The lecture slides are available at
https://wwwmpa.mpa-garching.mpqg.de/~komatsu/
lectures--reviews.html

Lecture 7: Detalls of the Acoustic
Oscillation
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Fluctuations
Entering the Horizon

* The initial impact for a
given wavelength.
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Three Regimes

 Super-horizon scales [g < aH]
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e Only gravity is important
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e Evolution differs from Newtonian: We need GR

e Sub-horizon but super-sound-horizon [aH < q < aH/cs]

e Only gravity is important

e Evolution similar to Newtonian

orizon —

e Sub-sound-horizon scales [q > aH/cs] ubble length -

Physical Length [h™' Mpc]

e Hydrodynamics important -> Sound waves
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Part |I: Super-horizon Scale:
Conserved Curvature Perturbation



Bardeen, Steinhardt & Turner (1983);
The Stone. c,, Weinberg (2003); Lyth, Malik & Sasaki (2005)

Conserved quantity on the super-horizon scale, g << aH

* For the adiabatic initial condition, there exists a useful quantity, ¢, which
remains constant on large scales (super-horizon scales, g << aH)
regardless of the contents of the Universe.

e (CIs conserved regardless of whether the Universe is radiation-dominated,

matter-dominated, or whatever.
00 + — (3(5pa + 30 P, y/ — 3(pa + Pa)

e Derivation: Energy conservation for g << aH
5 : 5 (pa T PM

3¢ R
5/éoz T _a(dpoz ‘|‘5Pa) _3(1505 +Pa)gp: U




Bardeen, Steinhardt & Turner (1983);
Weinberg (2003); Lyth, Malik & Sasaki (2005)
The ucu g ( ), Ly

Conserved quantity on the super-horizon scale, g << aH

* |f pressure is a function of the energy density only, i.e., P, = P,(pa)

1 0pa(t,x

L 0Palb®) g4, 2) = ¢, ()
3 pa (t) _I_ Pa (t) mtegratlon constant
3 |Integrate

0Po + — (5/0a+5p )_3(/5044‘?&)@:0

a




Bardeen, Steinhardt & Turner (1983);
Weinberg (2003); Lyth, Malik & Sasaki (2005)
The ucu g ( ), Ly

Conserved quantity on the super-horizon scale, g << aH

 |f pressure is a function of the energy density only, i.e., P, = P,(p.)

———————— —Y(t,x) = (H(@
3 pa(t) + Py(t) £, @)

For the adiabatic initial
condition, all species share the

same value of (g, I.e., CQ=C
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The wavenumber of the fluctuation that entered the horizon during the equality time
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Part Il: Locations of the Acoustic
Peaks




Peak Locations?

High-frequency solution, for q >> aH
0
4'?7 + & = Acos(qrs) + Bsin(qrs) — R®
P

* VERY roughly speaking, the angular power spectrum C; is given by [
with q -> |/rL.

 Question: What determines the integration constants, A and B?

e Answer: They are determined by the initial conditions; namely, adiabatic or not.

 For the adiabatic initial condition, A >> B when q is large.

[We will show this later.]
14



Peak Locations?

High-frequency solution, for q >> aH
0P~ .
— 4+ & = Acos(qrs) + Bsin(qrs) — R®
4p-,
* VERY r | S 0Py | =12
oughly speaking, the angular power spectrum C; is given by [ 15, 45]
with g -> I/rL. !

e |f A>>B, the locations of peaks are determined by qrs(tL) = ntt (n=1,2,...):

0=(1,2, - Vary/re(tr) = (1, 2, ---) x 302

15
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T We need a better solution.

116 16




A Better Solution In the
Radiation-dominated Era

Going back to the original tight-coupling equation:

1 0 T

0 ] 4° @ 0py/p
a(l —1—13)&(5,07/,07 —45[7)] + 3.3 >P + 23 17_'/_/;{)

a(l1+ R) ot L

39}3 a

Qghz ) 1091

e |n the radiation-dominated era, R << 1 as R = — 0.6120 (0 022 ) 152

4_(27 an

e Convenient to change the independent variable from the
time (t) to

D = qrg = 2qt/\/§a



A Better Solution In the
Radiation-dominated Era

Then the equation simplifies to

0°X/0p* + X + D+ W = (

where X — 5/07/4;57 _Lp

e |n the radiation-dominated era, R << 1.

