V EINFACHE STERNMODELLE

Einfache Sternmodelle:

- -homogene Sterne
- einfache Zustandsgleichung
- Sterne, die sich durch Ähnlichkeitsgesetze beschreiben lassen (Homologie)

17. Polytrope Gaskugeln

Einfachster Typ von Stemmodellen (Emden (1907), Lane (1870), Ritter (1878), Kelvin (1887))

17.1. Definitionen

Polytrope: wenn 3 Beziehung zwischen Pund (unabhängig von T) von der Form P ~ gv.

Polytropenbeziehung

$$P = K g^{1 + \frac{1}{n}}$$

 $\frac{P = K g^{1 + \frac{1}{n}}}{n = Polytropenindex}, K = Polytropenindex$

Polytropenbeziehung gilt im ganzen Stern, $\frac{\partial K}{\partial M} = 0$, $\frac{\partial n}{\partial M} = 0$ > K und n sind räumlich konstant.

K und n können zeitlich variabel sein

- Die Polytropenbeziehung braucht nicht mit der Zustandsgleichung identisch zu sein.
- 3 2 Möglichkeiten für Polytrope:
 - a) Die Zustandsgleichung ist polytrop

→
$$P = K g^{1 + \frac{1}{n}}$$

Beispiele: Vollst. entartetes Elektronengas

(-- 14.)

loge

 $\Delta \log q = 1$

 $logP \land n = 1 \frac{3}{2}$

- nicht-rel. entartet : P = const. $9^{5/3}$ n = 3/2 extrem rel. entartet : P = const. $9^{4/3}$ n = 3
- b) Koppelung von P- und T-Schichtung

Zustandsgleichung P = P(S,T) + Nebenbedingung T = T(P)

Beispiele: 1) isotherme Schichtung: T=const. (kommt vor!)

mit idealem Gas
$$P = \frac{Q}{\mu} gT \Rightarrow P = const. g \Rightarrow n = \infty$$

2) adiabatische Schichtung:
$$T = const. P^{\nabla_{\alpha}}$$
 (bei Konvektion) mit idealem Gas $P = \frac{Q}{\mu} gT \Rightarrow P = const. g^{1/(1-\nabla_{\alpha})}$

$$\Rightarrow n = \frac{1-\nabla_{\alpha}}{\nabla_{\alpha}}$$

1-atomiges ideales Gas:
$$\sqrt{a} = \frac{2}{5} \rightarrow n = \frac{3}{2}$$

Wichtiger Unterschied: Wenn Zustandsgleichung polytrop → K bekannt
Wenn P- und T- Schichtung gekoppelt → K frei,
von Tabhängig!

17.2. Die Emdensche Differentialgleichung

Wenn P=P(g): mechanischer und thermischer Teil des Systems der Grundgleichungen entkoppelt (→ 10.4). Polytrope: nur mech. Struktur!

Zu lösende Gleichungen:
$$\frac{dP}{dr} = -\frac{GMr}{r^2}$$
 ; $\frac{dMr}{dr} = 4\pi r^2$; $P = Kg^{1+\frac{1}{n}}$

Umrechnung in eine Differentialgleichung 2. Ordnung

$$M_r = -\frac{1}{G} \frac{r^2}{g} \frac{dP}{dr} \Rightarrow \frac{dM_r}{dr} = -\frac{1}{G} \frac{d}{dr} \left(\frac{r^2}{g} \frac{dP}{dr}\right) = 4\pi r^2 g$$

 $\frac{1}{r^2} \frac{d}{dr} \left(\frac{r^2}{9} \frac{dP}{dr} \right) = -4 \pi G g$ Poisson-Gleichung

Benützen die Polytropenbeziehung
$$\rightarrow \frac{dP}{dr} = K(1+\frac{1}{n}) g^{\frac{1}{n}} \frac{dQ}{dr}$$

Substitution:
$$r = \alpha \times$$

$$\Rightarrow \frac{1}{\alpha^2} \frac{K(\frac{n+1}{n})}{4\pi G} \frac{1}{x^2} \frac{d}{dx} \left(x^2 g^{\frac{1}{n}-1} \frac{dg}{dx}\right) = -g$$

$$S = \lambda y^n \qquad \Rightarrow \quad \frac{1}{\alpha^2} \frac{K(n+1)\lambda^{\frac{4}{n}-1}}{4\pi G} \frac{1}{\chi^2} \frac{d}{d\chi} \left(\chi^2 \frac{dy}{d\chi}\right) = -y^n$$

Wählen nun
$$\alpha$$
: $\alpha^2 = \frac{K(n+1)\lambda^{\frac{1}{n}-1}}{4\pi G}$ $\Rightarrow \alpha = \alpha(n, K, \lambda)$

$$\frac{1}{x^2} \frac{d}{dx} \left(x^2 \frac{dy}{dx} \right) = -y^n$$
:

 $\frac{1}{x^2} \frac{d}{dx} \left(x^2 \frac{dy}{dx} \right) = -y^n$: Emdensche Differentialgleichung (transformierte Poisson-Gleichung)

ausdifferenzierte Emdengleichung:
$$\frac{d^2y}{dx^2} + \frac{2}{x} \frac{dy}{dx} + y^n = 0$$

Haben noch einen freien Parameter : λ . Wählen $\lambda = \varsigma_c$

Randbedingungen im Zentrum:
$$r=0$$
 und $g(r=0)=g_0$

$$x = 0$$
 und $y(x = 0) = 1$. Ausserdem: $\lim_{x \to 0} \frac{2}{x} \frac{dy}{dx} < \infty$ $\Rightarrow \frac{dy}{dx} = 0$

- Emdengleichung bleibt endlich bei x=0.

