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1 Spherical evolution

1.1 Linear theory

We will consider a density field ρ(x, t) at comoving coordinate x and time t

with a mean of ρ̄(t). The density contrast is defined as

δ(x, t) =
ρ(x, t)

ρ̄(t)
− 1 . (1)

To linear order in the density contrast, conservation of mass implies

∂δ(x, t)

∂t
+

1

a(t)
∇ · v(x, t) = 0 , (2)

where a is the scale factor and v the peculiar velocity field. The linear density

contrast can be factorized into its temporal and spatial dependence via the

linear growth factor D(t),

δ(x, t) = D(t)δ(x) . (3)

We can now write

∂δ(x, t)

∂t
=

dD(t)

dt
δ(x) =

dlnD(t)

dt
δ(x, t) =

=
dlnD(t)

dln a(t)

dln a(t)

dt
δ(x, t) = f(t)H(t)δ(x, t) , (4)

with the Hubble rate H(t) ≡ ȧ(t)/a(t) and the linear growth rate f(t) ≡
dlnD(t)/dln a(t). Equation (2) can now be written as

∇ · v(x, t) = −f(t)a(t)H(t)δ(x, t) . (5)

This can be integrated over some volume V ,∫
V

∇ · v(x, t) d3x = −f(t)a(t)H(t)

∫
V

δ(x, t) d3x . (6)

3



On the left-hand side we apply the divergence theorem to convert the volume

integral to a surface integral. Choosing a spherical surface S = 4πr2 of a

sphere of radius r and volume VS = 4π
3
r3, yields∮

S

v(x, t) · dS = −f(t)a(t)H(t)
4π

3
r3∆(r, t) . (7)

Here we defined the average density contrast within radius r as

∆(r, t) ≡ 3

4πr3

∫
VS

δ(x, t) d3x . (8)

Finally, we obtain a relation between the radial velocity field and the average

density contrast within the sphere [Peebles (1980)],

v(r, t) = −1

3
f(t)a(t)H(t)r∆(r, t) . (9)

1.2 Nonlinear theory

In this section we will only consider spherically symmetric density fluctua-

tions δ(r) with average density contrast

∆(r) =
3

r3

∫ r

0

δ(r′)r′2 dr′ . (10)

For simplicity, we will also drop the explicit time dependence of most vari-

ables, unless necessary. The total mass inside a radius r is given by

M(r) =
4π

3
r3ρ̄ [1 + ∆(r)] . (11)

Birkhoff’s theorem (or Newton’s shell theorem): “A spherically symmetric

body affects external objects gravitationally as though all of its mass were

concentrated at a point in its center”. This means at any given distance

r we only have to consider the mass M(r) = M(< r) and can neglect the

mass distribution at larger distances M(> r). According to the Newtonian

law of gravity, a test particle obeys the following equation of motion (here in
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physical coordinates, not comoving),

r̈ = −GM(r)

r2
. (12)

Once integrated over time this gives

1

2
ṙ2 − GM(r)

r
= K , (13)

where the first term corresponds to the kinetic energy, the second term to the

potential energy, and K is an integration constant. Plugging in equation (11)

yields

ṙ2 − 8πG

3
ρ̄r2 [1 + ∆(r)] = 2K . (14)

If we now define a critical density for the special case of K = ∆ = 0 (flat

background),

ρc =
3H2

8πG
, (15)

where ṙ/r = H = ȧ/a corresponds to the Hubble rate in this case. Further,

we define Ωm ≡ ρ̄/ρc and write

ṙ2 − ΩmH
2r2 [1 + ∆(r)] = 2K . (16)

The constant K can be determined by setting the initial conditions. Initially,

density perturbations are very small, so we can use equation (9) to determine

the initial total velocity, which is composed of Hubble flow and peculiar

motion,

ṙi ' riHi −
1

3
fiHiri∆i(ri) . (17)

For simplicity, we will assume an Einstein-de Sitter (EdS) universe with

Ωm = 1 and f = 1 (f ' Ω0.55
m ). Equation (16) evaluated at the initial time

then yields

2K = (riHi)
2

[(
1− ∆i

3

)2

− 1−∆i

]
' −5

3
(riHi)

2∆i , (18)
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to linear order in ∆i � 1. Mass conservation then allows us to relate initial

and final density contrasts following equation (11),

1 + ∆ = (1 + ∆i)
r3
i ρ̄i
r3ρ̄

, (19)

and equation (15) with Ωm = 1 gives

ρ̄i
ρ̄

=

(
Hi

H

)2

. (20)

Rearranging equation (16) with these identities finally yields

(
ṙ

r

)2

= H2
i

[
(1 + ∆i)

(
r

ri

)−3

− 5

3
∆i

(
r

ri

)−2
]
, (21)

which resembles the first Friedmann equation of a (generally curved) matter-

dominated universe with Ωm,i = 1 + ∆i and Ωk,i = −5
3
∆i. In fact, for ∆i = 0

we recover the Friedmann equation of the EdS universe,(
ṙ

r

)2

= H2
i

(
r

ri

)−3

, (22)

which is explicitly solved by

r

ri
=

(
3

2
Hit

)2/3

=

(
H

Hi

)−2/3

, (23)

with H = 2/3t. However, for ∆i 6= 0 the solution can only be stated in

parametric form

r

ri
=

1

2

(
5

3
∆i

)−1

(1− cos η) , (24)

Hit =
1

2

(
5

3
∆i

)−3/2

(η − sin η) , (25)
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where the parameter η is defined via

dη =
ri
r

√
5

3
∆iHidt . (26)

In particular, η becomes imaginary for ∆i < 0, and we can write

r

ri
=

1

2

(
5

3
|∆i|

)−1

(cosh η − 1) , (27)

Hit =
1

2

(
5

3
|∆i|

)−3/2

(sinh η − η) . (28)

The simple substitutions ∆i ↔ −|∆i| and η ↔ iη transform equations (24,25)

and (27,28) into each other (note that cos(iz) = cosh z and sin(iz) = i sinh z).