e Convenient to change the independent variable from the
time (t) to

o = qrs = 2qt/\/3a



A Better Solution in the

Radiation-dominated Era

The solution Is

3 3 P
X = Acosp+ Bsinp — / dy' sin(p — ') (P + ¥)(¢')
0

We rewrite this using the formula for trigonometry:

sin(p — ') = sin(p) cos(y’) — cos(¢) sin(¢’)



A Better Solution In the
Radiation-dominated Era

X =(A+AA)cosp+ (B + AB)sinp

)
AMp) = [ do'sing/(@+0)().
where ’

AB(p) = - /O i dp' cos o' (P + V) (¢')



Einstein’s Equations

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:

3C _
o a
. a . -
w _@ — _4 G _a Pa 5 o C.f., Newtonian (Poisson equation)
i a " %:(,0 T Fa)ou (VZQ) — 47TG5,0)

87;83' (45 — Ep) — —87rGa287;8j Z T

21



Einstein’s Equations

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:

V¥ = 47Ga” Z [5,% (pa + Pa)éua]

a

W+ @ = —47TG'Z(pa + P,)ou,

8,0,(® — W) = —87(Ga28;0, W ’)



Einstein’s Equations

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:

VU = 41Ga* Z [5,% — S—Q(pa + P )5ua]

W+ @ = —4nG Z(pa + P,)0uq

Will come back to

8’583' (¢ T !p) — —87TGCZ28 8]@ For n;t:\ilflle?:?gnore

any viscosity.



Einstein’s Equations

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Einstein’s equations - let’s look up any text books:
3a
d

V¥ = 47Ga” [5,% (pa + Pa)éua]

G+ 2P = —47G S (po + Po)oua
a o

Will come back to

this later.
— For now, let’s ighore

any viscosity.
24



Einstein’s Equations
INn the Radiation-dominated Era

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Combine Einstein’s equations:

2P 4 O 3 6P
—2—|-——‘|‘¢: a5 9 =
dp= @ Jy 20° PR

Decompose the_tote_ll Z p o (t)
el O 0Pu(t @) = S Y dpa(t @) HOP(L )|
v

25

perturbation and the rest.

“non-adiabatic” pressure



Einstein’s Equations
INn the Radiation-dominated Era

e Now we need to know Newton’s gravitational potential, ¢,
and the scalar curvature perturbation, .

e Choose the adiabatic solution!

b 409 o _
002  pdp

Decompose the total Z P, 8 (t)
pressure perturbation into Z 5Pa (t :B) - & Z 5pa (?f ZL')

the total energy density

perturbation and the rest.

“non-adiabatic” pressure



Kodama & Sasaki (1986, 1987)

Adiabatic Solution in the
Radiation-dominated Era

D pp1 = —ZC(sin @ — P COS 90)/903

where

P =(qrs = th/\/ga

e | ow-frequency limit (super-sound-horizon scales, qrs << 1)
e Dap ->-20/3 = constant

e High-frequency limit (sub-sound-horizon scales, qrs >> 1)

e QOap ->2¢ COS QO/QOZ x a %

The potential decays -> The integrated Sachs-Wolfe Effect

27



Adiabatic Solution in the
Radiation-dominated Era
D pDI = —C(Sin P — P COS 90)/%03

whas
Poisson Equation

—q°P = A Ga*dp

& oscillation solution for radiation

0PR/PR OX COS

des, qrs>> 1)

e | ow-frequency | ales, qrs << 1)

e Pap ->-20/3
e High-frequency
o Oapi->2C [COS /Pl a

28



Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution in the
Radiation-dominated Era

The solution iIs

X =(A+ AA)cosp + (B + AB)sinp

where

X =6p/Ap, — W

AA(p)

P
/ do' sin ' (P +¥)(¢')
0

AB(yp)

(L
[ a9
0

29



Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution in the
Radiation-dominated Era

The solution iIs

X =(A+ AA)cosp + (B + AB)sinp

where

X =6p/Ap, — W

J, @ sme@ e nie)=-2((1 ~ sin® 9/ ¢?)

