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This short note is based on my day-long lecture for ‘Lecture Series on Cosmology’ at MPA
on 9th June in 2016. The aim of this note is to review the galaxy clustering in redshift
space, focusing mainly on the Redshift-Space Distortion (RSD) on cosmological scales from
both model and measurement points of view in a self-consistent manner. The basic goal is
to provide a brief overview of recent developments on RSD and to present the most updated
BOSS DRI12 result. It is true that there exist too many equations, but don’t worry! T will
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try to keep my explanations as simple as possible.

Contents

. Preface

Introduction and illustrative pictures
Theory: modeling RSD in linear regime

Theory: modeling RSD in nonlinear regime

. Theory: impact of RSD on the projected clustering

Analysis (Theory): quantifying the RSD information in an ideal survey
Analysis: measuring RSD from the multipole in BOSS

Concluding remark

Acknowledgments

Convention and useful formula

Perturbation Theory basics

The redshift-space power spectrum model adopted in the actual analysis for BOSS

Derivation of Eq. (17)

References

*E-mail: ssaito@mpa-garching.mpg.de

15

17

20

25

25

25

26

28

29

29


mailto:ssaito@mpa-garching.mpg.de

I. PREFACE

The goal of this internal lecture is to provide a simplified and pedagogical review of the redshift-space
distortion (RSD) which is one of the main scientific targets in ongoing and forthcoming galaxy redshift
surveys such as BOSS in SDSS-III, eBOSS in SDSS-1V, HETDEX, PFS, DESI, WFIRST and EUCLID.

I surely begin with the very basics assuming a textbook-level knowledge of cosmology. On the other hand,
I try to include recent developments of both modeling and measurement efforts (although I apologize that
these might be technical and advanced topics for general audience). As far as I am aware, there is no recent
comprehensive and self-consistent review which focuses only on RSD in the literature. There was one by
Hamilton [1] for the linear RSD almost 20 years ago and the review of the large-scale structure by Bernardeau
et al. about 15 years ago [2] still remains standard as an introductory reading. This already reflects the fact
that this field is still in a developing phase and not well matured yet. Nevertheless I personally think that it
would be good to summarize the current status and even hope that the lecture is somehow extended to further
collaboration.

This lecture is heavily based on our experiences and contributions to the field through the modeling works
[3-5] and the observational analysis in BOSS [6, 7] (and hence could be somewhat biased), although I try
to include as many relevant references as possible for further reading (of course, the list is likely to be very
incomplete).

II. INTRODUCTION AND ILLUSTRATIVE PICTURES

The goal of this lecture note is to answer or to help one better understand the approaches to answer the
following questions:

o What 1s RSD?

When we map out objects like galaxies in 3-dimensional space, the radial (comoving) distance to the
object is determined by its measured redshift, z.ns. However, we should remember that there are always
two contributions to zghs: Hubble flow, 7(zeos) = [ cdz/H(z) and the peculiar velocity of the object
as

1t 2o = (14 20n) (1 - ”“) 1)

C
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s =r+——"7, 2
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where v denotes the line-of-sight (LOS) component of the peculiar velocity. The 2nd term is usually
ignored in astronomy. For instance, in a flat ACDM universe with €,0=0.3, r(2c0s = 0.5) ~ 1.32 Gpc/h
while the second term is evaluated as
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[Mpc/h], (3)

which typically amounts to O(1 Mpc/h). Nevertheless, the existence of the 2nd term has non-negligible
impact on the clustering statistics of the matter density field,

m (T

S(a) = L@ (4)
Pm

Its 2-pt correlation in Fourier space, the so-called power spectrum defined by

<5m(k)5m<k/)> = (QW)g‘SD(k + k/)Pm(k): (5)

can be reduced to Py (k) = Pun(k) due to the cosmological principle. However, this does not hold in
the case of the observed power spectrum in redshift space, simply because the peculiar velocity term



obviously breaks down rotational invariance. Therefore, the peculiar velocity makes the redshift-space

clustering anisotropic. The same story shall hold for number counts for dark matter halos and galaxies.
This is the so-called RSD.

The reason why this anisotropy is quantitatively non-negligible will be shortly explained in Sec. III. Here
in turn let me discuss a schematic picture shown in Fig. 1 which illustrates the anisotropic clustering
caused by RSD. At large scales, objects tend to coherently infall into high density region and hence the
density field becomes squashed hence the clustering amplitude becomes stronger along LOS, so-called
the Kaiser effect [8]. On the other hand, at small scales objects are virialized and hence have random

motions. In this case, the density field becomes stretched hence the clustering amplitude becomes smaller
along LOS, so-called the Finger-of-God (FoG) effect [9].
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FIG. 1: The schematic picture of RSD. Picture courtesy of my wife, Kimika Saito.
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o Why is RSD important and useful?

RSD is important because we can measure any quantities only as a function of redshift-space distance.
In order words, for any cosmological observables involving radial distance, we should take RSD into
account. Such observables include galaxy number count, Lya forest, 21cm, and intensity mapping etc.
I will also argue that RSD cannot be negligible in the case of projection onto the sky under some
conditions (see Sec. V).

RSD is useful, because RSD is again the measurement of cosmological velocity field which is determined
only through gravitational potential. In linear theory, the Euler equation is given by

v/ +aHv = -V, (6)

where ’ denotes derivative w.r.t conformal time. Historically, RSD is proposed as a probe of density
parameter, since the linear velocity field is directly proportional to growth function (e.g., [10]):

f= dln Dy ~0 (2)0.5457 (7)

dlng ™

where D (a) is linear growth rate and Qu,(2) = HZQumo(1 + 2)3/H(2)?. As far as I know, this idea is
first introduced by Sargent and Turner (1977) [11] (see Fig. 2) rather than Kaiser (1987) [8].
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ABSTRACT

The distribution of galaxies in space is approximated by their distribution in a “redshift space”
in which their radial coordinate is cz/Ho. Deviations from a smooth and uniform Hubble expansion,
due either to perturbations arising from density fluctuations in the distribution of galaxies or to
virial motions in bound groups and clusters, cause characteristic distortions in “redshift space.” A
method of detecting and measuring these distortions (anisotropies) from the relative redshifts and
positions on the sky of pairs of galaxies is proposed. An approximate and a more powerful general
method of relating these characteristic distortions to their associated density enhancements (and
hence Q) are presented. The limited data presently available are used to illustrate the approximate
method, and a very tentative result of @ =~ 0.07 is obtained. The data requirements for a strong
test of Q using the general method are discussed.

Subject headings: cosmology — galaxies: redshifts

FIG. 2: Title and abstract of the 1st RSD paper by Sargent and Turner (1977) [11].

Nowadays RSD is paid more attentions to as a probe of gravity theory at cosmological scales because of
the same reason above. Note that RSD is sensitive to the dynamical mass determined by ¥, while weak
lensing is sensitive to the lensing mass proportional to (® + ).

Why is it difficult to model RSD even at large scales 2 O(10Mpc) ?

This is the main topic which I address in the first half of the lecture (Sec. III, IV, and V). A short
answer is because the RSD involves the nonlinear mapping in terms of peculiar velocity as follows. Since
the density field should be preserved, p$,(s)ds = pp(7)dr. So the Jacobian is given by

S ldr] e {0 () 0} 7P ) (Lt o) O
a ds N 82d8_ H(Zcos) r H(ZCOS) or ‘

(8)

In Sec. IV, I discuss the nonlinear RSD model on the basis of perturbation theory (PT) proposed by our
paper, Taruya, Nishimichi, Saito (TNS, 2010) [3]. The TNS model has been applied to several galaxy
surveys to extract the RSD information. Although its derivation is a bit technical, I think it is helpful
to understand why modeling nonlinear RSD is such a difficult task when going through the derivation
of the TNS model.

