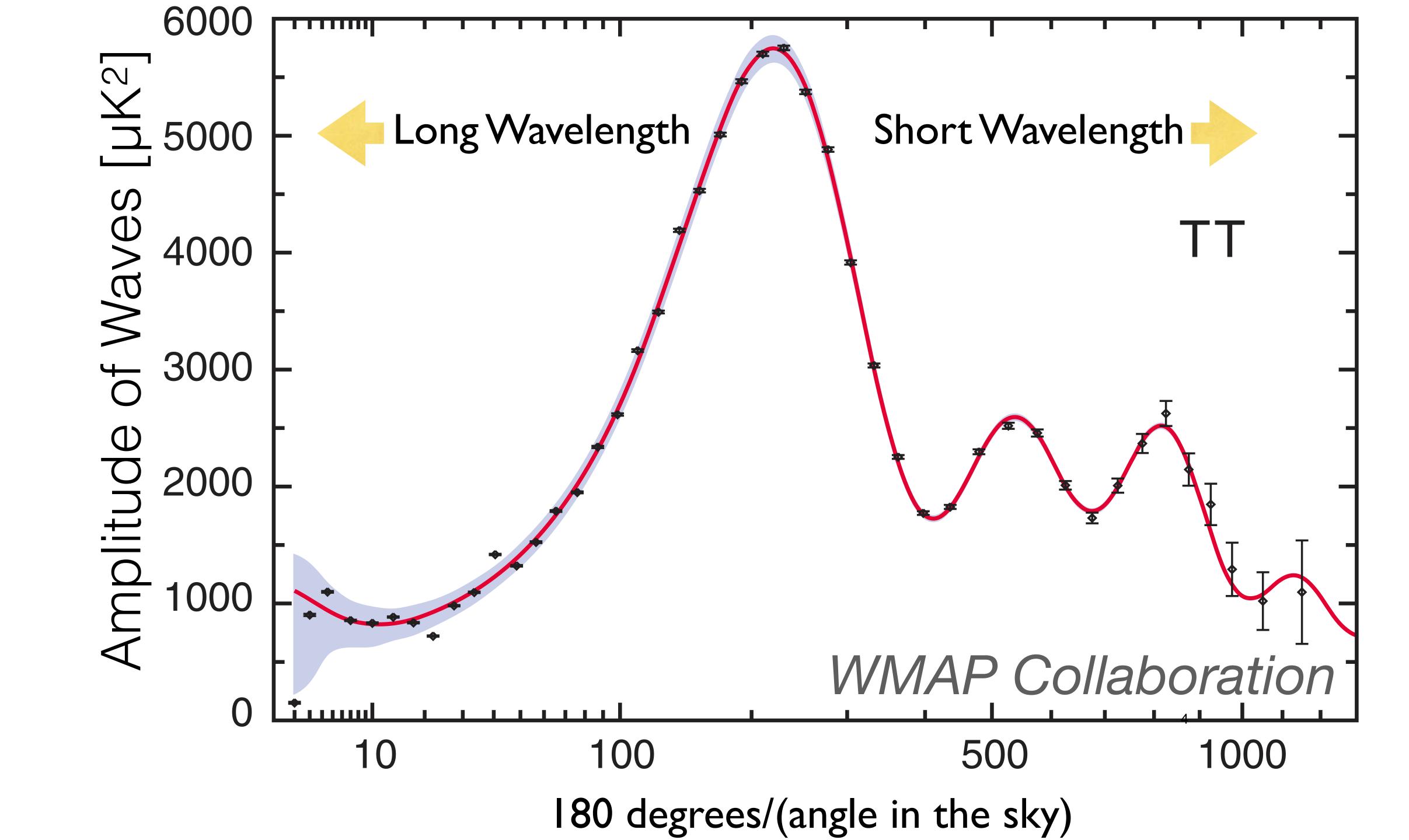
Lecture 4: Power Spectrum

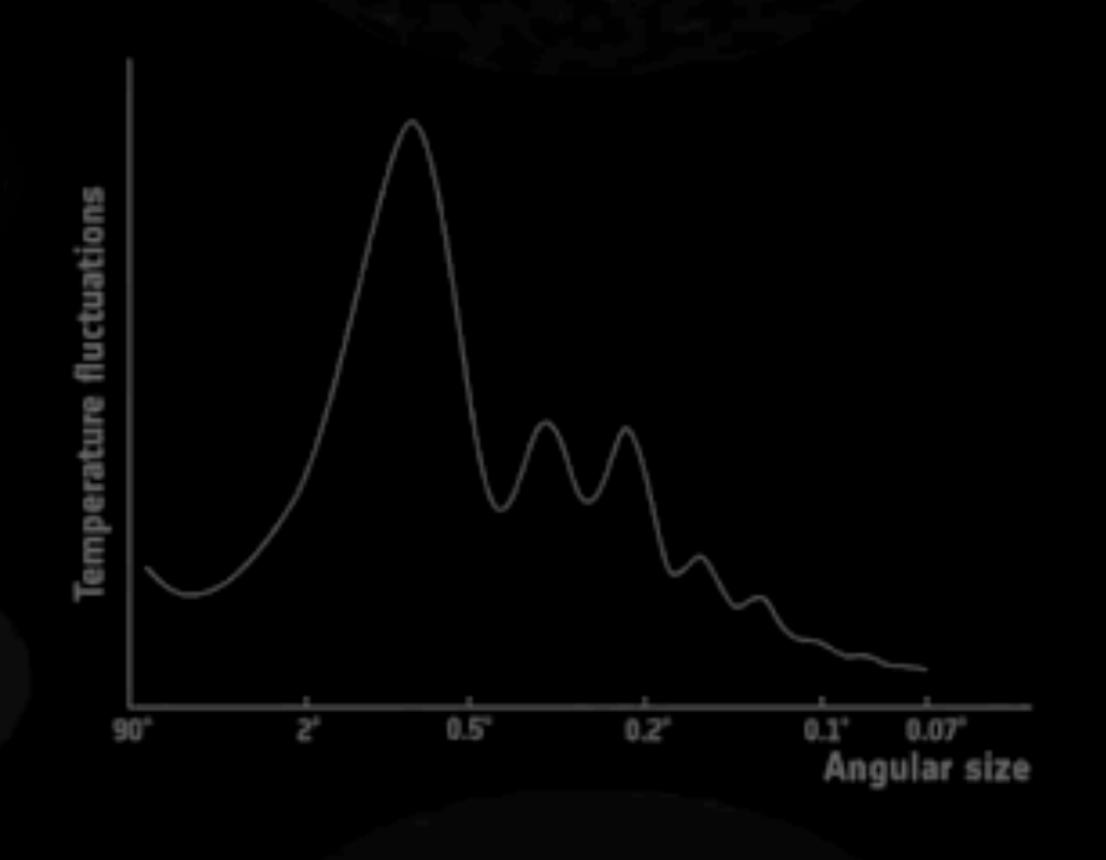
datalikethis?

Data Analysis

- Decompose temperature fluctuations in the sky into a set of waves with various wavelengths
- Make a diagram showing the strength of each wavelength: Power Spectrum



Power Spectrum, Explained



Part I: Spherical Harmonics

Fourier transform?

• The simplest way to decompose fluctuations into waves is Fourier transform.

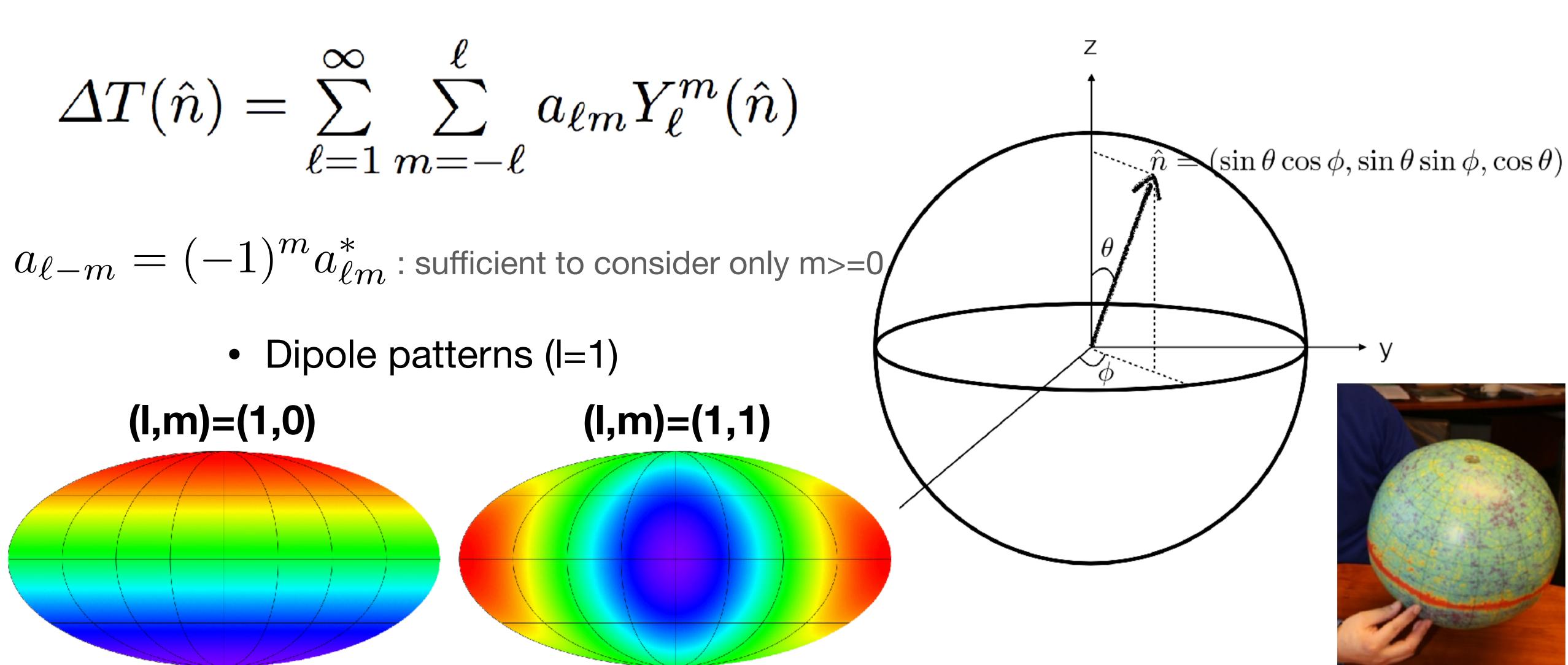
However, Fourier transform works only for plane waves in flat space.

 The sky is a sphere. How do we decompose fluctuations on a sphere into waves?

• The answer: Spherical Harmonics.