[ a0

AA(p)

AB(p)

— QC( — Cosgosmgp)/QOQ



Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution in the
Radiation-dominated Era

The solution iIs

X =(A+ AA)cosp + (B + AB)sinp

where

v < 1

X = 0py/Apy —¥ ——+ (e Ao =C Boo =0

Jy @@ 0 =-2((1 ~ sin® o/ ¢?)

[ a0

AA(p)

AB(p)

— 2(( —COSQOSIHQO)/QO2



Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)

Sound Wave Solution in the
Radiation-dominated Era

The complete adiabatic solution is

0 2
X =P = C( COSQO—I—;SIHQO)
with

b =¥ = —2((sinp — pcosp)/p°

Therefore, the solution is a PUre cosine

only in the NIgh-frequency Iimit!
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Roles of viscosity

e Neutrino viscosity: Gravitational Impact
e Modify potentials:
82-89- (ép — ‘_p) — —87TGCL28@'83'
e Photon viscosity: Hydrodynamical Impact

* Viscous photon-baryon fluid: damping of sound waves

8 5 p q . Silk (1968) “Silk damping”
_ 5 @ Y
aat( uy/a) + D+ 15, 2.

34

= o7Ne(0up — duy)



Part lll: Damping of the Sound
Waves



Photon Viscosity
Origin of the Silk damping

* |n the tight-coupling approximation, the photon viscosity damps
exponentially.

 Jo take into account a non-zero photon viscosity, we need go
higher order in the tight-coupling approximation.

36



_ Peebles & Yu (1970)
The previous lecture: The 1st-order

Tight-coupling Approximation

e When the Thomson scattering is efficient, photons and baryons
“move together”; thus, their relative velocity is small. We write

5 ’U,B a— 5 ’u, ,y — d / O Tﬁ e [d is an arbitrary dimensionless variable]

e Andtake 071N — OQ (*). We obtain

8 5,0 d
0 P = d 01 P =——

(*) In this limit, viscosity rtyis exponentially suppressed. This result comes from the
Boltzmann equation but we do not derive it here. It makes sense physically.




Today: The 2nd-order
Tight-coupling Approximation

e When the Thomson scattering is efficient, photons and baryons
“move together”; thus, their relative velocity is small. We write

dup — 0uy = di/oTie + qda /(07 7e)?

_ d is an arbltra dlmensmnless variable
di = R((S’U,»Y -+ @) [ ry ]

[the 1st-order solution]

e Andtake 07N —> OO. We obtain

O 0P Qe . q
—(§ d + T = —R(S PD) 4 d
a@t( Uy/a) + 15, 25 (0 + D) S 2
0 R(0uy+P)7 a__,
ot L TTNe - N RU’TT_LG. .

38



The 2nd-order
Tight-coupling Approximation

e Eliminating d2 and using the fact that R is proportional to
the scale factor, we obtain

gt (14 R)ou, /a]+ (1 4+ R)®+ 2P Iy | p 0 (R0, +¢)] Sy

4,5,7 2,0,7 ot L  o1n,

e (Getting 11y requires an approximate solution of the Boltzmann
eqguation in the 2nd-order tight coupling. We do not derive it
here. The answer Is

32 D
o o - 2 . . - ,7/ 5
AT = a”0;0;m, " Born. 0;0;0u,

39 Kaiser (1983)



The 2nd-order
Tight-coupling Approximation

e Eliminating d2 and using the fact that R is proportional to
the scale factor, we obtain

0 0py : 0 1R(0tu + D)

azy [(1+ R)Su, /a]+(1+R)P+

4p,, 2D, ot L o7n,

equation in the 2nd-order tight the velocity field

- a well-known result in fluid dynamics

here. The answer Is

40 Kaiser (1983)



Damped Oscillator

e Using the energy conservation to replace 6uy with opy/py,
we obtain, for g >> aH,

1 0 g 8 o0 q2 g

New term glvmg damplng'

5p/Py + 4(1 + R)®] = 0

I'(q,t
(4, %) 6a’oc7n. L15(1 + R) T (1+ R)?

where q2 B 1 6 R2 :|

41



Damped Oscillator

e Using the energy conservation to replace 6uy with opy/py,
we obtain, for g >> aH,

1 0 7 6 o0 q2 g

New term glvmg damplng'

0py/py +4(1+ R)P| =0

Important for high frequencies
o~ (large multipoles)




Damped Oscillator

e Using the energy conservation to replace 6uy with opy/py,
we obtain, for g >> aH,

1 0 g 6 o0 q2 g

New term glvmg damplng'
The new solution is

t
jpv - ® = |Acos(qrs) + Bsin(grs)| exp [—/ dt’ F(q,t/)] — RO
P~ 0

0py/py +4(1+ R)P| =0

~ Exponential dampling!