How and to what extent can we extract cosmological information from the RSD measurement?

In this lecture, I mainly focus on modeling the redshift-space power spectrum, P*(k) which is the Fourier
transform of the two-pint correlation function in configuration space. Although this is just my personal
preference, I try to address the advantage of the redshift-space power spectrum in Sec. V1.

What is the current result of the RSD measurements?

The current status of the RSD measurements is well summarized by Fig. 3 [12]. The meaning of fog
will be introduced shortly. It is worth noting that this is not really a fair comparison in the sense that
a way to analyze and extract the RSD information is not exactly same.

As T mentioned earlier, I will briefly show the updated results from BOSS DR12 in Sec. VII. Since the
DR12 results are not allowed to be public at this point, I do not present them in this note but show
them in the lecture.



r ] 6dFGRS —m—
06 [ 7 2dFGRS
[ SDSS Main —&—
SDSS LRG +—#—
] WiggleZ —a—
1 BOSS LOWZ —&—
1BOSS CMASS
] VVDS
VIPERS
FastSound —@—

A Z)OS(Z)

f(R) -----
3 Cov. Galileon - - - -
Ext. Galileon --------

DGP —-—-

j166l=
S S S S H S S Aol G 3.5x107 'yr ——
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

FIG. 3: A compilation of the recent RSD measurements [12].

A. Assumptions

Here I summarize the assumptions which further simplify the analysis in both modeling and measurement.

e Distant observer and global plain-parallel approzimations in modeling RSD.

Eq. (8) tells us that the velocity term in the first bracket can be ignored when

i

L

where k is wavenumber for the Fourier mode of interest and L is the characteristic size of the survey.
Namely, the distant observer approximation is valid when the scale of interest is well within the survey
size. Then the Jacobian is simply approximated by

- (14 2c0s) O -
o i) "

< k"U” S kL > 1, (9)

This Jacobian formula guarantees that the RSD depends only on one direction, and hence we can fix
LOS as one global direction such as 2,

k-a~k- 2. (11)
I call this as the global observer approximation. I am going to assume the distant observer and the
global plain-parallel approximations in modeling RSD in the following section.

In other words, the distant observer and the global plain-parallel approximations break down for the
extremely large scale mode. Once the global plain-parallel approximation is dropped out, it does make
more sense to interpret the clustering by making a radial-angular decomposition [13, 14]. Furthermore,
keeping the v /7 terms leads to an additional correction term, the so-called wide angle effect (see e.g.,
[15-17]).

e Local plain-parallel approximation in measuring the redshift-space power spectrum.

Historically, the power-spectrum estimator introduced by Feldman, Kaiser and Peacock (the so-called
FKP estimator) assumed the global plane-parallel approximation [18]. It turns out that this is no
longer valid once one measures the anisotropic part of the power spectrum especially in the large-angle
survey like BOSS [19, 20]. In Sec. VII, I will introduce more refined estimators which assume the local
plain-parallel approximation,

k‘:i‘l%k'.’.i'g%

ol

- T, (12)

where x; and @y describe two galaxy positions and x;, = (1 + x2)/2.



e No velocity bias, i.e., Vg = V.

This means that it will be straightforward to go from matter to halo/galaxy in the RSD modeling as long
as one has a good prescription of biased tracer, dy,/o(%) = F[dm(x), O(x)], in real space (see e.g., [21-26]
and those references therein for recent efforts). Although the velocity field is determined by gravitational
potential governed by matter density, it is not necessarily true that velocity bias is negligible (see [27, 28]
for recent discussions).

B. Uncovered topics

Of course it is impossible to cover all the topics on the galaxy clustering in redshift space in this lecture.
Here is the list of topics which is relevant particularly to RSD but uncovered by this lecture:

e Other nonlinear RSD models of the power spectrum or 2pt correlation function which include integrated
Lagrangian Perturbation Theory (iLPT) [29], the Convolution Lagrangian Perturbation Theory (CLPT)
[30], other LPT [31], Effective Field Theory (EFT) [32], the Distribution Function approach [33-38] etc.

e Higher-order statistics such as the bispectrum (the 3pt correlation function). See e.g.,[39].
e Horizon effect such as GR, the wide-angle effect etc. See e.g., [40].

e Small-scale physics such as the galaxy-halo connection, impact of baryon etc. See e.g., [41-43].

III. THEORY: MODELING RSD IN LINEAR REGIME

A. The real-space power spectrum in a nutshell

I assume everyone is quite familiar with the linear theory in real space.
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FIG. 4: The linear matter power spectrum in a ACDM universe with Qumoh? = 0.147, Qmoh? = 0.0245, Qx = 0.7,
h=0.7, A% (k.) = 2.35 x 1079 and n,; = 0.95.



B. Linear RSD: Kaiser formula

For convenience, I define the velocity divergence field as

V- v(x)
o(x) = — 4 13
@)=~ (13)
and its Fourier transform is give by
i k
v(k) = —zaHfﬁﬁ(k). (14)
Then the linear continuity equation, 5Lin + V- vl = 0 becomes
oL (k) = 0% (k). (15)
Now the density conservation from real to redshift space implies that
ds|
05 — 146, -1, 16
20 = |2 (14 8 (16)
and its Fourier component is obtained as
1 Ova(x) | ik.apti
s — 3 z iR-X+ikpv, /(aH)
o (k) /d x {5m(m) T s }e , (17)

where I fix the LOS direction as 2 and define the directional cosine as p = k- 2. Note that this expression
is ezact under the distant observer and global plain-parallel approximations (see Appendix. D for detailed
derivation).

Now let me derive the RSD correction at linear order, known as the famous Kaiser formula [8]. At linear
order in terms of § and v, the 2nd term in the power of the exponential factor is dropped out, and hence one
obtains

1 31/ g
S5L(K) = (k) — / Bk L0 / K ikay (1)

aH 0z | (2m)3
rn +f/ /d3$ ez(k_kl)wkziklzg(k)
= du (k) + f120( k)

k2
= (1+ fu?)85(k), (18)
and the redshift-space power spectrum at linear order is given by

Pyt (k) = Pyt (k, p) = (1+ f1?)* Py (). (19)

In the case of galaxy number density with 6z = bd,,, similarly one obtains
s,L(1\ _ ps,L _ 32 2\2 pL

where = f/b. It is important to realize that the anisotropic term originates from the velocity and hence it
does not depend on bias. This is the reason why the RSD measurement is often parametrized by the amplitude
of the peculiar velocity field fog(2cos)-

How significant is the RSD correction? In order to see this, let me expand the anisotropic power spectrum
with the Legendre polynomials,

P(ks) = 32 PARA0, (21)

k) = %T“ dp P (k, 1) Col). (22)



Since the Kaiser formula contains terms only up to p*, only £ = 0 (monopole), 2 (quadrupole) and 4 (hexade-
capole) are non-vanishing (e.g., [44]):

Py=o(k) = (1 + gﬁ + ;52> v PL(k), (23)
Peia(h) = (35 + 262 (D), (24)
Pyoa(k) = %5262P£(k)- (25)

Suppose that f = 0.774 and b = 2 at z = 0.57 (roughly corresponding to the BOSS CMASS sample), the
Kaiser factor is evaluated as P, ¢—o(k)/P,; ~ 1.288. This means that RSD introduces overall correction by a
factor of 1.3 even for the monopole, i.e., isotropic part. This is a significant effect! Then a next and natural
question is how well we can measure the anisotropic part such as quadrupole and hexadecapole, which will be
answered in Sec. VI.