1.2.1 Overdensity

Let us first recap the collapse of an overdensity with ∆i > 0 [Gunn and Gott

(1972)]. It decouples from the Hubble flow and starts to decrease its size

after ṙ = 0, the so-called moment of turnaround. Equation (21) then yields

1 + ∆i =
5

3
∆i

r

ri
=

1

2
(1− cos ηta) , (29)

and for ∆i � 1 the turnaround parameter is ηta ' π. The average density

contrast evolves in time, not only because its total density ρ increases, but

also because the background density of the universe ρ̄ decreases,

1 + ∆ = (1 + ∆i)

(
r

ri

)−3(
a

ai

)3

= (1 + ∆i)

(
3
2
Hit
)2[

1
2

(
5
3
∆i

)−1
(1− cos η)

]3 . (30)

The time t can be related to η via equation (25), which gives

1 + ∆ = (1 + ∆i)
9(η − sin η)2

2(1− cos η)3
, (31)

7



and at the time of turnaround with ηta = π

1 + ∆ta = (1 + ∆i)
9π2

24
= (1 + ∆i)

(
3π

4

)2

' 5.552 . (32)

This means, compared to its initial size, the comoving radius of the overden-

sity has shrunk by a factor of (1 + ∆ta)1/3 ' 1.771. If we were to expand

equation (31) to first order,

1 + ∆ ' (1 + ∆i)

(
1 +

3

20
η2

)
, (33)

and similarly equation (25),

Hit '
1

2

(
5

3
∆i

)−3/2
η3

6
, (34)

we would obtain the following relation,

1 + ∆ ' (1 + ∆i)

[
1 + ∆i

(
3

2
Hit

)2/3
]
. (35)

This demonstrates that the density perturbations initially grow at the same

rate as the universe expands, see equation (23). At the time of turnaround,

tta =
1

2Hi

(
5

3
∆i

)−3/2

π , (36)

the linear calculation yields

1 + ∆ta ' (1 + ∆i)

[
1 +

3

5

(
3π

4

)2/3
]
' 1 + 1.062 , (37)

where the value δta ≡ 1.062 is known as the linear density threshold for

turnaround. Finally, at ηc = 2π, the overdensity collapses into a single point

and equation (31) becomes infinite. The linear average density contrast at
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time tc = 2tta then yields

1 + ∆c ' (1 + ∆i)

[
1 +

3

5

(
6π

4

)2/3
]
' 1 + 1.686 , (38)

and the value δc ≡ 1.686 is known as the linear density threshold for col-

lapse. Before this happens, however, shells of different ri cross each other

and eventually reach an equilibrium via virialization to form a halo. The

virial theorem states that the average kinetic energy of the system equals

minus one half its average potential energy, and thus

1

2
ṙ2

vir '
1

2

GM(rvir)

rvir

. (39)

In equation (13) this yields

K = −1

2

GM(rvir)

rvir

. (40)

The same equation evaluated at turnaround with ṙta = 0 gives

K = −GM(rta)

rta

, (41)

leading to the conclusion that rvir = rta/2, and thus with equation (24) to

1− cos ηvir

1− cos ηta

=
1

2
. (42)

This requires ηvir = 3π/2 (note that ηvir > ηta), and with equation (31)

1 + ∆vir = (1 + ∆i)
9

2

(
3π

2
+ 1

)2

' 147 , (43)

at the time of virialization. After that the density of the perturbation re-

mains constant, but the background density continues to drop. Once the full
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nonlinear stage at ηc = 2π has been reached, the density contrast becomes

1 + ∆c = (1 + ∆vir)

(
ac

avir

)3

= (1 + ∆i)
9

2
(2π)2 ' 178 , (44)

and its comoving size has decreased by a factor of (1 + ∆c)
1/3 ' 5.622 from

its initial value.

1.2.2 Underdensity

Let us now consider the case ∆i < 0 [Bertschinger (1985); Blumenthal et al.

(1992)]. The evolution of an underdensity never reaches turnaround and

continues to expand forever, unless ∆i > 0 on some larger scale (void-in-cloud

scenario). The moment when shells of different initial radius ri cross each

other marks a stage of nonlinearity that can be interpreted as the formation

of a void. In that case the infinitesimal distance between shells vanishes in

one instant of time, dr = dt = 0. According to equation (27) we have

dr =
1

2

(
5

3
|∆i|

)−1 [
(cosh η − 1)

(
dri − ri

d∆i

∆i

)
+ ri sinh η dη

]
, (45)

and from equation (28) we obtain

dt =
1

2Hi

(
5

3
|∆i|

)−3/2 [
(cosh η − 1) dη − 3

2
(sinh η − η)

d∆i

∆i

]
. (46)

Setting dt = 0 yields

dη =
3(sinh η − η)

2(cosh η − 1)

d∆i

∆i

, (47)

which can be plugged into equation (45), and in setting dr = 0 this gives

(cosh η − 1)

(
dri − ri

d∆i

∆i

)
+ ri sinh η

3(sinh η − η)

2(cosh η − 1)

d∆i

∆i

= 0 , (48)

or equivalently

dln ∆i

dln ri

[
1− 3

2

sinh η(sinh η − η)

(cosh η − 1)2

]
= 1 . (49)
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Obviously, the shell-crossing condition depends on the slope of the initial

underdensity profile. From the definition of ∆ in equation (10) we can derive

dln ∆

dln r
= 3

(
δ(r)

∆(r)
− 1

)
. (50)

For example, in the case of an inverted top-hat density distribution with

δi(ri) =

δ0 for ri < r0

0 for ri ≥ r0

, ∆i(ri) =

δ0 for ri < r0

δ0 (r0/ri)
3 for ri ≥ r0

, (51)

of size r0 > 0 and density contrast δ0 < 0, we have

dln ∆i

dln ri
=

 0 for ri < r0

−3 for ri ≥ r0

. (52)

For the case ri < r0 equation (49) only admits the trivial solution η = 0.

