9. Chemische Zusammensetzung

Chemische Zusammensetzung geht über æ, ɛ, die Zustandsgleichung in das System der Grundgleichungen ein .

9.1. Definitionen

Def. : X_i = relative Massenkonzentration der Teilchensorte i

$$\sum_{i} X_{i} = 1$$
 (entsprechend der Definition der X_{i})

Chemische Zusammensetzung eines Sterns ist eindeutig bekannt, wenn Xi (Mr, t) für alle i gegeben

Für Sterne: sehr oft nur 3 Komponenten der chem. Zus. angegeben:

 $X_H \equiv X$: rel. Massenanteil von Wasserstoff $X_{He} \equiv Y$: rel. Massenanteil von Helium

 $X_{Rest} \equiv Z : rel. Massenanteil der "schweren Elemente",$

sog. "Metalle"

Typische Werte: $X \approx 0.7 \cdot \cdot \cdot 0.75$

Y ≈ 0.24 ··· 0.28

 $Z \approx 0.0001 \dots 0.04$

9.2 <u>Zeitliche Änderung der chemischen Zusammensetzung in radiativen</u>
<u>Gebieten</u>

In radiativen Gebieten: keine Durchmischung Anderung der chem.

Zus. nur lokal durch Kernreaktionen

Kernreaktionen: - Teilchen der Sorte i → Teilchen der Sorte j

treten nur dort auf wo En≠ 0

 meistens mehrere Reaktionen gleichzeitig (hängt von T und 9 ab)

— jede Reaktion liefert eine bestimmte Energie — menge
$$\mathcal{E}_{N,\ell}$$
 (pro Massen – und Zeiteinheit)

$$\rightarrow$$
 $\epsilon_{N} = \sum_{\ell} \epsilon_{N,\ell}$

Änderung der chem. Zus. durch Kernreaktionen:

- a) Erzeugung eines Teilchens der Sorte i aus einem der Sorte $n:n \rightarrow i$. Pro Masseneinheit frei werdende Energie $E_{n \rightarrow i}$. Energieerzeugungs-rate $E_{n \rightarrow i}$ (pro Massen-und Zeiteinheit)
- b) Zerstörung eines Teilchens der Sorte i : i→ k.
 Frei werdende Energie Ei→k (pro Masseneinheit), Energieerzeugungsrate Ei→k (pro Massen- und Zeiteinheit)

$$\frac{\partial X_i}{\partial t} = \sum_{n} \frac{\mathcal{E}_{n \to k}}{\mathcal{E}_{n \to i}} - \sum_{k} \frac{\mathcal{E}_{i \to k}}{\mathcal{E}_{i \to k}} \qquad \forall i = 1, ..., I$$
(sog. Ratengleichungen)

Da $\sum_{i=1}^{I} X_i = 1$, kann man aus obigen I Gleichungen immer eine eliminieren. \rightarrow I-1 Gleichungen für I Teilchensorten

Wichtig: Es kommen keine neuen Funktionen mehr vor

System der Ratengleichungen = "5." Grundgleichung des Sternaufbaus

Beispiel: Wasserstoffbrennen (einfachster Fall)

$$\frac{\partial X_H}{\partial t} = -\frac{E_{H o He}}{E_{H o He}}$$
, $\frac{\sum_{i} X_i = 1}{\delta t} \Rightarrow \frac{\partial Y}{\partial t} = -\frac{\partial X}{\partial t}$

(Nur 2 Nuklide, 1H und 4He, an der Reaktion beteiligt)

Bei Wasserstoffbrennen ist
$$\frac{\partial X}{\partial t} = -\frac{\mathcal{E}_{H \rightarrow He}}{\mathcal{E}_{H \rightarrow He}}$$
, wobei

$$E_{H\to He} = \frac{1}{4}Q_{H\to He} \frac{L}{\mu_i}$$
, mit $Q_{H\to He} = 26.7 \,\text{MeV}$, $L = 6.10^{23} \,\text{mol}^{-1}$, $\mu_i = 1 \,\text{g mol}^{-1}$

$$\Rightarrow$$
 E_{H+He} = 6.45 10¹⁸ erg g⁻¹ (\approx 10^{18.8} erg g⁻¹)

Gesamtmasse des Wasserstoffs:
$$M_{H} = \int_{0}^{M} X_{H}(M_{r}) dM_{r} = \overline{X} M$$

zeitliche Änderung:
$$\dot{M}_{H} = \int_{0}^{M} \dot{X}_{H}^{(M_{r})} dM_{r} = -\int_{0}^{M} \frac{\mathcal{E}}{E} dM_{r}$$

Bei (zentralem) Wasserstoffbrennen : $\varepsilon_g \approx 0$ (Stern im therm. Gl.)

$$\frac{\partial L_r}{\partial Mr} = \varepsilon \qquad M_H = -\frac{1}{E} \int_0^M \frac{\partial L_r}{\partial Mr} dMr = -\frac{L}{E}$$

$$\frac{1}{M_{H}} \frac{\partial M_{H}}{\partial t} = \frac{\partial \ln M_{H}}{\partial t} = -\frac{L}{M_{H}E} : M_{H}E = \text{tot. Energievorrat des Sterns}$$
aus der Reaktion 4H \rightarrow He

$$M_H E = E_N : -\frac{\partial \ln M_H}{\partial t} = \frac{1}{\tau_N}$$
, $\tau_N = \text{nukleare Zeitskala}$

$$T_N = \frac{E_N}{L}$$
 (vgl. mit Resultat in 4.4)

