Mapping the Hot Gas in the Universe

Eiichiro Komatsu (MPA) and Jean-Baptiste Melin (CEA-Saclay) COrE+ Meeting, APC, September 25, 2015

Thermal SZ (tSZ) Effect

• Thermal SZ effect (in the non-relativistic limit) enables us to map thermal pressure in the universe

$$Y_{ ext{tSZ}}(oldsymbol{ heta}) = rac{k_B \sigma_T}{m_e c^2} \int \mathrm{d}l \; n_e(oldsymbol{ heta}, l) \; T(oldsymbol{ heta}, l)$$

Thermal SZ (tSZ) Effect

- The unique frequency dependence of tSZ: we can make a map of $Y_{t\text{SZ}}$

Planck Collaboration

Compton Y from Planck

MILCA tSZ map

• Planck did a great job!

We can simulate this

arXiv:1509.05134

SZ effects in the Magneticum Pathfinder Simulation: Comparison with the Planck, SPT, and ACT results

K. Dolag^{1,2*}, E. Komatsu^{2,3} and R. Sunyaev^{2,4}

¹ University Observatory Munich, Scheinerstr. 1, 81679 Munich, Germany

² Max-Planck-Institut f
ür Astrophysik, Karl-Schwarzschild Strasse 1, 85748 Garching, Germany

³ Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa 277-8583, Japan

⁴ Space Research Institute (IKI), Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997 Russia

- Volume: (896 Mpc/h)³
- Cosmological hydro (P-GADGET3) with star formation and AGN feed back
- 2×1526^3 particles (m_{DM}=7.5x10⁸ M_{sun}/h)

It is very sensitive to the amplitude of fluctuations

COrE+ improves fidelity

Mean Y

- The sky-averaged fluctuating component of the Compton Y measures the total thermal energy content of the universe
 - Seems like a fundamental quantity that we should know!
 - Planck is not sensitive to the uniform component of Y, but the fluctuating component can still be constrained

Y map gives us lots of clusters

Summary

- With tSZ, we are really mapping out all the hot gas in the universe
 - Statistical properties of the Compton Y map from the Planck data are reproduced in the simulation
 - COrE+ can take this to the next level of fidelity incredible legacy data set
- With COrE+, we can find all massive (M₅₀₀>10¹⁴ M_{sun}/h) galaxy clusters out to high redshifts as long as they exist
- Other interesting science: relativistic correction to tSZ providing temperature; kSZ measurements