Let me make a comment on other (but highly related) two-point statistics. The multipole of the correlation
function in configuration space is simply related to the power spectrum multipole,

2
o) =" [ 55 P in(h), (26)

where jy(z) is the spherical Bessel function at ¢-th order. I should also mention that the clustering wedges
(see e.g., [45, 46]) defined by simple average within certain range of p,

1 K2
PR (k) = / du P°(k, p). 27
= o [P e

IV. THEORY: MODELING RSD IN NONLINEAR REGIME

This section more or less highlights our paper, Taruya, Nishimichi, and Saito (TNS, 2010) [3]. T also try to
include a recent work by Zheng and Song (2016) [47].

A. How hard is RSD to predict?

e First of all, how good is the Kaiser formula? See Fig. 5.

e What about next-to-leading order calculation in standard PT (SPT) [48]? See Fig. 5.
P§PT(k7 M) - (1 + f:uz)QPL(k) + Plsloop(ka M) (28)

e What about phenomenological models (e.g., [44, 49])7 See Fig. 6.

;heno(k7 :u) - DFOG<k’MfO—U)PIiaiser(k7 M)? (29)
where

(14 fu?)?Pss(k) ; linear
Pliaiser(kv M) = (30)
Pss(k) + 2fu? Psg(k) + f2u* Pyy(k) ; non-linear
exp(—z?) ; Gaussian
DFOG(I.) - (31)
1/(1+ x?) ; Lorentzian



Note that here the velocity dispersion, o2,

1 d3q P,
des e 32

is treated as a free parameter but sometimes fixed by the linear one,

S / dg PL(q). (33)
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FIG. 5: Comparison between PT predictions and N-body simulation [3]. Ratio of power spectra to smoothed reference

spectra in redshift space are plotted. P(S)(k) /Pe(i)0 wigale(K). N-body results are taken from the wmap5 simulations
of Ref. [50]. The reference spectrum Pz( n)o wiggle 18 calculated from the no-wiggle approximation of the linear transfer

function, and the linear theory of the Kaiser effect is taken into account. Short dashed and dot-dashed lines respectively
indicate the results of one-loop PT and Lagrangian PT calculations for redshift-space power spectrum.
B. Derivation of the TNS model (and beyond)

It is always good to begin with the exact expression. For simplicity, I here focus on the matter density field
and omit the subscipt, ‘m’. Using Eq. (17), the redshift-space power spectrum is exactly given by

P(k) = /d3r eik'r<e*ik“fA“z{5(:c) + fVou, () Ho(x') + fV.u.(z)}) (34)

= [@rekrientan), (35)

where I define the following variables to simply the equation; u = —v/(aH), r =z —a', Au, = u,(x) —u,(z'),
and

J1 = —ikpf, 36

A = Au, = uy(x) — u(z'),
Ay = §(x) + [V u(x),
As = §(2) + [V, uy(x)).
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FIG. 6: Comparison between phenomenological models and N-body simulation [3]. Same as in Fig. 5, but we here plot
the results of phenomenological model predictions. The three different predictions depicted as solid, dashed, dot-dashed
lines are based on the phenomenological model of redshift distortion with various choices of Kaiser and Finger-of-God
terms (Eq. (31)). Left panel shows the monopole power spectra (¢ = 0), and the right panel shows the quadrupole spectra
(¢ = 2). In all cases, one-dimensional velocity dispersion o, was determined by fitting the predictions to the N-body
simulations. In each panel, vertical arrow indicates the maximum wavenumber k¢, for valid range of the improved PT.

Why is it very difficult to exactly evaluate Eq. (35)7

e Even if one assumes the density and velocity fields are Gaussian, Eq. (35) still contains the exponential
prefactor. This physically means that nonlinear mapping in terms of velocity cannot be avoided.

e Irrespective to the pair separation scale, r, Eq. (35) involves the terms like [ d3r > (Au?) which is in
principle sensitive to small-scale physics and hence hopeless to evaluate on the PT basis. This physically
corresponds to the fact the FoG effect due to the random motion of virialized object is important even
at large scales and hard to be modeled.

The cumulant expansion theorem tells us that (e.g., [49])

(eI 4) = exp{(ed ).}, (40)
By taking the derivative twice w.r.t jo and j3 and then setting jo» = j3 = 0, one obtains
(e M Ay Az) = exp{(e 1)} [(e M AxAs). + (7'M Ag) (€141 A3).] . (41)

Note that Eq. (41) is an exact expression, and the question is how to evaluate Eq. (41). TNS’s approach is as
follows:

e What we want is an expression at large scale limit, ku — 0, i.e., j1 — 0 where PT should work well.
However, from the considerations in the previous subsection, we see that the naive PT expansion (SPT)
does not work.

e Therefore, the exponential prefactor is decided to be left. We assume that spatial correlations between
u,(x) and u,(2') are ignored, and also

(AD)e =~ 2(u (x)")e = 2¢h07), (42)
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for even n with ¢, being constants. We further simplify the exponential prefactor by assuming that
ca =1, cop = (2n — 1)! for n > 2, cg,—1 = 0. These approximations result in

exp{(e/4)c} ~ exp [k fPor ] - (43)

I write the velocity dispersion parameter as 03 o because Eq. (43) is not obviously an exact expression

and 012) o 18 treated as a free parameter. To be fair, this is the biggest disadvantage of the TNS model.
I will get back to the validity of these approximation by referring to the speculations in [47].

e On the other hand, we expand the 2nd bracket in Eq. (41) in terms of j; as

. , - . o [1 .
(€M Ay Az) oA (71N Ag) (1M Ag) . = (A9 Az) 471 (A1 Ag A3) o457 {2<A%A2A3>c + (A1 Ag) (A1 A3) p+O(53),

(44)
where we are going to ignore the term, (A2 A3 A3)., since the leading contribution in PT is the tree-level
trispectrum roughly proportional to O(P¥(k)?). This term is actually evaluated in other works and
turned out to be negligible at scales of interest (e.g., the ‘D’ term in [51], also see [47] and Eq. (54)).

As a result, we finally derive the TNS formula:

Py ons (b, p) = exp [k 205 o | { Pos(k) + 2f1° Psg(k) + f2u* Pog(k) + Ak, s f) + B(k, i f)} . (45)

where the new correction terms, A(k, ) and B(k, u), are given by

Ak f) = o / P R T (A Ay A5, = dp D (B (pk — p—k) — Bo(p.k,—k —p)}. (46)
3
Blkopif) = 72 / Pre®T (4 Ay (4 Ay), = (kuf)2 / (;lﬂz;gFa(p)Fa(k—p), (47)

where the function B, and F, are defined by
(25 + K+ ) B ) = (000) {0Cha) + 755000  { otk + 000 ) a9

Fy(p) = % {Pée(P) + fzgpea(p)} : (49)

In the TNS paper, we follow the standard PT technique to compute A and B correction terms up to next-to-
leading order (i.e., O(P%(k)?)). Here I omit the full expressions (which are quite long!), and refer them to [3].
If you hesitate to follow the formulas, just use the public code (there is a public version on Atsushi’s personal
website, and ask me if you want a CAMB-integrated version). Just to provide a sense, A(k,u) and B(k, u)
terms contain up to f3u5 and f4u®, respectively, since one velocity divergence term has fu? dependence. Also
it is worth mentioning that Ref. [51] made an attempt to improve the evaluation of A and B correction terms
with the multi-point propagator, but showed that the difference is basically absorbed into the FoG factor.
Switching to a biased tracer such as galaxy in the case of linear bias, one find

Pgons(k, ) = exp [—k* i o5 o5 | {0°Pss(k) + 2bf 1 Pyg (k) + 21 Pog (k) + b*A(k, 1 B) + b* B(k, 115 8) } -
(50)
Note that the bias dependence of b3 and b* in A and B correction terms is just an artifact of 3 parametrization
and they indeed contains terms only up to b?.

e How well does the TNS model perform?