. ~exp(—q°/orn.H)



Damped Oscillator

e Using the energy conservation to replace 6uy with opy/py,
we obtain, for g >> aH,

1 0 6 o0 q2 g

New term glvmg damplng'

0py/py +4(1+ R)P| =0

The new solution is

i'z: - ® = |Acos(qrs) + B sin(qrs)] exp(—qZ/qQS”k )— R®

a / q o N C’Tne H) —1/2 «diffusion length”

= length traveled by photon’s random walks



The Diffusion Length

= length traveled by photon’s random walks

 The mean free path of the photon between scatterings is (othe)-1.

 Below this scale, you do not have a photon-baryon fluid: they are individual
particles.

 The number of scatterings per Hubble time is Nscattering=0Tne/H.

 Then, the length traveled by photons by random walks within the Hubble time
IS (O'Tne)_1 times \/Nscatterings

® The diﬁUSion Iength iS thUS (GTne)_1 timeS \/Nscatterings = (GTneH)_1/2.

45



The Diffusion Damping

by Wayne Hu

7\,DzN : /2)\.(3 7\,
D — >

e Diffusion mixes hot and cold photons -> Damping of anisotropies

46



Planck Collaboration (2016)
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Additional Damping

The power spectrum is o |2 with q -> |/r.. The damping
4,0'7

factor is thus exp(—2q2/qsnk2)

e Qsik(tL) = 0.139 Mpc-1. This corresponds to a multipole of Isik ~

gsilk r'/\/2 = 1370. Seems too large, compared to the exact
calculation.

e There is an additional damping due to a finite width of the last
scattering surface, 0~250 K.

e “Fuzziness damping” — Bond (1996); “Landau damping” -
Weinberg (2001)

3047
(.quzzmess 8@%T2(1 _I_ RL)

~ (0.2() Mpc_l)_2



Planck Collaboration (2016)
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Recap

 The basic structure of the temperature power spectrum is

e The Sachs-Wolfe “plateau” at low multipoles, I(I+1)C; ~ In-1
e Sound waves at intermediate multipoles

* [he 1st-order tight-coupling approximation
e Silk damping and Fuzziness damping at high multipoles

* The 2nd-order tight-coupling approximation

50



Part IV: The Acoustic Oscillation
at the Last-scattering Surface



Planck Collaboration (2016)
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Matching Solutions: Radiation-
and Matter-dominated Eras

e \We have a very good analytical solution valid at low and
high frequencies during the radiation era: ¢ = q7s

0 2
'?7 —!P:C(—cosgo—l— —sincp)
40+ ¥

* Now, match this to a high-frequency solution valid at the
last-scattering surface (when R is no longer small)

0
el - A cos(qrs) + Bsin(qrs) — RO
AP~ . R = 355/4p,



Matching Solutions: Radiation-
and Matter-dominated Eras

e \We have a very good analytical solution valid at low and
high frequencies during the radiation era: ¢ = q7s

0 2
Py g = C(—cosgo—l——sincp)
4p- 0

* Now, match this to a high-frequency solution valid at the
last-scattering surface (when R is no longer small)

Slightly improved solution, with a weak time dependence of R using the WKB method
5 [Peebles & Yu (1970)]
2P~

-+ e=(01+R)" 1/474 Cos(qrs) + Bsin(grs)] — R®
Py



Weinberg “Cosmology”, Eq. (6.5.7)

Solution at the Last Scattering Surface

0 | |
427 + @ = %{SRT(q) — (14 R)"Y%8(q) cos[qrs + 9(67)_}
Y
where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as

q<<gea: S—1, 7T —1, 6§ >0
q>>qea: S — 5, T xIng/q? 6 — 0.0627

“EQ” for “matter-radiation Equality epoch”

with deq = aeqHeq ~ 0.01 Mpc-1, giving leq=qeaqr. ~ 140

e (*) To a good approximation, the low-frequency solution is
given by setting R=0 because sound waves are not
Important at large scales