17.3 Lösungen der Emdengleichung

a) Lösung durch Potenzreihenansatz
$$y(x) = \sum_{\nu=0}^{\infty} C_{\nu} x^{\nu}$$
 ergibt $C_0 = 1$, $C_4 = 0$, $C_2 = -\frac{1}{6}$, $C_3 = 0$, $C_4 = \frac{n}{120}$

$$y(x) = 1 - \frac{x^2}{6} + \frac{nx^4}{120} + \cdots$$

b) Analytische Lösungen existieren für n = 0,1,5

$$n = 0$$
 : $y(x) = 1 - \frac{x^2}{6}$

$$n = 1 : y(x) = \frac{\sin x}{x}$$

$$n = 5$$
 : $y(x) = \frac{1}{(1+x^2/3)^{\frac{1}{2}}}$

n = 5: $y(x) = \frac{1}{(1+x^2/3)^{\frac{1}{2}}}$ \(\text{\text{unendlich} ausgedehnte Gleichgewichts}\) konfiguration y→o für x→∞

c) Numerische Lösungen: rel. einfach zu berechnen, da die Randbedingungen festliegen.

Lösungen für verschiedene n : <u>Lane - Emden - Funktionen</u>

d) <u>Diskussion der Lane - Emden - Funktionen</u>

- In der Nähe des Zentrums (x+o) \forall n : $y(x) = 1 \frac{x^2}{6}$, $x \ll 1$
- \forall n<5 hat y(x) eine Nullstelle x_o< ∞ . X_o \triangleq Rand der Polytrope . Alle Polytrope mit n<5 haben einen scharfen Rand, y'(x_o)<0.

17.4 Masse und Radius von Polytropen

Radius:
$$R = \alpha x_o = \left[\frac{K(n+1) \frac{q^{\frac{4}{n}-1}}{4\pi G}}\right]^{\frac{1}{2}} x_o$$

$$\underline{\text{Masse}:} \quad \underline{M_r} = \int_0^r 4\pi r^2 g(r) dr = 4\pi g_c \alpha^3 \int_0^x \xi^2 y^n(\xi) d\xi = -4\pi g_c \alpha^3 \int_0^x \frac{d}{d\xi} (\xi^2 \frac{dy}{d\xi}) d\xi$$

$$\underline{M_r} = -4\pi g_c \alpha^3 x^2 \frac{dy}{dx} \qquad \underline{M} = -4\pi g_c \alpha^3 x^2 (\frac{dy}{dx})_{x_0}$$

Setzen a ein und erhalten:

$$M = -4\pi \left(\frac{K(n+1)}{4\pi G}\right)^{3/2} g_c^{\frac{3-n}{2n}} x_o^2 \left(\frac{dy}{dx}\right)_{x_o}$$

► Für n=3 hängt M nicht mehr von g ab!

$$M(n = 3) = -4\pi \left(\frac{K}{\pi G}\right)^{3/2} \left(x_o^2 y'(x_o)\right)_{n=3}$$
 (Wichtig bei Weissen Zwergen, -18)

17.5 Der Freiheitsgrad der Lösungen

Betrachten für festes n y(x) im Intervall $[0, x_0]$. Fallunterscheidung:

a) Die Polytropenkonstante ist gegeben, d.h. Zustandsgleichung $P=Kg^{\frac{1}{n}+1}$

$$R^{3-n} = \frac{1}{4\pi} \left[\frac{K(n+1)}{G} \right]^n \left[-x_o^{\frac{n+1}{n-1}} \left(\frac{dy}{dx} \right)_{x=x_o} \right]^{n-1} M^{1-n}$$
 Masse-Radius-Beziehung

Bemerkungen zur Masse-Radius-Beziehung:

- 1) Für festes n und K 3 eindeutige M-R-Beziehung
- 2) Für n = 3 ist M unabhängig von R! (-> Weisse Zwerge)
- 3) Für n = 1 ist R unabhängig von M
- 4) Aus $R^{3-n} \sim M^{4-n}$, d.h. $R \sim M^{\frac{4-n}{3-n}}$ folgt

$$\frac{dR}{dM} \sim \frac{4-n}{3-n} \quad M^{-\frac{2}{3-n}} \quad \Rightarrow \quad \frac{dR}{dM} > 0 \quad \text{für } n < 1 \text{ und } n > 3$$

$$\frac{dR}{dM} < 0 \quad \text{für } 1 < n < 3$$

→ für 1S_c mit Mzu:
$$\frac{dS_c}{dM} \sim \frac{2n}{3-n} M^{\frac{3n-3}{3-n}}$$

Verlauf von Druck und Dichte ist durch die M-R-Beziehung ebenfalls eindeutig bestimmt

Für gegebenes M und n ist

$$\alpha = \frac{R}{X_o} = \frac{r}{X} = \left(\frac{1}{4\tilde{N}}\right)^{\frac{1}{3-n}} \left[\frac{K(n+1)}{G}\right]^{\frac{n}{3-n}} \left[-\frac{1}{X_o^2 y^1(x_o)}\right]^{\frac{1-n}{3-n}} M^{\frac{1-n}{3-n}} = const.$$

