vereinfachende Annahmen: (Rechtfertigung später)

keine Rotation → keine Zentrifugalkräfte

kein Magnetfeld → keine magnet. Kräfte kein Begleiter → keine Gezeitenkräfte → Einzelsterne

konstante Masse (wenigstens vorläufig)

1. Die Massenverteilung im Stern

äussere Kraft: nur Gravitation -> sphärisch symmetr. Sterne

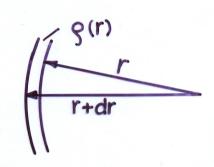
nur eine Ortskoordinate erforderlich

r : Abstand vom Zentrum

 $M_r := Masse innerhalb von r$

Sei 9(r) die Dichteverteilung

$$M_r = \int_0^r 4\pi r^2 g(r) dr , \frac{dMr}{dr} = 4\pi r^2 g(r)$$



Für Theorie des Sternaufbaus : Mr als unabhängige Variable geeigneter

Eulersche Koordinate r Lagrangesche Koordinate Mr

Grenzen des Sterns: $0 \le r \le R$ (variabel) $0 \le Mr \le M$ (fest)

zeitl. Ableitung : $\dot{r} = V$

M_r (keine konvekt. Gl.)

1. Grundgleichung des Sternaufbaus:

$$\frac{dMr}{dr} = 4\pi r^2 g(r)$$

$$\frac{dr}{dMr} = \frac{1}{4\pi r^2 g(r)}$$

Eulersch

Lagrangesch

2. Die Impulsbilanz

2.1. Hydrostatisches Gleichgewicht

Annahme: Jedes Massenelement im Kräftegleichgew.

Welche Kräfte ?

Druck:
$$(P(r)-P(r+dr))dF = -\frac{dP}{dr}drdF$$

Gravitation:
$$-dm |g| = -IgI g dr dF$$
, $IgI = \frac{GMr}{r^2}$: Schwerebesch!

$$\frac{dP}{dr} = -\frac{GMr}{r^2} g(r)$$

Eulersche Form

$$\frac{dP}{dMr} = -\frac{GMr}{4\pi r^4}$$

Lagrangesche Form

$$P(r_{*}) = \int_{r_{*}}^{R} \frac{GM_{r}}{r_{2}} g(r) dr + P_{o} \qquad P(M_{r_{*}}) = \int_{M_{r_{*}}}^{M} \frac{GM_{r}}{4\pi r_{*}} dM_{r} + P_{o}$$

$$P(M_{r_*}) = \int_{M_{r_*}}^{M} \frac{GMr}{4\pi r^4} dM_r + P_0$$

Po : Oberflächendruck , praktisch = 0

<u>Wichtig</u>: P ist der Gesamtdruck, egal welches die Druckquellen sind!

2.2 Die Bewegungsgleichung

Bewegung von Flüssigkeiten / Gasen durch Navier-Stokes-Gleichung beschrieben

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \text{ grad}) \vec{v} = \vec{F} - \frac{1}{9} \text{ grad } \vec{P} - \frac{\eta}{9} \text{ rot rot } \vec{v} + \frac{4}{3} \frac{\eta}{9} \text{ grad div } \vec{v}$$

$$\text{ aussere kraft}$$

$$\text{ Druck }$$

$$\text{ viskose Krafte}$$

$$\eta = \text{ Viskositat}$$

Übergang von der Eulerschen zur Lagrangeschen Schreibweise

$$\frac{\partial}{\partial t}$$
 $\rightarrow \frac{d}{dt} = \frac{\partial}{\partial t} + \sqrt{g} \operatorname{grad}$

$$\frac{d\vec{v}}{dt} = \vec{F} - \frac{1}{9} \operatorname{grad} \vec{P} - \frac{\eta}{9} \operatorname{rot} \operatorname{rot} \vec{v} + \frac{4}{3} \frac{\eta}{9} \operatorname{grad} \operatorname{div} \vec{v}$$

Vereinfachungen:

1)
$$n = 0$$
, keine innere Reibung

2)
$$\vec{F} = -grad \phi$$
, $\phi = Gravitations potential$

3) Kugelsymmetrie,
$$\frac{\partial}{\partial \varphi} = 0$$
, $\frac{\partial}{\partial \varphi} = 0$
 $\vec{V} = (\dot{r}, 0, 0)$, grad $\rightarrow \frac{d}{dr}$

$$\ddot{r} = -\frac{d\phi}{dr} - \frac{1}{9} \frac{dP}{dr}$$

Bestimmung von <u>dø</u> durch Lösung der <u>Poisson-Gleichung</u>:

$$\Delta \phi = \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\phi}{dr} \right) = 4\pi G g$$

Lösung:
$$\frac{d\phi}{dr} = \frac{GMr}{r^2}$$

$$\frac{1}{r^2} \frac{d}{dr} \left[r^2 \frac{d\phi}{dr} \right] = 4 \overline{i} G g$$

$$\frac{d}{dr} \left[r^2 \frac{d\phi}{dr} \right] = 4 \overline{i} G r^2 g = G \frac{dMr}{dr}$$

$$r^2 \frac{d\phi}{dr} = G M_r$$

$$\Rightarrow \frac{d\phi}{dr} = \frac{G M_r}{r^2}$$

$$\ddot{r} = -\frac{GMr}{r^2} - \frac{1}{9} \frac{dP}{dr} \quad \text{oder} \quad \frac{\ddot{r}}{4\pi r^2} = -\frac{GMr}{4\pi r^4} - \frac{dP}{dMr} \quad \text{verallg. Form}$$

$$= -\frac{GMr}{r^2} - \frac{1}{9} \frac{dP}{dr} \quad \text{oder} \quad \frac{\ddot{r}}{4\pi r^2} = -\frac{GMr}{4\pi r^4} - \frac{dP}{dMr} \quad \text{der 2. Grundgl.}$$

Bedingung für hydrostatisches Gleichgewicht : $\ddot{r} = 0$

(nicht $\vec{v} = 0!$)

genähertes hydrost. Gleichgew.: | r | « GMr | Mr | dMr |

stark gestörtes hydrost. Gleichgewicht:

a) Sei
$$\left| \frac{dP}{dMr} \right| \ll \frac{GMr}{4\pi r^4}$$
 \Rightarrow $1\ddot{r} \approx \frac{GMr}{r^2}$: Druckfreie Bewegung

Abschätzung:
$$\ddot{r} = \frac{d^2r}{dt^2} \rightarrow \frac{R}{T_h^2} = \frac{GM}{R^2} \rightarrow \frac{T_h}{R} = \left(\frac{R^3}{GM}\right)^{1/2}$$

Th = char. Einstellzeit für hydrost. Gleichgewicht = Freifallzeit

Weisser Zwerg:
$$R \approx 10^{-2} R_{\odot}$$
, $M \approx M_{\odot} \rightarrow T_{h} \approx 1.5 sec$

Sonne :
$$R = 4R_{\odot}$$
, $M = 4M_{\odot}$ \rightarrow $T_{h} \approx 25 \text{ min}$
Riesenstern: $R \approx 40^{2}R_{\odot}$, $M \approx M_{\odot}$ \rightarrow $T_{h} \approx 20 \text{ Tage}$
Weisser Zwerg: $R \approx 10^{-2}R_{\odot}$, $M \approx M_{\odot}$ \rightarrow $T_{h} \approx 1.5 \text{ sec}$
Neutronenstern: $R \approx 10^{-5}R_{\odot}$, $M \approx M_{\odot}$ \rightarrow $T_{h} \approx 10^{-4}\text{sec}$

Wichtig: $T_h \ll Entwicklungszeitskala (\sim 10^6 - 10^{10} Jahre)$

Sterne sind immer im hydrostatischen Gleichgewicht

(mit Ausnahmen: Sternentstehung, Supernovae, pulsierende Sterne, z.B. δ-Cephei-St., Periode 11 = Th ~ 3-1/2)

b) Sei
$$\frac{dP}{dMr}$$
 >> $\frac{GMr}{4Tr4}$ => $|\ddot{r}| \approx \frac{1}{9} \frac{dP}{dr}$: starke Druckstörung

Abschätzung:
$$\frac{dP}{dr} \rightarrow \frac{P}{R}$$
, $\frac{d^2r}{dt^2} \rightarrow \frac{R}{\tau_h} \approx \left(\frac{P}{S}\right)^{1/2} = V_S$
 $V_S = Schallgeschw.$

$$\rightarrow$$
 $\tau_h \approx \frac{R}{v_s} = Schallaufzeit durch den Stern$

Da P/e ~T \rightarrow $v_s \sim T^{1/2}$ \rightarrow v_s gross im Sternzentrum (T hoch) v_s klein weit aussen (T niedrig) $o T_h$ wird hauptsächlich durch die Aussenschichten bestimmt!