55



Weinberg “Cosmology”, Eq. (6.5.7)

Solution at the Last Scattering Surface

jg: + @ = %{SRT(q) — (1 + R)_1/4S(q) cos|qrs + 9(q)]}

where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as

Q<<ea: S—1, 7T —1, 6 -0
q>>dqgea: |S—5 T xlng/q? 6 — 0.0627

Due to the decay of r~ 140
NCReEY Jdravitational potential during REtEs

Wl the radiation dominated era ek
[ggfelelgest s o

with ge

56



Weinberg “Cosmology”, Eq. (6.5.7)

Solution at the Last Scattering Surface

0 40 = £ {3RT(q) - (14 B)/*5(q) oslar. + 6(a)]

where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as

Q<<ea: S—1, 7T —1, 6 -0

q>>qgea: S — 5 T xlng/q? |0 — 0.0627

“EQ” for “matter-radiation Equality epochg

with geq = aegHeq ~ 0.01 Mpc-1, giv Due to the neutrino

e (") To a good approximation, the low-f 2HISOtrOp.Icustress
given by setting R=0 because sound Wt1lcA 2 el el=Tale [V &SI B 1 [SH 2]

important at large scales lecture slides)

57




+ &

Weinberg “Cosmology”, Eq. (6.5.7)

Low-frequency Limit

S
5

O

q -> 0(*) C

This should agree with the Sachs-Wolfe result: ®/3; thus,

= 2[3RT(q) — (1 +R)"/*5(q) coslgrs +0(q)]

@ — —34. / 5 in the matter-dominated era

e (*) To a good approximation, the low-frequency solution is
given by setting R=0 because sound waves are not

Important at large scales
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High-frequency Limit

= 2 {3RT(q) — (1 + B)"/*5(q) coslar, +6(3)]

T —(1+ R) TV cos[grs + 0(q)]

e The amplitude of the oscillation on small scales is a factor
of 5(1 +R)_1 /% times the Sachs-Wolfe plateau!
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R

Weinberg “Cosmology”, Eq. (6.5.7)

Effect of Baryons

3RT ()~ (1 + R)"/45(q) coslar +0(q)]

Shift the zero-point of Reduce the amplitude of

oscillations oscillations

_3.(23 (

497 Ao

__ SWGP*)/O

o
! 3H?

The CMB power spectrum is sensitive to this combination of the parameters.

— 0.6120 () 1091

0.022/ 1+ z

= 2471 x 107° A2 for Ty = 2.725 K
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- - R, =0 Effect of baryons

— R,=0.61 [Qgh*=0.022]
Q0 h*=0.14
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On

(6p,/40,+%)°/(¢/5)°

- - R,=0 Effect of baryons

— R,=0.61 [Qh*=0.022]
0, h%=0.14

Zero-point shift of the
oscillations
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QMh2=O. 14 WKB factor (1+R)-1/4
and Silk damping
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point shift




Weinberg “Cosmology”, Eq. (6.5.7)

Effect of Total Matter

0 |
4? + @ = g{BRT(q) — (14 R)"Y%8(q) cos[qrs + 9(q)]}
Y
where T(q), S(q), 6(q) are “transfer functions” that smoothly interpolate two limits as

q<<gea: S—1, 7T —1, 6§ >0
q>>qgea: S — 5, T xlng/q? 6 — 0.062m

“EQ” for “matter-radiation Equality epoch”

with dea = aeqHeq ~ 0.01 (Qmh2Y0.14) Mpc-

The CMB power spectrum is sensitive to this combination of the parameters.
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- - Qge=0.005 Mpc~' [Quh2=0.07]
9ee=0.010 Mpc™' [Q,h*=0.14]

Smaller matter density
-> More potential decay
-> Larger boost
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Recap

 Decay of the gravitational potential boosts the temperature anisotropy dT/T at
high multipoles by 5(1+R)-14 compared to the Sachs-Wolfe plateau.