- Mit $g(\frac{r}{\alpha}) = g(x) = g_c y^n(x)$ sind g(r), P(r) und $M_r(r)$ eindeutig bestimmt.
 - Die Lösungen haben keine weiteren Freiheitsgrade mehr. Für gegebene K,n und M gibt es nur eine einzige Lösung.

$$\underline{\overline{S}} = \underline{\frac{M}{4\pi}(dx_0)^3} = -3S_c \frac{y'(x_0)}{x_0}$$

Mass für die Massenkonzentration :
$$\frac{9c}{9} = -\frac{1}{3} \frac{x_0}{y'(x_0)}$$

Massenkonzentration nimmt mit wachsendem n stark zu!

$$\underline{\text{Zentraldruck von Polytropen}}: \ P_{c} = K \, g_{c}^{\frac{1}{n}+1} = \underline{\frac{GM^{2}}{R^{4}}} \, \underline{\frac{1}{4\pi (n+1)(y^{1}(x_{o}))^{2}}}$$

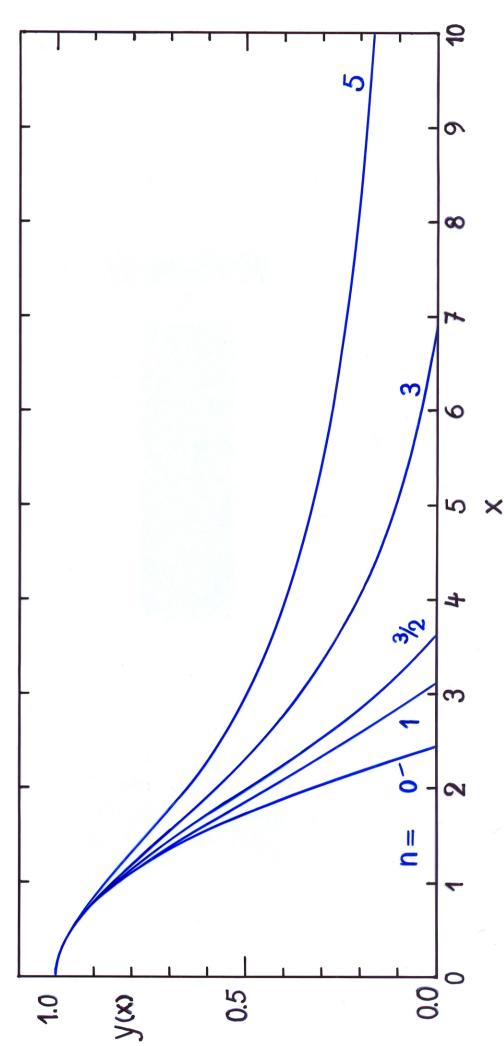
Potentielle Energie :
$$E_{G} = -\frac{3}{5-n} \frac{G M^2}{R}$$

- b) <u>Wenn K unbekannt</u> bleiben alle unter a) abgeleiteten Beziehungen richtig mit folgendem wichtigen Unterschied:
- K tritt als zusätzlicher Parameter auf
- > Polytrope mit unbekanntem K haben einen Freiheitsgrad mehr!
- → Keine eindeutige M-R-Beziehung, sondern einparametrige Schar von Lösungen zu vorgegebenem M und n, mit K oder g als Parameter.

17.6. Konstanten der Lane-Emden-Funktionen

n	Xo	$-x_0^2 y'(x_0)$	Sc / ₹
0	2.4494	4.8988	1.0000
0.5	2.7528	3.7878	1.8361
1.0	3.14159	3.14159	3.28987
1.5	3.653 7 5	2.71406	5.99071
2.0	4.35287	2.41105	11.40254
2.5	5.35528	2.18720	23.40646
3.0	6.89685	2.01824	54.1825
3.25	8.01894	1.94980	88.153
3.5	9.53581	1.89056	152.884
4.0	14.97155	1.79723	622.408
4.5	31.83646	1.73780	6189.47
4.9	169.47	1.7355	934000.
5.0	00	1.73205	œ

$$\frac{1}{x^2} \frac{d}{dx} \left(x^2 \frac{dy}{dx} \right) = -y^n$$
; $y(0) = 1$,



Zur Geschichte

- 1834 Bessel (1784 1846) entdeckt variable Eigenbewegung von Sirius
 - → Doppelstern mit unsichtbarem Begleiter
- 1862 A.G. Clark findet Sirius Begleiter nahe am vorausberechneten Ort

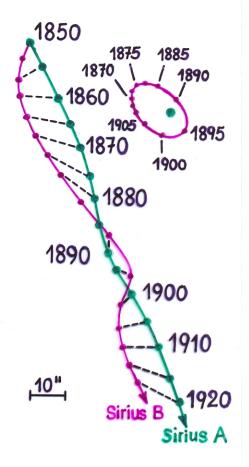
Aus den Bahnelementen und der Parallaxe folgt für Sirius B $M\sim 1M_{\odot}$, $L\sim \frac{1}{400}$ L_{\odot}

- 1915 Adams bestimmt Spektraltyp von Sirius B SpT ~ F ~ T \approx 8500 K , R $\approx \frac{1}{55}$ Ro $\overline{\xi} \approx 61'000 \text{ g cm}^{-3}$!
- A.S. Eddington formuliert Paradoxon: Hohe Dichte nur bei vollst. Ionisation, d.h. bei hohen Temperaturen möglich. Stern mit mit so hoher Dichte braucht Energie um abzukühlen!
- 1925 Adams misst Gravitationsrotverschiebung bei Sirius B (V_R ≈ 20 km/s) bestätigt damit Voraussage der ART und hohes $\overline{\varsigma}$ von Sirius B.
- 1926 R.H. Fowler löst Eddingtons Paradoxon: Vollst. Ionisation nicht nur bei hohem T möglich, sondern auch bei T→0, wenn nur der Druck hoch genug (Druckionisation). Pauli-Prinzip, d.h. Fermi-Dirac-Statistik für das Elektronengas (Entartungsdruck)