2.4 Zwischenbilanz

Bisher: 2 Gleichungen für 3 unbekannte Funktionen r, g und P

$$\frac{dr}{dMr} = \frac{1}{4\pi r^2 g}$$
 unbekannt : $r(M_r)$, $g(M_r)$, $P(M_r)$ Gleichungen lösbar, wenn es eine Zustandsgleichung
$$\frac{dP}{dMr} = -\frac{GMr}{4\pi r^4}$$
 der Form $f(P,g) = 0$ gibt. Jedoch schon für ein ideales Gas ist $f(P,g,T) = 0$

▶ Benötigen eine weitere Gleichung für die Temperatur T

2.5 Abschätzung von Zentraldruck P und Zentraltemperatur Tc

$$\frac{dP}{dr} = -\frac{GMr}{r^2} \, g \, , \quad \text{für Abschätzung} \quad \frac{dP}{dr} \rightarrow \frac{P_c - P_o}{R} = \frac{P_c}{R}$$

$$\frac{GMr}{r^2} \, g \rightarrow \frac{G(M/2)}{R} \, \overline{g} = \frac{2GM}{R^2} \, \overline{g}$$

$$P_c \approx \frac{2GM}{R} \, \overline{g} = \frac{6}{4\pi} \, \frac{GM^2}{R^4}$$

Beispiel: Sonne $P_c \approx 6 \cdot 10^{15} \, \text{dyn cm}^2$

Benützen für Abschätzung von T_c die Gleichung des idealen Gases $P = \frac{Q}{\mu} ST$: Q = Gaskonstante , $\mu = Molekulargewicht [9/Mol]$

$$T_{\rm c} \approx \frac{26\mu}{R} \frac{\rm M}{R}$$

Beispiel: Sonne,
$$\mu = \frac{1}{2} \rightarrow T_c \approx 10^7 \text{ K}$$

(Für $P \approx 6\,10^{15}\,dyn\,cm^2$, $T_c = 10^7\,K$ und $g = \overline{g} \approx 1\,gcm^{-3}$ ist die ideale Gasgleichung eine sehr gute Näherung)

3. Energiereservoire - Virialsatz

3.1 Energiereservoire

Welche Energiereservoire hat ein Stern? Wie lange reichen sie aus? Dazu folgende Abschätzungen:

a) Thermische Energie: (mit idealem Gas)

$$P = \frac{Q}{\mu} ST$$

$$\frac{Q}{\mu} = Cp - C_V = \frac{2}{3} C_V$$

$$C_V = \frac{3}{2} \frac{Q}{\mu}$$
 (spez. Wärme pro Masseneinheit)
$$C_V = \frac{3}{2} \frac{Q}{\mu}$$
 (spez. Wärme pro Masseneinheit)
$$C_V = \frac{3}{2} \frac{Q}{\mu}$$
 therm. Energie pro Masseneinheit = $C_V T$

totale therm. Energie
$$E_T = \int_0^M C_v T dM_r = \int_0^M \frac{3}{2} \frac{Q}{\mu} T dM_r = \frac{3}{2} \frac{Q}{\mu} \langle T \rangle M$$

Für die Sonne:
$$M = 2.10^{33}$$
 g, $\langle T \rangle \approx 10^{7}$ K, $\mu = \frac{1}{2}$ g/Mol $\rightarrow E_{T,0} \approx 5.10^{48}$ erg

b) <u>Gravitationsenergie</u>

Potentielle Energie einer Massenschale
$$dE_G = -dM_r \int_{r}^{\infty} \frac{GMr}{x^2} dx = -dM_r GM_r \int_{r}^{\infty} \frac{dx}{x^2} = -\frac{GMr}{r} dM_r$$

tot. pot. Energie
$$E_G = -\int_0^M \frac{GM_r}{r} dM_r \approx -\frac{GM^2}{R}$$

Für die Sonne :
$$E_{6,0} \approx -4.10^{48}$$
 erg

Wie lange kann ein Stern von ET oder EG leben?

