Mapping the large-scale structure of the Universe with emission-line galaxies from z=0.6 to 3.5: HETDEX and PFS

Eiichiro Komatsu (Max Planck Institute for Astrophysics)

OATs Seminar, Osservatorio Astronomico di Trieste July 15, 2019

Why Large-scale Structure?

- "End-to-end Test of the Universe"
- Cosmology as an initial-value problem
 - The initial fluctuation is constrained quite well by the cosmic microwave background data
 - We then evolve the initial fluctuation forward, assuming a cosmological model and gravitational theory
 - Does the prediction agree with what we see in the data in a late-time Universe?

State-of-the-art

- There is an indication that the E2E test is failing for a flat ACDM model
 - H₀
 - Amplitude of matter fluctuations in a low-z universe
- There is also an indication that the current large-scale structure data sets may not be consistent with each other

Astrophysics > Cosmology and Nongalactic Astrophysics

HOLiCOW XIII. A 2.4% measurement of H_0 from lensed quasars: 5.3 σ tension between early and late-Universe probes

Kenneth C. Wong, Sherry H. Suyu, Geoff C.-F. Chen, Cristian E. Rusu, Martin Millon, Dominique Sluse, Vivien Bonvin, Christopher D. Fassnacht, Stefan Taubenberger, Matthew W. Auger, Simon Birrer, James H. H. Chan, Frederic Courbin, Stefan Hilbert, Olga Tihhonova, Tommaso Treu, Adriano Agnello, Xuheng Ding, Inh Jee, Eiichiro Komatsu, Anowar J. Shajib, Alessandro Sonnenfeld, Roger D. Blandford, Leon V. E. Koopmans, Philip J. Marshall, Georges Meylan

(Submitted on 10 Jul 2019)

appeared on July 12

We present a measurement of the Hubble constant (H_0) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat Λ CDM cosmology, we find $H_0 = 73.3^{+1.7}_{-1.8}$, a 2.4% precision measurement, in agreement with local measurements of H_0 from type la supernovae calibrated by the distance ladder, but in 3.1 σ tension with *Planck* observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3 σ tension with *Planck* CMB determinations of H_0 in flat Λ CDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat Λ CDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from *Planck*, baryon acoustic oscillations, and type la supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Using the distance constraints from time-delay cosmography to anchor the type la supernova distance scale, we reduce the sensitivity of our H_0 inference to cosmological model assumptions. For six different cosmological models, our combined inference on H_0 ranges from 73-78 km s⁻¹ Mpc⁻¹, which is consistent with the local distance ladder constraints.

How do we explain this?

- Insomma, non so come...
- This is the "Early Universe Probe vs Late Universe Probe" tension
 - My approach is to "ask the sky". We keep cross-checking them with more data, until we find new explanation(s)
- In fact, it may not be just H₀...
 - The amplitude of matter density fluctuations in the late time Universe measured by the large-scale structure seems low compared to what we infer from CMB
 - Not yet too significant (~3σ), but it is persistent
- More data on both early and late Universe probes are necessary

Amplitude of Fluctuations

- The present-day amplitude of the matter fluctuation constrained by the low-z data appears to be smaller than the one predicted
- by the evolution model given CMB

Amplitude of Fluctuations

The present-day amplitude of the matter fluctuation constrained by the low-z data appears to be smaller than the one predicted
by the evolution model given CMB

Amplitude of Fluctuations

 The present-day amplitude of the matter fluctuation constrained by the low-z data appears to be smaller than the one predicted by the evolution model given CMB

Two known low-z effects

- So, there is some evidence that the end-to-end test is failing. Namely:
 - The locally measured H₀ appears to be larger than that predicted by the CMB+
 - The locally measured amplitude of fluctuations appears to be lower than that predicted by the CMB+
- Two effects that are known to influence

the low-z evolution:

- Neutrino mass
- Dark energy/modified gravity

Hobby-Eberly Telescope Dark Energy Experiment

Location McDonald Observatory (West Texas)