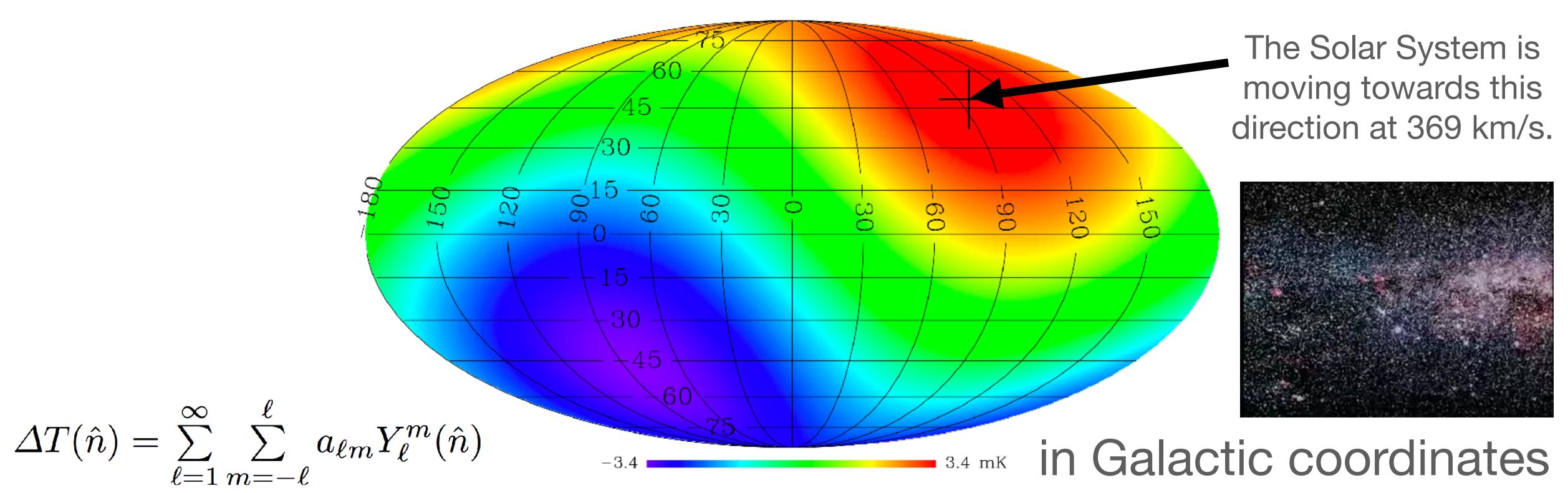
Spherical harmonics

Wait, don't run! It is not as bad as you may remember from the QM class...



Dipole Temperature Anisotropy of the CMB

Due to the motion of Solar System with respect to the CMB rest frame



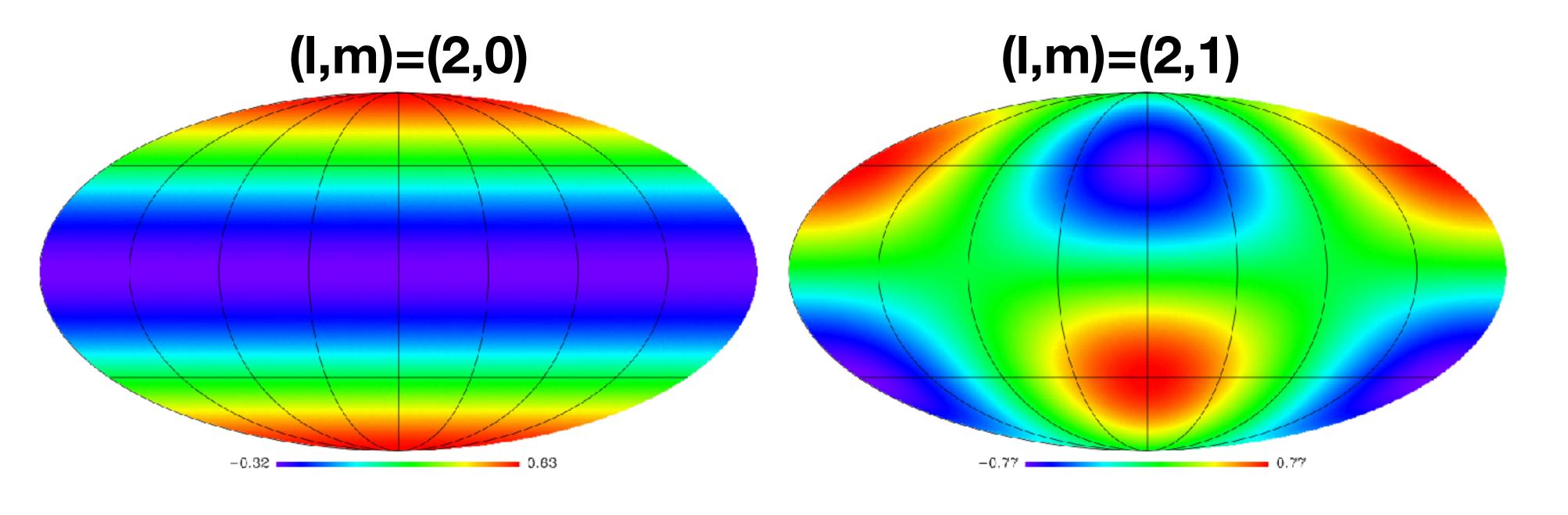
• Temperature anisotropy towards "+" is $\Delta T/T = v/c = 1.23 \times 10^{-3}$

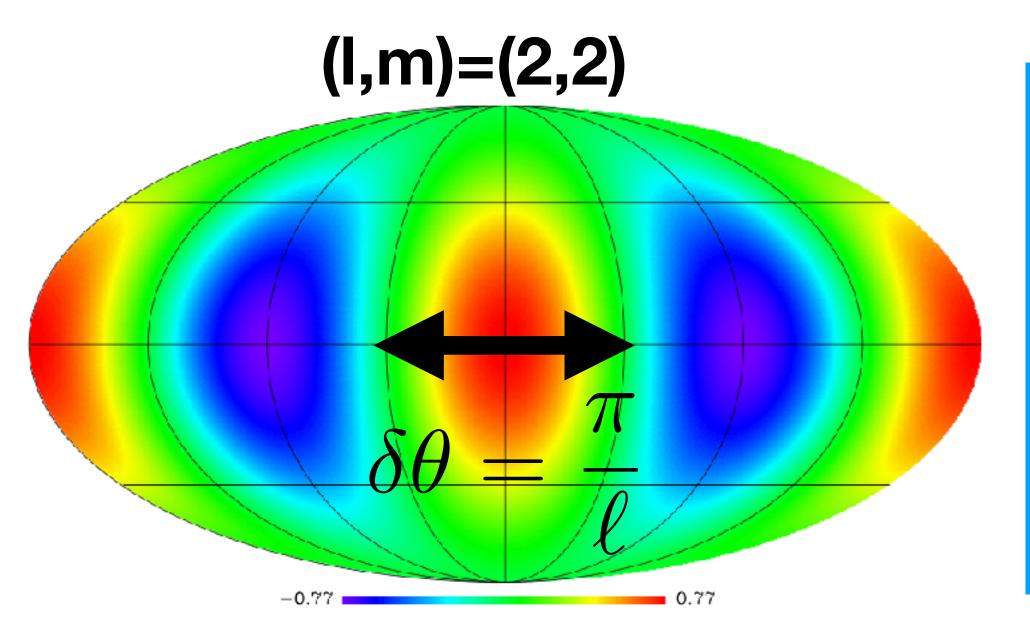
• Thus, $\Delta T = 3.355$ mK

$$a_{10} = 5.124 \text{ mK str}^{1/2},$$

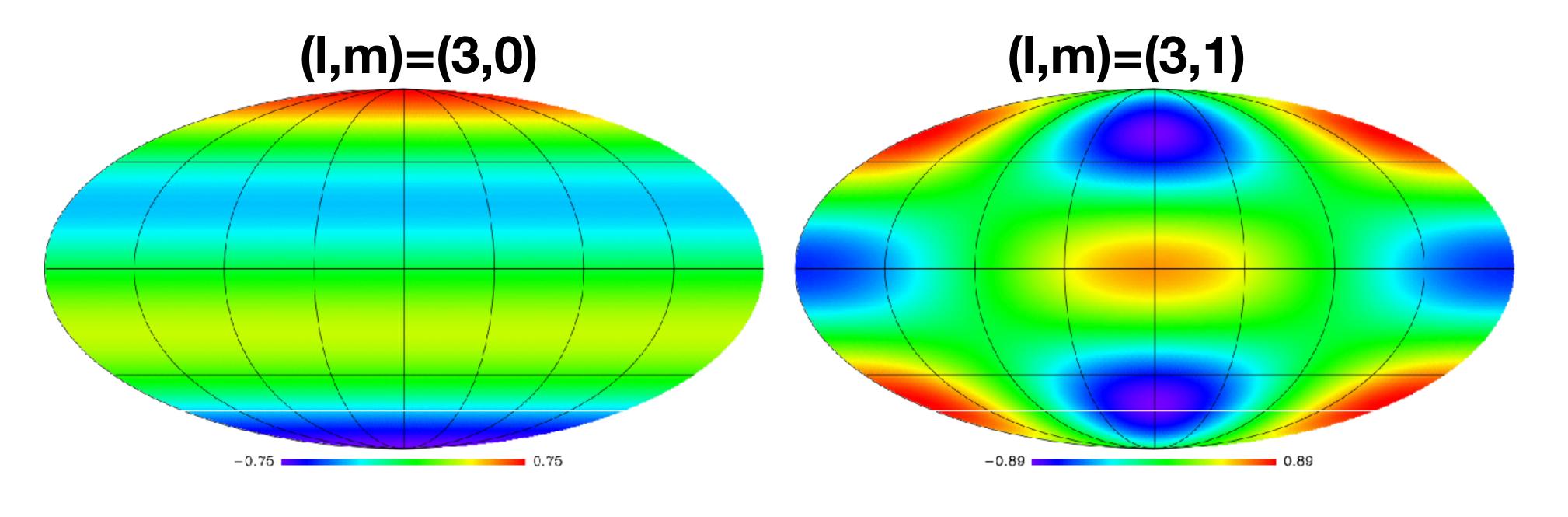
 $a_{11} = 0.3384 - 3.215i \text{ mK str}^{1/2},$