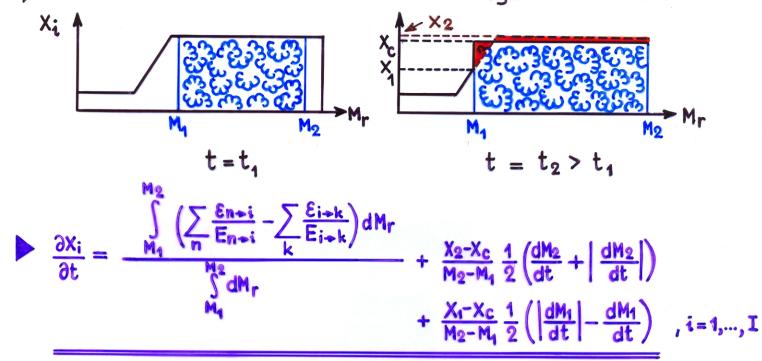
9.4 Anderung der chemischen Zusammensetzung in konvektiven Gebieten

3 Möglichkeiten:

- a) Kernreaktionen → Veränderung lokal mit au_N
- b) konvektive Mischung \rightarrow vollst. Durchmischung mit $\tau_{\rm K} \ll \tau_{\rm N}$

$$\frac{\partial X_{i}}{\partial t} = \frac{\int_{\text{Konv. z.}} \left(\sum_{n} \frac{\varepsilon_{n+i}}{\varepsilon_{n+i}} - \sum_{k} \frac{\varepsilon_{i+k}}{\varepsilon_{i+k}}\right) dM_{r}}{\int_{\text{Konv. z.}} dM_{r}} \quad \text{und} \quad \frac{\partial X_{i}}{\partial M_{r}} = 0$$

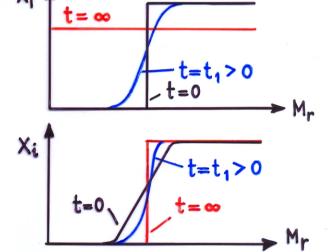
c) Konvektionszone kann in ein chemisch inhomogenes Gebiet wandern



"5." Grundgleichung des Sternaufbaus

9.5 Bemerkungen zur Diffusion und Sedimentation

<u>Diffusion</u>: Ausgleich der chem. Inhomogenitäten mit Diffusionszeitskala Tdiff



Sedimentation: Absinken der schweren

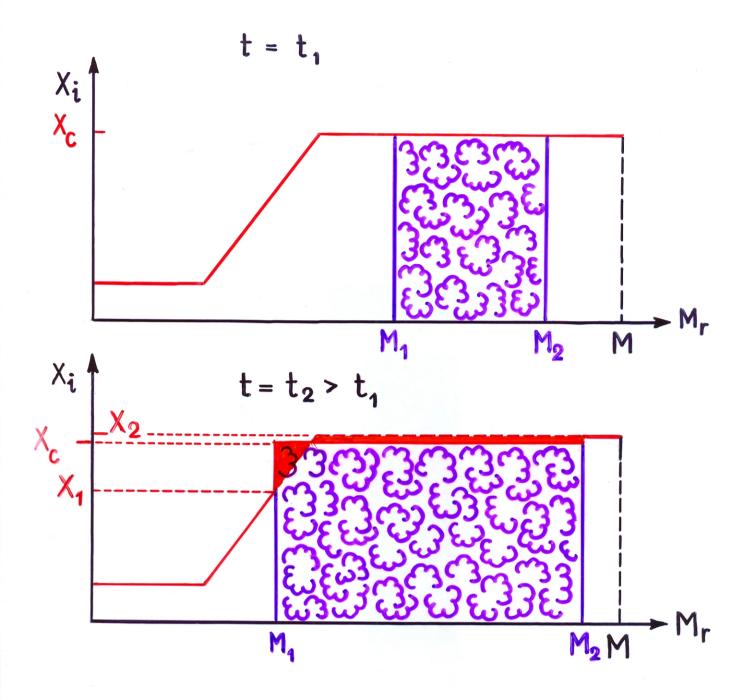
Elemente im Schwerefeld des

Sterns. → Wirkung entgegengesetzt zur Diffusion.

Aber : Teilchentransport bei

Sedimentation ist ebenfalls ein Diffusionsprozess!

- Diffusion und Sedimentation kompensieren sich teilweise
- im allg. Diffusion und Sedimentation nicht wichtig für den Sternaufbau ($\tau_{\rm diff} >> \tau_{\rm N}$)



$$M_1 < M_r < M_2$$
:

$$\left(\frac{\partial X_{i}}{\partial t}\right)_{Konv.} = \frac{X_{2}-X_{c}}{M_{2}-M_{1}} \frac{1}{2} \left[\frac{dM_{2}}{dt} + \left|\frac{dM_{2}}{dt}\right|\right] + \frac{X_{1}-X_{c}}{M_{2}-M_{1}} \frac{1}{2} \left[\left|\frac{dM_{1}}{dt}\right| - \frac{dM_{1}}{dt}\right]$$

Abschätzung der Diffusionszeitskala

Ansatz: "Random walk": Im Mittel nach N Stössen mit der mittl. freien Weglänge λ zurückgelegter Weg

$$\ell_{\text{diff}} = \lambda \sqrt{N}$$
 ,

wobei
$$N = \frac{\tau_{diff}}{\tau_s}$$
, $\tau_s = mittl.$ Stosszeit

$$T_{\text{diff}} = \tau_{s} \left(\frac{\ell_{\text{diff}}}{\lambda} \right)^{2}$$

$$\lambda : \lambda = \frac{1}{n\sigma_s} = \frac{\mu}{9L\sigma_s}$$
 : n = Teilchendichte (pro Vol.)