Kelvin-Helmholtz-Zeit
$$\tau_{KH} \approx \frac{E_T}{L} \approx -\frac{E_G}{L} \approx \frac{GM^2}{RL}$$

Für die Sonne:
$$L_{\odot} = 4.10^{33} \text{ erg s}^{-1} \rightarrow \tau_{KH,\odot} \approx 10^{15} \approx 310^{7} \text{ Jahre}$$

 $T_{\rm KH,0}$ \ll Alter der Sonne \approx 4.6 10 9 Johre \longrightarrow Eg und E $_{\rm T}$ können nicht die Quellen der Leuchtkraft sein!

c) Nukleare Energie (aus dem Massendefekt bei Kernfusion)

Totaler Massendefekt der Sonne über 4.6 109 Jahre

$$\Delta M = \frac{L\Delta t}{C^2} \quad \Delta \quad \left(\frac{\Delta M}{M}\right)_{\odot} = \frac{L_{\odot} \Delta t}{M_{\odot} C^2} \approx 3.10^{-4}$$

Kernfusionen lassen M praktisch konstant. Max $\left(\frac{\Delta M}{M}\right) = 7 \cdot 10^{-3}$

3.2 Der Virialsatz

Warum ist $|E_G| \approx E_T$? \leftrightarrow Virialsatz!

$$\frac{dP}{dMr} = -\frac{GMr}{4\pi r^4} \left[-4\pi r^3, \int_0^M dMr \right] - \int_0^M 4\pi r^3 \frac{dP}{dMr} dMr = -\int_0^M \frac{GMr}{r} dMr = E_G$$

$$\int_0^M 4\pi r^3 \frac{dP}{dMr} dMr = \left[4\pi r^3 P \right]_0^M - \int_0^M 12\pi r^2 \frac{dr}{dMr} P dMr = -3 \int_0^M \frac{P}{8} dMr$$

$$\int_0^M 4\pi r^3 \frac{dP}{dMr} dMr = \left[4\pi r^3 P \right]_0^M - \int_0^M 12\pi r^2 \frac{dr}{dMr} P dMr = -3 \int_0^M \frac{P}{8} dMr$$
1. Grundgleichung

 $3\int_{0}^{M} \frac{P}{g} dM_{r} = -E_{G}$

mit idealer Gasgleichung:
$$\frac{P}{S} = \frac{Q}{\mu}T = \frac{2}{3}c_{v}T$$

$$\Rightarrow 3\int_{0}^{M} \frac{P}{S} dM_{r} = 2\int_{0}^{M} c_{v}TdM_{r} = 2E_{T} \qquad E_{T} = \frac{3}{2}\int_{0}^{M} \frac{P}{S} dM_{r}$$

 $E_G = -2E_T$ Virialsatz (einfachste Form)

Konsequenz:

Sternkontraktion
$$\rightarrow -\delta E_{G} > 0$$

$$\delta E_{T} = -\frac{1}{2} \delta E_{G} > 0 : E_{T} \text{ nimmt } zu$$

$$\Rightarrow \text{Stern wird heisser}$$

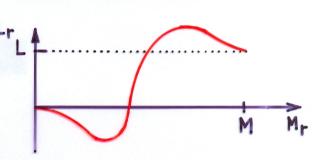
$$-\frac{1}{2} \delta E_{G} > 0 \text{ wird abgestrahlt}$$

4. Der Energiesatz

Def. Lr = die pro Zeiteinheit durch eine Kugelschale mit Radius r strömende Energie (wie spielt dabei keine Rolle)

Randwerte für
$$L_r$$
: $L_r(Mr=0) = 0$: im Zentrum $L_r(Mr=M) = L$ = totale Leuchtkraft des Sterns

Der Verlauf von $L_r(M_r)$ braucht nicht monoton zu sein!