However, for ri ≥ r0 we arrive at

sinh η(sinh η − η)

(cosh η − 1)2
=

8

9
, (53)

which has the solution ηsc ' 3.488. This condition is first satisfied for the

boundary shell at ri = r0, because it has the largest value of |∆i| at ri ≥ r0,

but shells of larger size successively continue to cross thereafter. We can

compute the shell velocity by simply taking the derivative of equation (27)

with respect to time,

v ≡ dr

dt
=
ri
2

(
5

3
|∆i|

)−1

sinh η
dη

dt
. (54)

From equation (28) we get

dt

dη
=

1

2Hi

(
5

3
|∆i|

)−3/2

(cosh η − 1) , (55)
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so together

v = riHi

(
5

3
|∆i|

)1/2
sinh η

cosh η − 1
. (56)

Replacing ri and Hi by their dependence on r, t, and η via equations (27,28),

and using H = 2/3t, we arrive at

v = rH
3

2

sinh η(sinh η − η)

(cosh η − 1)2
. (57)

At the moment of shell crossing, with equation (53) the velocity becomes

vsc =
4

3
rH , (58)

which means that the shell is moving with a peculiar velocity of vpec = vH/3

on top of the Hubble flow vH = rH. In analogy to equation (31), the average

density contrast inside the underdensity can be calculated as

1 + ∆ = (1 + ∆i)
9(sinh η − η)2

2(cosh η − 1)3
, (59)

which for the shell-crossing condition ηsc ' 3.488 of the top hat yields

1 + ∆sc ' 0.2047 , (60)

and thus δ0,sc ' −0.8. Compared to its initial size, the comoving radius of

the top hat has then expanded by a factor of (1 + ∆sc)
−1/3 ' 1.697. Using

equation (35) to compute the linear approximation for the average density

contrast yields

1+∆ ' (1+∆i)

[
1− |∆i|

(
3

2
Hit

)2/3
]

= (1+∆i)

[
1− 3

20
62/3(sinh η − η)2/3

]
(61)

Evaluated at shell crossing this results in

1 + ∆sc ' 1− 2.717 . (62)
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The corresponding density contrast inside the top hat is known as the lin-

ear density threshold for void formation, δv ≡ −2.717. Due to the linear

extrapolation, this corresponds to an unphysical negative density, but it is

nevertheless an important quantity in the excursion set theory for voids.

The derivation of δv relies on the assumption of an inverted top-hat den-

sity profile, which does not represent a realistic initial underdensity. One

can demonstrate numerically that the density profiles around minima in a

Gaussian random field [Bardeen et al. (1986)] evolve similarly, and develop

a top-hat-like configuration by the time of shell crossing [Sheth and van de

Weygaert (2004)]. However, the final density contrast becomes more nega-

tive in the center and the void radius stretches a bit less, as apparent from

figure 1. A useful relation between linear and nonlinear underdensities inside

voids is given by the approximation

δv ' C
[
1− (1 + δ0,sc)

−1/C
]
, (63)

with C ' 1.594 [Bernardeau (1994)]. Observationally we can only identify

Figure 1: Void evolution from two different initial density profiles, the left
panel shows a top-hat profile, the right panel the average profile around
minima in a Gaussian random field. Initial average density contrast, initial
characteristic radius, and subsequent time steps are identical in both cases.
Adopted from Sheth and van de Weygaert (2004).
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voids in the distribution of tracers of the density field, such as galaxies.

The density contrast of tracers is modified by the tracer bias, which can be

expressed as a multiplicative constant in the linear regime, δt = bδ, which

represents a good approximation in void environments [Pollina et al. (2017)].

It can be used in equation (63) to calculate the linear void formation threshold

in the tracer distribution [Ronconi and Marulli (2017)].

We may relax the assumption of an EdS universe and consider more gen-

eral cosmologies with curvature and cosmological constant Λ. The equation

of motion (13) can be extended to accommodate this [Lahav et al. (1991)],

1

2
ṙ2 − GM(r)

r
− 1

6
Λr2 = K , (64)

and the density thresholds can be expressed as functions of Ωm [Eke et al.

(1996); Lacey and Cole (1993)]. For example, in a ΛCDM cosmology with

Ωm,0 ' 0.3 their values become δc ' 1.674 and δv ' −2.731 [Jennings et al.

(2013)], so their cosmology dependence is very weak.

Finally, realistic voids are neither spherical, nor isolated objects. Voids

dominate the volume fraction of the cosmic web, so while expanding they

are always running into their neighbors, which leads to void merging and

collapse. Furthermore, voids exhibit a hierarchy of sub-voids, which has

also been neglected so far. A full treatment of these properties requires

sophisticated N -body simulations.
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2 Excursion set theory

The aim of excursion set theory is to predict the abundance of nonlinear ob-

jects, such as halos and voids, in the cosmic density field ρ(x, t) at comoving

coordinate x and time t. For collisionless matter the density field exhibits

fluctuations on arbitrarily small scales, which makes analytical calculations

unfeasible. However, we can ignore fluctuations below some cutoff scale R by

smoothing it with a window function WR. Given the definition of the density

contrast in equation (1), the smoothed density contrast is defined as

δR(x) =

∫
δ(x′)WR(x− x′) d3x′ . (65)

There are various choices of window functions available. The most common

one is the top-hat window in real space,

WR(x) =

 3
4πR3 for |x| < R

0 for |x| ≥ R
. (66)

The window is normalized such that
∫
WR(x) d3x = 1 and has a volume of

VR = 4π
3
R3. The Fourier transform of this window function is

WR(k) =
3

(kR)3
[sin(kR)− kR cos(kR)] , (67)

where k is the corresponding wave vector with wavenumber k. Another

option is a Gaussian window in real space,

WR(x) =
1

(2π)3/2R3
exp

(
− x2

2R2

)
, (68)

or a Gaussian in Fourier space,

WR(k) = exp

(
−k

2R2

2

)
, (69)
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with a volume of VR = (2π)3/2R3. These two windows are also Fourier

transforms of each other. Finally, one may also consider a top-hat window

in Fourier space,

WR(k) =

1 for |k| < 1/R

0 for |k| ≥ 1/R
, (70)

with a Fourier transform of

WR(x) =
1

2π2R3

( x
R

)−3 [
sin
( x
R

)
− x

R
cos
( x
R

)]
. (71)

However, note that in this case the volume is not well defined, as
∫
WR(x) d3x

does not exist.

Equation (65) can now be evaluated with one of these window functions.

This calculation is much simpler in Fourier space, where a convolution turns

into a plain multiplication,

δR(k) = δ(k)WR(k) , (72)

and the Fourier transform of the density contrast is given by

δ(k) =

∫
δ(x) exp(−ik · x) d3x . (73)

The joint ensemble average of the density contrast at two different locations

in space defines the two-point correlation function

ξ(r) ≡ 〈δ(x)δ(x + r)〉 , (74)

which only depends on r = |r| due to statistical homogeneity and isotropy.