ds = Stossquerschnitt

ds: Nehmen elastischen Stossquerschnitt im Coulombfeld

$$\langle E_{kin} \rangle = \frac{3}{2} kT = \frac{Z_1 Z_2 e^2}{dmin} \rightarrow d_{min} = \frac{Z_1 Z_2 e^2}{\langle E_{kin} \rangle}$$

Denken uns die Teilchen als harte Kugeln mit Radius $r = \frac{1}{2} d_{min}$

$$\lambda = \frac{9k^2T^2\mu}{4\pi Z_1^2Z_2^2e^4gL} \approx 250 \, d_{min} \approx 410^7 \text{cm} \quad \text{für } \mu=1, \, g=10^9 \text{gcm}^3$$

$$\langle V \rangle = \sqrt{\frac{3kT}{m}}$$
 \rightarrow $T_S = \frac{\lambda}{\langle v \rangle} \approx 8 \cdot 10^{-15} \text{ s}$

$$T_{\text{diff}} \approx \frac{\ell_{\text{diff}}^2}{\langle v > \lambda} \approx \ell_{\text{diff}}^2 \frac{4\pi Z_1^2 Z_2^2 e^4 g L^{1/2}}{9\sqrt{3} k^{5/2} T^{5/2} \mu^{4/2}}$$

Beispiel: Sonne : $Z_1 = Z_2 = 1$, $\mu = 1$, $T = 10^7 \text{K}$, $g \approx 10^2 \text{g cm}^{-3}$, $\ell_{\text{diff}} \approx 10^2 \text{R}_{\odot}$ ~ Tdiff ≈ 109 Jahre

II ÜBERSICHT ÜBER DAS GESAMTPROBLEM

10. Das System der Grundgleichungen

10.1 Die Grundgleichungen des Sternaufbaus

Zwei unabhängige Variable : M_r und t (oder r und t)

1)
$$\frac{\partial r}{\partial Mr} = \frac{1}{4 r^2 e}$$

: Massenverteilung im Stern

2)
$$\frac{\partial P}{\partial Mr} = -\frac{GMr}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}$$

: Bewegungsgleichung

3)
$$\frac{\partial L_r}{\partial M_r} = \varepsilon_N - \varepsilon_V - c_P \frac{\partial T}{\partial t} + \frac{\delta}{9} \frac{\partial P}{\partial t}$$

: Energiesatz

4a)
$$\frac{\partial T}{\partial Mr} = -\frac{3}{64\pi ac} \frac{3e}{r^4 T^3} L_r$$

: Strahlungstransport, wenn $\nabla_a > \nabla_r$

4b)
$$\frac{\partial T}{\partial M_r} = \frac{T}{P} \left(\frac{\partial P}{\partial M_r} \right) \nabla_{\alpha}$$

: Konvektion, wenn $\nabla_r > \nabla_a$

5a)
$$\frac{\partial X_i}{\partial t} = \sum_{n=1}^{\infty} \frac{\epsilon_{n-i}}{\epsilon_{n-i}} - \sum_{k=1}^{\infty} \frac{\epsilon_{i-k}}{\epsilon_{i-k}}$$
, $\forall i$: And a radiative n Gebieten

in radiativen Gebieten

5b)
$$\frac{\partial x_{i}}{\partial t} = \frac{\int_{M_{1}}^{M_{2}} \left(\sum_{n=1}^{\ell} \frac{\epsilon_{i \to k}}{E_{n \to i}} - \sum_{k} \frac{\epsilon_{i \to k}}{E_{i \to k}}\right) dM_{r}}{\int_{M_{1}}^{M_{2}} dM_{r}} + \frac{X_{2} - X_{c}}{M_{2} - M_{1}} \frac{1}{2} \left(\frac{dM_{2}}{dt} + \left|\frac{dM_{2}}{dt}\right|\right) + \frac{X_{1} - X_{c}}{M_{2} - M_{1}} \frac{1}{2} \left(\left|\frac{dM_{1}}{dt}\right| - \frac{dM_{1}}{dt}\right)}{\int_{M_{2} - M_{1}}^{\ell} \frac{dM_{2}}{dt} + \left|\frac{dM_{2}}{dt}\right|} \right) + \frac{X_{1} - X_{c}}{M_{2} - M_{1}} \frac{1}{2} \left(\left|\frac{dM_{1}}{dt}\right| - \frac{dM_{1}}{dt}\right)}{\int_{M_{2} - M_{1}}^{\ell} \frac{dM_{2}}{dt} + \left|\frac{dM_{2}}{dt}\right|} dM_{r}}$$

Material funktionen

Materialfunktionen

 $g = g(P,T,X_i)$: Zustandsgleichung $\sim C_P, \nabla_a, \delta$ werden als $\varepsilon_N = \varepsilon_N(P,T,X_i)$: nukleare Energieerzeugungsrate gegeben

Neutrinoverluste $\varepsilon_{\nu} = \varepsilon_{\nu} (P,T,X_i) :$

 $\mathcal{H} = \mathcal{H}(P,T,X_i) :$ Opazität

zu bestimmende Funktionen: r(Mr,t), P(Mr,t), Lr (Mr,t), T(Mr,t) und $X_i(M_r,t) \forall i=1,...,I$

Wenn chem. Zus. durch I Teilchensorten beschrieben

→ I+4 Gleichungen für I+4 Funktionen → es ist sinnvoll nach Lösungen des Systems der Grundgleichungen zu suchen.

Die Gleichungen sind

- a) partielle Differentialgleichungen (zwei unabh. Var. Mr und t)
- b) <u>nicht-lineare Differentialgleichungen</u> (bes. unangenehme Eigensch.)

