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A Remarkable Story

eObservations of the cosmic
microwave background and their
Interpretation taught us that

galaxies, stars, planets, and
ourselves originated from tiny
fluctuations in the early Universe

® But, what generated the initial fluctuations?



Mukhanov & Chibisov (1981); Hawking (1982); Starobinsky (1982); Guth & Pi (1982);
Bardeen, Turner & Steinhardt (1983)

Leading ldea

 Quantum mechanics at work in the early Universe
e “We all came from quantum fluctuations™

e But, how did quantum fluctuations on the microscopic
scales become macroscopic fluctuations over large
distances?

* What is the missing link between small and large
scales?



Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation
Inflation! <
/ \

* Exponential expansion (inflation) stretches the wavelength
of quantum fluctuations to cosmological scales




Key Predictions

* Fluctuations we observe today in CMB and the matter

distribution originate from quantum fluctuations during
iInflation AT I

scalar
mode

* There should also be ultra long-wavelength
gravitational waves generated during inflation
a® o Starobinsky (1979)

tensor
mode




We measure distortions In space

e A distance between two points in space
dr® = a*(t)[1 + 2¢(x,1)][0;; + hi;(x,t)]dx" da’
e (: “curvature perturbation” (scalar mode)
* Perturbation to the determinant of the spatial metric
e h;j: “gravitational waves” (tensor mode)

e Perturbation that does not alter the determinant

Zhii:o



We measure distortions In space

e A distance between two points in space

114 2¢(x, 0)][8i5 + hay (x, 1)) da’'da?

scale factor

e (: “curvature perturbation” (scalar mode)
* Perturbation to the determinant of the spatial metric
e h;j: “gravitational waves” (tensor mode)

e Perturbation that does not alter the determinant

th:o



Finding Inflation

e |nflation is the accelerated, quasi-exponential expansion.
Defining the Hubble expansion rate as H(t)=dIn(a)/dt, we
must find

i ) H
—=H+H>>0 waupr ec=—— <1
a H

* For inflation to explain flatness of spatial geometry of our
observable Universe, we need to have a sustained period

of inflation. This implies e=O(N-1) or smaller, where N is
the number of e-folds of expansion counted from the end

of inflation:

a d tend
N=Iln— = / dt’ H(t") =~ 50
a ¢




Have we found inflation?

® Have we found € << 17 € =

 To achieve this, we need to map out H(t), and show that it
does not change very much with time

* We need the “Hubble diagram” during inflation!



Fluctuations are
proportional to H

e Both scalar () and tensor (hj) perturbations are
proportional to H

e Consequence of the uncertainty principle

e THE KEY: The earlier the fluctuations are generated, the
more its wavelength is stretched, and thus the bigger the
angles they subtend in the sky. We can map H(t) by
measuring CMB fluctuations over a wide range of angles



Fluctuations are
proportional to H

e We can map H(t) by measuring CMB fluctuations over a
wide range of angles

1.

We want to show that the amplitude of CMB fluctuations
does not depend very much on angles

Moreover, since inflation must end, H would be a
decreasing function of time. It would be fantastic to
show that the amplitude of CMB fluctuations actually
DOES depend on angles such that the small scale has
slightly smaller power



Data Analysis

e Decompose temperature
fluctuations in the sky into a
set of waves with various
wavelengtns

* Make a dilagram showing the
strength of each wavelength



WMAP Collaboration
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Cosmic Miso Soup

When matter and radiation were hotter than 3000 K,
matter was completely ionised. The Universe was
filled with plasma, which behaves just like a soup

Think about a Miso soup (if you know what it is).
Imagine throwing Tofus into a Miso soup, while
changing the density of Miso

And Imagine watching how ripples are created and
propagate throughout the soup






Measuring Abundance of H&iHe
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Measuring lotal Matter Density
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Origin of Fluctuations

* Who dropped those Tofus into the cosmic Miso
Soup”
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Wright, Smoot, Bennett & Lubin (1994)
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WMAP Collaboration
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Angular scale WMAP Collaboration
90° 2° 0.5° 0.2° 0.1°

South Pole Telescope -

- ;?i [10-m in South Pole]
x ¥

O
o
g
=
Q
-
<

L 4

IOO ll|lllllllll| 1 1 | I | | | | ]
10 100 500 1000 2000

Multipole moment [




Angular scale WMAP Collaboration
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Residual Amplitude of Waves [ uK2]
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WMAP Collaboration

W band
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Testing Gaussianity

Wband 1 ° Slnce a Gayss_ dlstrlbujuon
i  Is symmetric, it must yield a
1 vanishing 3-point function

3

1 (6T3) = / d6T P(6T)6T?