In Fourier space we can compute a similar quantity,

〈δ(k)δ(k′)〉 =

∫∫
〈δ(x)δ(x′)〉 exp (−ik · x) exp (−ik′ · x′) d3x d3x′ , (75)
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and choosing x′ = x + r it can be rearranged to

〈δ(k)δ(k′)〉 =

∫∫
〈δ(x)δ(x+r)〉 exp [−i(k + k′) · x] exp (−ik′ · r) d3x d3r =∫

ξ(r) exp (−ik′ · r) d3r

∫
exp [−i(k + k′) · x] d3x ≡ P (k′)(2π)3δD(k+k′)

(76)

The latter equality defines the power spectrum as a Fourier transform of the

correlation function,

P (k) =

∫
ξ(r) exp (−ik · r) d3r , (77)

which likewise merely depends on the magnitude of k. We can now define

the variance of the density field as

σ2
R ≡ 〈δ2

R(x)〉 = ξR(r = 0) =
1

(2π)3

∫
PR(k) d3k =

1

2π2

∫
P (k)W 2

R(k)k2 dk .

(78)

For example, considering a simple power law with P (k) ∝ kn and a Fourier

space top-hat window,

σ2
R ∝

∫ ∞
0

P (k)W 2
R(k)k2 dk ∝

∫ 1/R

0

kn+2 dk ∝ R−n−3 . (79)

If we associate a mass M = 4π
3
R3ρ̄ to regions of size R, we have

σ2
R ∝M−n/3−1 . (80)

As long as n > −3, σ2
R is a decreasing function of M , i.e. smaller objects

originate from larger density fluctuations and therefore form at earlier times.

This corresponds to the so-called hierarchical clustering scenario.
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2.1 Overdensity

Now let us assume that the smoothed density contrast δR initially is a Gaus-

sian random field with probability distribution function

p(δR) =
1√

2πσR
exp

(
− δ2

R

2σ2
R

)
, (81)

and that above some critical density threshold the matter inside regions of

scale R start to collapse. We may pick δc = 1.686 for this threshold as

motivated above. The total fraction of collapsed objects of size R or larger

is then calculated as [Press and Schechter (1974)]

F (σR, δc) =

∫ ∞
δc

p(δR) dδR =
1

2
erfc

(
ν√
2

)
, (82)

where erfc denotes the complimentary error function and ν ≡ δc/σR. Note

that F (R → 0, δc) = F (σR → ∞, δc) = 1/2, so this calculation seems to

disregard one half of all collapsed objects. In order to resolve this apparent

paradox, let us consider a sequence in δR when R is decreased stepwise from a

large initial value. According to equation (81) and assuming a Fourier-space

top-hat window, in which case the smoothed density contrasts at scale R and

R′ are independent for R 6= R′, δR performs a random walk as schematically

depicted in figure 2. Due to symmetry, every walk that up-crosses the thresh-

old at a given value R′ has a mirror-symmetric counterpart that moves below

the threshold again after δR′ = δc. Hence, when evaluating equation (82) for

the value R we have to account for all the walks that have already crossed

the threshold and therefore collapsed at R′ > R, which exactly yields a factor

of two [Bond et al. (1991)].

We may also worry about walks that up-cross the threshold multiple

times, but this will not affect the final number of collapsed objects, because

regions collapsing inside a larger collapsing region will be subsumed by the

latter and should not be counted as individual objects. This scenario is

also referred to as the cloud-in-cloud process. The fundamental quantity to

describe the number of collapsed objects of size R is therefore given by the
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δR

σR

Figure 2: Schematic random walks performed by δR for decreasing values of
R (i.e. increasing σR). The upper horizontal line shows the threshold barrier
δR = δc, the lower line δR = 0. Adopted from Bond et al. (1991).

first-crossing distribution

f(σR, δc) ≡
dF

dσ2
R

=
δc√

2πσ3
R

exp

(
− δ2

c

2σ2
R

)
, (83)

a detailed derivation of which is presented in Zentner (2007). It can directly

be related to the number density n of halos with via dn = ρ̄
M
|dF | and thus

dn

dM
=

ρ̄

M
f(σR, δc)

∣∣∣∣dσ2
R

dM

∣∣∣∣ , (84)

where dn/dM is the halo mass function, stating the number density of halos

with masses between M and M+dM . Expressing this in terms of the variable

ν = δc/σR and noting that

dlnσ2
R =

dσ2
R

σ2
R

=
1

σ2
R

d

(
δ2

c

ν2

)
= − 2

σ2
R

δ2
c

ν3
dν = −2

dν

ν
= −2dln ν , (85)

we arrive at

dn

dM
=

ρ̄

M2
σ2
Rf(σR, δc)

∣∣∣∣dlnσ2
R

dlnM

∣∣∣∣ =
ρ̄

M2
νf(ν)

dln ν

dlnM
, (86)
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with

νf(ν) =

√
2

π
ν exp

(
−ν

2

2

)
. (87)

The functional form of this expression is independent of cosmology, unlike

σR, so it is referred to as a universal halo mass function.

2.2 Underdensity

In order to define the abundance of voids, one may simply exchange the over-

dense threshold δc by the underdensity δv in the formalism above. This is

accurate initially, but subsequent gravitational evolution destroys the sym-

metry. Consider a random walk that up-crosses δc at some scale R and then

down-crosses δv at scale R′ < R. This corresponds to a void embedded in

a larger-scale overdensity that is bound to collapse, which means that the

void is doomed to be squeezed out of existence. The latter phenomenon is

known as the void-in-cloud process. Analogously one can also define the

void-in-void process, which is responsible for the formation of sub-voids,

the cloud-in-void process, and the cloud-in-cloud process already discussed

above. The random-walk trajectories for the four cases are exemplified in

figure 3, along with their corresponding regions in an N -body simulation.