Zur Lösung benötigt man noch Randwerte bzw. Randbedingungen + Anfangswerte bzw. Anfangsbedingungen

Sternaufbau ist ein Randwert – und Anfangswert – Problem

(Das ist ebenfalls eine unangenehme Eigenschaft : Wahl der Anfangswerte ist oft problematisch)

Definition: Sternmodell für den Zeitpunkt
$$t_* \equiv \begin{pmatrix} r(M_r,t) \\ P(M_r,t) \\ \vdots \\ \chi_{i}(M_r,t) \end{pmatrix}_{t=t_*}$$

10.2 Zeitliche Ableitungen und Zusammenhang mit Zeitskalen

vorkommende zeitl. Abl. $\frac{\partial^2 r}{\partial t^2}$ in (2), $\frac{\partial P}{\partial t}$ und $\frac{\partial T}{\partial t}$ in (3), $\frac{\partial X_i}{\partial t}$ in (5)

Jeder dieser zeitl. Abl. kann eine Zeitskala zugeordnet werden:

<u>Ableitung</u>	Zeitskala	
32r 3t2	τ_{h}	: <u>hydrost. Zeitskala</u> = Einstellzeit für hydrostatisches Gleichgewicht (i → 0)
$\frac{\partial P}{\partial t}$, $\frac{\partial T}{\partial t}$	TKH	: <u>Kelvin-Helmholtz-Zeit</u> = Einstellzeit für thermisches Gleichgewicht $(† \rightarrow 0, \dot{P} \rightarrow 0)$
ðxi ðt	TN	: Einstellzeit für nukleares Gleichgewicht $(\dot{x}_{\dot{i}} \rightarrow 0) = \underline{\text{nukleare Zeitskala}}$ (Nur sinnvoll definiert in rad. Geb. und konv. Geb. wo $\dot{M}_1 = 0$ und $\dot{M}_2 = 0$)

Dabei gilt :

 $\tau_{h} \ll \tau_{\kappa H} \ll \tau_{N}$

Welche Zeitableitungen muss man mitberücksichtigen?

Der Grad der mögl. Vereinfachung hängt von der Entwicklungsgeschwindigk. des Sterns (Zeitskala T_*) ab.

a) Sei $\tau_* \approx \tau_h$: Alle zeitl. Ableitungen (ausser in gew. Fällen $\left(\frac{\partial x_i}{\partial t}\right)_{\text{nukl}}$)

b) Sei T*≈ TKH: Da Th « TKH, darf 32r/2t2 = 0 gesetzt werden

C) Sei T*≈ TN: Hier ist es zulässig F=0, P=0 und T=0 zu setzen. Einzige wichtige Zeitableitungen: ∂Xi Ət

Beispiele: T_{*} ≈ T_h: z.B. beim protostellaren Kollaps, Kollaps zum Neutronenstern (freier Fall), explosive Phasen, pulsierende Sterne

T* = TKH: Normalfall

T*≈ TN: während des zentr. Wasserstoffbrennens, d.h. für Hauptreihensterne

Sternmodelle, für die <u>r=0, t=0</u> und P=0 heissen Gleichgewichtsmodelle

N.B. $\tau_{\rm N}$ und $\tau_{\rm KH}$ können unter best. Bedingungen lokal um mehrere Zehnerpotenzen von $\overline{\tau}_{\rm N}$ bzw. von $\overline{\tau}_{\rm KH}$ abweichen !

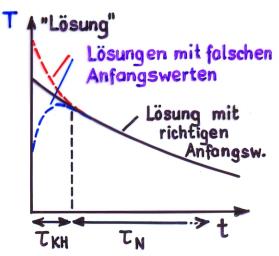
10.3 Anfangswerte

Wahl guter Anfangswerte oft problematisch (z.B. schnellen Phasen braucht man V(Mr,t.)

Bei Gleichgewichtsmodellen ist die Wahl relativ einfach (braucht nur die X_i (Mr) anzugeben). Bei Hauptreihensternen noch einfacher : $\frac{\partial X_i}{\partial Mr} = 0$

Falsche Anfangswerte für P,T:

- Lösungen, die mit TKH gegen die richtige konvergieren



10.4 Die Verkoppelung der Aufbaugleichungen

Können Teile des Systems der Aufbaugleichungen für sich gelöst werden ? Betrachten nur den einfachsten Fall, $\ddot{r}=0$, $\dot{P}=0$, $\dot{T}=0$:

$$\frac{\partial r}{\partial Mr} = f(r,g) = f_4(r,P,T,X_i)$$

$$\frac{\partial P}{\partial Mr} = f_2(Mr,r)$$

$$\frac{\partial Lr}{\partial Mr} = \mathcal{E}_N = f_3(P,T,X_i)$$

$$\frac{\partial Lr}{\partial Mr} = \mathcal{E}_N = f_3(P,T,X_i)$$

$$\frac{\partial T}{\partial Mr} = \mathcal{E}_N = f_3(Lr,r,T) = f_4(Lr,r,P,T,X_i)$$

$$\frac{\partial X_i}{\partial t} = h(\mathcal{E}) = f_5(P,T,X_i)$$
(3)

"thermisch - energetischer"
Teil des Gl.-Systems

(4)
$$\frac{\partial X_i}{\partial t} = h(\mathcal{E}) = f_5(P,T,X_i)$$
(5) : "chemischer "Teil des Gleichungssystems

Es gibt mehrere Fälle, wo Teile der Gl. (1)-(5) für sich gelöst werden können:

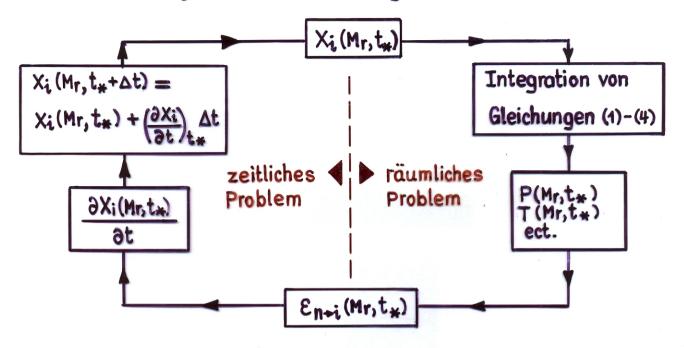
- a) Entkoppelung des mechanischen Teils (1)-(2) vom Rest für $t=t_*$ sei $X_i(Mr,t_*)$ gegeben.
 - (1) und (2) mit (3)-(5) nur über 9, d.h. die Zustandsgl. verkoppelt.
- Wenn T aus der Zustandsgleichung eliminiert werden kann, so ist der mechanische Teil vom Rest entkoppelt und kann getrennt integnert werden . → Lösungen für die mech. Struktur unabhängig von T.

Beispiele:
$$g = g(P)$$
, $\frac{\partial g}{\partial T} = 0$: entartetes Elektronengas $g = g(P,T)$ + Nebenbedingung $\nabla = \nabla_a$: adiabatische Schichtung

- b) Entkoppelung des räumlichen vom zeitlichen Problem
 - Gl. (5) enthält keine räumliche Ableitungen Gl. (1) (4) sind von Gl. (5) entkoppelt.
- Gl. (1)-(4): räumliches Problem zu geg. Xi (Mr)
 Gl. (5): zeitliches Problem zu geg. P(Mr,t), T(Mr,t)

10.5

Diese Eigenschaft macht man sich bei der Berechnung von Sternentwicklung zu nutze. Man integriert (1)-(4) und (5) alternierend:



c) Wenn P+0 und T+0, so erfolgt die Lösung analog zu b):

Sei für $t=t_*: P(Mr,t_*) = P_*, T(Mr,t_*) = T_*, r, L_r und X_i(Mr,t_*)$ gegeben.

 \rightarrow chemische Zus. für $t=t_*+\Delta t=t_*$: $X_i(M_r,t_{**})$

und $\mathcal{E}_{g}(M_{r}, t_{**}) = -C_{p} \dot{T}_{**} + \frac{\delta}{9} \dot{P}_{**}$, wobei $\dot{T}_{**} = \frac{T_{**} - T_{*}}{t_{**} - t_{*}}$, $\dot{P}_{**} = \frac{P_{**} - P_{*}}{t_{**} - t_{*}}$

Da P** und T** ohnehin bestimmt werden, folgt automatisch auch Eg

räumliches und zeitliches Problem lassen sich auch dann getrennt behandeln, wenn $\mathcal{E}_q \neq 0$.

11. Randbedingungen

11.1 Randbedingungen im Zentrum des Sterns

$$M_r = 0$$
: $r(M_r = 0) = 0$ $zentrale$ Randbedingungen $L_r(M_r = 0) = 0$

Für praktische Zwecke (num. Rechenverfahren): Randbedingungen nicht bei $M_r = 0$, sondern bei endlich grossem $r = r_c$, bzw. $M_r = M_c$ (wegen $\Delta r/r \ll 1$ bei der Diskretisierung)

Randbedingungen durch Reihenentwicklung der Aufbaugleichungen in der Umgebung von $M_r = 0$.

a) Aus
$$\frac{\partial r}{\partial Mr} = \frac{1}{4\pi r^2 g}$$
 und $\frac{\partial g}{\partial Mr}\Big|_{Mr=0} = 0$, d.h. $g(r) \approx g(r=0) = g_c$ für hinreichend kleines r folgt:
$$M_r = \frac{4\pi}{3} r^3 g_c \qquad \text{oder} \qquad r = \left(\frac{3}{4\pi r}\right)^{1/3} g_c^{-1/3} M_r^{1/3}$$

b) Aus
$$\frac{\partial L_r}{\partial M_r} = \mathcal{E}_N - \mathcal{E}_{\mathcal{V}} + \mathcal{E}_g$$
 und $(\mathcal{E}_N - \mathcal{E}_{\mathcal{V}} + \mathcal{E}_g) < \infty$ folgt:
$$L_r = (\mathcal{E}_N - \mathcal{E}_{\mathcal{V}} + \mathcal{E}_g)_{r=0} M_r = \frac{4\pi}{3} r^3 \varsigma_c (\mathcal{E}_N - \mathcal{E}_{\mathcal{V}} + \mathcal{E}_g)_{r=0}$$

C) Aus
$$\frac{\partial P}{\partial Mr} = -\frac{G Mr}{4\pi r^4}$$
 ($\ddot{r} = 0$ angenommen) folgt
$$dP = -\frac{G Mr}{4\pi r^4} dM_r = -\frac{G}{4\pi} M_r \left(\frac{3}{4\pi}\right)^{-\frac{4}{3}} S_c^{\frac{4}{3}} M_r^{-\frac{4}{3}} dM_r$$

$$= -\frac{G}{4\pi} \left(\frac{3}{4\pi}\right)^{-\frac{4}{3}} S_c^{\frac{4}{3}} M_r^{-\frac{1}{3}} dM_r$$

$$\Rightarrow P(Mr) = \int_0^{Mr} \frac{\partial P}{\partial Mr} dM_r + C = -\frac{G}{4\pi} \left(\frac{3}{4\pi}\right)^{-\frac{4}{3}} S_c^{\frac{4}{3}} \int_0^{Mr} x^{-\frac{1}{3}} dx + C$$

$$= -\frac{G}{4\pi} \left(\frac{3}{4\pi}\right)^{-\frac{4}{3}} S_c^{\frac{4}{3}} \frac{3}{2} x^{\frac{2}{3}} M_r^{\frac{4}{3}} + C = -\frac{G}{2} \left(\frac{3}{4\pi}\right)^{-\frac{4}{3}} S_c^{\frac{4}{3}} M_r^{\frac{2}{3}} + C$$