 → Zustandsgleichung, WZ sind Polytrope mit n = 3/2 → R ~ M^{-1/3}.
- S. Chandrasekhar verallgemeinert Fowlers Ansatz: Berücksichtigung der speziellen RT \rightarrow rel. Entartung \rightarrow Grenzmasse für WZ. Beginn der Kontroverse mit Eddington. Eddington: Relativist. Entartung gibt es nicht, folglich auch keine Grenzmasse. Die M-R-Beziehung ist R \sim M^{-1/3} für beliebige M.

Chandrasekhar sucht Unterstützung bei Physikern (u.a. bei Bohr und Pauli), die sich aber nicht öffentlich zur Sache äussern.

1938/39 Chandrasekhar zieht Schlusstrich unter die Affaire, schreibt sein Buch An Introduction to the Study of Stellar Structure und wendet sich anderen Dingen zu. (Die Kontroverse endet letztlich mit Eddingtons Tod.).



18. Weisse Zwerge

Weisse Zwerge: eines der wichtigsten Anwendungsgebiete für Polytropen

18.1 Abschätzung charakteristischer Grössen

Prototyp eines Weissen Zwergs: Sirius B, der Begleitstern von Sirius A (Sirius B: entdeckt von A.C. Clark 1862; Sirius AB = Doppelstern, P = 49.9a)

Charakteristische Grössen von Sirius B:

$$M = 1.05 M_{\odot}$$

$$R = 0.008 R_{\odot}$$

$$\Rightarrow \text{ mittlere Dichte } \overline{g} = 2.9 \cdot 10^{6} \text{ gcm}^{-3}$$

Charakteristische Grössen anderer Weisser Zwerge (Mittelwerte)

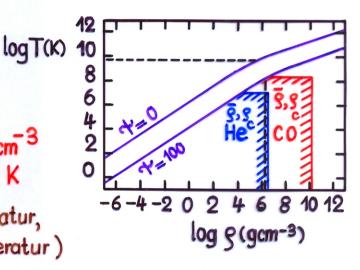
$$\langle M \rangle = 0.58 \, M_{\odot} \, , \, d_{M} = 0.1 \, M_{\odot} \, < R \rangle = 0.012 \, R_{\odot} \,$$

$$\sim \langle \bar{g} \rangle = 4.7 \cdot 10^5 \text{ gcm}^3$$

$$\langle g \rangle = 1.1 \ 10^8 \ \text{cm} \ \bar{s}^2$$

Für alle Weissen Zwerge: $\overline{g} \approx 10^5 - 10^6$ gcm⁻³ $T_c \lesssim 10^7 - 10^8$ K

(Für He-WZ: $T_c \lesssim 10^7 \text{K} \approx \text{H-Brenntemperatur}$, für C0-WZ: $T_c \lesssim 210^8 \text{K} \approx \text{He-Brenntemperatur}$)



- → Lage der Weissen Zwerge im log 9-log T- Diagramm
- Elektronengas ist entartet , Ionengas ≈ ideales Gas (→ 14.5)
- Zustandsgleichung:

$$P = K_{3/2} g^{5/3}, K_{3/2} = \frac{h^2}{5m_e m_p} (\frac{3}{81m_p})^{2/3} \mu_e^{-5/3}$$

 $P = K_3 g^{4/3}$, $K_3 = \frac{c}{4 m_p} \left(\frac{3h^3}{8 \pi m_p}\right)^{1/3} \mu_e^{-4/3}$

für vollst. extrem-relativistisch entartetes Elektronengas \triangle Polytropenindex n = 3

→ in beiden Fällen ist K gegeben → 3 M-R-Beziehung für Weisse Zwerge

18.2. Die Masse-Radius - und Masse-Dichte-Beziehung

Da Kaegeben, gilt die in 17.5 hergeleitete M-R-Beziehung (für beliebige n):

$$R = \left(\frac{1}{4\pi}\right)^{\frac{1}{3-n}} \left[\frac{K(n+1)}{G}\right]^{\frac{n}{3-n}} \left[-x_o^{\frac{n+1}{n-1}} y'(x_o)\right]^{\frac{n-1}{n-3}} M^{\frac{1-n}{3-n}} = \text{const. } M^{\frac{1-n}{3-n}}$$

und die entspr. Masse - Dichte - Beziehung

$$\varsigma_c = \left(\frac{1}{4\pi}\right)^{\frac{2n}{3-n}} \left[\frac{K(n+1)}{G}\right]^{\frac{3n}{n-3}} \left[-x_o^2 y'(x_o)\right]^{\frac{2n}{n-3}} M^{\frac{2n}{3-n}} = \text{const. } M^{\frac{2n}{3-n}}$$

Annahme: Elektronengas sei vollst. nicht-relativistisch entartet

mit
$$\frac{dR}{dM} < 0$$
 $\frac{dS_c}{dM} > 0$: Entartung steigt mit M!

Ab einer bestimmten Masse muss relativistische Entartung wichtig werden!

