MPI für Astrophysik

Where did we come from?

~A quest for the physics that operates at the beginning of our Universe~

Eiichiro Komatsu [Scientific Member **since 2012**] CPTS Sektionssitzung, February 23, 2017

Fluctuations existed at the beginning...

...they grew gravitationally to form galaxies, stars, us Spectroscopy of the whole Universe!

I am...

- a "cosmologist"
 - or, someone between astronomy and physics
- Theoretical and observational. I divide my research time into
 - ~2/3 theory, ~1/3 data analysis

Nakhodka Находка

Before I tell you where you came from the set of the se

rea

ancı

Bayern in Japan!!, because

- We speak funny dialects,
- Everyone else makes fun of us,
- •But we are very proud of ourselves,
- Because we were once the center of the country

Two things about Takarazuka that every single Japanese knows

KAGEKI "Revue"

Female-only Musical Performance

Two things about Takarazuka that every single Japanese knows

Buddha

Osamu Tezuka

Godfather of "Manga" and "Anime"

Where did I come from?

rea

ancı

urism liday llage 場旅游 假村

Sea of Japan

Niigata 新潟

Hakodate 函館

> Sendai 仙台

> > Tohoku University in Sendai (1993–1999)

Nakhodka Находка

> Hakodate 函館

> > Sendai

Niigata 新潟

0

Where did I come from?

rea

ancı

urism liday llage_ 場旅游 假村

Sea of Japan

In 1999: to Princeton Univ. (25 years old)

Why did I leave Japan?

 Because science I wanted to do for my PhD, i.e., to learn about the beginning of the Universe using the light from the Big Bang, was not possible in Japan in 1999

Sky in Optical (~0.5µm)

courtesy University of Arizona

Sky in Microwave (~1mm)

courtesy University of Arizona

Sky in Microwave (~1mm)

Light from the fireball Universe filling our sky (2.7K)

The Cosmic Microwave Background (CMB)

courtesy University of Arizona

WMAP Science Team July 19, 2002

- WMAP was launched on June 30, 2001
- The WMAP mission ended after 9 years of operation

Our Origin

 WMAP taught us that galaxies, stars, planets, and ourselves originated from tiny fluctuations in the early Universe

Kosmische Miso Suppe

- When matter and radiation were hotter than 3000 K, matter was completely ionised. The Universe was filled with plasma, which behaves just like a soup
- Think about a Miso soup (if you know what it is). Imagine throwing Tofus into a Miso soup, while changing the density of Miso
- And imagine watching how ripples are created and propagate throughout the soup

Data Analysis

- Decompose temperature fluctuations in the sky into a set of waves with various wavelengths
- Make a diagram showing the strength of each wavelength

Cosmic Pie Chart

- We determined the abundance of various components in the Universe (2003–2013)
- As a result, we came to realise that we do not understand 95% of our Universe...

Origin of Fluctuations

Who dropped those Tofus into the cosmic Miso soup?

Mukhanov & Chibisov (1981); Guth & Pi (1982); Hawking (1982); Starobinsky (1982); Bardeen, Turner & Steinhardt (1983)

Leading Idea

- Quantum Mechanics at work in the early Universe
- Heisenberg's Uncertainty Principle:
 - [Energy you can borrow] x [Time you borrow] ~ h
 - Time was very short in the early Universe = You could borrow a lot of energy

Those energies became the origin of fluctuations

 How did quantum fluctuations on the microscopic scales become macroscopic fluctuations over cosmological sizes? Starobinsky (1980); Sato (1981); Guth (1981); Linde (1982); Albrecht & Steinhardt (1982)

Cosmic Inflation

- In a tiny fraction of a second, the size of an atomic nucleus became the size of the Solar System
 - In 10⁻³⁶ second, space was stretched by at least a factor of 10²⁶

Stretching Micro to Macro

Quantum fluctuations on microscopic scales

Inflation!

• Become macroscopic, classical fluctuations

Key Predictions of Inflation

 Fluctuations we observe today in CMB and the matter distribution originate from quantum fluctuations generated during inflation

scalar

mode

• There should also be *ultra-long-wavelength* gravitational waves generated during inflation

We measure distortions in space

• A distance between two points in space

$$d\ell^2 = a^2(t)[1 + 2\zeta(\mathbf{x}, t)][\delta_{ij} + h_{ij}(\mathbf{x}, t)]dx^i dx^j$$

- ζ : "curvature perturbation" (scalar mode)
 - Perturbation to the determinant of the spatial metric
- h_{ij}: "gravitational waves" (tensor mode)
 - Perturbation that does not change the determinant (area)

Heisenberg's Uncertainty Principle

- [Energy you can borrow] x [Time you borrow] = constant
- Suppose that the distance between two points increases in proportion to a(t) [which is called the scale factor] by the expansion of the universe
- Define the "expansion rate of the universe" as

$$H \equiv \frac{\dot{a}}{a}$$
 [This has units of 1/time]