See Fig. 7. It looks certainly better than the previous figure. We indeed show that the TNS model
better recovers the input fog value in the N-body simulations. Also it is worth pointing out that the
TNS formula performs worse at larger ku and hence higher-order multipole.
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FIG. 8: Contribution of each correction term in redshift-space power spectrum. For monopole (¢ = 0, left) and

quadrupole (¢ = 2, right) spectra of the improved model prediction at z = 1 shown in solid lines, we divide the total
power spectrum Py, ) (solid) into the three pieces as P, .} = PRaiser T Poorr,a T Preore, 3+ and each contribution is separately
plotted dividing by smoothed reference spectra, P, yizqe- Here, the spectrum Pg i, (dotted) is the contribution of

non-linear Kaiser term convolved with the Finger-of-God damping and the corrections Py, 5 and P, 5.

e How do A(k, ) and B(k, p) look like?

See Fig. 8. As expected, the correction terms becomes more significant at higher-order multipole. The
A term is more important to better recover the BAO features.

Further investigation by Zheng and Song (2016)

There is one recent work by Zheng and Song (ZS, 2016) [47] which further tries to improve the TNS model.
Here let me briefly discuss their ideas and approaches. They realize that the exponential prefactor can be
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further decomposed into two parts: Eq. (40) can be rewritten as
oo
(A
exp [Z ]{L <( 1)>‘C

= exp [z] ] exp [Z j3n {uz(z) — uz(2')} n>0(;n<;i'z(w) "e — (uz(z') n>c(}51)

DS a1 (o) DES, (k)

nonlocal local

exp{(ed ).}

Since the first term is the cumulant of the one-point distribution function and does not depend on the separation
scale, it can be integrated out in Eq. (35). Then they consistently keep the leading-order term proportional
to j7 in each FoG function as

Dlljgr?local(k ,U,) = exp[ k2iu2 'ueff] (52)
DigSi(ky pim) = exp[=k*p? 2 (uz (@)u.(@'))], (53)

and then they provide the modified formula,

Pggs(k, i) = exp [—k*1° fPop 5] { Pss(k) + 2fu*Psg(k) + f21u* Pog (k) + A(k, p; f) + B(k, i f)
+CtNs(k, w5 f) + Drns(k, s f) 1} (54)

where Crng and Drng correction terms are given by

Drxs(k.pi f) = Tus(hops )= 58 [ dre®T (A2 asa), (55)
Crxs(k, s f) = Fas(k s f) = —4f / BT s (@)us (@) e (A2 As)e. (56)

The tree-level PT expressions for C' and D terms can be found in [3, 47]. Note that ZS call Dyng as Tys,
and Cpns as Fyg. I choose this convention because we already discuss that C' and D correction terms are
subdominant at least for monopole and quadrupole in the TNS paper. Indeed it is not new to introduce the
C term because the SPT expression already includes this term as

2
Py sprlk, ) = [1=k*12 ol 1 { Pss(k) + 2fu? Psg(k) + f21u* Pog (k) + A(k, p; f) + Bk, pi; f) + Cows (ko ps f) } -
(57)
Nevertheless I appreciate the fact that they realize that every correction term can be directly measured from
simulations (see e.g., Fig. 9). They indeed show that each correction term starts to deviate from the simulation
results at larger ku, and the Gaussian FoG prefactor is a good approximation up at a certain ku. For more
detail I refer to the ZS paper.

C. Nonlinear RSD from another different point of view
One may have heard of the so-called streaming model as one of the nonlinear RSD model [49, 52]:

1 + fS(SH,SJ_) = /dT’ [1 + f(T’)]’P(T” - SH,’I“), (58)

where 72 = ri + rﬁ, s = ry, and P(v”,r) denotes the pairwise velocity probability distribution function

defined by

P(v,r) E/;i;:e””./\/i(—if’y,r), (59)
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FIG. 9: Comparison of A(k, ) (left) and B(k, u) (right) between PT and direct measurements in simulations [47].

where M is the pairwise velocity generating function,

Z(0r) = [+ MO 1) = (21 + 6(2)][1 + ()] (60)
This is useful because the line-of-sight pairwise velocity moments are obtained by its derivative as
oM
’012(1") = <> s (61)
0’ M
2 _
0'12(7") = <6)\2>)\:0 . (62)

Also, the function Z is useful when comparing different models as follows. After the cumulant expansion, the
exact expression of Z is given by

Zexact() 1) = exp [<emuz>c] [1+ <e>\Auz5>c+ <e>\Au25/>C
T (Mo (dneg) 4 (Mrad') | (63)

and therefore the approximation in the TNS model corresponds to

ZTNS(\ 5) = exp [<6)‘A“Z>J [((1+6)(1 + 0'))e
FA{(1+0)(1 + §)Au,).

+>\22 (14 6)(1 + 0" (Au,)? — 68 (Au,)?).. (64)

This can be compared with the configuration space model proposed by Reid and White (RW, 2012) [53]:

v—JU r 2
STl %)

1
PW(y,r) = ————exp [

V2 foia(r)

Then we have

MRW()\, 'I“) = exp |:U12('I"))\ + %{0'12(1")2 — U12(T)2})\2:| , (66)
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and
ZRW(N ) = [1+ £(r)] exp |vi2(r) A + %{012(7‘)2 —vpa(r)? N2 . (67)
Suppose the bracket in the exponential factor is expanded in terms of A up to the second order, we have
EOLr) & (1€)X [ura(m)A + gora(r)’N) (68)
= (1400 +))
+A{((146)(1+0")Auy)
+A22 (L4 0)(1+6")(Auz)?), (69)

where we have used definition of v15 and o019,

atr) = (S (70)
Uz2 !
nafry? = {EHLLEDLLD) ()

A comparison between Eqs. (64) and (69) shows that two expressions are quite similar at very small A except
for the exponential prefactor in TNS and unconnected pieces in RW. At least, as for the bias dependence,
the term, A\(§6’Au.). which is exactly corresponding to the A-term in TNS, is proportional to b%, and is the
second term in RW as well. As shown in RW, if the large-scale limit is applied to RW in Eq. (67), this term
can be interpreted as &(r)vi2(r) which is proportional to b3. This is a artificial consequence of the fact that
V12 18 exponetiated.

V. THEORY: IMPACT OF RSD ON THE PROJECTED CLUSTERING

So far I have considered the RSD in the 3D clustering and shown that RSD imprints a characteristic signal
along LOS. However, it is common to project the density field onto the 2D sky and to measure the angular
power spectrum especially in the case of imaging surveys due to the less accuracy in photometric redshifts.
The simple and non-trivial (at least to me) question is whether RSD has an impact on the projected angular
power spectrum. Here I briefly address this question, following [5, 54].