18.3 Die Grenzmasse für Weisse Zwerge

- a) Nehmen Zustandsgleichung des vollst. extrem relativistisch entarteten Elektronengases \rightarrow Polytrope mit n = 3
- n = 3: M-R-Beziehung wird singulär. \exists nur eine von R und gunabhängige Masse

$$M_3 = -4 \overline{n} \left(\frac{K}{\overline{n} G} \right)^{3/2} \left(x_o^2 y'(x_o) \right)_{n=3}$$

Weiter gilt :
$$R_3 = \left(\frac{K}{\pi G}\right)^{1/2} S_c^{-1/3} X_o$$
 : R nur noch von S_c abhängig

Betrachten jetzt M-R-Beziehung für
$$n = 3 - \epsilon$$
 , $\epsilon \ll 1$:

Aus
$$R = \text{const.} \ M^{\frac{4-n}{3-n}} = \text{const.} \ M^{1-\frac{2}{\epsilon}} \ \text{folgt}: \ \lim_{\epsilon \to 0} R = 0$$

Entsprechend:
$$\lim_{\epsilon \to 0} \varsigma_c \to \infty$$

b) <u>Übergang</u> von $n=3/2 \rightarrow n=3$

n=
$$^{3/2}$$
: $g_c \sim M^2 \rightarrow$ Fermi-Energie wächst mit M $\Rightarrow \xi = \frac{p_F}{m_e C} \sim g^{1/3}$ wächst mit M

Andererseits: Für gegebenes
$$M: \frac{dg}{dMr} < 0 \Rightarrow \frac{d\xi}{dMr} < 0$$

Die relevante Zustandsgleichung ist (-> 14.6)

$$P_{e} = \frac{8\pi}{3m_{e}h^{3}} (m_{e}c)^{5} \int_{0}^{\xi} \frac{\eta^{4}d\eta}{(1+\eta^{2})^{3/2}} = \frac{8\pi}{3m_{e}h^{3}} (m_{e}c)^{5} f(\xi)$$

Theorie für Sterne mit dieser Zustandsgleichung zuerst von Chandrasekhar (1935).

Wenn M hinreichend gross, so ist wegen $g_c \sim M^2$ und $\xi \sim g^{4/3}$ das Elektronengas im ganzen Stern relativistisch entartet. $\rightarrow n = 3-\epsilon$, $\epsilon \ll 1$.

Die Masse eines Weissen Zwergs, für die $\varepsilon=0$, d.h. n=3 ist, heisst Chandrasekhar Masse und ist

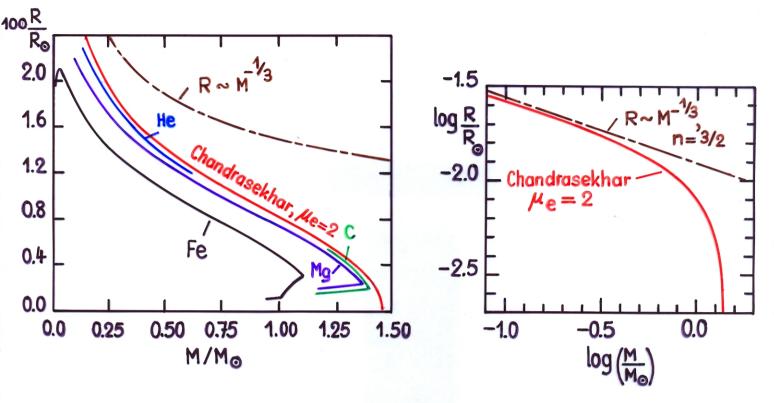
$$M_{CH} = M_3(K_3) = \sqrt{\frac{3}{2}} \frac{1}{477 m_p^2} \left(\frac{hc}{G}\right)^{3/2} \mu_e^{-2} \left(-x_o^2 y'(x_o)\right)_{n=3} = \frac{0.1976}{m_p^2} \left(\frac{hc}{G}\right)^{3/2} \mu_e^{-2} = \frac{5.76 M_{\odot}}{\mu_e^2}$$

M_{CH}: Grösste Masse, die ein Stern haben kann, der durch den Druck eines entarteten Elektronengases gestützt wird.

18.4

Für ⁴He, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg:
$$\mu_e = 2 \rightarrow M_{CH} = 1.44 M_{\odot}$$

Die M-R-Beziehung: Ergebnisse numerischer Rechnungen



Gründe für Abweichungen von Chandrasekhars Theorie:

- bei He, C, Mg : negativer Druck durch Coulombkräfte der Ionen

- bei Fe

und $\mu e \neq 2$: $(\mu e)_{Fe} = \frac{56}{26} = 2.15$ \rightarrow $(M_{CH})_{Fe} = 1.24 M_{\odot}$,

shor solver für M > 4.4M, sincetzen der Neutronisierung

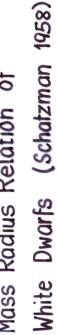
aber schon für $M > 1.1 M_{\odot}$ einsetzen der Neutronisierung

