_ecture 4: Power Spectrum






Data Analysis

 Decompose temperature fluctuations
N the sky INnto a set of waves with
various wavelengtns

e Mlake a diagram showing the strength
of each wavelength: Power Spectrum
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Part |I: Spherical Harmonics



Fourier transform?

* The simplest way to decompose fluctuations into waves is Fourier transform.
 However, Fourier transform works only for plane waves in flat space.

 The sky is a sphere. How do we decompose fluctuations on a sphere into
waves”?

 The answer: Spherical Harmonics.




Spherical harmonics

Wait, don’t run! It is not as bad as you may remember from the QM class...

AT (n) = Z Z agm Yy (1)

{=1 m=—F
Ap_ oy = (— 1)ma2?m . sufficient to consider only m>=0

* Dipole patterns (I=1)
(1,m)=(1,0) (I m)=(1, 1)

~




Dipole Temperature Anisotropy of the CMB

Due to the motion of Solar System with respect to the CMB rest frame

The Solar System is
moving towards this
direction at 369 km/s.
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AT = Zl m;_eagmnm(n) o4 s m« i Gialactic coordinates
* [emperature anisotropy towards “+” Is aip = 5.124 mK str'/ g
AT/T =v/c=1.23 x 103
v . # a11 = 0.3384 — 3.215i mK str'/?

* Thus, AT = 3.355 mK ;

k
d1—-1 = —0dqq



(1,m)=(2,0) (I,m)=(2,1)
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For |=m, a half-
wavelength, Ae/2,

corresponds to rv/l.

Therefore, 7\e=2'|'[/ |
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(1,m)=(3,0)
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(1,m)=(3,1)
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WMAP Collaboration
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Angular Power Spectrum

e The angular power spectrum, C,, guantifies how much
correlation power we have at a given angular separation.

1 14

* * Values of am depend on
CE ) € i 1 Z aﬁm Lo coordinates, but the squared

_ ¢
amplitude, 2 Otmn, does not
depend on coordinates

* More precisely: it is |(2|+1 )CI/ 4TT that gives the

fluctuation power at a given angular separation, ~1t/l.
We can see this by computing variance:

AT* (n) = >, 2. QumGpy,
AT (=5 m=—_.¢ f—9

|
]
N
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Bennett et al. (1996)

COBE 4-year Power Spectrum
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Gravitational Potential in 3D to Temperature in 2D
More generally: How is a plane wave in 3D projected on the sky?

Z
Let’s use the Sachs-Wolfe formula P=cos(qz)
for the adiabatic initial condition:

AT(H) 1
— —D(t,

» Jake a single plane wave for
the potential, going in the z
direction:

d(tr,x) x A(tr) cos(gz)

*A(tL): Amplitude
. Wavenumber in 3D




Gravitational Potential in 3D to Temperature in 2D
More generally: How is a plane wave in 3D projected on the sky?

Z
=CO0S(gZ
In the x-axis, the angle 01 subtends the ¢ (CI )
half wavelength A/2, with
A= 2m/q
With trigonometry, we find
/2 T

tant) ~ 01 = — = ——

I'L qrr

, W

1%0—2617“



Gravitational Potential in 3D to Temperature in 2D
More generally: How is a plane wave in 3D projected on the sky?
. d=cos(qz)

In the z-axis, the angle 6 is subtends bigger
than the half wavelength A/2, with

A =2m/q

With trigonometry, we find
A 2 s
tan 6 =~ 65>) / il




How do we understand the
relationship between the 3D
wavenumber of the gravitational
potential, P, and the 2D
wavenumber of the temperature
anisotropy, |?

tL: the time at the last scattering surface



Part ll: Flat-sky (Small-angle)
Approximation



Fourier transform?

* The simplest way to decompose fluctuations into waves is Fourier transform.
 However, Fourier transform works only for plane waves in flat space.

 The sky is a sphere. How do we decompose fluctuations on a sphere into
waves”?

 The answer: Spherical Harmonics.

* But, this seems too complicated for understanding the
relationship between the gravitational potential in 3D and the
temperature anisotropy in 2D (i.e., sky).

o Alternative (approximate) approach?
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Fourier transform!

Approximately correct in a small region In the sky

n = (sin 6 cos ¢, sin 0 sin ¢, cos 0)

y

* [ake z-axis to anywhere we want In
the sky. Then, treat a small area
around the z-axis as a “flat sky”.

 We then apply the usual 2D Fourier
transform to analyse temperature

“Flat sky”, fluctuations, and relate it to the 3D

if B is small Fourier transform of the potential @.



2D Fourier Transform

. A/ .
AT (1) = / 2 ag exp(i€ - 0)

OO 27T
/ cat / WPty explil - 0)

(AT Z Z aemYz())

=1 m=—/¢



a(l) of the Sachs-Wolfe effect

e Take the inverse 2D Fourier transform of the Sachs-Wolfe formula for the
adiabatic initial condition:

AT() 1
= —P(t7, 7
T() 9 ( Lyner)

e And Fourier transform @ in 3D: @(t.,x) = / g Oy (tr) exp(iq - x)

(27)3
1
ay " = 30 /d29 exp(—il - 0)

3 Dq exp(iquL - 0 + quTL

23 —p-{ [flat-sky approximation]

d3 q *q is the 3D Fourier wavenumber
¥ / (

27)



Flat-sky Result

q:\/€2/7“%+q|2| e, ZE/TL :
* itis NOW manifest that only the B

perpendicular wavenumber contributes to |,

l.e., |=qperprL, giving I<qgrL




Flat-sky Result

q:\/€2/7“%+q|2| e, ZE/TL :
* itis NOW manifest that only the B

perpendicular wavenumber contributes to |,

l.e., |=qperprL, giving I<qgrL




The relationship between g and |
Understood?
Let’'s go to the full sky treatment.