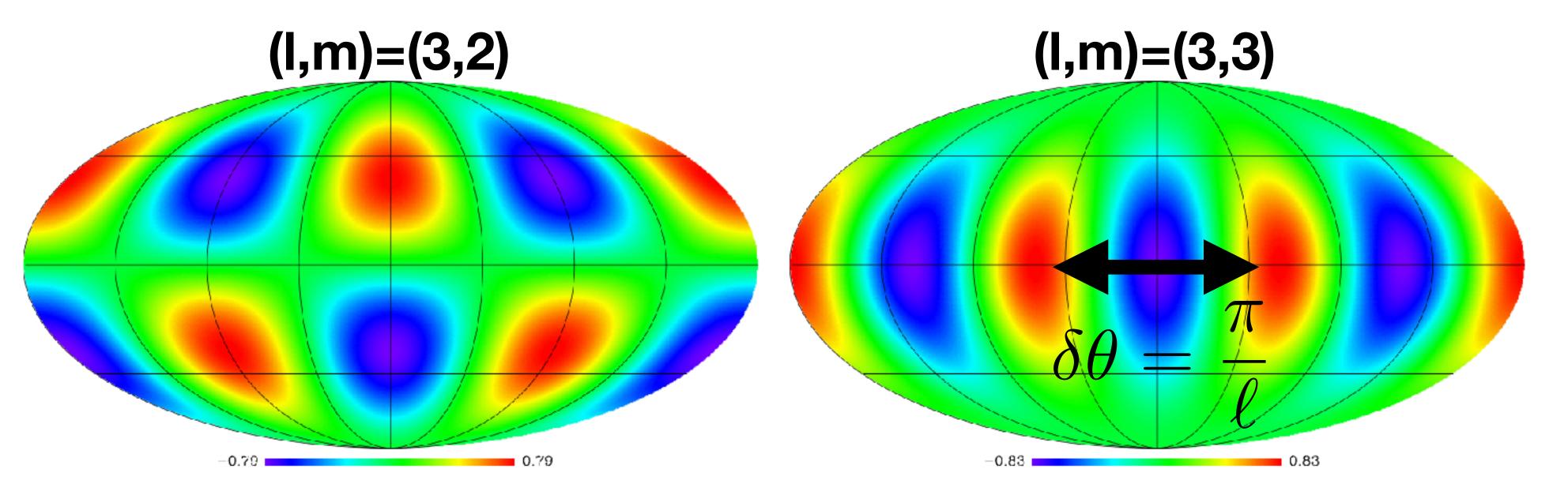
$$a_{1-1} = -a_{11}^*$$

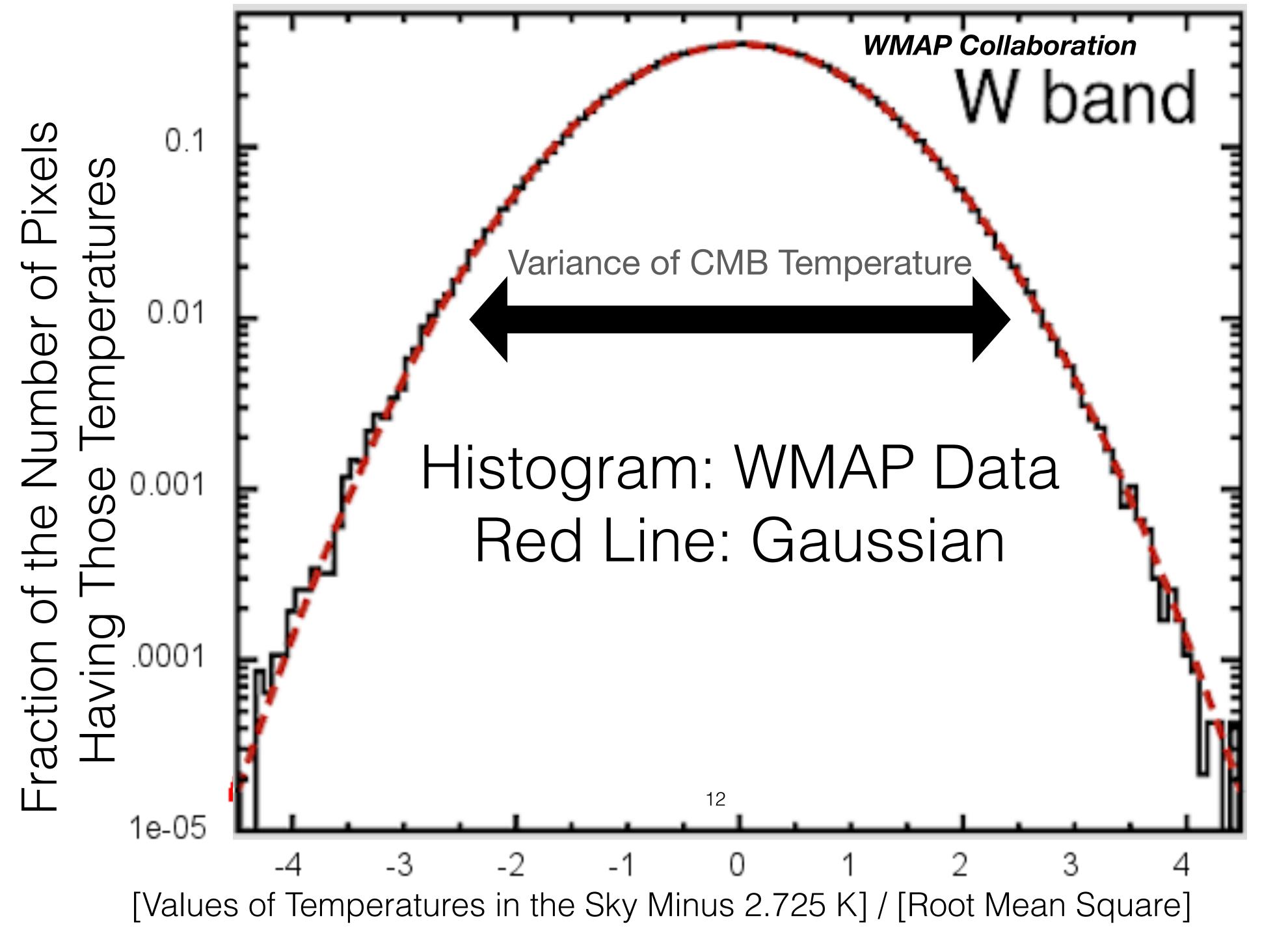




For l=m, a half-wavelength, $\lambda_{\theta}/2$, corresponds to π/l . Therefore, $\lambda_{\theta}=2\pi/l$







Angular Power Spectrum

• The angular power spectrum, C_I, quantifies how much correlation power we have at a given angular separation.

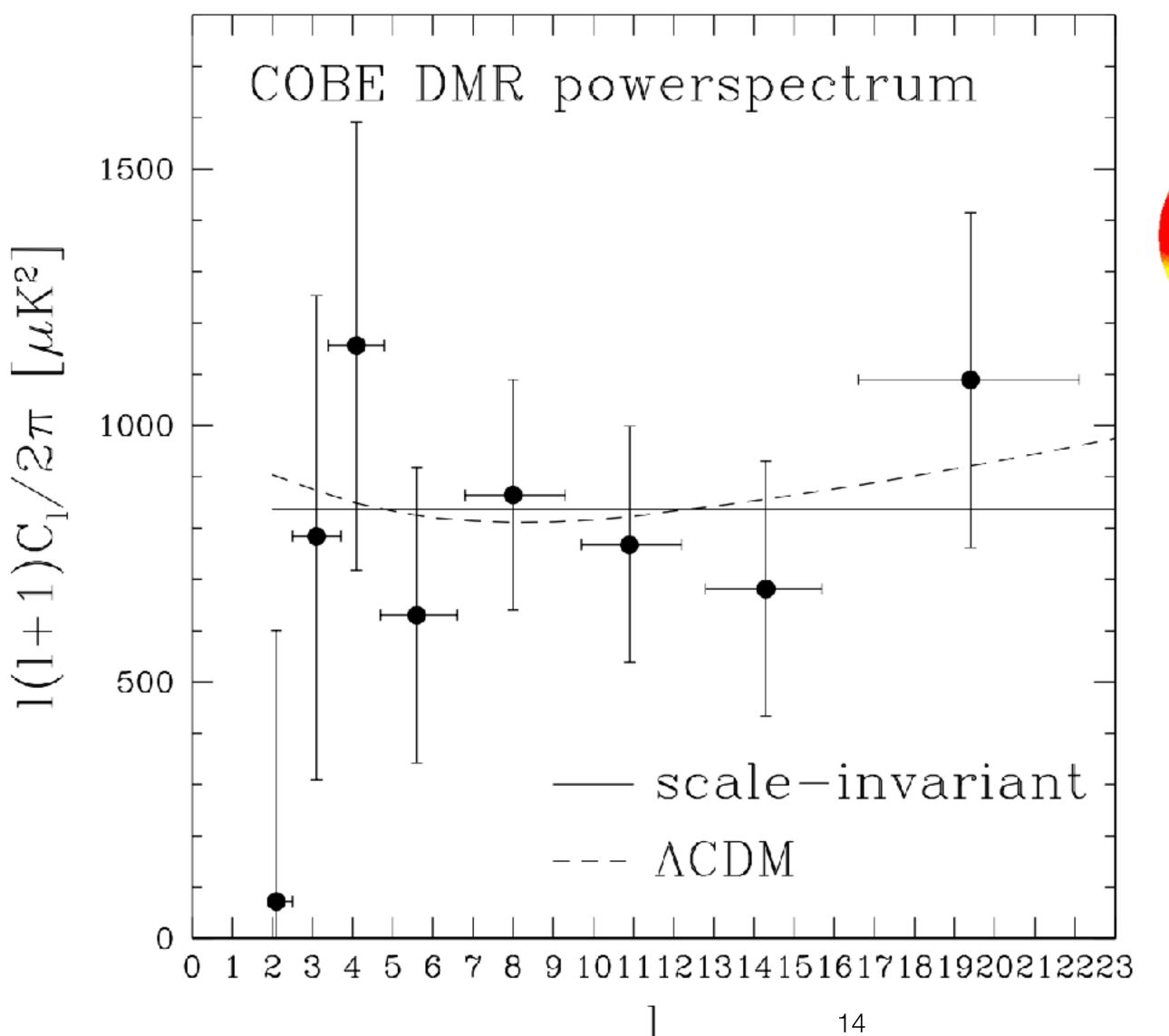
$$C_{\ell} \equiv rac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m} a_{\ell m}^*$$

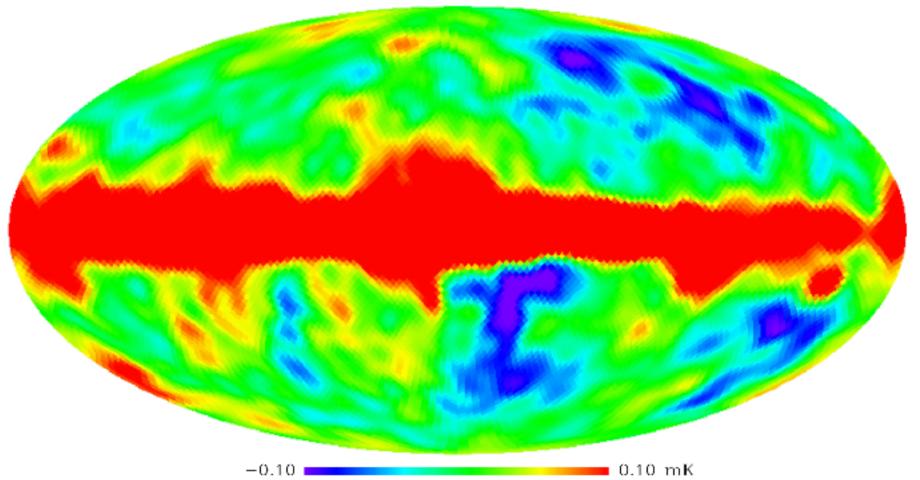
- More precisely: it is $(2l+1)C_l/4\pi$ that gives the fluctuation power at a given angular separation, π/l . We can see this by computing variance:
- Values of a_{lm} depend on coordinates, but the squared amplitude, $\sum_{m=-\ell}^{\ell} a_{\ell m} a_{\ell m}^*$, does not depend on coordinates

$$\int \frac{d\Omega}{4\pi} \Delta T^2(\hat{n}) = \frac{1}{4\pi} \sum_{\ell=2}^{\infty} \sum_{m=-1}^{\ell} a_{\ell m} a_{\ell m}^* = \sum_{\ell=2}^{\infty} \frac{2\ell+1}{4\pi} C_{\ell}$$

Bennett et al. (1996)

COBE 4-year Power Spectrum





What physics can we learn from this measurement?