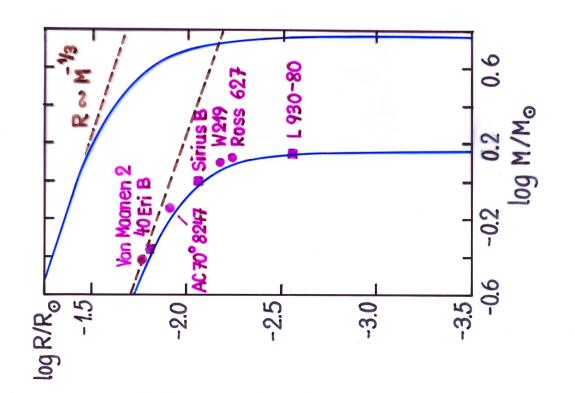
Analytische Approximation für die M-R-Beziehung (Nauenberg, 1972):

$$R = 1.12 \cdot 10^{-2} R_{\odot} \left[\left(\frac{M}{M_{CH}} \right)^{-2/3} - \left(\frac{M}{M_{CH}} \right)^{2/3} \right]^{1/2}$$

Einige numerische Werte für
$$\mu_e = 2$$

M/M _O	log S _c (9/ _{cm})	log R/Ro
0.22	5.39	- 1.70
0.40	6.03	- 1.81
0.50	6.29	-1.86
0.61	6.56	-1.91
0.74	6.85	-1.96
0.88	7.20	-2.03
1.08	7.72	- 2.15
1.22	8.21	-2.26
1.33	8.83	-2.41
1.38	9.29	-2.53
1.44	∞	-∞





Zur Masse-Radius-Beziehung Weisser Zwerge

- wichtigster Test für Chandrasekhars Theorie und deren späteren Verfeinerungen.
- Zu Eddingtons Lebzeiten waren die Beobachtungen zu ungenau, um die Kontroverse mit Chandrasekhar zu entscheiden.
- 1958 scheint alles klar zu sein. (* Schatzman: White Dwarfs, Fig. 13 : Chandrasekhar glänzend bestätigt).
- hinreichend genau bekannt. Grund: Beobachtungen sind sehr schwierig. Braucht unabhängige Bestimmung von deren Daten für eine Überprüfung der M-R-Beziehung Nur 3 Weisse Zwerge (Sirius B, LB 1497, 40 Eri B), M und R , z.B. aus 1995
- (bei Doppelsternen) -3. Kepler Gesetz $\frac{G(M_1+M_2)}{A^3} = \frac{4\Pi^2}{P^2}$ + Radialgeschwindigkeiten etc.
- V RS = GM Gravitationsrotverschiebung
- (spektroskopisch) $g = \frac{GM}{R^2}$ Schwerebeschleunigung
- L = 411 R² o'Teff - Leuchtkraft

Angaben, wonach die M-R-Beziehung heute durch viele WZ bestätigt wird, beruhen auf einem Zirkelschluss!

c) Physikalische Deutung der Chandrasekhar Masse

Warum können nur WZ mit M < M_{CH} existieren ?

Grund: Hydrostotisches Gleichgewicht: $\frac{dP}{dr} = -\frac{GMr}{r^2}$ 9

Abschätzung: $\frac{dP}{dr} = -\frac{GMr}{r^2}g \rightarrow \frac{P}{R} \sim \frac{M}{R^2} \frac{M}{R^3} \rightarrow P \sim \frac{M^2}{R^4}$

Hydrost. Gleichgewicht: Gravitationskraft = $1 = \text{const.} \frac{M^2}{PR^4}$

Sei nun $P = const. 9^{5/3}$ (vollst. nicht-rel. entartetes Elektronengas)

 $\Rightarrow \vec{P} = \text{const.} \quad \frac{M^{5/3}}{R^5} \Rightarrow \frac{\text{Gravitationskraft}}{\text{Druckkraft}} = \text{const.} \quad M^{1/3} R$

zu jedem M gibt es ein R, so dass der Stern im hydrost. Gleichgew. ist.

Sei nun P = const. 9 (vollst. extrem rel. Entartung)

 $\Rightarrow \overline{P} = \text{const.} \frac{M^{4/3}}{R^4} \Rightarrow \frac{\text{Gravitationskraft}}{\text{Druckkraft}} = \text{const.} M^{2/3}, \text{ unabhängig von } R!$

Es gibt nur eine Masse (McH), für die hydrost. Gleichgew. möglich ist.

Wenn M>M_{CH}: Gravitation überwiegt → Kontraktion

Wenn M<McH: (Gravitationskraft/Druckkraft) nicht mehr unabhängig

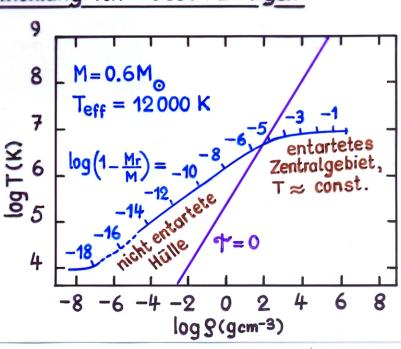
von R - hydrostat. Gleichgew. für ein best.R möglich