4.1 Der Energiesatz in differentieller Form

Wie ändert sich Lr in einer Massenschale dMr?

Definitionen

 durch Neutrinos abgeführte Energie durch Änderung des thermodynamischen Zustands frei werdende Energie

$$\frac{dL_r}{dM_r} = \varepsilon_N - \varepsilon_y + \varepsilon_g$$

Energiesatz in differentieller Form (3. Grundgleichung)

Berechnung von Eg: thermodynamisches Problem

1. Hauptsatz der Thermodynamik : $\varepsilon_g = -\frac{dQ}{dt} = -T\frac{dS}{dt}$

(Q,S pro Masseneinheit)

Berechnung von dQ(g,T)

$$\frac{d\Omega = du + PdV = du + Pd\left(\frac{1}{9}\right) = \left(\frac{\partial u}{\partial T}\right)_{9}^{dT} + \left(\frac{\partial u}{\partial 9}\right)_{T}^{dS} - \frac{P}{9^{2}}d9$$

$$= \left(\frac{\partial u}{\partial T}\right)_{9}^{dT} + \left\{\left(\frac{\partial u}{\partial 9}\right)_{T} - \frac{P}{9^{2}}\right\}d9 \tag{*}$$

Wenn
$$dg = 0$$
: $d\theta = \left(\frac{\partial u}{\partial T}\right)_g dT = c_v dT \iff c_v = \left(\frac{\partial u}{\partial T}\right)_g$

Eliminierung von
$$(\partial u/\partial g)_T$$
 in $(*)$:

Differential der Entropie: $dS = \frac{dQ}{T} = \frac{1}{T} \left(\frac{\partial u}{\partial T}\right)_g dT + \frac{1}{T} \left(\frac{\partial u}{\partial g}\right)_T - \frac{P}{g^2} dg$

$$= \left(\frac{\partial S}{\partial T}\right)_g dT + \left(\frac{\partial S}{\partial g}\right)_T dg$$

$$\Rightarrow \left(\frac{\partial S}{\partial T}\right)_{g} = \frac{1}{T} \left(\frac{\partial u}{\partial T}\right)_{g} \quad \text{und} \quad \left(\frac{\partial S}{\partial g}\right)_{T} = \frac{1}{T} \left(\frac{\partial u}{\partial g}\right)_{T} - \frac{P}{Tg^{2}}$$

Benützen Gleichheit der 2. gemischten Ableitungen: $\frac{\partial^2 S}{\partial T \partial S} = \frac{\partial^2 S}{\partial S \partial T}$

$$\Rightarrow \frac{1}{T} \frac{\partial^2 u}{\partial g \partial T} = -\frac{1}{T^2} \left(\frac{\partial u}{\partial g} \right)_T + \frac{1}{T} \frac{\partial^2 u}{\partial T \partial g} + \frac{P}{T^2 g^2} - \frac{1}{T g^2} \left(\frac{\partial P}{\partial T} \right)_g$$

$$\frac{\partial u}{\partial g} - \frac{P}{g^2} = -\frac{T}{g^2} \left(\frac{\partial P}{\partial T} \right)_g$$

$$\frac{\partial u}{\partial g} - \frac{P}{g^2} \left(\frac{\partial P}{\partial T} \right)_g$$

Berechnung von dQ(P,T) (Wechsel von (9,T) auf (P,T))

Dazu Zustandsgleichung: g = g(P,T), mit

$$dS = \left(\frac{\partial G}{\partial P}\right)^{T} dP + \left(\frac{\partial G}{\partial T}\right)^{P} dT \iff \frac{\partial G}{\partial S} = \frac{B}{B} \left(\frac{\partial G}{\partial S}\right)^{T} \frac{dP}{dP} + \frac{B}{A} \left(\frac{\partial G}{\partial A}\right)^{P} \frac{dL}{dL}$$

Def.:
$$\alpha = \left(\frac{\partial \ln 9}{\partial \ln P}\right)_T$$
, $\delta = -\left(\frac{\partial \ln 9}{\partial \ln T}\right)_P$ $\Rightarrow \frac{d9}{9} = \alpha \frac{dP}{P} - \delta \frac{dT}{T}$