The 2D projected density field is written as

14 85 (R) = /dsH(s){1+5s(s,ﬁ)} _ /drﬂ(s){l +o(r )}, (72)

where II(r) is the normalized radial selection function (often written as dN(z)/dz) such that [ drIl(r) =
As is clearly seen, there is already a notable difference compared to the 3D case. Namely, the Jacobian of
real-to-redshift-space mapping is cancelled out in the integral and the 2D density field is affected by RSD only
through the radial selection function. Therefore it is much easier to handle the RSD correction in the 2D case.
Taylor-expanding the radial selection function yields to
2 92

T1(s) ~ TI(r) — f%f{u(r,ﬂ) A} + 3%@(7«, A)-A) 4. (73)
Now it is obvious the the expansion parameter is the balance between the characteristic displacement by the
velocity field and the slice width. The 1st term is the real-space part which is usually considered:

1
0 = 5 [ dudani)ali)
1 3
= ;/ld,u [/drﬂ(r)/ d k ZL: L@L +1)jp(kr) L ()| Lo(p)

3
= (i) [ oW, (74)
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where Wy(k) is the radial window function which describes the projected weight along the LOS direction,

Wy(k) = /dr II(r) g (kr). (75)

Similar calculations show that the 2nd term that is the leading-order RSD correction is described as

. o1l .
ban () =~ [ ar'y fu-n), (76)
r
and then
3k
-\ 0 I
= (— k

0 = ('S [ Gg0Wib), ()

B (202 +20—1) -1 (04 1)(L+2)
Wilk) = / dr1I(r) [(ze Y NG A oY T TR A G Al Y T TR

Jer2(kr)| - (78)
Thus the angular power spectrum with the linear RSD correction included is derived as [54]
2
CFstRSD - / k2dk { Pss(k) Wo(k)? + 2f Pso(k) We(k)Wi (k) + f2Pog(k) W} (k)?} . (79)

It is useful to compare this expression with the Kaiser formula, Eq. (30). The different 1> dependence of
the anisotropic terms is described by the different projection effect with the different radial window function.
In fact it is straightforward to derive the 2nd-order RSD correction terms [5],

Acpns® = 2 [ 12k AQUIWARWIR) + FRIGWAWI () + FSOWARWE) + PTW(:))50)

where the functions, Q(k), R(k), S(k), and T'(k) are correction terms originating the bispectrum (therefore, in
fact, corresponding to A(k, p) term in the TNS model), and the 2nd-order radial window function is given by

B 00 —=3)(—2)(¢—1) , 20(0 —1)(202 — 20 —7)
Wil(k) = / drTi(r) [(2@ “hei- - e M T Gin @i nerr e 3)
3(204 4403 — 602 —80+3) & 2004+ 1)(€ 4+ 2)(20? + 6 — 3)
-3 -+ 3+ ") T DRl DT 3@+ 7
(C+1)(L+2)(L+3)(L+4)
20+ 1)(20+3)(20 +5)(20+7) jf*‘*(k"”)} ' (81)

Je—a(kr)

) Joya(kr)

In the following, I examine the impact of RSD on the angular power spectrum assuming

1(z) = \/%UZ exp {—“;‘ZV} , (82)

where 0, = 0,0(1 + z,) and we set 0,9 = 0.04 unless specifically quoted.

e How strong is the projection effect in each radial window function? See Fig. 10.
e How significant are the RSD correction terms? See Fig. 11.

e Take-home message:

The angular power spectrum is NOT a projected version of the 3D redshift-space power spectrum! The
Kaiser-like enhancement cannot be ignored at large scales, and nonlinear RSD corrections could add
small contributions at mildly nonlinear regime. Much easier than the 3D case to handle the RSD
correction as long as the width of slice is sufficiently large.
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window functions as the real-space part (solid red), the 1lst-order RSD (dashed blue), and the 2nd-order RSD (green
dotted). At ¢ = 85, small RSD ones are zoomed up for clarification purpose. Vertical thin lines indicate k. = (£+1/2)/y.
corresponding to the scale where the Limber approximation is estimated.

(Lower panels) Comparison of radial window functions amplitude at the scale k. = (¢+1/2)/y. corresponding to peak of
radial window functions. 3 radial window functions are shown as the real-space part (red), the 1st-order RSD (blue), and
the 2nd-order RSD (green). The amplitude shown here partly explains to what extent projection to the 2D-sky suppress
the density or the velocity fields. Hence we expect the amplitude in the case of thinner slices becomes bigger, which can
be indeed confirmed from the 10 times thinner case drawn with dashed lines. The ratios between real-space and RSD
correction part, i.e., WL,I /W or W}I /Wy, are apparently smaller for thinner slice.

VI. ANALYSIS (THEORY): QUANTIFYING THE RSD INFORMATION IN AN IDEAL SURVEY

Let me go back to RSD in the 3D case. Once one is convinced that the TNS model is an okay description
of the nonlinear RSD, it is interesting to ask the following questions:

e How well can we measure the anisotropic power spectrum, and hence constrain fog etc given a galaxy
redshift survey?

e What is the efficient way to compress the data to fully extract cosmological information on RSD? For
example, how many multipoles are necessary in nonlinear regime?

These questions can be answered (not perfectly, though) within a theoretical framework by combining a simple
calculation of the power spectrum covariance with the Fisher matrix formalism. Here I summarize our findings
in our paper, Taruya, Saito, Nishimichi (2011) [4]. One may find similar efforts to address these questions in
the literature (see e.g., [55-58]).

The Alcock-Paczynski effect

Before proceeding the Fisher forecast, I discuss another source of the anisotropy. In making a 3D map of
galaxies, we should assume cosmology to convert redshift to radial comoving distance. Then the measured
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FIG. 11: (Upper left panel) Comparisons of the 3D power spectra which appear in Egs. (79) and (80).
(Upper right panel) Contributions from each term in the angular power spectrum in Egs. (79) and (80).
(Lower panels) The fractional contributions from the RSD correction terms.

distance assuming wrong cosmology can differ from true distance scale. This is the so-called Alcock-Paczynski
(AP) effect which makes the density distribution anisotropic, since the distortion of the scale perpendicular to
LOS is proportional to the angular diameter distance, D 4(z), while the distortion of the scale along LOS is
proportional to the Hubble distance, ¢/H (z) [59, 60]. More explicitly, the measured scale, (k||, k1), is related
to the true distance scale (¢, ¢y ) through legd =g, Dy and k”/Hﬁd = q||/H. Therefore, the observed power
spectrum is rewritten as

z fid z 2
PObS(k,u) — H}ég(i) [gﬁ((z))] Ptruo(q’ I/), (83)

where

o= () ) - () ]
_ (. H DifA}d2 i_%Q 2—1/2
e e (Y () - ()] -

Note that the AP effect makes the clustering anisotropic even without RSD. Ref. [61] shows that the isotropic
part (i.e., monopole) constrains the dilation parameter, o oc (D%/H )1/3, and the anisotropic components
constrain the deformation parameter, ¢ « D4 H. The main cosmological interests in modern galaxy surveys
are BAO and RSD, and the parameter constraints are presented in combination of (D4, H, fog) or («, €, fog).

Gaussian covariance of the redshift-space power spectrum
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The statistical error of the redshift-space power spectrum, i.e., the covariance, is given by [18]

2
Cov[Py (k, 1), Py (K, )] = [AP (k, )]*6p(k — k') = ]\2@ [Pgs(k, () + ﬁlg] dp(k — k'), (86)

where 7, is the mean number density of galaxies (assumed to be constant here) and the term 1/ng is the
Poisson shot noise. The factor Ny is the number of Fourier modes in a given survey volume Vj, given by

Vs. (87)

-3
2
Ny = 27nk2AkAp ( 2m ) _ WAkAp

Vsl /3 472
Strictly speaking, this expression holds only for the Gaussian density field which is not true for the galaxy
density field in redshift space. This is one of the reasons why the covariance matrix should be estimated with

many realizations of realistic mock galaxy catalog. Neverthless, Eq. (86) is still useful to study feasibility
of a given galaxy survey. The cumulative signal-to-noise ratio of the redshift-space power spectrum is then

evaluated as
2 kmax 1 ﬁ PS k7 2
s = VS/ k:Qdk:/ du _gg# ) (88)
N a2 |, L R Py (ke ) + 1

k<k‘max min

Therefore the Fisher matrix in Gaussian likelihood is simply given by (e.g., [62])

. _<82 1HL> _ V/km L /1 du&lnPg(k,u)OlnPg(l@,u) [ ng P (k, 1) r' (59)
Opapp 872 Jiin 1 P Ipp ngPg(k, ) +1

The Cramer-Rao bound tells that the 1o error on p, marginalized over the other parameters is computed by
o(pa)? = F.l. Similarly, the 2D error contours can be estimated by the inverse submatrix of F~* (but, when
plotting error contours, be aware that the value of Ax? in 1o confidence region is not 1.0 but actually 2.3 in
the 2D case. See e.g., [63].) Also, I define the Figure-of-Merit (FoM) parameter as an area of the error ellipse
in n-dimensional space,

1
FOM(p17p27”'7pn) = (90)

£

where F~! is the n x n submatrix of the inverse Fisher matrix [4].