Mit
$$P(M_r=0) = P_c$$
 folgt: $P(M_r) = P_c - \frac{G}{2} \left(\frac{3}{4\pi}\right)^{-1/3} S_c^{4/3} M_r^{2/3}$

d) Aus
$$\frac{\partial T}{\partial M_r} = -\frac{GM_rT}{4\pi r^4 P} \nabla$$
 folgt
$$dT = -\frac{GM_rT}{4\pi r^4 P} \nabla dM_r = -\frac{G}{4\pi} \frac{T_c}{P_c} \nabla_c \left(\frac{3}{4\pi}\right)^{-4/3} S_c^{4/3} M_r^{-1/3} dM_r$$

$$T(M_r) = \int_0^{M_r} dT + C = -\frac{G}{4\pi} \frac{T_c}{P_c} \nabla_c S_c^{4/3} \int_0^{M_r} X^{-4/3} dx + C$$
Mit $T(M_r = 0) = T_c$ folgt: $T(M_r) = T_c - \frac{G}{2} \left(\frac{3}{4\pi}\right)^{-1/3} \frac{T_c}{P_c} \nabla_c S_c^{4/3} M_r^{2/3}$

11.2 Oberflächenbedingungen (äussere Randbedingungen)

Es gibt mehrere Möglichkeiten äussere Randbedingungen zu formulieren, je nach den Erfordernissen an Genauigkeit.

a) <u>Nullrandbedingungen</u>

Da
$$P(M_r=M) \ll P_c$$
 und $T(M_r=M) \ll T_c$

$$\rightarrow$$
 P(Mr=M) = 0 und T(Mr=M) = 0 : Nullrandbedingungen

unbefriedigend, da mit P=0 optisch dünne Schichten im Integrationsbereich. Transportgleichung gilt nur für T>>1, für T£1 braucht man Theorie der Sternatmosphären. Gebiete mit P=0 nicht Teil des Sterninneren

b) Photosphärenbedingungen

 $\frac{\text{Photosphäre}}{\text{erfolgt. Entspr. optische Tiefe }\mathcal{T}_{\text{Ph}}} = \text{Schicht, aus der der Schwerpunkt der Energieabstrahlung} \\ = \text{erfolgt. Entspr. optische Tiefe }\mathcal{T}_{\text{Ph}} = \text{aus Atmosphärenth.} \\ = \frac{\text{Eddington-Approximation für die graue Atmosphäre}}{\mathcal{T}_{\text{Ph}}} = \frac{2}{3}$

Def.: Effektivtemperatur
$$T_{eff}$$
: $T_{eff}^{4} = \frac{L}{4\pi\sigma R^{2}(\tau = 2/3)}$

Temperaturschichtung in der Eddington-Approximation für die graue Atmosphäre $(\partial e/\partial v = 0)$:

$$T^{4}(\tau) = \frac{3}{4} \frac{L}{4\pi\sigma R^{2}} \left(\tau + \frac{2}{3}\right) = \frac{3}{4} T^{4} \left(\tau + \frac{2}{3}\right)$$
1. Randbedingung für die Photosphäre

verknüpft die Randwerte
$$T=T_{eff}$$
, $L_r=L$ und $r=R$ an der Stelle $M_r=M$ (N.B. $M-M(\tau=2/3)\approx 10^{-11}\,M_\odot$, daher $M=M(\tau=2/3)$)

Druckschichtung in der Photosphäre:

$$d\tau = egdr$$
 \rightarrow $\tau_{Ph} = \int_{R}^{\infty} egdr$, $\tau_{Ph} = optische Tiefe in der Photosphäre$

Ersetzen æ durch
$$\overline{3}e$$
, so dass $\frac{2}{3} = \tau_{Ph} = \overline{3}e_{Ph} \int_{R}^{\infty} 9 dr$

Hydrostatisches Gleichgewicht :
$$\frac{dP}{dr} = -93$$

$$\rightarrow P_{Ph} = \int_{R}^{g} g g dr = \overline{g} \int_{R}^{g} g dr , \text{ wobei } \overline{g} = g = \frac{GM}{R^2}$$

$$P_{Ph} = \frac{2}{3} \frac{GM}{R^2} \frac{1}{\overline{ae}_{Ph}}$$
 : 2. Randbedingung für die Photosphäre

Photosphärenrandbedingungen sind viel besser als Nullrandbedingungen; sie können für die Berechnung realistischer Sternmodelle verwendet werden.