Gravitational Potential in 3D to Temperature in 2D

More generally: How is a plane wave in 3D projected on the sky?

Let's use the Sachs-Wolfe formula for the adiabatic initial condition:

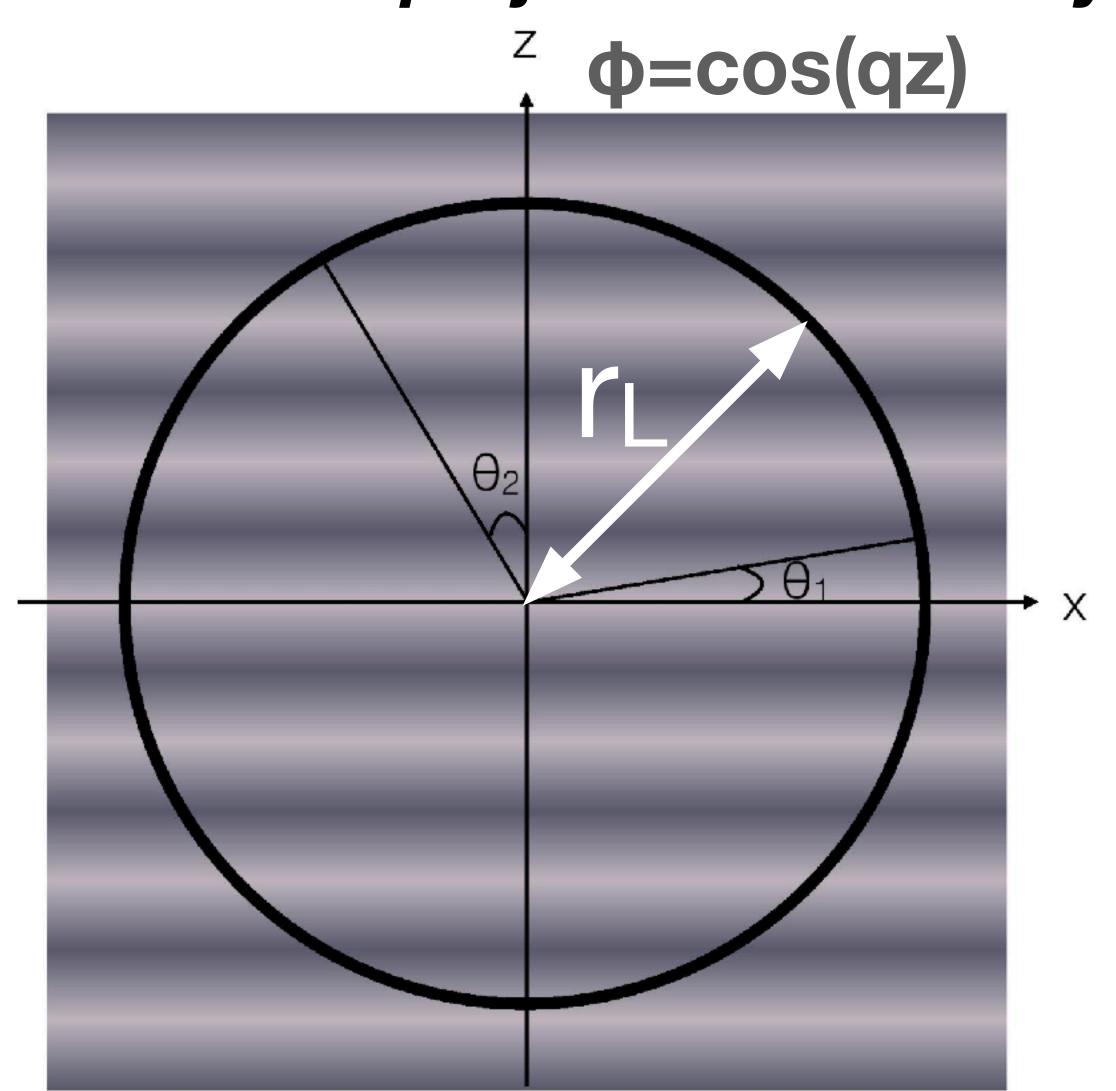
$$\frac{\Delta T(\hat{n})}{T_0} = \frac{1}{3}\Phi(t_L, \hat{n}r_L)$$

 Take a single plane wave for the potential, going in the z direction:

$$\Phi(t_L, \mathbf{x}) \propto A(t_L) \cos(qz)$$

•A(t_L): Amplitude

•q: Wavenumber in 3D



Gravitational Potential in 3D to Temperature in 2D

More generally: How is a plane wave in 3D projected on the sky?

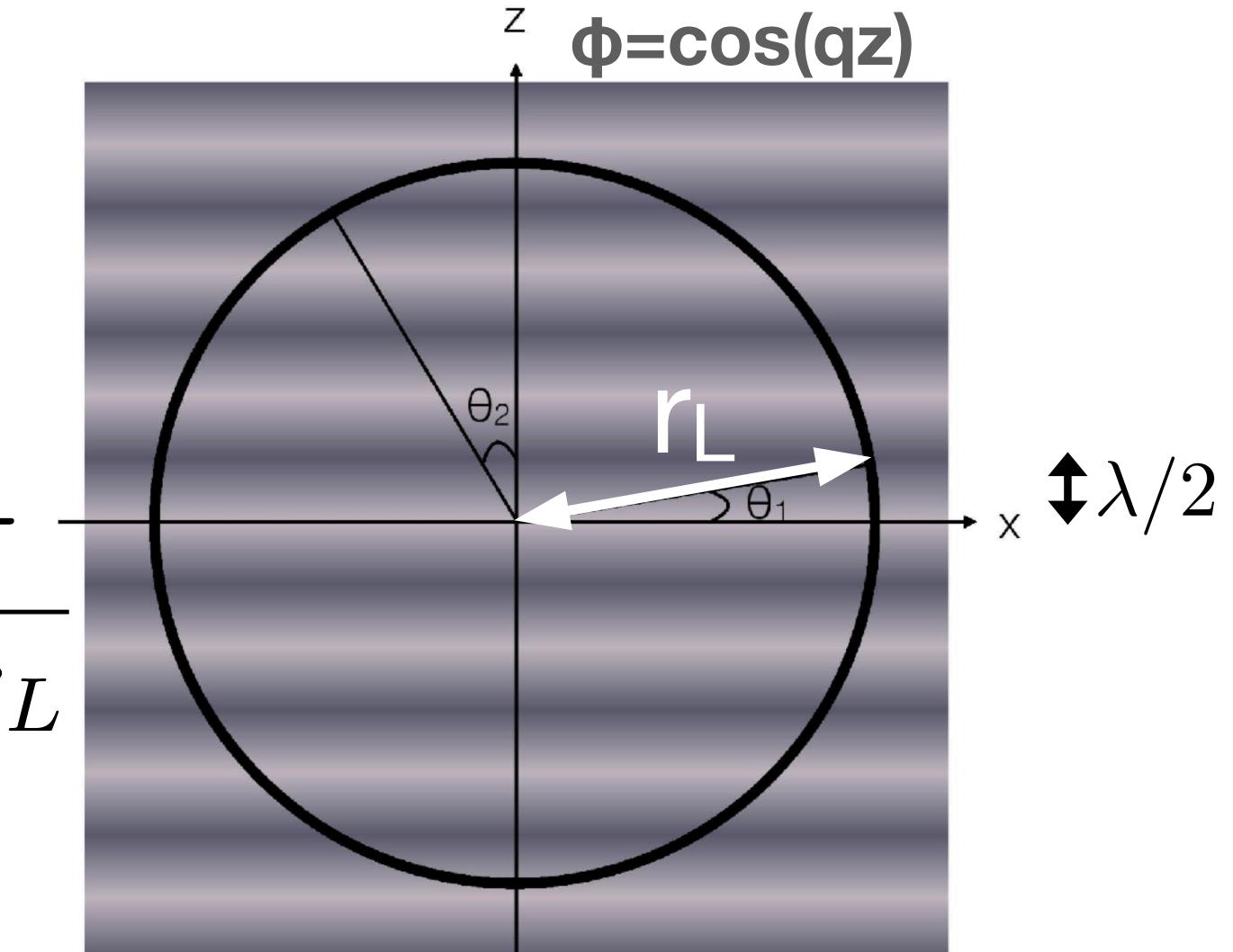
In the x-axis, the angle θ_1 subtends the half wavelength $\lambda/2$, with

$$\lambda = 2\pi/q$$

With trigonometry, we find

$$\tan \theta_1 \simeq \theta_1 = \frac{\lambda/2}{r_L} = \frac{\pi}{qr_L}$$

$$\ell_1 \approx \frac{\pi}{\theta_1} = qr_L$$



Gravitational Potential in 3D to Temperature in 2D

More generally: How is a plane wave in 3D projected on the sky?