Fluctuations are proportional to H

 [Energy you can borrow] x [Time you borrow] = constant

•
$$H \equiv \frac{\dot{a}}{a}$$
 [This has units of 1/time]

- Then, both ζ and h_{ij} are proportional to H
- Inflation occurs in 10⁻³⁶ second this is such a short period of time that you can borrow a lot of energy!
 H during inflation in energy units is 10¹⁴ GeV

Predicted in 1981. We discovered it finally in 2013

- Inflation must end
- •Inflation predicts $n_s \sim 1$, but not exactly equal to 1. Usually $n_s < 1$ is expected
- •The discovery of n_s <1 has been the dream of cosmologists since 1992, when the CMB anisotropy was first discovered and n_s ~1 (to within 30%) was indicated

Slava Mukhanov (LMU) said in his 1981 paper that n₅ should be less than 1

How do we know that primordial fluctuations were of *quantum mechanical origin*?

3

Quantum Fluctuations give a Gaussian distribution of temperatures.

Fraction of the Number of Pixels Having Those Temperatures

0.1

0.01

0.001

1.0001

1e-05

-3

-2

Do we see this in the WMAP data?

[Values of Temperatures in the Sky Minus 2.725 K] / [Root Mean Square]

Non-Gaussianity:

A Powerful Test of Quantum Fluctuations

- The WMAP data show that the distribution of temperature fluctuations of CMB is very precisely Gaussian
 - with an upper bound on a deviation of **0.2%**
- With improved data provided by the Planck mission, the upper bound is now 0.03%

CMB Research: Next Frontier

Primordial Gravitational Waves

Extraordinary claims require extraordinary evidence. The same quantum fluctuations could also generate gravitational waves, and we wish to find them

Measuring GW

GW changes the distances between two points

Laser Interferometer

Laser Interferometer

LIGO detected GW from binary blackholes, with the wavelength of thousands of kilometres

But, the primordial GW affecting the CMB has a wavelength of **billions of light-years**!! How do we find it?

Detecting GW by CMB

Isotropic electro-magnetic fields

Detecting GW by CMB

Detecting GW by CMB

Detecting GW by CMB Polarisation

Detecting GW by CMB Polarisation

horizontally polarised

March 17, 2014

BICEP2's announcement

First Direct Evidence of Cosmic Inflation

Release No.: 2014-05 For Release: Monday, March 17, 2014 - 10:45am

Cambridge, MA - Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of our best telescopes. All this, of course, was just theory.

SPACE & COSMOS The New York Times Space Ripples Reveal Big Bang's Smoking Gun

By DENNIS OVERBYE MARCH 17, 2014

Cambridge, MA - Almost 14 billic that initiated the Big Bang. In the far beyond the view of our best tel 17. März 2014, 17:34 Gravitationswellen

Signale aus der Geburtsstunde des Universums Von <u>Patrick Illinger</u>

January 30, 2015

Joint Analysis of BICEP2 data and Planck data

Science The New York Times Speck of Interstellar Dust Obscures Glimpse of Big Bang

By DENNIS OVERBYE JAN. 30, 2015

By Jonathan Amos Science correspondent, BBC News

Politik	Panorama	Kultur	Wirtschaft	Sport	München	Bayern	Digital	Auto	Reise	Video
Home Wissen Kosmologie - Urknall-Forscher gestehen Irrtum ein										

Süddeutsche.de als Startseite einrichten

HIr

1. Februar 2015, 22:19 Kosmologie

Urknall-Forscher gestehen Irrtum ein

Von <u>Marlene Weiß</u>
Current Situation

- Planck shows the evidence that the detected signal is not cosmological, but is due to dust
- No strong evidence that the detected signal is cosmological

We Can Do It! The search continues!!

1989–1993

2001-2010

JAXA

+ possibly NASA

LiteBIRD 2025– [proposed]

Target uncertainty: 100 times better than the current upper bound on the gravitational wave amplitude

Summary

- Left my country to study the beginning of the Universe using physics and state-of-the-art data
- With the WMAP team [2001–2013], we:
 - Determined the age and composition of the Universe
 - Found strong evidence for the quantum origin of cosmic structures
- Now hoping to find decisive evidence for inflation by measuring primordial gravitational waves
 - The wavelength of billions of light years!

If polarisation from GW is found...

- Then what?
- The next step is to nail the specific model of inflation

Tensor-to-scalar Ratio $\langle h_{ij}h^{ij}\rangle$ $\langle \begin{pmatrix} 2 \end{pmatrix} \rangle$

• We really want to find this quantity! **The current upper bound: r<0.07**

WMAP Collaboration