In order to isolate the surviving voids, we have to modify equation (83)

by subtracting all voids that are affected by the void-in-cloud process,

f(σR, δv, δc) = f(σR, δv)−
∫ σ2

R

0

f(σR′ , δc)f(σR, δv | σR′ , δc) dσ2
R′ . (88)

That is, the number of voids of size R is determined by the fraction of walks

that cross the threshold δv at R, minus the fraction of those that had crossed

δc at all R′ > R before reaching δv. The latter term is a product of the

fraction of all walks that cross δc at R′ times the fraction of walks that cross

δv at R, if they have already crossed δc at R′, which needs to be integrated

over all R′. The solution of equation (88) can be found with the help of
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Laplace transforms, as shown in Sheth and van de Weygaert (2004),

f(σR, δv, δc) =
∞∑
j=1

j2π2D2

δ2
v

sin(jπD)

jπ
exp

(
−j

2π2D2

2δ2
v/σ

2
R

)
. (89)

The variable D is the so-called void-and-cloud parameter, defined as

D ≡ |δv|
δc + |δv|

. (90)

δR

σ2
R R[h−1Mpc]

Figure 3: Random walks performed by δR in four distinct cases. The right
panels show the associated evolution of the particle distribution in an N -body
simulation. Adopted from Sheth and van de Weygaert (2004).
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It determines the importance of the void-in-cloud process via the relative

difference between the values of δc and δv. For example, the total mass

fraction inside voids is given by∫
f(σR, δv, δc) dσ2

R = 1−D =
δc

δc + |δv|
. (91)

For δc � |δv|, D is small and voids account for nearly all the mass in the

universe. On the other hand, if δc � |δv|, almost all the mass is bound inside

halos. Equation (89) can be converted into a simpler approximative form for

δc/|δv| & 1/4 [Sheth and van de Weygaert (2004)],

νf(ν) '
√

2

π
ν exp

(
−ν

2

2

)
exp

[
−|δv|
δc

(
D

2ν

)2

− 2

(
D

ν

)4
]
, (92)

with ν = |δv|/σR. The first part coincides with equation (83), and the second

one is responsible for the void-in-cloud process. The two exponentials quickly

decay at very low and high ν, so the void distribution is peaked around values

of ν ' 1, as depicted in figure 4 for three different values of δc. δc mostly

affects small voids via the void-in-cloud process, but the abundance of large

voids is dictated by the value of δv only.

The typical comoving size of voids can be roughly estimated with the

help of equation (79) stating σ2
R ∝ R−n−3. For ν ' 1 we have σR ' |δv| and

therefore

R ' 8h−1Mpc

(
σ8

|δv|

) 2
n+3

, (93)

which corresponds to the size of the excursion-set region when it crosses

the threshold δv. After that the void expands nonlinearly and, according

to spherical evolution, stretches by a factor of 1.697 until shell crossing.

Assuming σ8 = 0.83, |δv| = 2.717, and n = −1.5 we then obtain Rv '
3h−1Mpc. In analogy to equation (84) we can define a void mass function.

However, a more natural quantity to describe voids is their volume Vv, or

their effective radius

Rv ≡
(

3

4π
Vv

)1/3

. (94)
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f(ν)

ν2

Figure 4: Three versions of equation (92) with δc = 1.06 (dashed), δc = 1.69
(solid), and δc →∞ (dotted). In each case, δv = −2.81. Adopted from Sheth
and van de Weygaert (2004).

The comoving volume of a void can be related to its mass M and initial

excursion-set scale R via

Vv =
M

ρ̄

(
Rv

R

)3

, (95)

where the ratio Rv/R ' 1.697 is given by spherical evolution. Now equa-

tion (86) can be rewritten in terms of

dM =

(
R

Rv

)3

ρ̄ dVv =

(
R

Rv

)3

ρ̄ 4πR2
v dRv = 3M dlnRv , (96)

and dlnM = 3 dlnRv, which yields the void size function

dn

dlnRv

=
1

Vv

(
Rv

R

)3

νf(ν)
dln ν

dlnRv

. (97)

We can now determine the cumulative volume fraction of all voids larger than
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a given size Rv,

Fv(Rv) =

∫ ∞
Rv

dn

dlnR′v
Vv dlnR′v =

(
Rv

R

)3 ∫ ∞
ν(Rv)

νf(ν) dln ν , (98)

which for all voids down to Rv = 0, with equation (91) becomes

Fv(0) =

(
Rv

R

)3

(1−D) . (99)

For δv = −2.717, δc = 1.686, and Rv/R = 1.697 we obtain Fv(0) ' 1.871,

which is unphysical as it exceeds unity. If we relax the shell-crossing condition

by choosing a less negative value for δv and use equation (63) to calculate

the corresponding nonlinear void stretch Rv/R, Fv(0) is reduced, but at the

expense of increasing the number of large voids. Only for δv → 0 and thus

D → 0 and Rv/R → 1 we restore physicality with Fv(0) = 1. Note that

in the derivation of equation (99) we have assumed the number density of

voids to be conserved during nonlinear evolution. However, due to the finite

amount of available volume in the universe, many voids will end up merging

with each other. This argues for the total volume of voids being conserved,

and not their number density [Jennings et al. (2013)]. Therefore we may

require Fv(Rv) = Fv(R) during nonlinear evolution, and thus

Vvdn(Rv) = V dn(R) , (100)

which modifies equation (97) to

dn(Rv)

dlnRv

=
V

Vv

dn(R)

dlnR

dlnR

dlnRv

=
1

Vv

νf(ν)
dln ν

dlnRv

. (101)

Here we assumed dlnR/dlnRv = 1, which applies in the spherical evolution

model, but may not hold in general. In this case the total void volume

fraction becomes Fv(0) = 1−D, obeying physicality for all values of δv and

δc, and in particular Fv(0) ' 0.383 for δv = −2.717 and δc = 1.686.
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3 Clustering statistics

3.1 Void profile

The void density profile is defined as the spherically averaged relative devia-

tion of mass density around a void center from the mean value ρ̄ across the

universe,

uv(r) ≡ ρv(r)

ρ̄
− 1 . (102)

Figure 5 shows such average density profiles from dark matter N -body sim-

ulations for voids of different size. Voids are deeply underdense in their

interiors, most notably the smallest ones. The profiles all exhibit overdense

compensation walls with a maximum located slightly outside their effective

radius, shifting outwards for larger voids. The height of the compensation

wall decreases with void size, causing the inner profile slope to become shal-

lower and the wall to widen. This trend divides all voids into being either

overcompensated or undercompensated, depending on whether the total mass

within their compensation wall exceeds or falls behind their missing mass

in the center, respectively. Ultimately, at sufficiently large distances to the

void center, all profiles approach the mean background density. A simple

empirical formula can accurately capture the properties described above,

uv(r) = δc
1− (r/rs)

α

1 + (r/Rv)β
, (103)

where δc is the central density contrast, rs a scale radius at which ρv = ρ̄,

and α and β determine the inner and outer slope of the void’s compensation

wall, respectively [Hamaus et al. (2014a)].