* Where this boost starts depends on the total matter density => We can
measure Qmvh? using this.

e Baryon density shifts the zero-point of the oscillation, boosting the heights of
the odd peaks relative to those of the even peaks => We can measure (gh?
using this.

e However, the WKB factor (1+R)-174 and damping make the boosting of the
3rd and 5th peaks not so obvious.
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Not quite there yet...

e The first peak is too low

e We need to include the “integrated Sachs-Wolfe effect”

e How to fill zeros between the peaks?

e We need to include the Doppler shift of light
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The Doppler Shift of Light

AT (n)  dp.(tg, 7
(n) __ p’)’( L’nTL) | @(tL,’fL’I"L) —’ﬁ-’UB(tL,'ﬁTL)

TO 4)57 (tL)
VB is the bulk velocity of
a baryon fluid
e Using the velocity potential,
' A Line-of-sight direction
we write —n - V5UB/CL v i
n’ = —y
e In tight coupling, 5UB — 5u7 Coming distance (r)
Tt = fn'r
: : to dt/
e Using the energy conservation, r(t) = /
¢ a(t’)

duy = (3a%/q%)0(6p/4py) /Ot



The Doppler Shift of Light

AT(’fL) 5,07(?51;, ’fl?"L

TO 4)57 (tL)

|
SN’
K
N
o~
&
~>
=
~
N’
|
>
-
3
Vel
o~
&
~>
~
[~
S

VB is the bulk velocity of
a baryon fluid

e Using the velocity potential,
we write —n - V5UB/Q

* Intight coupling, §qyp = 5u,y

Velocity potential is a

time-derivative
of the energy density:

e Using the energy conservation, cos(qrs) becomes

5?1,7, — (3@2/(]2 8(5/07/4/57)/875 sin(qrs)!



Temperature Anisotropy
from the Doppler Shift

35% \/5_C (1+ R)™ 3/48(/43) sin|qrs + 0(k))

a

e Jo this, we should multiply the damping factor

exp(—q%/qpm )
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+Doppler

6p.,/ 4p.,+®+Doppler+ISW
————— 6p.,,/ 4p.,+d+Doppler

Doppler shift reduces the

contrast between the peaks and
troughs because it adds

sin2(grs) to cos2(qrs)
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Hu & Sugiyama (1996)

(Early) ISW

) .
| @(tL,nTL) —@(to,O)
To 2 \'L) “integrated Sachs-Wolfe” (ISW) effect

Gravitational potentials decay after the last-scattering because
the Universe was not yet completely matter-dominated.
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The Early ISW affects

only the first peak because it

occurs after the last-scattering

epoch, subtending a larger angle.
Not only it boosts the first peak,

er+I1SW

er

but also it makes it “fatter”
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We are ready!

Vol

— ) | @(tL,’fL’FL) —’}’L-’UB(tL,ﬁTL)

Ik 45’7(“3)
ZZZ - P = %{SRT (k) = (1+ R) ™45 (k) coslgrs + 0(x)] }
25“7 — \/5§C (14 R)™*/1S(k)sin[qrs + 0(k)]

e \We are ready to understand the effects of
all the cosmological parameters. * Next | ecturel
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Appendix: Neutrino Viscosity



High-frequency solution
without neutrino viscosity

The solution iIs

X =(( +AA)cosp+ ( AB) sin ¢

where

X = 6p,/Ap, — W

adp) = [ asing @+ o)) =-2¢(1 —sin® p/p?)

_/(’0 ng,COSQOI(@—Fw)((P,) o > 1 _QC

AB(p)

— QC(QO — COSSOSiHQO)/SOZ o>1 O



_ ~ Chluba & Grin (2013)
High-frequency solution

with neutrino viscosity

The solution iIs

=(—C+AA,) cosp+ AB,, sin ¢

where

X =0py/4p, — V¥
AA,/ p>1 O 338R1/C
AB, w+ 0.418R,(

nnnnnnnnnnnnn




High-frequency solution
with neutrino viscosity

Using the formula for trigonometry, we write

X=—C'cos(p + 0)

where

C =(—C+AA,)?+ AB?
~ ((1+4R,/15)"" (Hu & Sugiyama 1996)

tanfd = — ABV ~ ().0037 Phase shift!

—C+ A4, . (Bashinsky & Seljak 2004)




High-frequency solution

The Thus, the neutrino viscosity will:

WX Reduce the amplitude of

o sound waves at large multipoles

2) Shift the peak positions

of the temperature power spectrum

AY»

—AV ) ~ ().0037T Phase shift
—C+ V.,  (Bashinsky & Seljak 2004)

tanl = —