So far I have considered the full anisotropic power spectrum, Pgs(k:, w). This is motivated by the fact that
Eq. (86) suggests that the two-point statistics becomes the most diagonal in the case of the full anisotropic power
spectrum. However, this is an ideal case, and many realistic conditions (e.g., the survey window function as
discussed in next section) make such analysis much more complicated. From a data-compression point view,
it would be a better idea to choose a different base statistics. A natural candidate is the multipole power
spectrum, since all the cosmological information is encoded in the multipole moment up to £ = 4 in linear
theory. Notice that the multipole power spectrum is no longer diagonal even for the Gaussian approximation
[64, 65],

! 1 2
Cov[P (k). P (k)] = ]icovgmp(k—k') _ ]\z(2€+1)2(2€ +1) /_ L) Lo () [Pgs(k:, ”Hﬁj 5o (k—k),
(91)
where now the number of mode becomes Ny, = Vik?Ak/(272). Eq. (91) shows that the error on any order of
the multipole has a contribution from the constant shot noise. This means that a higher-order multipole has
a lower signal-to-noise ratio, since a higher-order multipole has lower amplitude. The Fisher matrix for the
multipole is also written as

qultipole _ ‘/8 Fmax Qdk 8Pgi€(k>[ OV/ ,]—1 apgs,f’(k)
of 472 |, Opa o Ips

(92)
min g’gl
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Now it is ready to perform the Fisher forecast. Namely, given a hypothetical galaxy survey with (Vs, ng) (and
redshift range), one can estimate how well the free parameter set, p, = (Da, H, f,b,0,) is simultaneously
constrained. Our finding is summarized as follows:

e What is the contribution from each multipole to constrain (D4, H,b)?
See Fig. 12. The different multipole power spectra contribute to the parameter constraints with different
degeneracy directions. Hence combining them is powerful to break such degeneracies.

e How many multipole are necessary to constrain (Dy, H,b) as well as the full 2D case?

See Fig. 13. A short answer is that it is still sufficient to measure the multipole up to £ = 4! However, keep
in mind that the parameter constraints could be more biased when higher-order multipole is included if
an imperfect RSD model is applied.

e What is the best tracer for the purpose of RSD in terms of bias with survey parameter being fixed?

See the right panel of Fig. 13. A higher bias parameter makes the real-space amplitude larger, while
the 8 = f/b parameter smaller and hence the anisotropic part becomes smaller. This detailed balance
results in a peak at b ~ 1.2.

12 - 7 —— P, alone
! n 7] — P, & P, combined
(. L ] — P, & P, combined
0.8 - —
0.6 ® b V,=4 h=3Gpc?
with corrections
1.1
= | ]
T L i
~
:I:: - -
ool A /i1
0.9 1 1.1 0.6 0.8 1 1.2

DA/DA,fid f

FIG. 12: The marginalized 1o contour in 2D parameter space as a function of (D4, H, f). Here we consider a hypothetical
survey with z = 1, Vi = 4[(Gpc/h)?], and ng = 5 x 107*[(h/Mpc)?], and consider galaxy samples with b = 2 and
oy = 395 [km/s]. We also set kpax = 0.2 [h/Mpc].

VII. ANALYSIS: MEASURING RSD FROM THE MULTIPOLE IN BOSS

In previous sections, we developed the refined RSD model (TNS model, but include a bunch of nonlinear
galaxy bias term as well in the real data analysis. See Appendix. C for the full expression), and learned how
useful the multipole power spectra are. Now it is time to face the real data! Here I present the updated RSD
measurement from BOSS DR12 (final dataset!) in SDSS-III [7]. However, even if the galaxy survey is done
and its catalog is already available (which is basically a list of (ra,dec,z). Of course getting this involves
tremendous efforts by many people! I refer to [66] for the galaxy target selection algorithm in BOSS, and to
[67, 68] for its stellar-mass completeness using the S82MGC catalog.), there are still several steps to reach the
fos constraint as follows:



21

los_llllllllllllllllIIIIIIII_ 103
E full 2D : E e A
- —— P, P, & P, 1 - :
- | ==~ Py & Py LT i /\ b
= - - L e ——— T }
D:t 5 = /‘/‘/ :
108 |- . : ‘
= F E S 108 b / _
o] £ ] = F / 3
Fr r ] l’.g 4 1
r . r full 2D 1
; I — — P, P, & P, |
10# ] fiducial ;| — Fo & Pe
R B e 3 10# pHHHHHHHHHHHHHHHHHHHHHHH
S o8 1 o e
© o6 [ T S 08 F IR
o4fb, Ui o4 BoeE e E
0 0.1 0.2 (O = T = PP Y B U B B
0 05 1 15 2 25 3 35 4 45
-1
k.. [hMpc~t]

b

FIG. 13: FoM(Da, H, f) with the same hypothetical survey in Fig. 12 but varying parameters such as knmax (left) and
b (right).

1. First of all, we should measure P;(k) in an unbiased way.

2. In Fourier space, the measured power spectrum is convolved with the survey window function. Therefore
we should evaluate the survey window function given a survey geometry.

3. The error covariance matrix, Cov[Pg(k), Pg/(k}/ )] should be estimated by realistic mock catalogs.

4. The theoretical model and every analysis pipeline should be checked against such mock catalogs before
they are applied to the real data.

5. Finally perform the MCMC parameter estimation to get the fog constraint.

Also I should mention that there are other approaches to constrain RSD with the same BOSS dataset, which
include the multipole in configuration space, the wedges in configuration space, the wedges in Fourier space,
and combining with the bispectrum etc. I refer to the main alphabetical DR12 paper for the complete reference
list. Note that DR12 CMASS and LOWZ papers are already out [69, 70]. In the following, I am going to
explain the basic methodology especially in the first three steps in more detail.

A. The multipole power spectrum estimator

The galaxy power spectrum estimator is first developed by the famous Feldman-Kaiser-Peacock (FKP)
paper [18]. Their estimator is designed to implement Fast Fourier Transform (FFT) by assuming the global
plain-parallel approximation. As mentioned earlier, however, this is no longer a good approximation when
one is interested in measuring the anisotropic component of the galaxy clustering [19, 20]. In order to over-
come this, Yamamoto [64] extended the FKP estimator to the multipole by assuming the local plain-parallel
approximation in turn:

Ay 2€ ]. . ! A
Pyk) = + [/ B / B’ R @) p(2)F () Lok - 20) — Sel . (93)
Here the density field, F'(x), and the normalization, A, are given by
F(m) = wFKp(m) [nfg(m) — anrand(m)] (94)

A= / 2 [ng(@) weke ()], (95)
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respectively. n’g(m) denotes the observed galaxy number density but is corrected by weight function as

ng(x) = we(x)ng(x) (96)
we(w) = (W) + wee(®) — Dwsys(), (97)

where wyt, wy., and wgys are the weights which correct the redshift failure, the fiber collision, and systematics
that combines a stellar density and seeing condition, respectively, in the particular case of BOSS. wpkp(x) is
the weight which makes the variance of measured power spectrum minimum, derived as [18, 64]

1

T 1+ (@R (98)

wrkp ()

Nrand () denotes the random field such that <n’g> = a(Nrand) at a given redshift and « is the ratio of number of
galaxies to number of random particles (usually « ~ 1/50). Finally Sy denotes the Poisson shot noise, defined
by

Se= [ a1+ apni@)ubgp(@) Lol - ). (99)

Note that there is a subtlety on whether or not the weighted galaxies missed due to the fiber collision is counted
in Poisson statistics, which affects the shot noise definition and the FKP weight (see more discussion in [6]).
In the Yamamoto estimator it is further simplified by switching the integral to the sum, i.e., [ dBrnl(x) - —

g
Ne we(x;) ... or — > Nrand , yielding to
7 7

Py = 2L ) k) - 5] (100)

Fy(k) = / Bz F(z)e®T L,k - 2)

Ng Nrand
= > welw)wrkp (@) ® T Lok 2) — oY weke(@)e R Lo(k - &), (101)
i j

where the local plain-parallel approximation is adopted. Notice that this estimator has k dependence in the
integrand and hence FFT cannot be applied. Therefore the Yamamoto estimator has a computing cost of
O(N?) but was anyhow used in the DR11 analysis [6].

