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a
H = - [a Is the scale factor]

Inflation, defined

- Accelerated expansion during the early universe

a : H
—=H+H* >0 wuppr c=-—<1
a H
* For inflation to explain flatness of our observable
universe, a sustained period of acceleration is required

* This implies e=O(N-1) [or smaller], where N is the
number of e-fold of expansion counted from the end of
inflation:

a

tend
N = In 2end _ / dt' H(t") ~ 50
t



Have we found inflation?

e |.e., have we found € << 17
* Joshow e << 1, we nheed to map H(t)

* |n other words, we need to draw the "Hubble
diagram” during inflation




We measure distortions
N space
« A distance between two points in space
di® = a®(t)[1 + 2¢(x,1)][0;; + hi;(x,t)]da" da’
« {: “curvature perturbation” (scalar mode)
* Perturbation to the determinant of the spatial metric

* Ny “gravitational waves” (tensor mode)

» Perturbation that does not change the determinant (area)

Zh@-i:o



Fluctuations are
oroportional to H

Uncertainty Principle:

e [Energy you can borrow] x [ Time you borrow| =
constant
= ¢ | This has units of 1/time]
a

Then, both ¢ and h;; are proportional to H

Earlier the fluctuations are generated, the bigger the
angles they subtend in the sky. We can map H(t) by
measuring fluctuations over a wide range of angles
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Residual Amplitude of Waves [pK?]
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Garriga & Mukhanov (1999)
1-ns << 1:
Have we seen € << 17

* Not quite. C is basically proportional to H, but the
pre-factor can depend on time. If there was only
one dominant field in the early universe:

(= (2ec,) V2 x H

propagation speed
of a scalar field

* Even if H(t) varies rapidly, ns~1 can still be
achieved if € or cs or both also vary, canceling the
variation in H(t). ¢ does not give H(t) directly



INn general:

* C does not probe the expansion history during
inflation directly because its behaviour depends
very much on properties of matter present in the
universe

* [he connection to H(t) can be more complicated
for multi-tfield (multi-matter) models

- We need a probe which maps H(t) more directly



Starobinsky (1979)
Here comes

gravitational waves

* Gravitational waves are not coupled to (scalar)
matter. Thus, it directly probes H(t) via

rim \/56‘ ‘
hpz" — & x H
7 Mp




Has Inflation Occurred?

 \We must see [near] scale invariance of the
gravitational wave power spectrum:

orim

(i (k) it (k) o k™

|nt| << ]' In most models,

nt:—2€<0



Theoretical Watanabe & Komatsu (2006)
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Theoretical Watanabe & Komatsu (2006)
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CMB Polarisation

Temperature Polarization Temperatura Polarization

HOT SPOT COLD SPOT

« CMB is [weakly] polarised!



Stokes Parameters

I>I Q<0,U=0

Q=0,U<0

Q>0,U=0

Q=0,U>0

East
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WMAP Collaboration
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How many components”

¢ CMB TV ~ VO
e Synchrotron: Ty ~ v-3
e Dust: Ty ~ V2

* Theretore, we need at least 3 frequencies to
separate them



Seeing polarisation in the
WMAP data

* Average polarisation
data around cold and
hot temperature spots

* Qutside of the Galaxy
mask [not shown], there
are 11536 hot spots
and 11752 cold spots

PY AV e ra g I N g -t h e m b e a-t S Temperature ot Polarization TemperatureCOLD hne Polarization
the noise down



Cold Spot
Simulation

Cold Spot
WMAP Data

Hot Spot
Simulation

Hot Spot
WMAP Data

Temperature

Polarization

WMAP Collaboration

Radial and tangential
polarisation arounad
temperature sSpots

* [his shows polarisation
generated by the plasma
flowing into gravitational
potentials

e Signatures of the “scalar
mode” fluctuations in
polarisation

 [hese patterns are called
‘E modes”



Clat (deg)

Planck Collaboration

Planck Data!
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Seljak & Zaldarriaga (1997); Kamionkowski et al. (1997)

E and B modes

* Density fluctuations

scalar modes| can
only generate £ modes

e (Sravitational waves

can generate both E
and B modes



Physics of CMB Polarisation

Quadrupole

T Anisotropy

HYMSO
Thomson Thomson

—~ [l Scattering —~ 5 ! Scattering

[.inear

By Wayne Hu No Polarization Polarization

* Necessary and sufficient conditions for generating
polarisation in CMB:

* [Thomson scattering

* Quadrupolar temperature anisotropy around an electron



Origin of Quadrupole

* Scalar perturbations: motion of electrons
with respect to photons

* Tensor perturbations: gravitational waves



(GGravitational waves are
coming toward you!

* What do they do to the distance between particles?



Two GW modes

* Anisotropic stretching of space generates
quadrupole temperature anisotropy. How?



GW to temperature

anisotropy



GW to temperature
anisotropy

¢
®
f
y
®
9
* Stretching of space -> temperature drops

e Contraction of space -> temperature rises




Ihen to polarisation!

e Polarisation directions are parallel to hot
regions



Important note:

e Definition of hy and hx depends on coordinates, but
definition of E- and B-mode polarisation does not
depend on coordinates

* Therefore, hy does not always give E; hy does not
always give B

* The important point is that
. When a linear combination of hy and hy
produces E, another combination produces B




lensor-to-scalar Ratio

(hijh™)

(¢%)

* We really want to find this quantity!

A

* The upper bound from the temperature
anisotropy data: [WMAP & Planck]



I(1+1)C7/(2m) [uK?]

Katayama & Komatsu (201 1)
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* At 100 GHz, the total foreground emission is a couple of
orders of magnitude bigger in power at |<10



T B-mode Is found...

e Then what?

* [he next step is to nail the specific model of
inflation



Courtesy of David Larson
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Planck Collaboration (2015)

Planck TT+lowP
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summary

e Why B-mode?

* Definitive evidence for inflation by showing dH/adt
's small, hence the accelerating universe!

* \We must show that the primordial gravitational waves
have a near scale-invariant power spectrum

* Of course we need to find it first. Challenges:
systematics, foreground, & lensing. All topics will
be discussed extensively throughout this workshop!