The lower panel of figure 5 depicts the corresponding radial velocity pro-

files. Note that a positive velocity implies outflow of tracer particles from

the void center, while a negative one denotes infall. As the largest voids

are undercompensated (void-in-void scenario), i.e. the total mass in their

surrounding does not make up for the missing mass in their interior, they

are characterized by outflows in the entire distance range. Tracer velocities

increase almost linearly from the void center until they reach a maximum lo-
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Figure 5: Density (top) and velocity (bottom) profiles of voids at redshift zero
in 8 contiguous bins in void radius with mean values and void counts indicated
in the inset. Solid lines represent best-fit solutions from equation (103) for
density – and from equations (9) and (104) for velocity profiles. Adopted
from Hamaus et al. (2014a).

cated slightly below the effective void radius of each sample, which indicates

the increasing influence of the overdense compensation wall. When passing

the latter, tracer velocities are continuously decreasing again in amplitude

and approach zero in the large distance limit. Small voids may exhibit infall

velocities, as they can be overcompensated (void-in-cloud scenario). This
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causes a sign change in their velocity profile around the void’s effective ra-

dius beyond which matter is flowing onto its compensation wall, ultimately

leading to a collapse of the void. Moreover, because small voids are more

underdense in the interior, their velocity profile is more nonlinear and less

accurately sampled there. The distinction between overcompensation and

undercompensation can directly be inferred from velocities, since only over-

compensated voids feature a sign change in their velocity profile, while under-

compensated ones do not. Consequently, the flow of tracer particles around

precisely compensated voids vanishes already at a finite distance to the void

center and remains zero outwards.

In linear theory the velocity profile can be related to the density profile

using equations (9) and (10). With the empirical form of equation (103), the

average density contrast becomes

∆(r) = δc 2F1

[
1,

3

β
,

3

β
+ 1,−(r/Rv)β

]
− 3δc(r/rs)

α

α + 3
2F1

[
1,
α + 3

β
,
α + 3

β
+ 1,−(r/Rv)β

]
, (104)

where 2F1 is the Gauss hypergeometric function. When plugged into equa-

tion (9), this can be used to compare to the velocity profiles obtained from

simulations, the results are shown as solid lines in the lower panel of figure 5.

With the explicit form for the average density contrast in equation (104), it

is straightforward to determine the void’s uncompensated mass, defined as

δM = lim
r→∞

4π

3
ρ̄r3∆(r) . (105)

The limit exists only for β > α + 3 and yields

δM =
4π2ρ̄R3

vδc

β
{csc (3π/β)− (Rv/rs)

α csc [(α + 3)π/β]} , (106)

i.e., independently of δc, compensated voids with δM = 0 satisfy the relation(
rs
Rv

)α
=

sin(3π/β)

sin [(α + 3)π/β]
. (107)
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3.2 Void model

In analogy to the well studied halo model [Cooray and Sheth (2002)], we can

define a void model of large-scale structure that similarly assumes the entire

matter distribution to be described as a superposition of voids [Hamaus et al.

(2014b)]. In this manner, the cross-power spectrum between void centers and

halos can be split into two terms as a function of wavenumber k – a one-void

(or shot noise) term

P
(1V)
vh (k) =

1

n̄vn̄h

∫
dnv(Rv)

dRv

Nh(Rv) uv(k|Rv) dRv , (108)

which only considers correlations between the Nh halos and the void center

within any given void of radius Rv, and a two-void term responsible for

correlations between halos and void centers in distinct voids,

P
(2V)
vh (k) =

1

n̄vn̄h

∫∫
dnv(Rv)

dRv

dnh(Mh)

dMh

bv(Rv)bh(Mh)

× uv(k|Rv)Pmm(k) dRvdMh . (109)

dnv/dRv and dnh/dMh are, respectively, the void size function and the halo

mass function. Their corresponding linear bias parameters are bv and bh.

uv(k|Rv) describes the normalized density profile for voids of radius Rv in

Fourier space and Pmm(k) the auto-power spectrum of dark matter. For a

narrow range in Rv, the total void-halo cross-power spectrum becomes

Pvh(k) ' bvbhuv(k)Pmm(k) + n̄−1
v uv(k) , (110)

where all explicit dependences on void radius and halo mass have been

dropped for simplicity. Analogously, for the auto-power spectra of voids

and halos the model yields

Pvv(k) ' b2
vPmm(k) + n̄−1

v , (111)

Phh(k) ' b2
hPmm(k) + n̄−1

h , (112)
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so in the high sampling limit of n̄−1
v , n̄−1

h � Pmm, the void density profile in

Fourier space can be estimated as

uv(k) ' bhPvh(k)

bvPhh(k)
' Pvh(k)

Phh(k)
× Phh(k)

Pvh(k)

∣∣∣∣
k→0

. (113)

Its relation to configuration space can be expressed via

uv(k) =
ρ̄

δM

∫ ∞
0

uv(r)
sin(kr)

kr
4πr2 dr , (114)

where uv(r) is the density profile in configuration space and δM the void’s

uncompensated mass. The profile is normalized such that uv(k → 0) = 1

[Cooray and Sheth (2002)], i.e.

δM = ρ̄

∫ ∞
0

uv(r)4πr2 dr . (115)

From equation (114) we also have uv(k → ∞) = 0, assuming |ruv(r)| < ∞.

Likewise, uv(r → ∞) = 0, as voids are local structures with a finite extent.

The remaining limit is determined by the matter density in the void center,

which for an empty void yields uv(r → 0) = −1.

Simulation results for the various power spectra between dark matter,

mock galaxies (as observational proxies for halos), and voids are shown in

figure 6. While the auto-power spectrum of galaxies closely follows the shape

of the underlying matter power spectrum, this is not the case for voids. Here

the shot noise term in equation (111) dominates over the bare clustering

term. The latter is suppressed due to the low bias parameter of the selected

voids, in this case bv ' 0.8. The cross-power spectrum between galaxies and

voids largely avoids this problem, as shot noise turns out to be much lower.