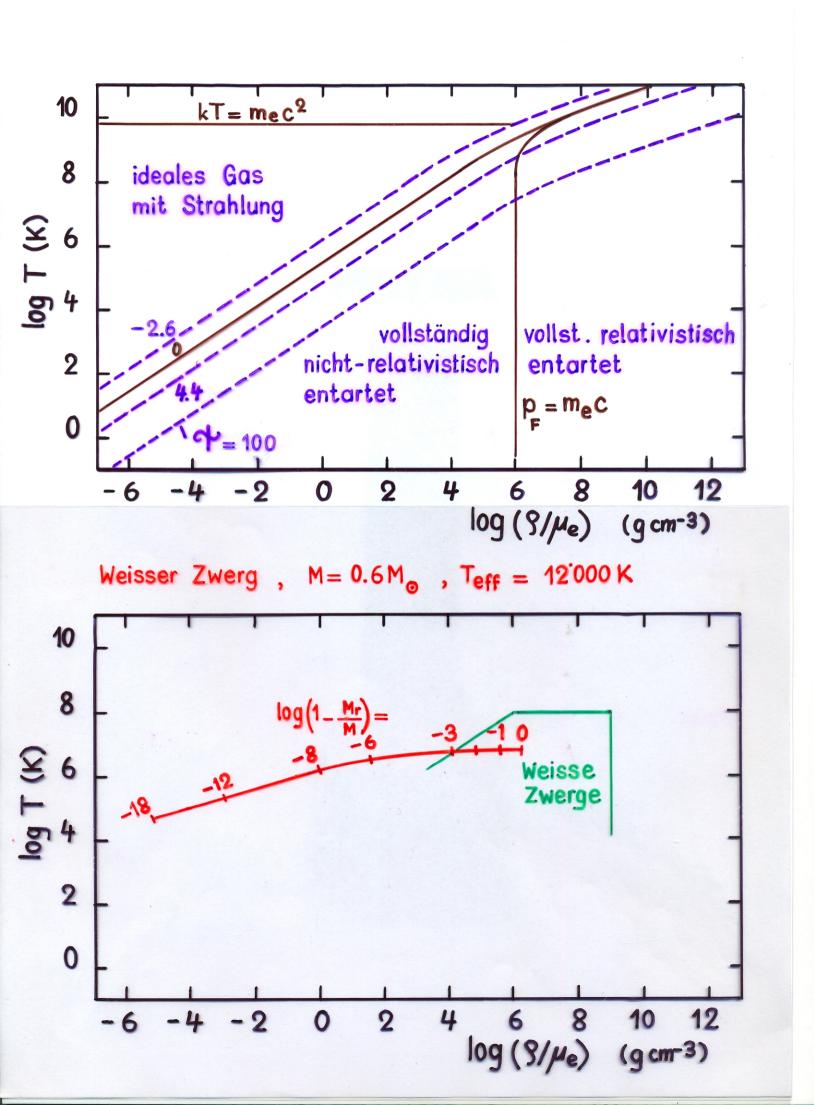
18.4. Zentraltemperatur und Entwicklung von Weissen Zwergen

Entartetes Elektronengas

- → gute Wärmeleitfähigkeit
- Der entartete Teil eines Weissen Zwergs ist praktisch isotherm

★ T(か) ≈ T(か)、か>0





Sei $r_o = r(\phi = 0)$. \rightarrow $T(r < r_o) \approx T_C$ durch Wärmeleitung

Für $r > r_o : \phi < 0 \rightarrow$ annähernd ideales Gas , Strahlungstransport

a) Abschätzung der Zentraltemperatur

Annahme: Für r>ro ideales Gas, Energietransport durch Strahlung

Aus den <u>Hüllenrechnungen</u> (→11.3) :

$$P^{2} = C' T^{8.5} + C \quad \text{mit} \quad C' = \frac{32 \text{TacG}}{25.5} \frac{M}{\text{ac_oL}} \sim \frac{M}{L}$$

$$Mit \quad P = \frac{Q}{\mu} gT \quad \text{folgt} \quad g^{2} \sim \frac{M}{L} T^{6.5} \quad \text{oder} \quad g \sim \left(\frac{M}{L}\right)^{\frac{1}{2}} T^{\frac{13}{4}}$$

Für
$$\phi' = \text{const. gilt } (\rightarrow 14.2) : g \sim T^{3/2}$$

$$\Rightarrow g(r_0) \sim T(r_0) = T(\phi' = 0)$$

$$g(r_0) \sim \left(\frac{M}{L}\right)^{1/2} \left[T(r_0)\right]^{13/4}$$

$$\Rightarrow T(r_0) \sim \left(\frac{L}{M}\right)^{1/2}$$

Alle Konstanten mitgerechnet findet man

$$T(r_{o}) = T_{o} \left(\frac{L/L_{o}}{M/M_{o}}\right)^{2/7} \text{ mit } T_{o} = \left[\frac{102\pi F_{1/2}^{2}(0) Q k^{3} m_{p}^{2} m_{e}^{3} \mu_{e}^{2} ac_{o} Z(1+X) L_{o}}{acGh^{6} \mu M_{o}}\right]^{2/7}$$

Mit Y=0.99, Z=0.01,
$$\mu_e=2$$
, $F_{1/2}(0)=0.678$, $\lambda_e=4$ 10²⁵ cgs folgt
$$T(r_0) \approx 3 \cdot 10^7 \, \text{K} \left(\frac{L/L_0}{M/M_\odot}\right)^{2/7} \qquad \text{kleines L trotz hoher Temperatur}$$

Im Inneren eines Weissen Zwergs gibt es keinen Wasserstoff mehr

(Begründung: Angenommen X>0 im Inneren: \rightarrow Thermonukleare Energie-erzeugung, z.B. bei $T \approx T_0 \approx 3 \cdot 10^7 \, \text{K}$ und $9 \approx 10^4 - 10^8 \, \text{gcm}^{-3}$ durch CNO-Zyklus \rightarrow L/L₀ >> 1)

► Thermonukleare Reaktionen im Inneren von Weissen Zwergen sind aus Stabilitätsgründen überhaupt ausgeschlossen (→ 23.5)

b) Entwicklung von Weissen Zwergen

Annahme: M = const.