<u>Primary Mirror Size</u> 10 m

<u>Wavelength Coverage</u> 350–550 nm ($\Delta\lambda$ =6.2Å)

<u>Redshift (Lya)</u> z=1.9–3.5

<u>Spectrograph Type</u> Integral Field Unit (IFU)

Field of View 0.1 deg² (22' diam.) ~20 Mpc in one go! Survey Volume 2.8 (Gpc/h)³ <u># of fibers</u> 34,944

Fiber Diameter 1.5 arcsec

Survey Type Blind

PFS

<u>Location</u> Subaru Telescope (Hawaii)

Primary Mirror Size 8.2 m

<u>Wavelength Coverage</u> Blue: 380–650 nm (Δλ=2.1Å) Red(LR): 630–970 nm (Δλ=2.7Å) Red(HR): 710–885 nm (Δλ=1.6Å) NIR: 940–1260 nm (Δλ=2.4Å)

Redshift ([OII]) z=0.02–0.74 **z=0.69–1.60** z=0.90–1.37 **z=1.52–2.38**

<u>Spectrograph Type</u> Robotic Multi Object Fiber-fed <u># of fibers</u> 2,394 + 96

<u>Field of View</u> **1.25 deg**² (1.38 deg diam.)

> Survey Volume 8.2 (Gpc/h)³

Fiber Diameter 1.2 arcsec

<u>Survey Type</u> Traditional

Illuminating the Darkness

Hobby-Eberly Telescope Dark Energy Experiment

Texas-led \$42M experiment

McDonald Observatory THE UNIVERSITY OF TEXAS AT AUSTIN

Main Objective: Cosmology

für Astrophysik

But, we can do:

• Properties of Lyman-alpha emitting galaxies

• Blind survey: Unbiased survey of everything

東京大学

Science Sector place

Japan-led \$85M instrument

CPPC

Max-Planck-Institu

für Astrophysik

Main Objective:

Spectroscopic follow-up of targets detected by the imaging survey of Hyper Suprime Cam

Three major science programs:

Cosmology

NEPG

- Galaxy Evolution
- Galactic Archeology

Large Redshift Lever Arm: One Example

We want accurate and robust cosmology! (not just precision)

Science Cases (Cosmology)

- Not just testing tensions in H_0 and the amplitude of fluctuations!
- To rule out the standard ACDM model (or to put the tightest limits on deviations)
 - If Λ CDM, HETDEX can detect Λ at z>2 for the first time
- To rule out the inverted hierarchy of the neutrino mass (or to discover it)
- And, we do a lot of non-cosmological projects too!
 - I would love to discuss other ideas with you today. These instruments are really amazing

Experimental Landscape

Launch Euclid (launch sometime in Jan-June 2022?)

Experimental Landscape

Experimental Landscape

- We are the only players at z>2
- Lasting impacts well beyond
 Euclid (~a billion dollar mission)

IFUs fabricated at AIP

Illuminating the Darkness

Long fibers! (Each fiber sees 1.5")

Put into cables...

One IFU feeds two spectrographs

448 fibers per IFU

A test IFU being lit

Illuminating the Darkness

*VIRUS = Visible Integral-field Replicable Unit Spectrograph **HETDEX Collaboration**

Current VIRUS

- 47 IFUs (out of 78) are active now. More IFUs will be installed as they are built (at the rate of 3 units per month)
- 47 x 448 = **21,056** fibers! And this is the open-use instrument

SDSS DR9 ra: 205.500 dec: 28.360 scale: 1.5000 arcsec/pix image zoom: 1:4

> 23:67813 0

Illuminating the Darkness

Example of full field on M3. Green boxes are the IFU locations.

~1 arcmin, completely filled by fibers (after 3 dither)

wfs1:125:6788525

E

gd1:1125:6776701

S

Karl Gebhardt

ws2:1125:5775109

Hobby-Eberly Telescope Dark Energy Experiment

Hobby-Eberly Telescope with VIRUS

Tracker ("An eye ball")

Strongback

Hexapod

Lower hexapod frame Y-axis actuator

Upper hex

Tracker bridge

X-axis actuators

This is the real one!