2 00 14
ATG) = [ = aeexplie-0) W AT(R)= 3 Y am¥{(R)

=1 m=—/¢




am of the Sachs-Wolfe effect

* Take the inverse spherical harmonics transform
- / AQAT(R) Y™ (1)

of the Sachs-Wolfe formula for the adiabatic initial
condition: A7(p) 1

— —B(t, 7
T() 3 ( LpnTL)

* And Fourier transform ® in 3D:o(t..x) = / (;i(jg@q(mexp(iq-x)

T e d°q .

*q is the 3D Fourier wavenumber
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Spherical wave decomposition
of a plane wave

e How to obtain a plane wave by combining spherical waves? The answer is
OO 14
- A _ L : m (. Mk (A
exp(iq - nrr) =4m ), i"ju(qre) 3. Y ()Y (q)
{=0 m=—1~

e which is called the “partial wave decomposition” or “Rayleigh’s formula”. Then we obtain

4rToit d>
SW 0 q . A
Qpm — T / (271')3 éqjﬁ(quz)}/ﬁ (Q)

e This is the exact formula relating ®@ in 3D at the last
scattering surface to am. How do we understand this?



AnToit [ d3
SW __ 0 q .
B =75 | gy i)

q -> | projection

¢ (4)

e A half wavelength, A/2, at the last scattering surface
subtends an angle of A/2rL. Since g=2T11/A, the angle is given

by 60=1/gr.. Comparing this with the relation 86=r/l, we ..t N

obtain I=qr|_. How can we see this?

o 31 - p -
: [\ 10 [50(%) ] E
0.6 N / \ —
o A =
S';E / \\ // \\ /\\ A :
LT [\ —
).0F : 4,/ : \\/, : \\// \\/ \\///\\//\/\\/ /\/ f\/\/\

0.0
* For I>>1, the spherical Bessel function,jl(qu), peaks 4 50 60

at I~qr|_ and falls gradually toward gr.>l. Thus, a given g

mode contributes to large angular scales too.

We learned this already from

the flat-sky approximation!




Part lll: Power Spectrum of the
Sachs-Wolfe Effect




Let’s compute the temperature power spectrum
Temperature C

AnToi* [ d°
SW 0 q ' mx (5
 We use algm — 3 f (27'(')3 gbq]E(Q""L)Ye (q)
1 £ «
to compute Cg — Z a@maem

2w+ 1, =,



Result

The power spectrum of the Sachs-Wolfe effect?

47TT()7;£ d3q : mx* [ A
* We use CL?X — T / gbq]E(QTL)YE (Q)

to compute C /P =

Cosw = 47;% / (;i;)lg / (277)3 b,P, IJE(QTL)JE(Q TL)PE( q')



Power Spectrum of ¢

e Statistical average of the right hand side contains

%) /d3 /d3 (@) + r)pxolia - a) o -ia' -

two-point correlation function

d(x + r)) does not depend on locations (x)
but only on separations between two points (r), then

@) = PR (a— a)] [ @ €(r) exp(—iq -7

consequence of “statistical homogeneity”
where we defined €¢(T) = (@(m)@(m -+ 7’))

and used/dg.’l? exp(iq - CB) — (27T)35S)(CI)



Power Spectrum of ¢

e |n addition, if €¢("°) = (P(x)P(x + 'r))depends only on
the magnitude of the separation r and not on the directions,
then

@,2) = (276 (a ) [ 4mr2ar €47 )

— (21)%0% (a — ¢')\Ps(q)

Power spectrum!

Generic definition of the power spectrum for

statistically homogeneous and isotropic fluctuations



The Power Spectrum of
the Sachs-Wolfe Effect

e Thus, the power spectrum of the CMB in the Sachs-Wolfe limit is

e |n the flat-sky approximation,

(Crsw) =

16m4T¢  [*° g“dq
P
9 /O (27.‘_) Qb( )]K (QT’L)

T()2 o~ dq” ’62
P
(Crsw) = or2 / o 19 (\ 5 1+ g

Perpendicular
wavenumber, (dperp)?



The Power Spectrum of the
Sachs-Wolfe Effect

e Thus, the power spectrum of the CMB in the SW limit is

1672T¢  [°° g*dq
C — 0
Crsw) =7 /0 (2m)3

e |n the flat-sky approximation,

T2 o0 qu 62
P - g3
(Cesw) = Ors / o ~ ? (\/TL q\l)

For a power-law form, qu (q) p— (27‘(’)3]\% qn_4 , we get

BTN To ( £ )“—1 VT L((3 —n)/2
942 re 2 I'[(4—n)/2

P,(q)ji(qrr)

(Crsw) =




The Power Spectrum of the
Sachs-Wolfe Effect

e Thus, the power spectrum of the CMB in the SW limit is

16m2T¢ [ q*dq
Crsw) =7 /0 (2m)3

e |n the flat-sky approximation,

T2 o0 qu 62
P - g2
(Cesw) = Ors / o ~ ? (\/TL qll)

For a power-law form, qu (q) —

P,(q)ji(qrr)

(Co.sw) =

dqT2N2T i)n—l VT I
9@2 T, 2 F:




Bennett et al. (1996)

COBE 4-year Power Spectrum
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ennett

WMAP 9-year Power Spectru
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Planck Collaboration
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Planck Collaboration
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: Clearly, the SW :
prediction does not fit!

: Missing physics: :
Hydrodynamics ' E

: (sound waves) L —