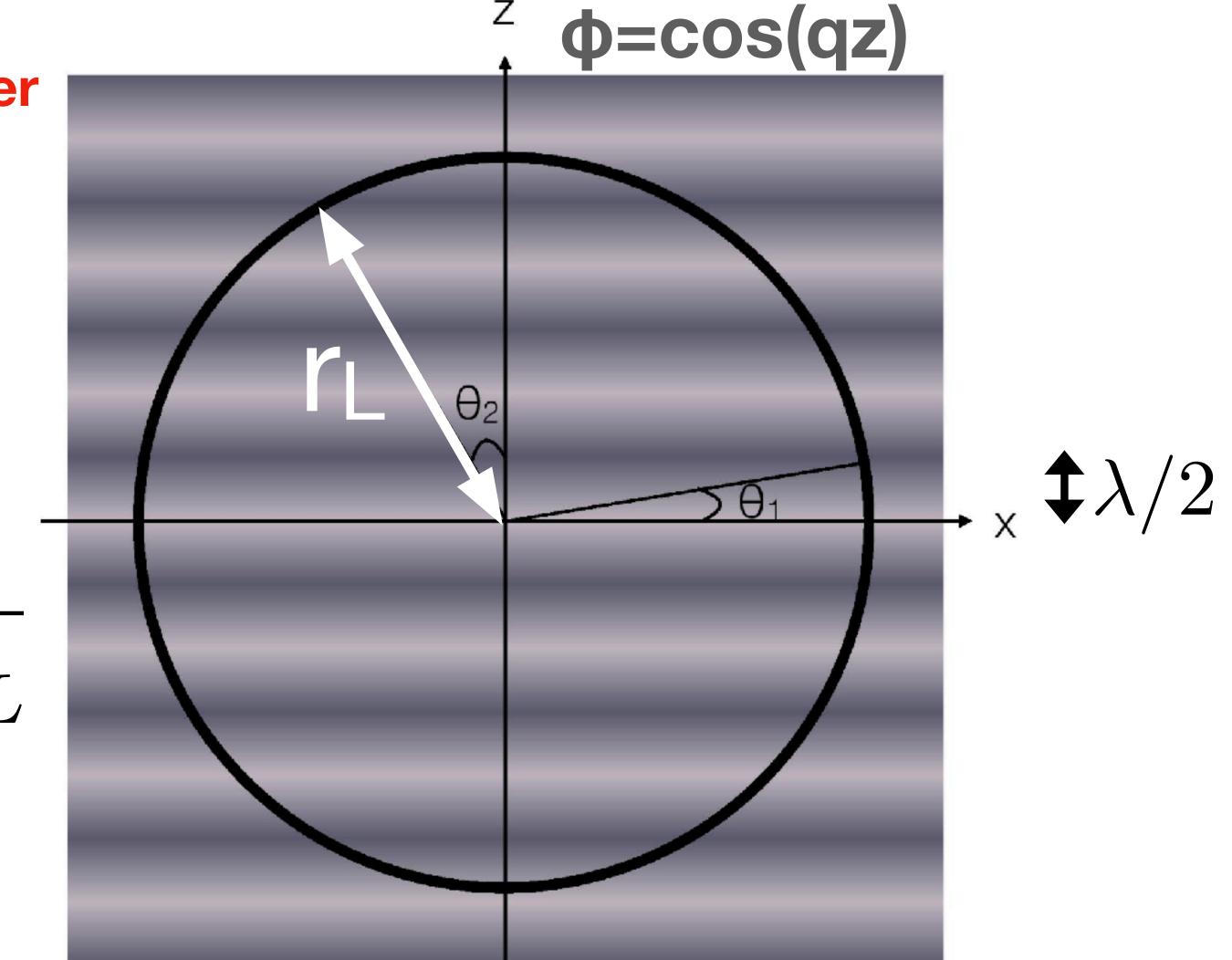
In the z-axis, the angle θ_2 is subtends bigger than the half wavelength $\lambda/2$, with

$$\lambda = 2\pi/q$$

With trigonometry, we find

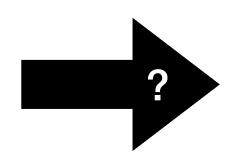
$$\tan \theta_2 \simeq \theta_2 > \frac{\lambda/2}{r_L} = \frac{\pi}{qr_L}$$

$$\ell_2 \approx \frac{\pi}{\theta_2} < qr_L$$



How do we understand the relationship between the 3D wavenumber of the gravitational potential, Ф, and the 2D wavenumber of the temperature anisotropy, 1?

$$\Phi(t_L, \mathbf{x}) = \int \frac{d^3q}{(2\pi)^3} \Phi_{\mathbf{q}}(t_L) \exp(i\mathbf{q} \cdot \mathbf{x})$$



$$\Delta T(\hat{n}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^{m}(\hat{n})$$

t_L: the time at the last scattering surface

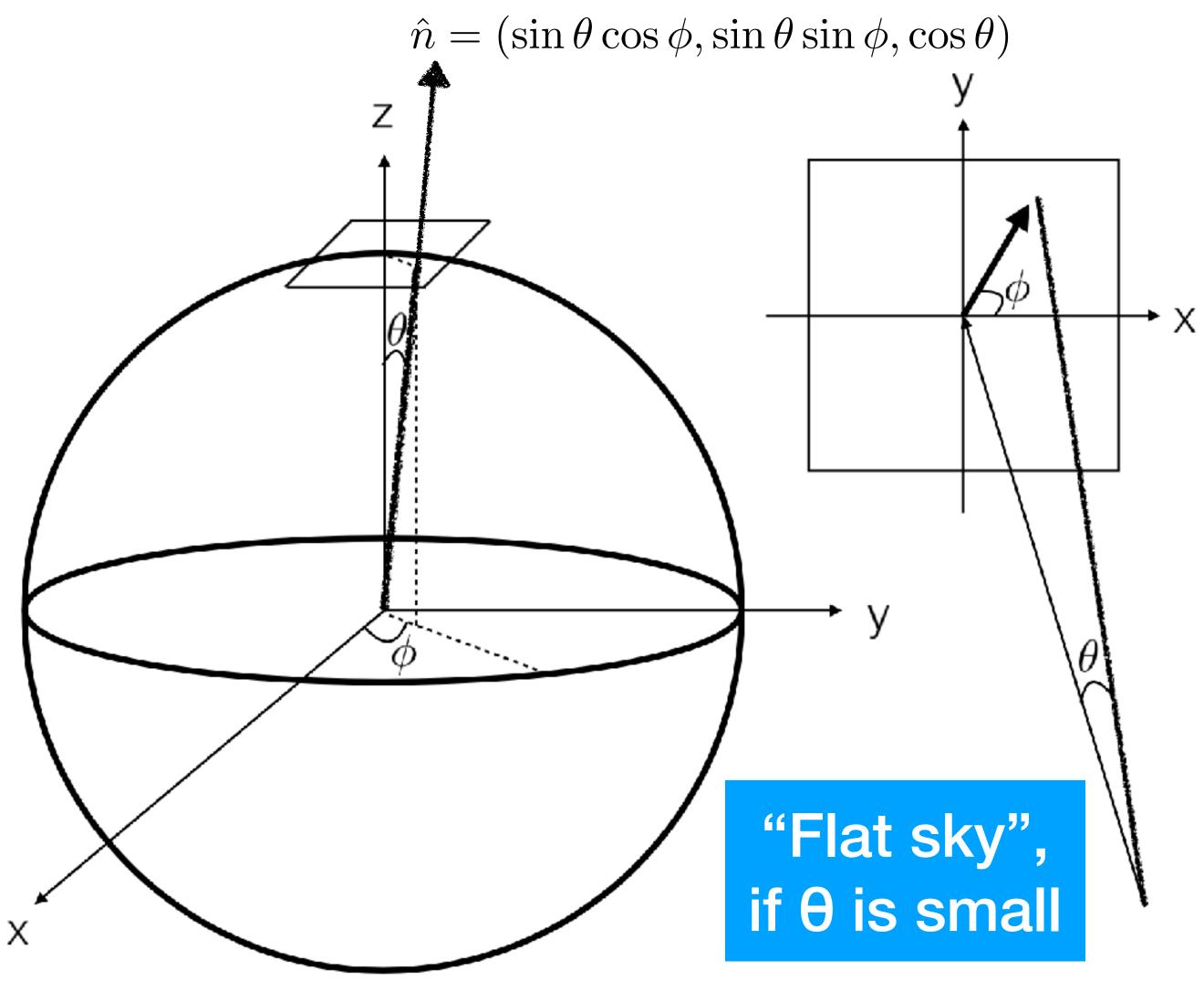
Part II: Flat-sky (Small-angle) Approximation

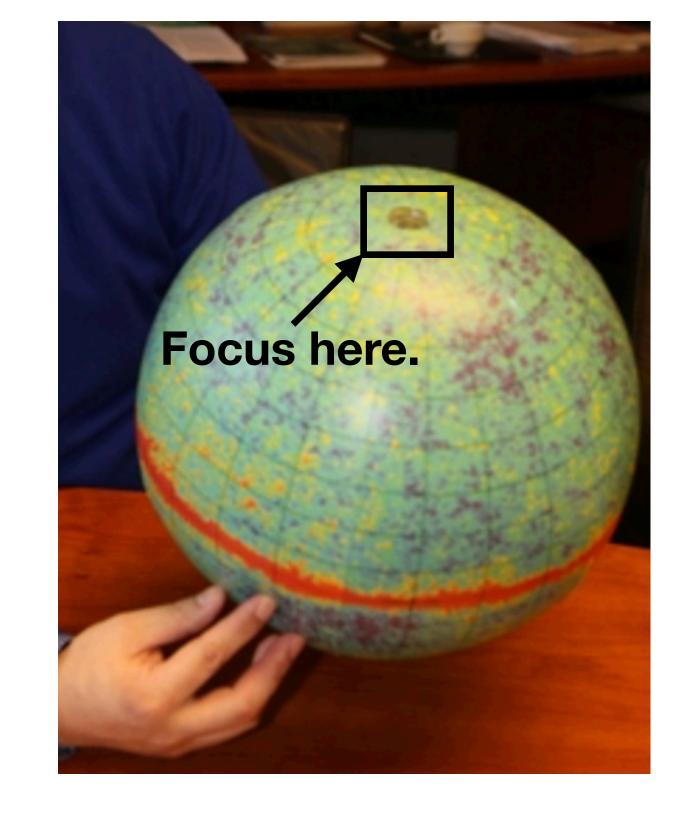
Fourier transform?

- The simplest way to decompose fluctuations into waves is Fourier transform.
 - However, Fourier transform works only for plane waves in flat space.
- The sky is a sphere. How do we decompose fluctuations on a sphere into waves?
 - The answer: Spherical Harmonics.
- But, this seems too complicated for understanding the relationship between the gravitational potential in 3D and the temperature anisotropy in 2D (i.e., sky).
- Alternative (approximate) approach?

Fourier transform!

Approximately correct in a small region in the sky





- Take z-axis to anywhere we want in the sky. Then, treat a small area around the z-axis as a "flat sky".
- We then apply the usual 2D Fourier transform to analyse temperature fluctuations, and relate it to the 3D Fourier transform of the potential Φ.