However, Bianchi et al. (2015) [71] and Scoccimarro (2015) [72] have recently realized that there is actually
a way to implement FFT on Eq. (101). The idea is very simple: once the Legendre polynomial is explicitly
written down, the k dependence in the integrand is factored out and hence FFT can be safely applied. The
resultant expressions are

Po(k) = op [Fo(k)Fo(k)” — o], (102)
Py(k) = %Fo(k) [3F2(k)" — Fo(k)™], (103)
Pulk) = 16%}70(1@) 35F4(k)* — 30F5(k)* + 3F (k)] (104)
where
Fo(k) = Ao(k), (105)
Fy(k) = % > kpkgBpg, (106)
Fy(k) = % Zy k2 kqkrCogr, (107)

p7q7,r:x7y7z
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and each coefficient can be estimated with FFT,

Ao(k) = / B B ()T, (108)

Bij(k) = / d3r %F(r)eik"‘, (109)
2. |

Cijn(k) = / &3y T’:#F(r)elk'r. (110)

Now the estimator has a computational complexity of O(N.log N.) with N. being the number of grid cells,
and is adopted in the DR12 analysis [7]. Finally, the multipole power spectrum is evaluated by averaging over
spherical shell in Fourier space,

Py(k) = (Pi(k)) = > Bu(k). (111)

B. The survey window function

Because Fourier transform involves the integral over the infinite space while we can observe only finite
volume, the measured power spectrum is always convolved with the survey window function,

2 [W(K)®

2
W (o) 7

Pconv(k) — /dSkl Ptrue(k/) ‘W(k} _ k/)’ /dBk/ Ptrue(k/) }W(kl) (112)
where the 2nd term is the so-called integral constraint which ensures that P°°™ = 0 at k — 0. This means
that one needs to estimate the survey window function a priori and to convolve with the theoretical model
spectrum. One immediately sees from Eq. (112) that it is complicated to estimate the window function which
is as a function of k and k’. However, we found in the DR11 paper the way to handle this issue on the basis of

multipole [6]. With a bit lengthy calculation one obtain a simplified formula (see [6] for detailed derivation),

conv k/2dk/ true 7./ |2
P€ (k) = 272 ZPL (k)‘W(kvk)‘gL7 (113)
Nrand
2 . . . . ~ ~ ~ ~
Wk )2, = (~)520+1) Y wewe (@:)weke (@) ek A]) iz (| Ae]) Lol@n - A&) L (@, - A)1L)
1J,i#]

Here Ax = x; — x;. A similar formula can be also found for the integral constraint term. This simplification
is one of the reasons why I prefer to work on the multipole in Fourier space. Interestingly, Eq. (114) tells
that monopole cannot be decoupled from other multipole due to the survey geometry and vice versa. A physical
understanding of this is rather clear: anisotropic survey geometry can make the anisotropic contribution as a
leakage from monopole, even if there is no RSD.

One downside of this approach turned out to be the fact that it is hard to obtain the well-converging window
function for the hexadecapole. To overcome this, we decide to follow the approach recently proposed by [73].
This indeed leads to more stable results of the hexadecapole window function. The basic idea is following:

e Firstly, Fourier transform the model power spectrum to obtain the correlation function, &(s).

e Secondly, multiply the window function, Wy(s)? in configuration space to obtain the ‘convolved’ corre-

lation function, £5°"V(s). For the explicit expression for the convolution, see [73].

e Finally, Fourier transform the ‘convolved’ correlation function to obtain the convolved power spectrum,
PCOHV(k;)‘
l
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Here the window function in configuration space is given by

Wi(s)® o< 3 > Y RR(s, ) L(p). (115)

p L1 L2

Although [73] assumes the global plain parallel approximation, we prove in [7] that the same formula can be
used under the local plain parallel approximation as well.

C. Estimating the covariance matrix and fitting procedure

Compared to an ideal setting in the previous section, the observed galaxy density field is not perfectly
Gaussian. Also, the modes of interest is O(10-100 Mpc) and comparable to the survey size, and hence internal
methods such as jackknife or bootstrap do not work well [74]. Therefore the covariance matrix is directly
estimated from a large number of realizations of realistic mock galaxy catalogs. In the case of the BOSS
DR12 analysis, we make use of 2048 realizations of the Multidark Patchy mock catalogs which is based on
combination of approximated but quite fast N-body simulations and the subhalo abundance matching [75, 76]
(however, see [77] for a similar work but with different results). The realistic survey geometry is applied to
light-cone output of each realization. Namely, the covariance matrix is simply estimated by

Ny
Z[Pf,n(X) - ?K(X)] [pf,n(y) - ?K(Y)]v (116)

n=1

1
N, -1

COV/XY =

where the vector P, contains monopole, quadrupole, and hexadecapole. The fiducial fitting range is & = 0.01-
k = 0.15h/Mpc with Ak = 0.01 for monopole and quadrupole (i.e., npin =0 = Nbine=2 = 14) and k = 0.01-
k =0.10 h/Mpc with Ak = 0.01 for hexadecapole (i.e., npin ¢=4 = 9). Hence the index in the matrix is defined
by (X,Y) = (nbinel/2 + i, npin el /2 + j) which describes the covariance between Py(k;) and Py (k;). Note
that estimating the covariance matrix with the finite-volume simulation could be underestimated due to the
so-called super sample mode [78, 79]. The parameter fitting is performed by minimizing

X = APy(X) Covy AP,(Y), (117)

where AP/(X) denotes the difference between measurement and model, and also the Hartlap factor should be
multiplied to correct the skewness in the inverse covariance matrix [80],

_ . tot
Ny — gy

2
Covyl = T Cov'xy- (118)

Finally, the error in the covariance matrix should be further multiplied to the variance of the derived parameters
by [81, 82]

My — 1+ a(nt —nyp) 7 (119)
1+a+b(n,+1)
where
2
0 = (120)

(N, i~ DN, gt — )’
Ny — nf)‘?t -2
b = m . 121
(N, — it~ D(N. — izt — ) 2y

At each redshift bin, we have n{S' = 37 x 2 = 74 (for NGC and SGC), n,, = 11 which results in a very minor
correction, M; ~ 1.01. At each redshift bin, the 11 free-parameter set includes (byos,bsos, N, 0,) for NGC
and SGC separately, and (fos, D4/D8, H/H%) for common cosmological parameters of interest. See also
Appendix. C.
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D. BOSS DR12 Result

See another handout in the lecture. Enjoy the most recent RSD measurement! All the results will appear
on arXiv at the end of June in 2016.