11.3 Hüllenlösungen

<u>Hüllenlösungen</u> = Lösungen der Aufbaugleichungen für Schichten dicht unterhalb der Photosphäre

a) radiative Hüllen (Gleichgewichtshüllen , d.h.
$$\dot{P}=0$$
, $\dot{T}=0$)

Strahlungstransport:
$$\frac{dT}{dMr} = -\frac{3}{64\pi^2 ac} \frac{2eL_r}{r^4T^3} = -\frac{K}{r^4T^3}$$

Ansatz für
$$\approx : \approx = \approx_o P^a T^b$$
 (nur näherungsweise richtig.

aber in Hüllen verwendbar)

$$\Rightarrow -\frac{dT}{dMr} = \frac{3ae_0}{64\pi^2 ac} \frac{L_r}{r^4} \frac{P^a}{T^{3-b}} = K' \frac{L_r P^a}{r^4 T^{3-b}}$$

Hydrostatisches Gleichgewicht in der Hülle: $\frac{dP}{dM_r} = -\frac{GMr}{\mu \pi r \mu} = -K'' \frac{Mr}{r \mu}$

$$\stackrel{T^{3-b}}{\rightarrow} \frac{dT}{dP} = \frac{K'}{K''} \frac{Lr}{M_r}$$

<u>Für Hüllen</u>: $L_r = L$ (wegen $\dot{P} = 0$, $\dot{T} = 0$ und $\varepsilon_N = 0$), in sehr guter Näherung $M_r = M$ und in guter Näherung r = R

$$\frac{d\left(T^{4-b}\right)}{d\left(P^{\alpha+1}\right)} = \frac{4-b}{\alpha+1} \frac{K'}{K''} \frac{L}{M} \Rightarrow P^{1+\alpha} = \frac{16\pi\alpha cG}{3} \frac{M}{2e_o L} \frac{\alpha+1}{4-b} T^{4-b} + C$$

$$P^{1+a} = C'T^{4-b} + C$$
, wobei C vorläufig unbestimmt ist.

Verwenden jetzt Kramers Opazität für ff und gf Absorption:

$$\Rightarrow$$
 a = 1, b = -4.5

$$\rightarrow$$
 P² = C' T^{8.5} + C , mit C' = $\frac{2}{8.5} \frac{16\pi ace}{3} \frac{M}{3c_0 L}$

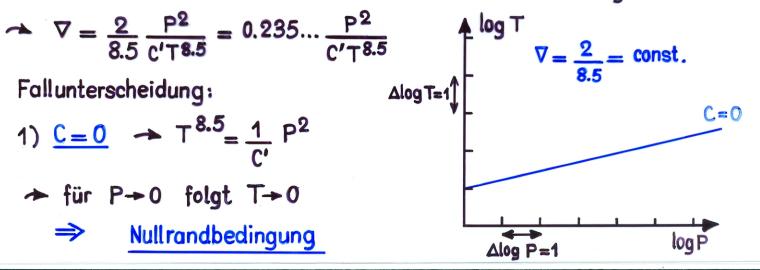
oder:

$$T^{8.5} = \frac{1}{C'} P^2 - \frac{C}{C'}$$

Diskussion in der $\log P - \log T - Ebene$ (Steigung = $\frac{d \log T}{d \log P} = \nabla$)

$$\nabla = \frac{2}{8.5} \frac{P^2}{c' + 8.5} = 0.235... \frac{P^2}{c' + 8.5}$$

1)
$$C = 0 \rightarrow T^{8.5} = \frac{1}{C'} P^2$$



∇ unabhängig von P und \top , $\underline{\nabla} < \nabla_{\alpha} \approx 0.4 \rightarrow$ radiative Hüllen

2) C < 0 (keine Nullrandbedingung, da für P $\rightarrow 0$ $T\rightarrow const.>0)$

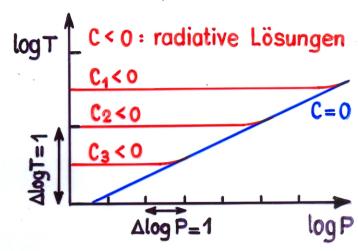
$$C < 0: T^{8.5} > \frac{1}{C'} P^2$$

$$\Rightarrow \nabla = \frac{2}{8.5} \frac{P^2}{C'T8.5} < \frac{2}{8.5}$$

radiative Lösungen

$$\lim_{P\to 0} T^{8.5} = -\frac{C}{C'} = \text{const.} > 0$$

 $\Rightarrow \lim_{P \to 0} (\log T) = \text{const.}$



Verhalten in der Nähe der Null-Lösung: $\Delta \log P = 4.25 \Delta \log T$

⇒ sehr schnell
$$\frac{1}{C'}$$
 P² » $-\frac{C}{C'}$ ⇒ T^{8.5} ≈ $\frac{P^2}{C'}$: Null-Lösung

► Lösungen mit C<0 konvergieren mit wachsendem P gegen die Null-Lösung

3)
$$C > 0$$
: \rightarrow $T^{8.5} < \frac{P^2}{C'}$ \rightarrow $\nabla = \frac{2}{8.5} \frac{P^2}{C'T^{8.5}} > \frac{2}{8.5}$

→ Konvektion möglich!

Bedingung für $\nabla = \nabla_{\alpha} = 0.4$ (Grenze für die Gültigkeit dieser Theorie):

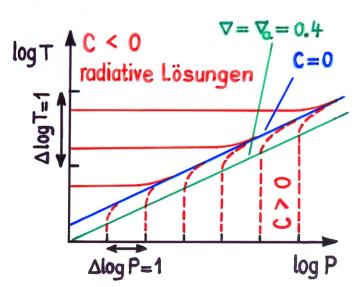
$$\nabla = \nabla_0 = \frac{2}{5} = \frac{2}{8.5} \frac{P^2}{C'T^{8.5}} \rightarrow T^{8.5} = \frac{10}{17C'} P^2$$

 $\Rightarrow \log T = \frac{2}{8.5} \log P - \frac{1}{8.5} \log C' - \frac{1}{8.5} \log 1.7$

$$Arr$$
 $\log T = \frac{2}{8.5} \log P - \frac{1}{8.5} \log C' - 0.027$

→ Lösung || zur Null-Lösung , aber um ∆log T= 0.027 tiefer

Formal ist für $\nabla > \nabla_{\alpha}$: $\lim_{T \to 0} P = \text{const.}$



- b) Konvektive Hüllen (Verlauf im logT-logP-Diagramm?)
- <u>im tiefen Sterninneren</u>: $\nabla = \nabla_{\alpha}$ bei Konvektion, ∇_{α} aber nicht konstant bei hohen Temperaturen: Gas (haupts. H und He) ist <u>vollst. ionisiert</u>