2D Fourier Transform

$$\Delta T(\hat{n}) = \int \frac{d^2\ell}{(2\pi)^2} \ a_{\ell} \exp(i\ell \cdot \theta)$$
$$= \int_0^{\infty} \frac{\ell d\ell}{2\pi} \int_0^{2\pi} \frac{d\phi_{\ell}}{2\pi} \ a_{\ell} \exp(i\ell \cdot \theta)$$

C.f.,
$$\Delta T(\hat{n}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^m(\hat{n})$$

a(I) of the Sachs-Wolfe effect

 Take the inverse 2D Fourier transform of the Sachs-Wolfe formula for the adiabatic initial condition:

$$\frac{\Delta T(\hat{n})}{T_0} = \frac{1}{3}\Phi(t_L, \hat{n}r_L)$$

• And Fourier transform Φ in 3D: $\Phi(t_L, \mathbf{x}) = \int \frac{d^3q}{(2\pi)^3} \Phi_{\mathbf{q}}(t_L) \exp(i\mathbf{q} \cdot \mathbf{x})$

$$a_{\boldsymbol{\ell}}^{\mathrm{SW}} = \frac{T_0}{3} \int d^2 \theta \, \, \exp(-i \boldsymbol{\ell} \cdot \boldsymbol{\theta})$$

$$imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int rac{d^3q}{(2\pi)^3} \; {m \Phi_{m q}}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int \frac{d^3q}{(2\pi)^3} \; {\bf P}_{m q}^{*{
m q is the 3D Fourier wavenumber}} \ imes \int \frac{d^3q}{(2\pi)^3} \; {\bf P}_$$

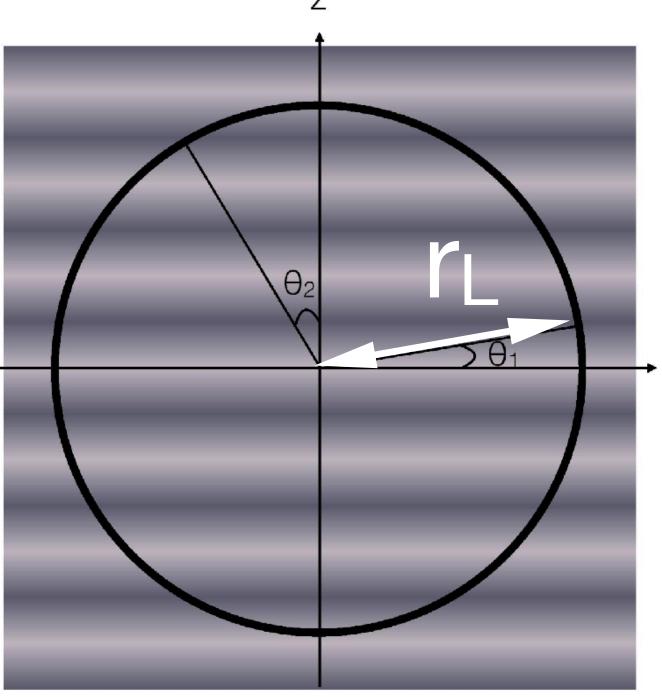
Flat-sky Result

$$a_{m{\ell}}^{
m SW} = rac{T_0}{3r_L^2} \int_{-\infty}^{\infty} rac{dq_\parallel}{2\pi} \; arPhi_{m{q}} \left(m{q_\perp} = rac{m{\ell}}{r_L}, q_\parallel
ight) \exp(iq_\parallel r_L)$$

$$q=\sqrt{\ell^2/r_L^2+q_\parallel^2}$$
 i.e., $q\ge\ell/r_L$

It is **now manifest** that only the perpendicular wavenumber contributes to I,
 i.e., I=QperprL, giving I<qrL

$$\ell_1 pprox rac{\pi}{\theta_1} = qr_L$$



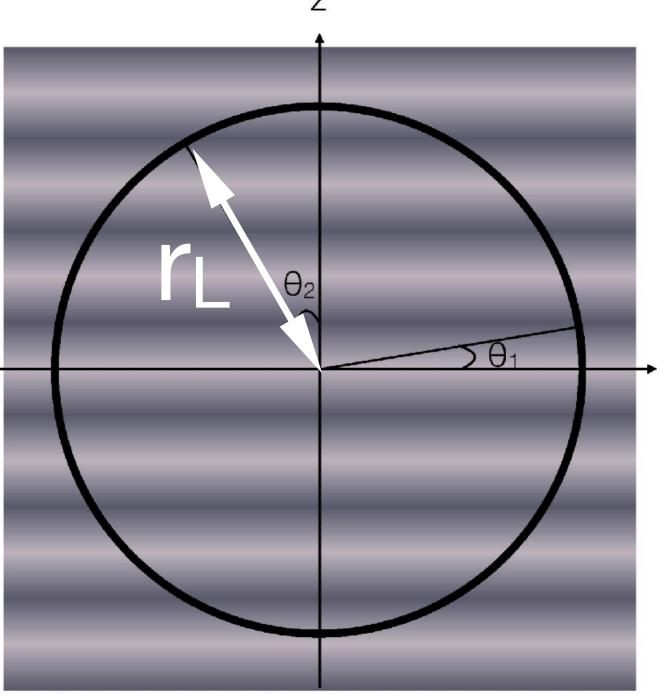
Flat-sky Result

$$a_{m{\ell}}^{
m SW} = rac{T_0}{3r_L^2} \int_{-\infty}^{\infty} rac{dq_\parallel}{2\pi} \; m{\Phi_{m{q}}} \left(m{q_\perp} = rac{m{\ell}}{r_L}, q_\parallel
ight) \exp(iq_\parallel r_L)$$

$$q=\sqrt{\ell^2/r_L^2+q_\parallel^2}$$
 i.e., $q\ge\ell/r_L$

It is **now manifest** that only the perpendicular wavenumber contributes to I,
 i.e., I=QperprL, giving I<qrL

$$\ell_2 pprox rac{\pi}{ heta_2} < q r_L$$



The relationship between q and I Understood? Let's go to the full sky treatment.

$$\Delta T(\hat{n}) = \int \frac{d^2\ell}{(2\pi)^2} \ a_{\ell} \exp(i\ell \cdot \boldsymbol{\theta}) \qquad \longrightarrow \qquad \Delta T(\hat{n}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell}^m(\hat{n})$$

alm of the Sachs-Wolfe effect

Take the inverse spherical harmonics transform

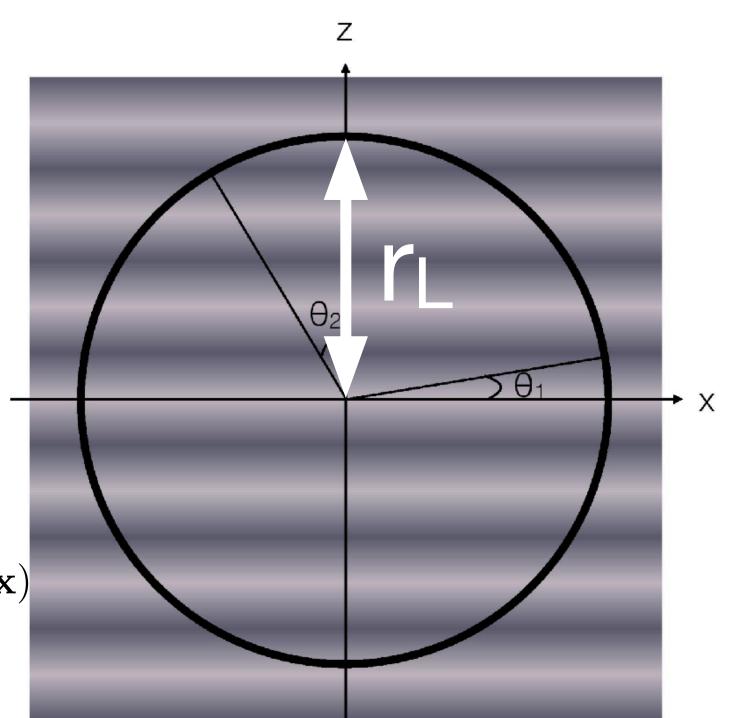
$$a_{\ell m} = \int d\Omega \Delta T(\hat{n}) Y_{\ell}^{m*}(\hat{n})$$

of the Sachs-Wolfe formula for the adiabatic initial

condition:
$$\frac{\Delta T(\hat{n})}{T_0} = \frac{1}{3}\Phi(t_L, \hat{n}r_L)$$

• And Fourier transform Φ in 3D: $\Phi(t_L, \mathbf{x}) = \int \frac{d^3q}{(2\pi)^3} \Phi_{\mathbf{q}}(t_L) \exp(i\mathbf{q} \cdot \mathbf{x})$

$$a_{\ell m}^{\rm SW} = \frac{T_0}{3} \int d\Omega \ Y_\ell^{m*}(\hat{n}) \int \frac{d^3q}{(2\pi)^3} \ \varPhi_{\boldsymbol{q}} \exp(i\boldsymbol{q} \cdot \hat{n}r_L)$$
 *q is the 3D Fourier wavenumber



Spherical wave decomposition of a plane wave

How to obtain a plane wave by combining spherical waves? The answer is

$$\exp(i\mathbf{q} \cdot \hat{n}r_L) = 4\pi \sum_{\ell=0}^{\infty} i^{\ell} j_{\ell}(qr_L) \sum_{m=-\ell}^{\ell} Y_{\ell}^{m}(\hat{n}) Y_{\ell}^{m*}(\hat{q})$$

• which is called the "partial wave decomposition" or "Rayleigh's formula". Then we obtain

$$a_{\ell m}^{\text{SW}} = \frac{4\pi T_0 i^{\ell}}{3} \int \frac{d^3 q}{(2\pi)^3} \, \Phi_{\mathbf{q}} j_{\ell}(q r_L) Y_{\ell}^{m*}(\hat{q})$$

 This is the exact formula relating Φ in 3D at the last scattering surface to a_{lm}. How do we understand this?

q->Iprojection

$$a_{\ell m}^{SW} = \frac{4\pi T_0 i^{\ell}}{3} \int \frac{d^3 q}{(2\pi)^3} \, \Phi_{\mathbf{q}} j_{\ell}(q r_L) Y_{\ell}^{m*}(\hat{q})$$

- A half wavelength, $\lambda/2$, at the last scattering surface subtends an angle of $\lambda/2r_L$. Since $q=2\pi/\lambda$, the angle is given by $\delta\theta=\pi/qr_L$. Comparing this with the relation $\delta\theta=\pi/l$, we $\frac{1.0}{0.8}$
 - obtain = CIL. How can we see this?
- For I>>1, the spherical Bessel function, ji(qr_L), peaks 40 50 60 70 80 90 1
 - at |~qrL and falls gradually toward qrL>l. Thus, a given q mode contributes to large angular scales too.