We can identify two regimes as suggested by equation (110): linear clustering

with constant bias on large scales and a nonlinear suppression of power on

small scales due to the void profile. The cross-power spectrum even turns

negative and reaches a minimum at k ∼ π/Rv, a consequence of galaxy-void

exclusion, which also causes the shot noise to be much lower than expected

from equation (110).
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Figure 6: Auto- and cross-power spectra for all possible combinations of dark
matter, galaxies and voids (solid lines connected by symbols, line omitted
when negative). Subtracting shot noise (drawn in dotted if positive and
dot-dashed if negative) yields the dashed lines. Shaded bands show 1σ-
uncertainties. Adopted from Hamaus et al. (2014b).

For the particular case of a compensated void, whose density decrement

in its center is exactly balanced by an overdense wall around it, the normal-

ization condition uv(k → 0) = 1 cannot be enforced, as δM = 0. Due to

the geometric definition of voids it is more meaningful to normalize equa-

tion (114) by the void volume Vv, which yields a renormalized profile bv(k)

with
δM

ρ̄Vv

uv(k) ≡ bv(k) , (116)

such that |bv(k)| < ∞ for all δM . This matches the large-scale cluster-

ing properties of voids in the linear regime to the nonlinear domain of the

internal void structure, so it can be interpreted as a scale-dependent void

bias bv(k) ≡ bvuv(k). In particular, it agrees with the fact that compen-
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sated structures (δM = 0) do not generate any large-scale power (bv = 0),

because they only rearrange mass locally [Cooray and Sheth (2002)]. Equa-

tion (116) gives a simple explanation of linear bias: it is the uncompensated

mass δM = M − ρ̄V of a tracer compared to the mass of an equally sized

region of volume V of the background, b = δM/ρ̄V . This is indeed predicted

by so-called Poisson cluster models [Sheth (1998)], where halo bias arises as

a consequence of mass conservation, or in other words: the distribution of

halos depends on their environment. Thanks to the symmetry of the initial

Gaussian field, this argument applies to voids just as well, with the advan-

tage of the volume of voids being observationally more accessible than the

volume of halos. Unfortunately, uncompensated mass is not directly observ-

able (except via gravitational lensing), but we can define a similar relation

to equation (116) using galaxies as tracer particles, with the replacements

δM → δNg = Ng − n̄gV and ρ̄ → n̄g. This yields the relative bias between

voids and galaxies,
δNg

n̄gVv

uv(k) ' bv(k)

bg

. (117)

The zero-crossing of the relative bias as a function of Rv provides the void

radius of compensation. As it coincides with the zero-crossing of the abso-

lute void bias bv(Rv), this suggests that if voids are compensated by galaxies

(δNg = 0), they are also compensated in mass (δM = 0) and vice versa. If

mass conservation is assumed, only compensated voids should remain com-

pensated in the course of cosmological evolution and may therefore serve as

a static ruler on scales much smaller than the baryon acoustic oscillations

(conversely, mass conservation can be tested on cosmological scales if com-

pensated voids are assumed to be static rulers). In contrast to a standard

ruler the comoving size of a static ruler is not necessarily determined by a

physical scale, but it is conserved and thus can be used to probe the expan-

sion history of the universe. In simulations, the zero-crossing of bv(Rv) is

found at Rv ' 20h−1Mpc, independently of redshift [Hamaus et al. (2014b)].
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4 Cosmology with voids

4.1 Redshift-space distortions

Let us consider a void center at comoving coordinate X located on our line

of sight, and a galaxy at location x, with separation r = x − X from it

(unless necessary, the subscripts referring to galaxies and voids are omitted

in this section). Because we use the redshift z of the galaxy to determine

its comoving distance to us, its peculiar velocity v will have a contribution

via the Doppler effect [Kaiser (1987)], so the inferred separation between the

galaxy and the void center in redshift space is

s = r + (1 + z)
X̂ · v
H(z)

X̂ , (118)

where H(z) is the Hubble rate, X̂ = X/|X|, and we assumed |r| � |X| such

that x and X are approximately parallel (distant-observer approximation).

As long as we only consider relative motions between galaxies and void cen-

ters on scales of the void extent, bulk motions between different voids can be

neglected.

The galaxy’s peculiar velocity is sourced by the underlying mass distri-

bution of the void, which obeys spherical symmetry in the cosmic average.

According to the linearized mass-conservation equation (9), it can be related

to the average mass-density contrast ∆(r) within radius r = |r| around the

void center,

v(r) = −1

3

f(z)H(z)

1 + z
r∆(r) , (119)

where f(z) is the logarithmic growth rate for linear density perturbations.

Assuming General Relativity (GR) and the standard ΛCDM-model for cos-

mology, it can be expressed as a power of the matter-density parameter,

f(z) = Ω γ
m(z), with a growth index of γ ' 0.55. The void-galaxy cross-

correlation function in redshift space, ξs, can be related to its real-space
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counterpart ξ via the general transformation

1 + ξs(s) =

∫
[1 + ξ(r)]P(v, r) d3v , (120)

where the pairwise velocity probability distribution function P(v, r) maps all

void-galaxy pairs of separation r to separation s depending on their relative

velocity v. According to equation (118) only the magnitude of the relative

velocity component along the line of sight v‖ ≡ X̂ · v affects the vector s,

which reduces equation (120) to a one-dimensional integral via the replace-

ments P(v, r)→ P(v‖, r) and d3v → dv‖. A Gaussian form for the pairwise

velocity probability distribution function in most cases provides a reasonable

approximation,

P(v‖, r) ' 1√
2πσv(r)

exp

[
−
(
v‖ − v(r)

r‖
r

)2

2σ2
v(r)

]
, (121)

with a mean of v(r)r‖/r, where r‖ ≡ X̂ · r, and dispersion σv. This model is

referred to as the Gaussian streaming model as a description for the galaxy

auto-correlation function in redshift space [Fisher (1995)]. We can now make

use of equation (119) to relate the void velocity profile to the average density

contrast, which itself depends on the void density profile via equation (10).

Assuming a specific form for the density profile, such as equation (103), allows

to fully specify the void-galaxy cross-correlation function of equation (120)

[Hamaus et al. (2016, 2015)]. Figure 7 shows this function as calculated from

a large simulation of mock galaxies, including a best-fit Gaussian streaming

model using equation (103) as a template for the void density profile.