Histogram: WMAP Data
Red Line: Gaussian

.................

 More specifically, we measure
this by averaging the product
of temperatures at three
different locations in the sky

Having Those Temperatures

Fraction of the Number of Pixels

[Values of Temperatures in the Sky Minus

2.725 K]/ [Root Mean Square] <5T(ﬁ1)5T(ffL2)5T(”fL3)>



Lack of non-Gaussianity

e The WMAP data show that the distribution of temperature
fluctuations of CMB is very precisely Gaussian

* with an upper bound on a deviation of 0.2% (95%CL)

3
C(%) = Cgans (%) + - INLC s (%) with L = 37 £20 (68% CL)
WMAP 9-year Result

e The Planck data improved the upper bound by an order of
magnitude: deviation is <0.03% (95%CL)

fxL = 0.8 £5.0 (68% CL)
Planck 2015 Result




So, have we found inflation?

e Single-field slow-roll inflation looks remarkably good:
e Super-horizon fluctuation
 Adiabaticity
e Gaussianity
* Ns<1
 What more do we want? Gravitational waves. Why?

 Because the “extraordinary claim requires extraordinary
evidence”



Watanabe & EK (2006)
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Watanabe & EK (2006)

Theoretical energy density
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Finding Signatures of

Gravitational Waves in the CMB

e Next frontier in the CMB research

New

Research
Area!

1.

2.

Find evidence for nearly scale-invariant gravitational
waves

Once found, test Gaussianity to make sure (or not!)
that the signal comes from vacuum fluctuation

Constrain inflation models



Measuring GW

e GW changes distances between two points

d? = dx* =) 6;;da’da’
ij e ® ®* e

&

CMQ = Z(éw -+ hw)dx’da’;]

]

g
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@
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| |GO detected GW from a binary
blackholes, with the wavelength
of thousands of kilometres

But, the primordial GW affecting
the CMB has a wavelength of
billions of light-years!! How do
we find 1t



Detecting GW by CMB

|sotropic electro-magnetic fields



Detecting GW by CMB

GW propagating In isotropic electro-magnetic fields
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Detecting GW by CMB

Space is stretched => Wavelength of light is also stretched
.
@




Detecting GW by CMB

Polarisation
Space is stretched => Wavelength of light is also stretched
.
o
hot ¢
.
electron &

3




Detecting GW by CMB
Polarisation

Space is stretched => Wavelength of light is also stretched




Photo Credit: TALEX
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Photo Credit: TALEX




Tensor-to-scalar Ratio

e We really want to find this! The current upper bound is

r<0.07 (95%CL)
BICEP2/Keck Array Collaboration (2016)

7



WMAP Collaboration
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Observation Strategy

.% .
Sun ~ Precession angle
> o =65°. ~90 min.

Spin angle
s Pp=30° 0.1rpm

\
1 \
I 1
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I

I

7
Anti-sun vector

AN
S L2: 1.5M km from the'earth;

' X

! I
1 1
1 1
\

Launch vehicle: JAXA H3

Observation location: Second Lagrangian point (L2)

Scan strategy: Spin and precession, full sky

Observation duration: 3-years

* Proposed launch date: Mid 2020’s

Slide courtesy Toki Suzuki (Berkeley)



Foreground Removal

LiteBIRD Band Sensitivity
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Polarized galactic emission (Planck X) LiteBIRD: 15 frequency bands

e Polarized foregrounds
e Synchrotron radiation and thermal emission from inter-galactic dust

* Characterize and remove foregrounds

e 15 frequency bands between 40 GHz - 400 GHz
e Split between Low Frequency Telescope (LFT) and High Frequency Telescope (HFT)
 LFT:40 GHz —235 GHz
* HFT: 280 GHz - 400 GHz Slide courtesy Toki Suzuki (Berkeley)



Slide courtesy Toki Suzuki (Berkeley)

Instrument Overview

Half-wave plate

P

Cold Mission System
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Sub-Kelvin Instrument

 Two telescopes
* Crossed-Dragone (LFT) & on-axis refractor (HFT)

| » Cryogenic rotating achromatic half-wave plate
 Modulates polarization signal

e Stirling & Joule Thomson coolers
* Provide cooling power above 2 Kelvin

Sub-Kelvin Instrument
* Detectors, readout electronics, and a sub-kelvin cooler



LiteBIRD

LiteBIRD Expectation
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But, wait a minute...