We learned this already from the flat-sky approximation!

0.6

0.4

0.2

Part III: Power Spectrum of the Sachs-Wolfe Effect

Let's compute the temperature power spectrum Temperature C₁

• We use
$$a_{\ell m}^{\mathrm{SW}}=rac{4\pi T_0 i^\ell}{3}\intrac{d^3q}{(2\pi)^3}\; arPhi_{m q} j_\ell(qr_L)Y_\ell^{m*}(\hat q)$$

to compute
$$C_\ell \equiv rac{1}{2\ell+1} \sum_{m=-\ell}^\ell a_{\ell m} a_{\ell m}^*$$

Result

The power spectrum of the Sachs-Wolfe effect?

• We use
$$a_{\ell m}^{\mathrm{SW}}=rac{4\pi T_0 i^\ell}{3}\intrac{d^3q}{(2\pi)^3}\; arPhi_{m q} j_\ell(qr_L)Y_\ell^{m*}(\hat q)$$

to compute
$$C_\ell \equiv rac{1}{2\ell+1} \sum_{m=-\ell}^\ell a_{\ell m} a_{\ell m}^*$$

$$C_{\ell,\mathrm{SW}} = \frac{4\pi T_0^2}{9} \int \frac{d^3q}{(2\pi)^3} \int \frac{d^3q'}{(2\pi)^3} \; \varPhi_{\boldsymbol{q}} \varPhi_{\boldsymbol{q'}}^* j_\ell(qr_L) j_\ell(q'r_L) P_\ell(\hat{q} \cdot \hat{q}')$$

Power Spectrum of ф

Statistical average of the right hand side contains

$$\langle \Phi_{m{q}} \Phi_{m{q}'}^*
angle = \int d^3x \int d^3r \; \langle \Phi(m{x}) \Phi(m{x} + m{r})
angle \; \exp\left[i(m{q} - m{q}') \cdot m{x} - im{q}' \cdot m{r}
ight]$$

If $\langle \Phi(x)\Phi(x+r)\rangle$ does not depend on locations (x) but only on separations between two points (r), then

$$\langle \boldsymbol{\Phi}_{\boldsymbol{q}} \boldsymbol{\Phi}_{\boldsymbol{q}'}^* \rangle = (2\pi)^3 \delta_D^{(3)}(\boldsymbol{q} - \boldsymbol{q}') \int d^3r \, \xi(\boldsymbol{r}) \exp(-i\boldsymbol{q} \cdot \boldsymbol{r})$$

consequence of "statistical homogeneity"

where we defined
$$\xi_\phi({m r}) \equiv \langle \varPhi({m x}) \varPhi({m x}+{m r})
angle$$
 and used $\int d^3x \; \exp(i{m q}\cdot{m x}) \; = \; (2\pi)^3 \delta_D^{(3)}({m q})$

Power Spectrum of ф

• In addition, if $\xi_{\phi}(r) \equiv \langle \Phi(x)\Phi(x+r)\rangle$ depends only on the magnitude of the separation r and not on the directions, then

$$\langle \Phi_{\mathbf{q}} \Phi_{\mathbf{q}'}^* \rangle = (2\pi)^3 \delta_D^{(3)}(\mathbf{q} - \mathbf{q}') \int 4\pi r^2 dr \ \xi_{\phi}(r) \frac{\sin(qr)}{qr}$$

$$= (2\pi)^3 \delta_D^{(3)}(\mathbf{q} - \mathbf{q}') P_{\phi}(q)$$

Power spectrum!

Generic definition of the power spectrum for statistically homogeneous and isotropic fluctuations

The Power Spectrum of the Sachs-Wolfe Effect

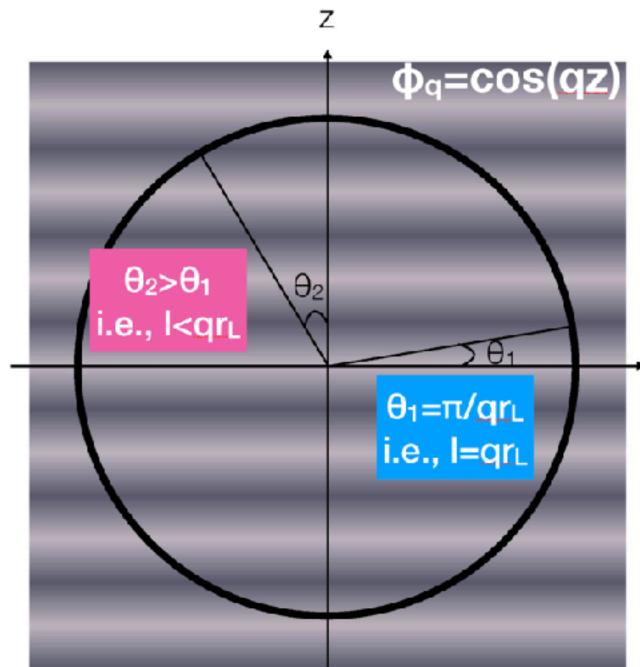
Thus, the power spectrum of the CMB in the Sachs-Wolfe limit is

$$\langle C_{\ell,SW} \rangle = \frac{16\pi^2 T_0^2}{9} \int_0^\infty \frac{q^2 dq}{(2\pi)^3} P_{\phi}(q) j_{\ell}^2(qr_L)$$

In the flat-sky approximation,

$$\langle C_{\ell,\mathrm{SW}} \rangle = \frac{T_0^2}{9r_L^2} \int_{-\infty}^{\infty} \frac{dq_\parallel}{2\pi} \ P_\phi \left(\sqrt{\frac{\ell^2}{r_L^2} + q_\parallel^2} \right) - \frac{1}{2\pi} \left(\sqrt{\frac$$

wavenumber, (q_{perp})²



The Power Spectrum of the Sachs-Wolfe Effect

• Thus, the power spectrum of the CMB in the SW limit is

$$\langle C_{\ell,SW} \rangle = \frac{16\pi^2 T_0^2}{9} \int_0^\infty \frac{q^2 dq}{(2\pi)^3} P_{\phi}(q) j_{\ell}^2(qr_L)$$

• In the flat-sky approximation,

$$\langle C_{\ell,\text{SW}} \rangle = \frac{T_0^2}{9r_L^2} \int_{-\infty}^{\infty} \frac{dq_{\parallel}}{2\pi} P_{\phi} \left(\sqrt{\frac{\ell^2}{r_L^2} + q_{\parallel}^2} \right)$$

For a power-law form, $\,P_{\phi}(q)=(2\pi)^3N_{\phi}^2q^{n-4}$, we get

$$\langle C_{\ell,\text{SW}} \rangle = \frac{8\pi^2 N_{\phi}^2 T_0^2}{9\ell^2} \left(\frac{\ell}{r_L}\right)^{n-1} \frac{\sqrt{\pi}}{2} \frac{\Gamma[(3-n)/2]}{\Gamma[(4-n)/2]}$$

The Power Spectrum of the Sachs-Wolfe Effect

• Thus, the power spectrum of the CMB in the SW limit is

$$\langle C_{\ell,SW} \rangle = \frac{16\pi^2 T_0^2}{9} \int_0^\infty \frac{q^2 dq}{(2\pi)^3} P_{\phi}(q) j_{\ell}^2(qr_L) - \cdots$$

• In the flat-sky approximation,

$$\langle C_{\ell, \text{SW}} \rangle = \frac{T_0^2}{9r_L^2} \int_{-\infty}^{\infty} \frac{dq_{\parallel}}{2\pi} P_{\phi} \left(\sqrt{\frac{\ell^2}{r_L^2} + q_{\parallel}^2} \right)$$

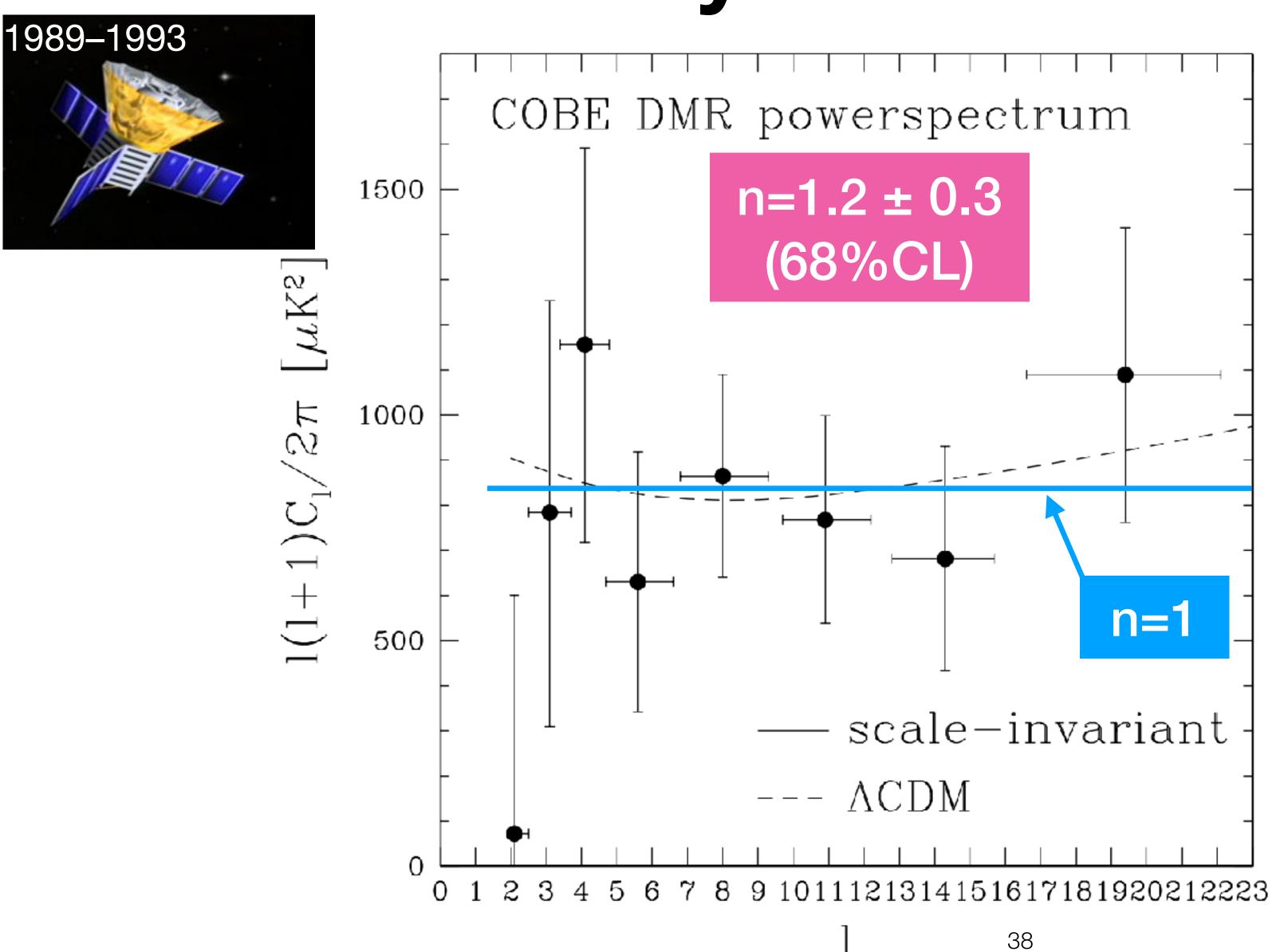
For a power-law form, $\,P_{\phi}(q)=(2\pi)^3N_{\phi}^2q^{n-4}$, we get