→ Wegen M-R-Beziehung : R(t) = const., d.h. $\dot{R} = 0$

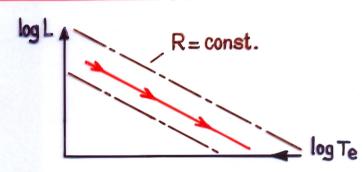
Weiter folgt $\dot{E}_G = -\frac{\partial}{\partial t} \left(\int_0^M \frac{GMr}{r} dM_r \right) = 0$, \rightarrow es wird keine Gravitations-energie frei

und $\dot{E}_{N} = 0$, d.h. keine thermonukleare Energieerzeugung

 $L = -\dot{E}_{T}$, Energie nur aus dem thermischen Energiereservoir \rightarrow Abkühlung

Entwicklung von Weissen Zwergen besteht in Abkühlung

Abkühlzeit
$$T = -\frac{E_T}{\dot{E}_T} = \frac{E_T}{L}$$



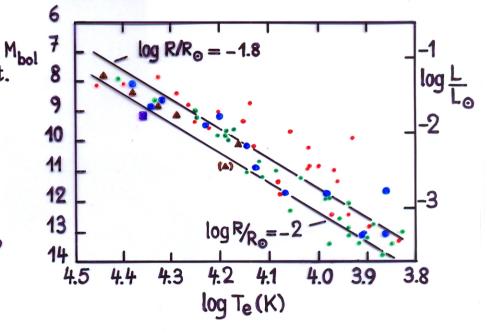
Weisse Zwerge im Hertzsprung-Russel-Diagramm (HRD)

$$\rightarrow \log L = 4 \log T_e + 2 \log R(M) + const.$$

für gegebene Masse:

$$log L = 4 log T_e + const.$$

Typische Werte: $L \approx 10^2 \cdot \cdot \cdot 10^3 L_{\odot}$ $R \approx 10^2 R_{\odot}$



HRD für DA Weisse Zwerge

- . mit Parallaxe 0."03€T<0."06
 - mit Parallaxe 1ī < 0.º03
- Sirius B

18.5 Abkühlzeit von Weissen Zwergen

Bei vollständiger Entartung: thermische Energie der Elektronen $E_{T,e}=0$

$$\Rightarrow E_{T} \approx E_{T,i} = \int_{0}^{M} \frac{3}{2} k T(M_r) \frac{dN_i}{dM_r} dM_r = \frac{3}{2} k \int_{0}^{M} T(M_r) \frac{dM_r}{\mu_i m_p} = \frac{3}{2} \frac{k}{\mu_i m_p} \int_{0}^{M} T(M_r) dM_r$$

$$= \frac{3kT}{2\mu_i m_p} M \quad \text{mit } T = \frac{1}{M} \int_{0}^{M} T(M_r) dM_r$$

Da $T(M_r) \approx T_c = \text{const. für } M_r < M_{r_0} \text{ und } 1 - \frac{Mr_0}{M} \ll 1$, ist $T \approx T_c$

$$T = \frac{E_T}{L} \approx \frac{3kT_c}{2\mu_i m_p} \frac{M}{L}$$

Bessere Abschätzung unter Verwendung von $T = T_o \left(\frac{L/L_o}{M/M_o}\right)^{2/7}$ (> 18.4)

$$t(T) = \frac{3}{5} \frac{k}{\mu_{i} m_{p} L_{o}} T^{-5/2} \left\{ 1 - \left(\frac{T}{T(t=0)} \right)^{5/2} \right\} \approx \frac{3}{5} \frac{k}{\mu_{i} m_{p} L_{o}} T^{-5/2} , \text{ wenn } \left(\frac{T}{T(t=0)} \right)^{5/2} \text{ and } \left(\frac{T}{T(t=0)} \right)^{5/2} \text{ with } \left(\frac{T}{T(t=0)} \right)^{5/2} \text{ with } \left(\frac{T}{T(t=0)} \right)^{5/2} \text{ where } \left($$

Einsetzen von Lo ergibt

$$t \approx \frac{3}{5} \frac{k T_0 M_0}{\mu_i m_p L_0} \left(\frac{M/M_0}{L/L_0}\right)^{5/7} \Rightarrow L(t) = L_0 \frac{M}{M_0} \left(\frac{t}{t_0}\right)^{-\frac{7}{5}}, t_0 = \frac{3 k T_0 M_0}{5 \mu_i m_p L_0}$$

Mit
$$T_0 \approx 3.10^7 \, \text{K}$$
, $\mu_i = 14 \, (50\%^{12} \, \text{C} + 50\%^{16} \, \text{O})$: $t \approx 1.7.10^6 \, \text{a} \, \left(\frac{\text{M/M}_{\odot}}{\text{L/L}_{\odot}}\right)^{5/7}$

▶ Bei kleinen Leuchtkräften wird die Abkühlzeit sehr lang

Berechnung von
$$T_{eff}(t)$$
: Mit $\frac{L}{L_o} = \left(\frac{R}{R_o}\right)^2 \left(\frac{T_{eff}}{T_{eff,o}}\right)^4$ wird
$$T_{eff}(t) \approx T_{eff,o} \left(\frac{M}{M_o}\right)^{\frac{1}{4}} \left(\frac{R(M)}{R_o}\right)^{\frac{1}{2}} \left(\frac{t}{t_o}\right)^{\frac{7}{20}}, \text{ mit } t_o = \frac{3}{5} \frac{kT_oM_o}{4 \text{ imp. } l_o}$$