Are GWs from vacuum fluctuation
in spacetime, or from sources?

:hz’j — —167TG7TZ']'

b7

v 2. b @ -
" SCERZ ‘0 py g <

* Homogeneous solution: “GWs from vacuum fluctuation”

* Inhomogeneous solution: “GWs from sources”

e Scalar and vector fields cannot source tensor fluctuations
at linear order (possible at non-linear level)

e SU(2) gauge field can!

Maleknejad & Sheikh-Jabbari (2013); Dimastrogiovanni & Peloso (2013);
Adshead, Martinec & Wyman (2013); Obata & Soda (2016); ...



Important Message
hi — —167TG7TZ']‘

b7

v 2. b @ -
" SCERZ ‘0 py g <

* Do not take it for granted if someone told you that
detection of the primordial gravitational waves would be
a signature of “qguantum gravity”!

e Only the homogeneous solution corresponds to the
vacuum tensor metric perturbation. There is no a priori
reason to neglect an inhomogeneous solution!

e Contrary, we have several examples in which detectable
B-modes are generated by sources [U(1) and SU(2)]



Experimental Strategy
Commonly Assumed So Far

1. Detect CMB polarisation in multiple frequencies, to make
sure that it is from the CMB (i.e., Planck spectrum)

2. Check for scale invariance: Consistent with a scale
invariant spectrum?

e Yes => Announce discovery of the vacuum fluctuation
In spacetime

e No=>WTF?



New Experimental Strategy:
New Standard!

1. Detect CMB polarisation in multiple frequencies, to make
sure that it is from the CMB (i.e., Planck spectrum)

2. Consistent with a scale invariant spectrum?
3. Parity violating correlations consistent with zero?

4. Consistent with Gaussianity?

e |f, and ONLY IF Yes to all => Announce discovery of the vacuum
fluctuation in spacetime



If not, you may have just

discovered new physics
during inflation!

2. Consistent with a scale invariant spectrum?
3. Parity violating correlations consistent with zero?

4. Consistent with Gaussianity?

e |f, and ONLY IF Yes to all => Announce discovery of the vacuum
fluctuation in spacetime



Further Remarks

e “Guys, you are complicating things too much!”

® NO. These sources (eg., gauge fields) should be

ubiquitous in a high-energy universe. They have every
right to produce GWs if they are around

e Sourced GWs with r>>0.001 can be phenomenologically
more attractive than the vacuum GW from the large-field
inflation [requiring super-Planckian field excursion]. Better
radiative stability, etc

* Rich[er] phenomenology: Better integration with the
Standard Model; reheating; baryon synthesis via
leptogenesis, etc. Testable using many more probes!



Dimastrogiovanni, Fasielo & Fujita (2017)

GW from Axion-SU(2) 9]

Dynamics
L=Lan+ Lo+ Ly — g Fi FO + JpF FO

e ¢: inflaton field => Just provides quasi-de Sitter background

1 - AX

e ¥: pseudo-scalar “axion” field. Spectator field (i.e., negligible
energy density compared to the inflaton)

 Field strength of an SU(2) field Ag :

Fo, = 0,A% — 0,A% — ge®° A? A,



Dimastrogiovanni, Fasielo & Fujita (2017)

Background and 9‘ &
Perturbation o

e In an inflating background, the SU(2) field has a
background solution:

A7 = |scale factor| x ) x ¢}
Q = (—f0,U/3g \H)/3

U: axion potential

* Perturbations contain a tensor mode (as well as S&V)