E. The optimal estimator

My final quote in the analysis section is on the optimal estimator. It is shown that the FKP estimator (and
hence Yamamoto and its variants as well) is optimal only for the modes much smaller than the survey size
(k> L) and the so-called quadratic estimator is optimal otherwise [62]. As far as I know, the exact quadratic
estimator has never been successfully applied to the actual galaxy survey, although there are a couple of
attempts in an approximated way [83-85]. This means that there is still a way to extract more information
from the redshift-space power spectrum even from the same BOSS data, and I hope this is achieved in a near
future.

VIII. CONCLUDING REMARK

RSD is one of the main scientific targets for ongoing and forthcoming cosmological surveys. Here I discuss
recent efforts for both modeling and measurement which highlights what I have been involved in this several
years. I expect there will be substantial progresses in many aspects in this field in coming years. Even though
there are tons of topics which I cannot cover in this lecture, I hope this is helpful for you to learn something
about RSD. At least this note should be quite helpful to remind me a lot of things!
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Appendix A: Convention and useful formula
Cosmology
Hubble equation in a ACDM universe
H(2)? = Hi{Qmo(1 + 2)* + Oy }. (A1)
Friedman-Robertson-Walker (FRW) metric
ds® = a(1)? {—(1 + 2¥)dr* + (1 — 2®)dx”} . (A2)

The amplitude of matter fluctuation is often characterized by

o3(z) = / Bk b s w2, (A3)
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where Wg(k) is the Fourier transform of the top-hat window function of width 8 Mpc/h.

Mathematics



Fourier tranformation

the Legendre polynomial:

And its orthogonality

The partial-wave expansion

3 .
Alx) = /d b ook y

(27)?

(k).

A(k) = / BT Az).

EO(/J/) = 17
3u? —1
La(p) = 5,
35u* — 30u% +3
Li(w) = 2=
20+1 (1
T dp Lo(p)L(1') = der
-1

R = ST QL 4 1) (kr) L1 (k).

L

Recursion relation of the spherical Bessel function

Co—1(z) — (€ + 1)jeg(z) = (20 + 1)jo()'.

Statistics

Moments and cumulants of the one-point distribution function [2]:

c =

c =

—

= (-

Je = () =0,

Yo = 0% =(8%) — ()2 = (6%),
) §%) = 3(8)2(8)c — (8)¢ — (8°),
)

[

e
4(6)2(0)c — 3(6%)2 — 6(5%)c(8)

where the case with (6) = 0 is shown after the arrow.

In this appendix we summarize basic equations in perturbation theory, taken over from [24].

2
c

—{0)e = (0%) = 30,

Appendix B: Perturbation Theory basics

1. Matter density

A matter density in Fourier space is perturbatively expanded into

(k) = do(k)
vl
yl

d3q

(27)3

F? (q,k — @)60(q)d0(k — q)

Bq1 g

(27)3

+0(80%),

(2m)3 F (1, a0,k — a1 — 2)50(q1)50(2)00(k — g1 — g»)
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(A11)
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where §g is the linear density perturbation and the symmetrized PT kernels are given by

2 1
FP (@) = 5 {F?(a1a) + FO(az 0}
5 1gqq- 2 q,\ >
_ 7_’_7111 q (‘Jl+Q2>+<Q1 QQ> 7
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G (q q):3+1%“b<%+@>+4chﬂﬂ2
§ DAz 7T 2 g2 \@ @ 7\ q1q2 ’
3 1 )
FS( )((I1aCI27CI3) = ? {F(g)((ha(hy(Is) + CYChC}
_ 1 [7qu3 g3 7@ Tqios - (@1 +42) | 269393 - (¢4 + o)
= 3 S (Q1a 2) + 2 2 2
619 g3 9 g1 + g 9 lg1+q2l?-q3
+ cyclic,
1 [1qy93- a3 (2 1qos- (a1 +G2) | 241393 - (41 + q5)
a1, a2 05) = = |2 28 BED (g q)) + = - A2
S HDERE T 63 g 8 T 3 gy +qsf? 3 lg1+a.? a3
+ cyclic,

where q93 = g1 + g5 + g3. The unsymmetrized kernels are given by

D 2
F(z)(QI7q2) = ?a(q17q2) + 7/8(q17q2)7

7
3 4
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2. Biased tracer’s density

27

(B2)
(B3)
} G (a. qz)_
(B4)
} ¢ (ay,45)
(B5)
(B6)
(B7)
(B8)
(B9)

Following an ansatz in McDonald & Roy (2010) [21], a halo density field (or generally biased tracer) is

written as

oh(x) = c50m(x)

1 1
+=c520m(x)? + cgos(x)?

2 2

1 1 1
+§C535m(:13)3 + 56552(5111(:12)8@3)2 + cytp(x) + cas(x)t(x) + 3
+ce+ ...,

where each independent variable is defined as

sﬂm):@ﬁ@@ﬂé%%ﬁ@z[@@&a%]%@%

1
3

P(x) = [0(x) -

tij(a:) = aﬂ)j—

8 Oun() — 515 () = [aiajaQ - 5K-] 0(z) — du(@)],

ces(x)?

(B10)

(B11)
(B12)

(B13)
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Note that ¢;; is zero at first order, and v is zero up to second order. In Fourier space, the halo density contrast
is given by

g )
oysts (@ k—a)d(a)do(k —q)

+
&
\

—
[\
—

3
+30 [ Gdn(@bl —a)
3
%csg / (%3 S® (g, k — q)do(q)d(k — q)

d3q d3q
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where
S(2)(q1>q2) = <q1 : q2>2 - 17 (B15)
q192 3
: : : 1(qy-q2)? 1(gy-q5)® 1(g3-qy)* 2
g3 41,0, q3) = (91 -92)(q2 - g3)(gq3 - q1) ~+\491°492)  * ot 2 B16
(91,92. 95) 34343 3 ¢@q 3 ¢q? 3 @34 g (B0
D) = gWN) _ p(N), (B17)

Appendix C: The redshift-space power spectrum model adopted in the actual analysis for BOSS

The model adopted in the BOSS analysis is an extended version of the TNS model, Eq. (50):
Py s (ks ) = exp [k 2 207 o] { Paos(k) + 2f11° Pso (k) + 21t Pog (k) + b7 A(K, 15 8) + b1 B(k, 115 5) } -
(C1)

Our galaxy bias model is based on the bias renormalization including local and nonlocal bias term proposed
in [21] is validated by [24]:

P, s5(k) = bIPNE (k) + 20102 Pyo 5(k) + 2b1bg2 Pysa 5(k) + 2b1bgn o3 (k) P(k)
+ b%Pbgg(kﬁ) + 2b2b52Pb252(k3) + bggpsgg(k) + N, (02)
Pyso(k) = b1 PR (k) + by Py p(k)

+ b2 Pysa g(k) + bsn 03 (k) PL (). (C3)
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The exact expression of the bias correction terms are redundant here, and I refer to [6]. One approximation
which is not exactly true but can reduce the free parameter is the local Lagrangian bias for the nonlocal bias
[24]:

4

be & — (b~ 1), (C4)
32

b3nl =~ 315(bl —1). (C5)

Strictly speaking, we should consistently include the bias term up to 2nd order in A and B correction terms
but simply ignore them here. As a summary, the model include 4 free parameter, by, by, N, and o, ef-

Appendix D: Derivation of Eq. (17)
Starting from Eq. (16), one finds
5 (k) = / d3s6°%(s)e'ks
_ /deeihS{l +o(z)} - /dSSeikS

Bz ek Sl 4+ 5(x)) - /d3a:e

/
= /d3w61k8{1+5 )} = /d3 {1—1—},{8@52 )}eik‘s
/

B { . a;{al}gi )}eikw—l—ikuvz/(aH). (D1)
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