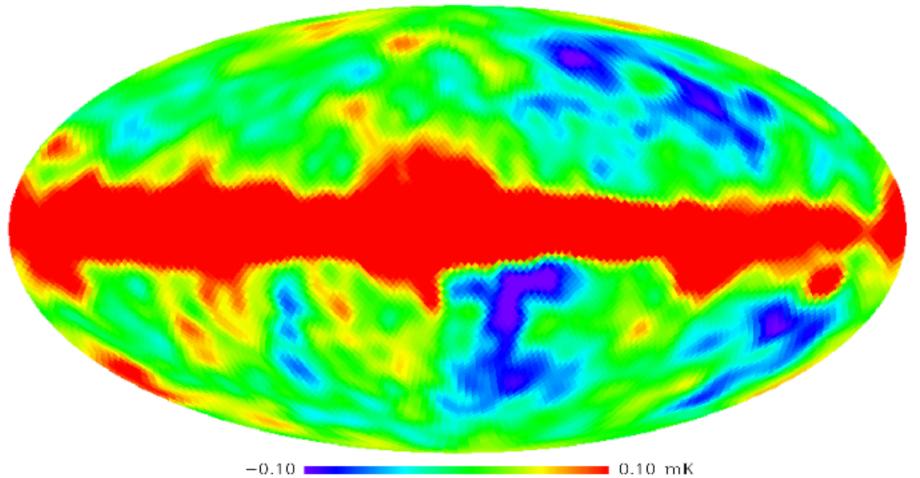
$$\langle C_{\ell,\mathrm{SW}} \rangle = \frac{8\pi^2 N_\phi^2 T_0^2}{9\ell^2} \left(\frac{\ell}{r_L} \right)^{n-1} \frac{\sqrt{\pi}}{2} \frac{\Gamma[(3-n)/2]}{\Gamma[(4-n)/2]} \qquad \text{n=1} \qquad \frac{8\pi^2 N_\phi^2 T_0^2}{9\ell(\ell+1)} = \frac{8\pi^2 N_\phi^2 T_0^2}{2\ell(\ell+1)} = \frac{8\pi^2 N$$

full-sky correction

Bennett et al. (1996)

COBE 4-year Power Spectrum

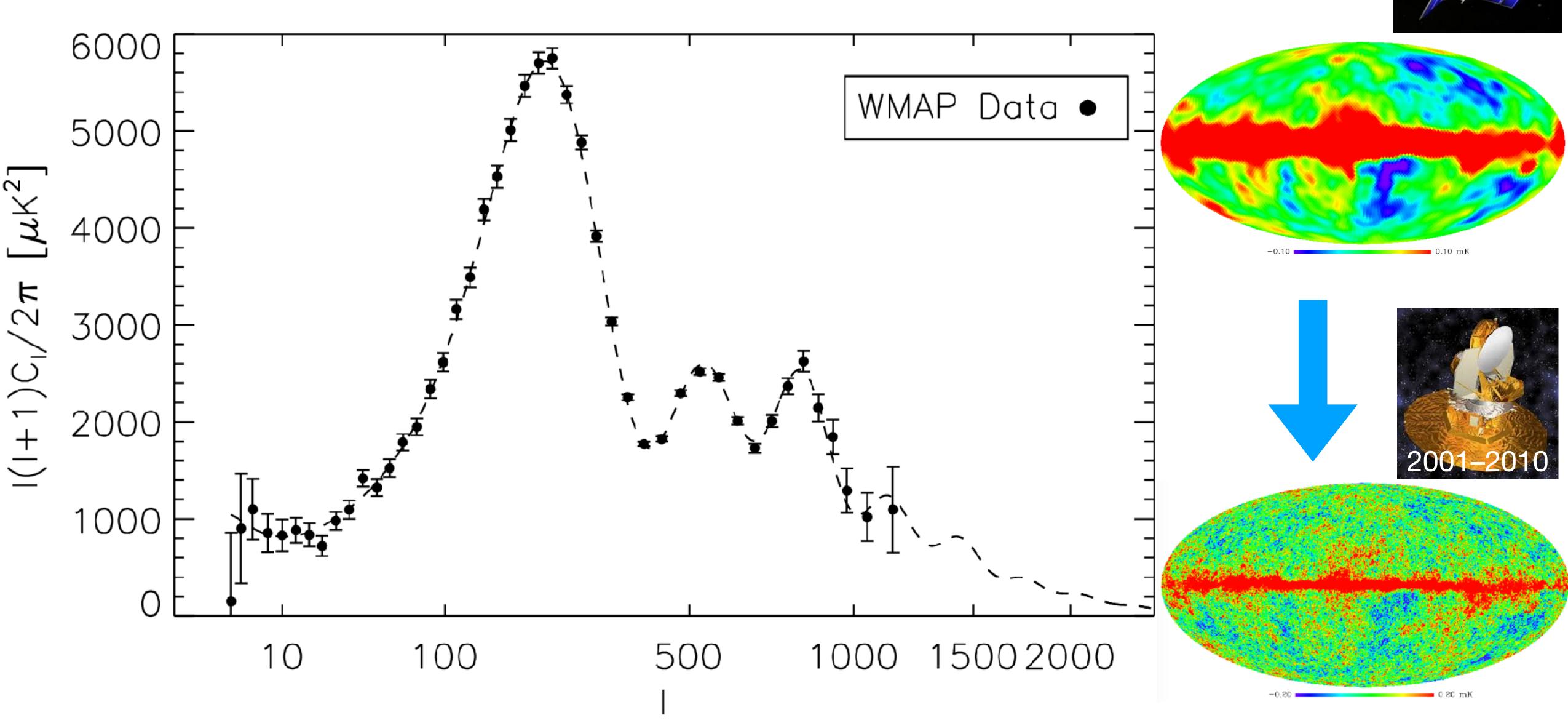




What physics can we learn from this measurement?

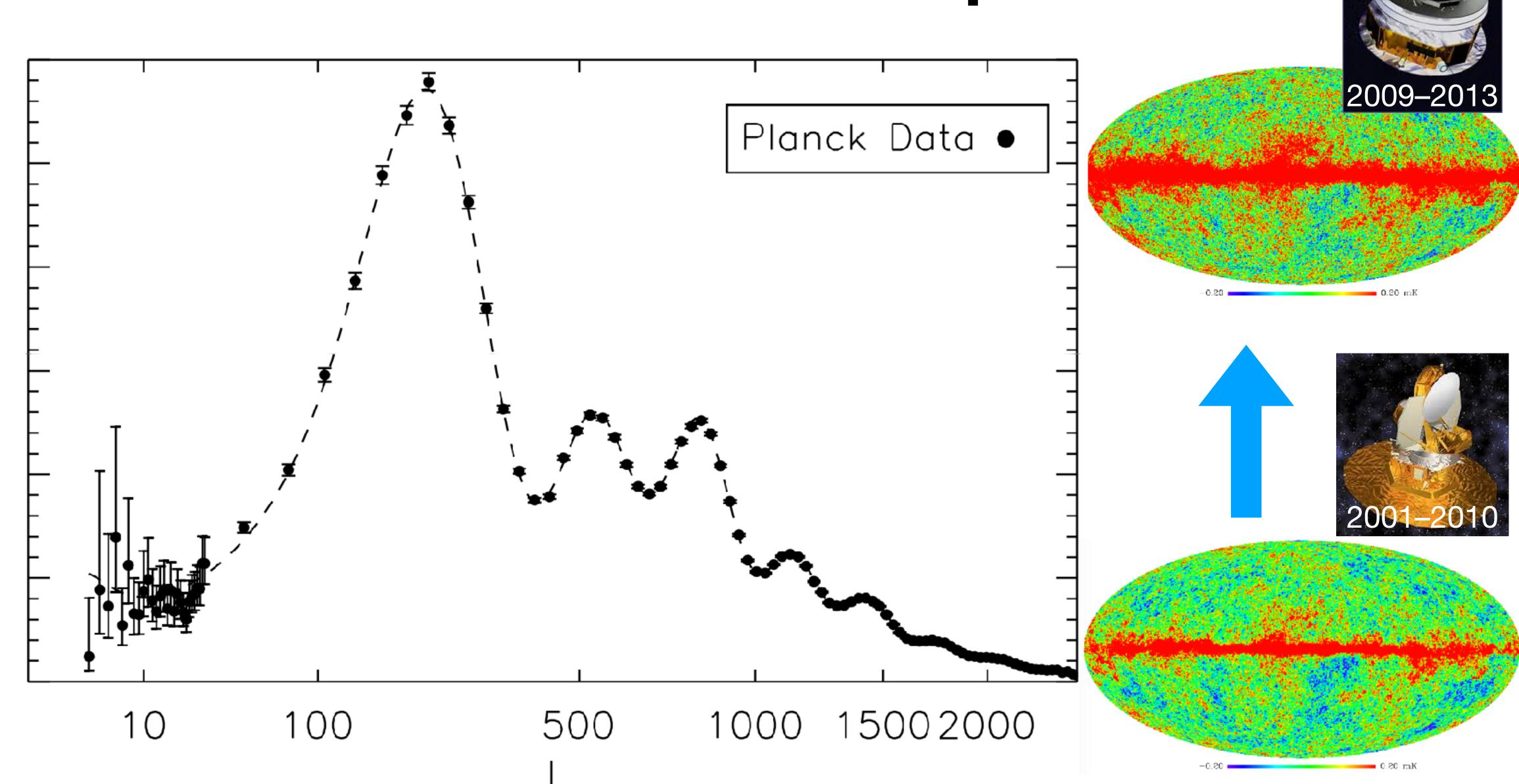
Bennett et al. (2013)

WMAP 9-year Power Spectrum



Planck Collaboration

Planck 29-mo Power Spectrum



Planck Collaboration

Planck 29-mo Power Spectrum