 (T ≥ 50000 K)

 1-atomiges ideales Gas: $\gamma = C_P/C_V = \frac{5}{3}$ $\nabla_{\alpha} = \frac{\gamma-1}{\gamma} = 0.4$
 - ightharpoonup Gerade mit Steigung 0.4 im logT-log P- Diagr., unterhalb der Grenzlinie $\nabla = \nabla_{\alpha}$

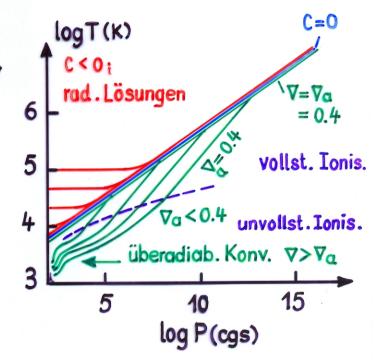
bei niedrigen Temperaturen: Gas ist unvollständig ionisiert

Betrachten adiabatische Kompression, Alog P>0

- Arr bei vollst. Ionisation : ($\Delta \log T$)_α ≈ 0.4 $\Delta \log P$
- → bei unvollst. Ionisation: (ΔlogT)_a < 0.4 Δ log P da ein Teil der Arbeit in Ionisationsenergie geht
- ∇_{α} < 0.4
- unmittelbar unterhalb der Photosphäre

9, P klein, Konvektion wird ineffektiv

- $\nabla > \nabla_{\alpha}$: überadiabatische Konv. $(\nabla \rightarrow \nabla_{r})$
- ➤ Kurven im logT-logP fallen steil ab



C) Zusammenfassung:

- ▶ Heisse Sterne haben radiative Hüllen (aus logT-log P-Diagramm)

Hüllenlösungen



➤ Konvektive Hüllen: Lösungen im logT-logP-Diagramm sind stark

divergent. → Tiefe der Konvektionszone hängt

empfindlich von den äusseren Randbedingungen ab

→ Innerer Aufbau stark von äusseren Rand
bedingungen abhängig! Unsicherheiten der

Konvektionstheorie gehen mit ein.

► Kühle Sterne haben konvektive Hüllen

Grenze zwischen radiativen und konvektiven Hüllen: $T_{eff} \approx 6000 \, \text{K}$ (\sim Sonne mit $T_{eff} = 5780 \, \text{K}$ hat eine konvektive Hülle)

11.4 Randbedingungen für numerische Rechenverfahren

Für praktische Zwecke : Der äussere Rand wird von $M_r = M$ nach innen zu $M_r = M_F < M$ verlegt.

Hülle mit
P=0, T=0

Vorteil: Umgehung der Schwierigkeiten mit Hüllenlösungen. (Wählt M_F so, dass die Ionisationszonen innerhalb M_F < M_r < M liegen. → Braucht für die Innenlösung nicht die Konvektionsgleichungen zu lösen)

Proktisches Vorgehen

1 Hüllenintegration von $M_r = M$ mit Versuchswerten für L und T_{eff} bis $M_r = M_F$

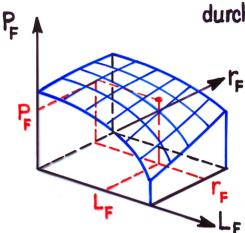
$$(L,T_{eff})_{M_{r}=M} \rightarrow (r_{r}(L,T_{eff}),T_{r}(L,T_{eff}),P_{r}(L,T_{eff}),L_{r}=L)$$

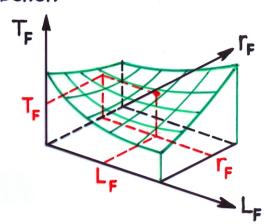
Arr Elimination van L und T_{eff} : $P_F = P_F(r_F, L_F)$ und $T_F = T_F(r_F, L_F)$

viele Hüllenintegrationen in der (L, Teff) - Ebene liefern

- 2 Flächen $P_F = P(r_F, L_F)$ und $T_F = T(r_F, L_F)$ über der (r_F, L_F) -Ebene
- \rightarrow jeder Hüllenintegration mit (L,Teff) entspricht je ein Punkt P(r_F, L_F) und T(r_F, L_F).
- Arr Aussere Randbedingung bei $M = M_F : P(M_F) = P(r_F, L_F), T(M_F) = T(r_F, L_F)$

Für praktische Zwecke: Randbedingung durch lokale Approximation der Flächen $P=P(r_F, L_F)$ und $T=T(r_F, L_F)$ durch Tangentialebenen





Tangentialebene in der Umgebung eines Punktes (rf (L, Teff), Lf (L, Teff)) ist durch 3 Hüllenintegrationen eindeutig bestimmt.

$$P_{F} = a_{1}L_{F} + a_{2}r_{F} + a_{3}$$

$$T_{F} = b_{1}L_{F} + b_{2}r_{F} + b_{3}$$

Die Konstanten $a_1, a_2, a_3, b_1, b_2, b_3$ werden durch die 3 Hüllenintegrationen bestimmt

Bedingung für die Innenlösung:

$$P_F = P(M_F) = a_1 L(M_F) + a_2 r(M_F) + a_3$$

$$T_F = T(M_F) = b_1 L(M_F) + b_2 r(M_F) + b_3$$
praktische äussere
Randbedingungen