SAL = t,,

tii = Ogtai = Oitqi = 0



Scenario

e The SU(2) field contains tensor, vector, and scalar
components

e The tensor components are amplified strongly by a
coupling to the axion field

 Only one helicity is amplified => GW is chiral (well-
known result)

e Brand-new result: GWs sourced by this mechanism are
strongly non-Gaussian!
Agrawal, Fujita & EK, PRD, 97, 103526 (2018)



Dimastrogiovanni, Fasielo & Fujita (2017)

Gravitational Waves

e Defining canonically-normalised circular polarisation modes as
"L;')[/:R — (le\fpl/z) (}2 - "L}lx)

e The equations of motion for Land R modes are (= = k/aH )

| 2\/615 2./€R
WYR,L = Ortr.1,

2 (mQ— ) tR.,L-

mo = gQ/H =afew



Dimastrogiovanni, Fasielo & Fujita (2017)

Spin-2 Field from SU(2)

* The equations of motion for L and R modes of SU(2) are

. y
Ootrr + 1 . (meO (mQJrf)) LR,L

the minus sign gives an instability -5 exponential amplification of tr!
2./€R 2
= " Oy VR, I, - 3 (mo Fx)Ves +Ver|Vn.L

ep = 9°Q*/(HMp)? < 1




Dimastrogiovanni, Fasielo & Fujita (2017)

Spin-2 Field from SU(2)

* The equations of motion for L and R modes of SU(2) are

Dtrr + |1+ — (me(Fe(mq +£)| taL

B th'e;minus signh gives an instability -5 exponential amplification of tg!
2.\/€E 2
= " Op VR, 1, 3 (mo F x)\VeB + Ver| YR L

* The produced gravitational waves are totally chiral!

* The solution (when all the parameters are constant and the terms on the
right hand side are ignored):

1 3 . o —72\/2777,Qf —1/4
tpr(x) = " Wi o(—212 .
1t ( ) \/ﬂ [Whirze;lf;r(function] ) ( P _Z(m/Q N f)




Dimastrogiovanni, Fasielo & Fujita (2017)

Gravitational Waves

e Defining canonically-normalised circular polarisation modes as
wﬁ;R — (af\[pl/Z) (}2 - 'Z}lx)

e The equations of motion for Land R modes are (= = k/aH )

o 2 2\/€E 2\/€B
OyVR,1 + (1__)9121 \/ Ortr,L + — 5 = (mgF2)tar

* |nhomogeneous solution:

TOPRSN. o
}gbt,{ () = Totn _]—"E\/eE ]:B\/EB_

Fe, FB: some complicated functions



Dimastrogiovanni, Fasielo & Fujita (2017)

Power Spectrum!

. H2
73;(1)(1») — — vV 2k hm

epH?

f?

o ()] =

exp(3.6m %)

9
F2 =|Fp + Ven/enF

* This exponential dependence on mq makes it possible to

have Psourced >> Pvacuum

e New Paradigm



Phenomenology

djlﬁ}{,,[j + {14 ("mQ fO:l?(‘TnQ + E)) tR,L — ...

;’132

the minus sign gives an instability -> exponential amplification of tg!

¢ A 1

= X =~ Mo

T 21H X @ mQ
mo = gQ/H =afew

e The scale-dependence of the produced tensor modes is
determined by how mq changes with time

e E.g., Axion rolling faster towards the end of inflation:
BLUE TILTED power spectrum! Therefore...



Thorne, Fujita, Hazumi, Katayama, EK & Shiraishi, PRD, 97, 043506 (2018)

Not just CMB! .
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Dimastrogiovanni, Fasiello & Fujita (2017)
Thorne, Fujita, Hazumi, Katayama, EK & Shiraishi, PRD, 97, 043506 (2018)

Example Tensor Spectra

2.00 A
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1.50 -
1.25 A
X
s
o 1.00 A
—
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0.50 - — ppoourced(ig =2, r. =0.07, k, = 0.005 Mpc™?)
ppeoucd(g =2, r« =0.07, k, =0.0005 Mpc™1)
0.25 A — pLoourced(g =2 r.=0.07,k,=7x 1072 Mpc™1)
— == 0.07Pk)
1073 104 1073 1072 1071 10°
k Mpc™

* Sourced tensor spectrum can also be bumpy



101%p(k)

Dimastrogiovanni, Fasiello & Fujita (2017)
Thorne, Fujita, Hazumi, Katayama, EK & Shiraishi, PRD, 97, 043506 (2018)

Example Tensor Spectra

Tensor Power Spectrum, P(k)

B-mode CMB spectrum, C;BB
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The B-mode power spectrum still looks rather normal
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Pamty violating Spectra
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 Angle mis-calibration can be distinguished easily!