One exposure is 20 minutes

:18

:19

:17

:16

:20

:21

·23

:22

·10

0

:12 .-.10

-20.

-30

-40.

COSMOS

SDSS DR

GOODS-S

UDS

:3

150 deg²

Sparse sampling paper: Chiang et al. (2013)

•Each "shot" in the sky contains 78 IFUs •Spending 20 minutes per shot ~ 200 LAEs •We do not completely fill the focal plane •This is the "sparse sampling" technique

What do we detect?

- λ =350–550nm with the resolving power of R~700 down to a flux sensitivity of a few x 10⁻¹⁷ erg/cm²/s will give us:
 - ~IM Lyman-alpha emitting galaxies at 1.9<z<3.5
 - I/I0 of them would be AGNs
 - ~IM [OII] emitting galaxies at z<0.47
 - ...and lots of other stuff, like white dwarfs,
 blindly selected/discovered

Current HETDEX Data

(~10% of the full survey data)

• 47,880 IFUs on the sky

- 47,880 x 448 (# of fibers per IFU) x 3 (dither) = 64M
- And this is only 10% of the full survey data!
 - Goal: 468,000 IFUs on the sky
 - 629M calibrated spectra. This is the big data!

Karl Gebhardt

A typical hetdex field

Reconstructed image of the 21k fibers. Filled squares are active IFUs, open squares are those remaining.

In this frame, we would use about 15 of the stars for astrometry and throughput measures.

Karl Gebhardt

Example calibration check, using 2 white dwarfs from SDSS (virus in red, SDSS in black)

Karl Gebhardt

Examples from one field

STACK_COSMOS : Possible Matches = 0 (within +/- 2.5") No continuum floor baseline defined.

27.7 3.2

3920

rgs,

cm²/s

Ĩ

5380

5360

5380

5400

4980

5000

20170629v004_8

5020

Wavelength

20170529+009_13

Wavelength

20170427+013_6

Wavelength

5400

5400

Wavelength

20170427+005_2

3780

Wavelength

3800

3820

5420

5420

5440

5420

5040

27.3 2.1

5060

26.7 5.9

5460

26.3 1.2

5440

201704200017_4

Wavelength

20170519+002_6

Wavelength

4080

4060

4300

4320

4100

4340

26.6 2.9

4280

4260

4040

27.3 3.0

27.8 2.1

rgs,

20170423-008_1

Wavelength

3880

3900

3860

3740

3760

Wavelength

m²/s

Wavelength

5380 5400 5420 5440 Wavelength 24.9 1.0

20170626v003_31

Wavelength

4660

4680

4700

4640

4620

26.5 1.8

One of the "Red" Spectrograph Modules being tested at LAM

One of the "Red" Spectrograph Modules being tested at LAM

"Cobra" optical bench

"Cobra" eng. model module

Masahiro Takada

HSC Image of M31 (HSC FoV=1.8 sq. degrees)

reduced by HSC pipeline (Princeton, Kavli IPMU, NAOJ)

Masahiro Takada

PFS Foot-print (in RA-DEC coordinates)

PFS Foot-print (in RA-DEC coordinates)

Shun Saito

400

350

300

ပ

ELGs)/deg²/cell w/ (S/N)_{Oll} >

of

50

0

О

Target Selection updated CMC: $0.6 < z_{photo} < 2.4$

Ryu Makiya

Example Deliverables: Galaxy Power Spectra

There are six more redshift bins

PFSxHSC: Galaxy-weak lensing Ryu Makiya Cross Spectra

Neutrino Mass

Two major goals

- To rule out the inverted mass hierarchy of neutrino masses by measuring $\sum m_v < 0.1 \text{ eV}$ (95% CL)
 - or, to determine the total mass if $\sum m_v > 0.1 \text{ eV}$
- To rule out the ΛCDM model by finding time evolution of dark energy density, $\rho_{DE} = \rho_{DE}(t) \neq \Lambda$
 - or, to confirm it with unprecedented precision to z=3.5

Why Neutrino Mass *Hierarchy*?