Note that the real-space cross-correlation function ξ(r) is nothing else

than the void galaxy-density profile uvg(r) in this case. Labeling each of all

Nv void centers with index i and coordinates Xi, and similarly each of all Ng

galaxies with index j and coordinates xj, we have

uvg(r) + 1 =
nvg(r)

n̄g

=
1

Nv

∑
i

n
(i)
vg(r)

n̄g

=
1

Nv

∑
i

V

Ng

∑
j

δD(Xi − xj + r) ,

(122)
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Figure 7: Void-galaxy cross-correlation function from a mock-galaxy catalog
in redshift space. White contours show the best-fit Gaussian streaming model
with use of equation (103). Adopted from Hamaus et al. (2015).

where the first equality describes the ensemble average over all individual

void galaxy-density profiles and the second one represents a histogram of

Dirac delta functions δD for the galaxy positions xj at separation r from

each void center Xi. This expression can be written as a convolution of the

number density of void centers nv with the number density of galaxies ng,

V
∑
i,j

∫
1

Nv

δD(Xi − x)
1

Ng

δD(x− xj + r) d3x =

=
1

V

∫
nv(x)

n̄v

ng(x + r)

n̄g

d3x = 1 + ξ(r) , (123)

where V is the total observed volume, n̄v = Nv/V , n̄g = Ng/V , and ξ(r)

denotes the void-galaxy cross-correlation function in real space.
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Unfortunately, the average mass-density contrast ∆(r) around voids is not

directly observable, but with the help of simulations it has been demonstrated

that its relation to the corresponding average galaxy-density contrast ξ(r) is

remarkably linear [Pollina et al. (2017)],

ξ(r) = b∆(r) , (124)

with a single galaxy-bias parameter b. Therefore, in exchanging ∆(r) with

the observable ξ(r) in equation (119), we can absorb the bias parameter into

the definition of the growth rate by defining the relative growth rate β ≡ f/b.

Then, plugging this into equation (118), we have

s = r− β

3
X̂ · r ξ(r)X̂ . (125)

The total number of galaxies cannot be altered by redshift-space distor-

tions, therefore the void-galaxy cross-correlation functions in real and redshift

space, ξ and ξs, must satisfy∫
[1 + ξ(r)]d3r =

∫
[1 + ξs(s)]d3s =

∫
[1 + ξs(r)] det

(
∂s

∂r

)
d3r . (126)

In the last step we introduce the determinant of the Jacobian ∂s/∂r to per-

form a coordinate transformation between s and r. Using equation (125) the

Jacobian equates to

∂s

∂r
= 1− β

3

[
ξ(r) X̂X̂ᵀ + X̂ · r ∂ξ(r)

∂r
X̂

]
, (127)

where 1 represents the unit matrix. Upon taking the determinant, we obtain

det

(
∂s

∂r

)
= 1− β

3
ξ(r)− β

3
X̂ · r ∂ξ(r)

∂r

r

r
· X̂ , (128)

where we made use of the identity ∂r/∂r = r/r and the determinant lemma

det(A + uvᵀ) = detA
(
1 + vᵀA−1u

)
, (129)
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for any invertible square matrix A and vectors u, v of the same dimension.

The average galaxy-density contrast is an integral over the void-galaxy cross-

correlation function,

ξ(r) =
3

r3

∫ r

0

ξ(r′)r′2dr′ , (130)

with ∂ξ(r)/∂r = 3/r
[
ξ(r)− ξ(r)

]
. Defining the angle ϑ between the line-of-

sight direction X and the separation vector r via

cosϑ =
X · r
|X||r|

≡ µ , (131)

the determinant of the Jacobian can be written as

det

(
∂s

∂r

)
= 1− β

3
ξ(r)− βµ2

[
ξ(r)− ξ(r)

]
. (132)

Using this in equation (126) and solving for ξs to linear order in ξ and ξ

finally yields a relation between the real-space and redshift-space void-galaxy

cross-correlation functions,

ξs(r, µ) = ξ(r) +
β

3
ξ(r) + βµ2

[
ξ(r)− ξ(r)

]
. (133)

As ξs is no longer isotropic, one can decompose the redshift-space correlation

function into multipoles using the Legendre polynomials P`(µ) via

ξ`(r) =

∫ 1

0

ξs(r, µ)(1 + 2`)P`(µ)dµ . (134)

The only non-vanishing multipoles of Eq. (133) are the monopole with P0 = 1

and the quadrupole with P2 = (3µ2 − 1)/2,

ξ0(r) =

(
1 +

β

3

)
ξ(r) , (135)

ξ2(r) =
2β

3

[
ξ(r)− ξ(r)

]
. (136)

Hence, these two functions fully determine the void-galaxy cross-correlation
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function in redshift space, which can then be expressed as

ξs(r, µ) = ξ0(r) +
3µ2 − 1

2
ξ2(r) . (137)

The monopole and quadrupole are related via a simple linear equation,

ξ0(r)− ξ0(r) = ξ2(r)
3 + β

2β
, (138)

which, given the multipole measurements, solely depends on the relative

growth rate β = f/b. Figure 8 depicts measurements of these multipoles

from galaxies and voids observed with the Sloan Digital Sky Survey (SDSS).

The functional form of the quadrupole nicely agrees with the combination

ξ0 − ξ0, as predicted by equation (138). Figure 9 summarizes constraints on

β from the LOWZ and CMASS samples of the SDSS, and compares them to

the standard model expectations in cosmology.
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Figure 8: Multipoles of the void-galaxy cross-correlation function in the
CMASS sample of the SDSS. Adopted from Hamaus et al. (2017).
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Figure 9: Growth rate constraints from LOWZ (blue circles) and CMASS
(red squares). Stars represent the joint constraint from voids of all redshifts
in each sample. Vertical solid lines indicate 1σ, dotted lines 2σ confidence
intervals, and horizontal lines delineate redshift bins. The dashed line with
yellow shading shows β = Ω γ

m(z)/b, with Ωm(z = 0) = 0.308 ± 0.012, γ =
0.55, and b = 1.85, assuming a flat ΛCDM cosmology and GR. Adopted
from Hamaus et al. (2017).

4.2 Alcock-Paczyński test

4.3 Weak lensing

4.4 Integrated Sachs-Wolfe effect
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