TB from angle
mis-calibration
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Large bispectrum in GW
- from SU(2) fields

Byttt (k ko k) 25 B A
~ ‘ P 2(]{) - Q A TbmoFujita

Aniket Agrawal
(MPA) (Kyoto)

3
(ilR(kl);bR(kQ)}tbR(k‘g» ju (271')35 (Z k,) B;?RR(k'l, kg, k“g)

i=1
e QOa << 1isthe energy density fraction of the gauge field

e Bin/Pn?is of order unity for the vacuum contribution
[Maldacena (2003); Maldacena & Pimentel (2011)]

e Gaussianity offers a powerful test of whether the
detected GW comes from the vacuum or sources
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NG generated at the tree level

i 2
() i) | abe ; mo +1 ..

L3 — C() € ta,z'tbj (ditcj 3772.QT c'J tck)
m -
- Liitjity;

2M4 QQA
H=Mg, 1+ mg t [tensor SU(2)]

mq = gQ/H [ma~afew] 0AF =tai+ -

[tensor SU(2)] { [ [tensor SU(2)]

5 Thisdiaram generates
| second-order equation |
| _of motionfor GW |

[GW] ¥ Y IGW]
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NG generated at the tree level

; . 1 _ my +1 ...
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2 N4
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mq = gQ/H [maq~ afew] OAS =tgi + -

[tensor SU(2)] { . I [ [tensor SU(2)]
' * This diagram generates S~ N S ~ S —

i of motion for GW

{ [tensor SU(2)]
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squeezed triangle
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* This shape is similar to, but not exactly the same as, what
was used by the Planck team to look for tensor bispectrum



Planck Collaboration (2015)

Current Limit on Tensor NG

e The Planck team reported a limit on the tensor
bispectrum in the following form:

tens — BhI I.I (k7k7k)
NL Fvequll.(k7 ]C, ]C)

scalar

* The denominator is the scalar equilateral bispectrum
template, giving F°9"" (k. k. k) = (18/5)P2 . (k)

scalar scalar

tens

e The current 68%CL constraintis fn1, = 400 = 1500
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SU(2), confronted

e The SU(2) model of Dimastrogiovanni et al. predicts:

125 7 re

e The current 68%CL constraintis  far™® = 400 % 1500

* This is already constraining!



Courtesy of Maresuke Shiraishi

LiteBIRD would nall it!

10 T T T T — T T T T T TT] — T T T T
RFG + LiteBIRD noise, 0% delens,fsky =0.5
noiseless, 100% delens, fg, = 1 (AfN[ = 100r°'%)
>  n
e 10 Err[fnLtens] = a few!
Ql
o
O
S
%—' 0 50% sky, no delensing, LiteBIRD noise,
*"4'3 10 _ ”””””””””” and residual foreground =/ E
10
10™ 10 107 10™]

tensor-to-scalar ratio r
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Parameter Scan
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Lozanov, Maleknejad & EK, arXiv:1805.09318

Schwmger Effect

=10 "
10° | - .
Kaloian Lozanov | AR Azadeh Maleknejad
(MPA) 107} & 1 (MPA)
o 10° s
. = r>0.07 o ===y ) =1
10 == backreaction A (01—
p— " Tsource = Tvac
Planck fi5* limit * ofmqhoice
10710 : : —
—1 r>007 = @ ====- o)) =
__________C—1_backreaction ____=—="==- r=L0.01---—-
10-BFETTT 1
S— ga > 1 T'source — T'vac _
Planck f tens Jimit ©o-7! Schwinger
1.5 2.0 2.5 3.0 3.0 4.0 1D 5.0



Summary

e Single-field inflation looks good: all the CMB data support it

 Next frontier: Using CMB polarisation to find GWs from
inflation. Definitive evidence for inflation!

e With LiteBIRD we plan to reach r~10-3, i.e., 100 times
better than the current bound

e GW from vacuum or sources? An exciting window to new
physics