- We know that neutrinos have masses, but we do not know the absolute value of the mass
 - Only mass differences between three mass eigenstates are known from the neutrino oscillation experiments
- Knowing the mass would be nice, but what appears to be more fundamental is the mass hierarchy
 - "Normal" vs "Inverted"

Do we have two heavy states (inverted), or just one (normal)? ∑m_v = 0.1 eV is the key level

Are neutrinos Dirac or Majorana?

- Deciding the mass hierarchy sets a concrete target for the neutrino-less double beta decay experiments
- Dirac or Majorana?
 Fundamental importance!

Neutrino Mass Target in Landscape

- The current upper bound from cosmology (Planck+BOSS): ∑m_v < 0.16 eV (95% CL; Alam et al. 2017)
- Planned laboratory (i.e., non-cosmological) neutrino experiments would yield:

	Hierarchy	Approximate	
Experiment	$\operatorname{sensitivity}$	timescale	Comments and concerns From Patterson (1506.07917)
$NO\nu A+T2K$	$1-3\sigma$	2020	currently operating below designed beam power
DUNE	$3-6\sigma$	2030	funding, timeline
	$5–10\sigma$	2035	
PINGU	$3-6\sigma$	2025	funding; past systematics and resolution concerns largely addressed
ORCA	$3-6\sigma$	_	insufficiently developed at present
Hyper-K	$3–6\sigma$	2030	funding, timeline
ICAL@INO	$2\!-\!4\sigma$	2030	timeline
JUNO	$\sim 4\sigma$	2027	detector performance not yet demonstrated
RENO-50	$\sim 3\sigma$	_	insufficiently developed at present
Cosmology	$0-4\sigma$	2027	0σ for most of allowed mass range; requires minimal NH spectrum

Effects of Massive Neutrinos in Cosmology

- Neutrinos do two things:
 - 1. Change the expansion history of the Universe BAO, AP

RSD, Shape

2. Slow down the structure formation

But, what about cosmological model-dependence?

Neutrino mass from cosmology: Model dependence!

- A typical thing you see at conferences:
 - A cosmologist: "So, this is our measurement of the total neutrino mass from cosmology. This is much better than the laboratory experiments!"
 - A particle physicist: "Nice, but how dependent is your constraint on the assumed cosmological models"
 - A cosmologist: "Ah... Um..."
- Let's settle this!

Aoife Boyle

(MPA)

Deconstructing the neutrino mass constraint from galaxy surveys

- Neutrino mass changes:
 - Expansion rate (hence distances)
 - Overall growth of matter fluctuations
 - But, these effects can be mimicked by other effects in cosmology
- The scale-dependent suppression of the power spectrum is not!
 - This is unique to neutrino masses (in General Relativity)

Distance Effect

[Forecast for Euclid]

Strong dependence on the assumed cosmological models!

Model dependence disappears!

Constraints tighten, but the model dependence re-appears

Precision vs Robustness

- If we want precision, we may combine all the information and report the neutrino mass constraint
 - But, we must be honest and admit the cosmological model dependence!
- If we want robustness, we can get a model-independent constraint on the neutrino mass from the free-streaming signature in the power spectrum
 - Particle physicists would be happ(ier)?

Summary

- Galaxy surveys are going to high redshifts
 - PFS: 0.6<z<2.4; HETDEX: 1.9<z<3.5
 - Blind nature of HETDEX is very exciting for new discoveries lacksquare
- Checking for the internal consistency of ACDM over a wide redshift range. Is the H_0 tension due to low-z effect?
- Measurement of the neutrino mass may be "just around the corner"
 - But beware the cosmological model dependence. The free- \bullet streaming signature is a promising way to remove the model dependence 66

Final Message

- Both instruments are open-use!
 - VIRUS (IFU used by HETDEX) is publicly available
 - PFS will be publicly available also after ~2022
- Use them! I would be very happy to talk with you about new ideas