluctuations. 20



Understanding the Theorem

• First, the squeezed triangle correlates one very long-
wavelength mode, kL (=k3), to two shorter wavelength 
modes, kS (=k1≈k2):

• <ζk1ζk2ζk3> ≈ <(ζkS)2ζkL>

• Then, the question is: “why should (ζkS)2 ever care 
about ζkL?”

• The theorem says, “it doesn’t care, if ζk is exactly 
scale invariant.”
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ζkL rescales coordinates

• The long-wavelength 
curvature perturbation 
rescales the spatial 
coordinates (or changes the 
expansion factor) within a 
given Hubble patch:

• ds2=–dt2+[a(t)]2e2ζ(dx)2

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2
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ζkL rescales coordinates

• Now, let’s put small-scale 
perturbations in.

• Q. How would the 
conformal rescaling of 
coordinates change the 
amplitude of the small-scale 
perturbation?

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2

(ζkS1)2 (ζkS2)2
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ζkL rescales coordinates

• Q. How would the 
conformal rescaling of 
coordinates change the 
amplitude of the small-scale 
perturbation? 

• A. No change, if ζk is scale-
invariant. In this case, no 
correlation between ζkL and 
(ζkS)2 would arise. 

ζkL
left the horizon already

Separated by more than H-1

x1=x0eζ1 x2=x0eζ2

(ζkS1)2 (ζkS2)2
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Real-space Proof
• The 2-point correlation function of short-wavelength 

modes, ξ=<ζS(x)ζS(y)>, within a given Hubble patch 
can be written in terms of its vacuum expectation value 
(in the absence of ζL),  ξ0, as:

• ξζL ≈ ξ0(|x–y|) + ζL [dξ0(|x–y|)/dζL]

• ξζL ≈ ξ0(|x–y|) + ζL [dξ0(|x–y|)/dln|x–y|]

• ξζL ≈ ξ0(|x–y|) + ζL (1–ns)ξ0(|x–y|)

Creminelli & Zaldarriaga (2004); Cheung et al. (2008)

3-pt func. = <(ζS)2ζL> = <ξζLζL>
= (1–ns)ξ0(|x–y|)<ζL2>

• ζS(x)

• ζS(y)
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This is great, but...
• The proof relies on the following Taylor expansion:

• <ζS(x)ζS(y)>ζL = <ζS(x)ζS(y)>0 + ζL [d<ζS(x)ζS(y)>0/dζL]

• Perhaps it is interesting to show this explicitly using the in-in 
formalism.

• Such a calculation would shed light on the limitation of the 
above Taylor expansion.

• Indeed it did - we found a non-trivial “counter-
example” (more later) 26



An Idea

• How can we use the in-in formalism to compute the 
two-point function of short modes, given that there is a 
long mode, <ζS(x)ζS(y)>ζL?

• Here it is!

S S
(3)

27

ζL

Ganc & Komatsu, JCAP, 12, 009 (2010)



• Inserting ζ=ζL+ζS into the cubic action of a scalar 
field, and retain terms that have one ζL and two ζS’s. 

S S
(3)

28

ζL

(3)

Ganc & Komatsu, JCAP, 12, 009 (2010)

Long-short Split of HI



Result

• where

Ganc & Komatsu, JCAP, 12, 009 (2010)
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Result

• Although this expression looks nothing like (1–nS)P(k1)ζkL, 
we have verified that it leads to the known consistency 
relation for (i) slow-roll inflation, and (ii) power-law inflation. 

• But, there was a curious case – Alexei Starobinsky’s exact 
nS=1 model. 

• If the theorem holds, we should get a vanishing 
bispectrum in the squeezed limit. 
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Starobinsky’s Model

• The famous Mukhanov-Sasaki equation for the mode 
function is

where

•The scale-invariance results when

So, let’s write z=B/η

Starobinsky (2005)
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Starobinsky’s Potential

• This potential is a one-parameter family; this particular 
example shows the case where inflation lasts very long: 
φend ->∞ 32



Result

• It does not vanish! 

• But, it approaches zero when Φend is large, meaning the 
duration of inflation is very long.

• In other words, this is a condition that the longest 
wavelength that we observe, k3, is far 
outside the horizon.

• In this limit, the bispectrum approaches zero.

Ganc & Komatsu, JCAP, 12, 009 (2010)

33



Initial Vacuum State?

• What we learned so far: 

• The squeezed-limit bispectrum is proportional to 
(1–nS)P(k1)P(k3), provided that ζk3 is far outside the 
horizon when k1 crosses the horizon.

• What if the state that ζk3 sees is not a Bunch-Davies 
vacuum, but something else?

• The exact squeezed limit (k3->0) should still obey 
the consistency relation, but perhaps something 
happens when k3/k1 is small but finite. 34



Back to in-in

• The Bunch-Davies vacuum: uk’ ~ ηe–ikη (positive frequency mode)

• The integral yields 1/(k1+k2+k3) -> 1/(2k1) in the squeezed limit
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Back to in-in

• Non-Bunch-Davies vacuum: uk’ ~ η(Ake–ikη + Bke+ikη)

• The integral yields 1/(k1–k2+k3), peaking in the folded limit

• The integral yields 1/(k1–k2+k3) -> 1/(2k3) in the squeezed limit

negative frequency 
mode

Chen et al. (2007); Holman & Tolley (2008)

Agullo & Parker (2011)
Enhanced by k1/k3: this can be a big factor!



How about the consistency 
relation?

• When k3 is far outside the horizon at the onset of 
inflation, η0 (whatever that means), k3η0->0, and thus 
the above additional term vanishes.

• The consistency relation is restored. Sounds familiar!

Agullo & Parker (2011)

37

k3/k1<<1 ζ ζζ



An interesting possibility:
• What if k3η0 = O(1)?

• The squeezed bispectrum receives an enhancement of 
order εk1/k3, which can be sizable. 

• Most importantly, the bispectrum grows faster 
than the local-form toward k1/k3 -> 0!

• Bζ(k1,k2,k3) ~ 1/k33 [Local Form]

• Bζ(k1,k2,k3) ~ 1/k34 [non-Bunch-Davies]

• This has an observational consequence – particularly a 
scale-dependent bias. 38



Power Spectrum of Galaxies

• Galaxies do not trace the underlying matter density 
fluctuations perfectly. They are biased tracers.

• “Bias” is operationally defined as

• bgalaxy2(k) = <|δgalaxy,k|2> / <|δmatter,k|2>
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Scale-dependent Bias

• A rule-of-thumb: 

• For B(k1,k2,k3) ~ 1/k3p, the scale-dependence of the 
halo bias is given by b(k) ~ 1/kp–1

• For a local-form (p=3), it goes like b(k)~1/k2

• For a non-Bunch-Davies vacuum (p=4), would it go like 
b(k)~1/k3?

Dalal et al. (2008); Matarrese & Verde (2008); Desjacques et al. (2011)

B
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It does! Ganc & Komatsu (in prep)

Wavenumber, k [h Mpc–1]

Δb
ga

la
xy

(k
)/

b g
al

ax
y

~k–3

~k–2

Local 
(fNL=10)

non-BD 
vacuum

(ε=0.01; Nk=1)
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CMB?

• The expected contribution to fNLlocal as measured by 
CMB is typically fNLlocal ≈8(ε/0.01).

• A lot bigger than (5/12)(1–nS), and could be 
detectable with Planck.

Ganc, PRD 84, 063514 (2011); Ganc and Komatsu, in prep
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How about...

• Falsifying multi-field inflation?
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Strategy

• We look at the local-form four-point function 
(trispectrum).

• Specifically, we look for a consistency relation between 
the local-form bispectrum and trispectrum that is 
respected by (almost) all models of multi-field inflation.

• We found one: 

Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (2011)

44

provided that 2-loop and higher-order terms are ignored.



Trispectrum

• Tζ(k1,k2,k3,k4)=(2π)3δ(k1+k2+k3+k4)

xτNL[Pζ(k1)Pζ(k2)(Pζ(|k1+k3|)+Pζ(|k1+k4|))+cyc.]

k2

k1

k3

k4

τNL
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Tree-level Result
(Suyama & Yamaguchi)

• Usual δN expansion to the second order

gives:
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Now, stare at these.
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Change the variable...

(6/5)fNL=∑IaIbI

τNL=(∑IaI2)(∑IbI2)48



Then apply the 
Cauchy-Schwarz Inequality

• Implies

But, this is valid only at the tree level!

(Suyama & Yamaguchi 2008)
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Harmless models can violate 
the tree-level result

• The Suyama-Yamaguchi inequality does not always hold 
because the Cauchy-Schwarz inequality can be 0=0. For 
example:

In this harmless two-field case, the Cauchy-Schwarz inequality 
becomes 0=0 (both fNL and τNL result from the second term).

In this case, 

(Suyama & Takahashi 2008) 50



“1 Loop”

• kb=min(k1,k2,k3)
51

Fourier transform this,
and multiply 3 times

pmin=1/L



Ignoring details...

• I don’t have time to show you the derivation (you can 
look it up in the paper), but the result is somewhat 
weaker than the Suyama-Yamaguchi inequality:

Detection of a violation of this relation can potentially falsify inflation 
as a mechanism for generating cosmological fluctuations.

Sugiyama, Komatsu & Futamase, PRL, 106, 251301 (2011)
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Implications for Inflation

• The current limits 
from WMAP 7-year 
are consistent with 
single-field or multi-
field models.

• So, let’s play around 
with the future.

53ln(fNL)

ln(τNL)

74

3.3x104

(Smidt et 
al. 2010)

(Komatsu et al. 2011)

4-point 
amplitude

3-point 
amplitude

4-point 
amplitude



Case A: Single-field Happiness

• No detection of 
anything (fNL or 
τNL) after Planck. 
Single-field survived 
the test (for the 
moment: the future 
galaxy surveys can 
improve the limits 
by a factor of ten).

ln(fNL)

ln(τNL)

10

600
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Case B: Multi-field Happiness(?)

• fNL is detected. 
Single-field is gone.

• But, τNL is also 
detected, in accordance 
with τNL>0.5(6fNL/5)2           
expected from most 
multi-field models.

ln(fNL)

ln(τNL)

600

5530

(Suyama & Yamaguchi 2008; Komatsu 2010; Sugiyama, Komatsu & Futamase 2011)



Case C: Madness
• fNL is detected. Single-

field is gone.

• But, τNL is not detected, 
or found to be 
negative, inconsistent 
with τNL>0.5(6fNL/5)2.

• Single-field AND 
most of multi-field 
models are gone.

ln(fNL)

ln(τNL)

30

600

56

(Suyama & Yamaguchi 2008; Komatsu 2010; Sugiyama, Komatsu & Futamase 2011)

Remember: 
τNL is not positive definite



Summary

• A more insight into the single-field consistency relation 
for the squeezed-limit bispectrum using in-in formalism.

• Non-Bunch-Davies vacuum can give an enhanced 
bispectrum in the k3/k1<<1 limit, yielding a distinct form 
of the scale-dependent bias.

• Multi-field consistency relation between the 3-point and 
4-point function can be used to rule out multi-field 
inflation, as well as single-field.
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