Zustandsgl. in diff. Form

N.B.: Für ein ideales Gas ist $\alpha = 1$ und $\delta = 1$

$$d\theta = c_{V}dT - \frac{T}{g^{2}} \left(\frac{\partial P}{\partial T}\right)_{S} dS$$

$$dS = \left(\frac{\partial S}{\partial P}\right)_{T} dP + \left(\frac{\partial S}{\partial T}\right)_{P} dT$$

$$dQ = \left(\frac{\partial S}{\partial P}\right)_{T} dP + \left(\frac{\partial S}{\partial T}\right)_{P} dT$$

$$dQ = \left(\frac{\partial S}{\partial P}\right)_{T} dP + \left(\frac{\partial S}{\partial T}\right)_{P} dT$$

$$dQ = \left(C_V - \frac{T}{9^2} \frac{\partial P}{\partial T} \frac{\partial 9}{\partial T}\right) dT - \frac{T}{9^2} \frac{\partial P}{\partial T} \frac{\partial 9}{\partial P} dF$$

ausserdem :

$$\left(\frac{\partial Q}{\partial T}\right)_{P} \equiv C_{P} = C_{V} - \frac{T}{S^{2}} \left(\frac{\partial P}{\partial T}\right)_{S} \left(\frac{\partial S}{\partial T}\right)_{P}$$

spezifische Wärme

wegen
$$\left(\frac{\partial P}{\partial T}\right)_{S} = -\frac{\left(\frac{\partial S}{\partial T}\right)_{P}}{\left(\frac{\partial S}{\partial P}\right)_{T}}$$

$$\left(\frac{\partial P}{\partial T}\right)_{S} = -\frac{\left(\frac{\partial S}{\partial T}\right)_{P}}{\left(\frac{\partial S}{\partial T}\right)_{T}}$$
 folgt $d\theta = C_{P} dT + \frac{T}{S^{2}} \left(\frac{\partial S}{\partial T}\right)_{P} dP$

da weiter $\frac{T}{9} \left(\frac{\partial 9}{\partial T} \right)_{p} = \left(\frac{\partial \ln 9}{\partial \ln T} \right)_{p} = -\delta$

$$dQ = C_P dT - \frac{\delta}{9} dP$$

und

$$\varepsilon_g = -\frac{d\Omega}{dt} = -C_P \frac{dT}{dt} + \frac{\delta}{9} \frac{dP}{dt}$$

Umformung auf die Variablen Pund Tergibt

$$\varepsilon_{\mathbf{g}}(\mathbf{P},\mathbf{T}) = -\varepsilon_{\mathbf{P}} \frac{d\mathbf{T}}{dt} + \frac{\delta}{9} \frac{d\mathbf{P}}{dt}$$
, wobei $\delta = -\left(\frac{\partial \ln 9}{\partial \ln T}\right)_{\mathbf{P}}$

$$\frac{\partial L_r}{\partial M_r} = \varepsilon_N - \varepsilon_P - c_P \frac{\partial T}{\partial t} + \frac{\delta}{9} \frac{\partial P}{\partial t}$$

Energiesatz in differentieller Form 3. Grundgleichung

Spezialfälle:

- a) Fast immer ist $E_{\nu} \ll Max(E_N, |E_g|)$ und kann vernachlässigt werden
- b) Stationare Sterne (im thermischen Gleichgewicht, nicht explizit von der Zeit abhängig) $\dot{P}=0 \quad , \dot{T}=0 \implies \epsilon_g=0$

Aber: aus $\epsilon_g = 0$ folgt nicht $\dot{P} = 0$ und $\dot{T} = 0$!

für stationäre Sterne :
$$\frac{dLr}{dMr} = \epsilon_N$$

- c) adiabatische Änderungen eines Sterns : $dQ = 0 \rightarrow C_P dT_{-\frac{\delta}{2}} dP = 0$ oder $C_P T dlnT_{-\frac{\delta}{2}} P dlnP = 0$
 - adiabatischer Temperaturgradient $\nabla_{a} = \left(\frac{d \ln T}{d \ln P}\right)_{a} = \frac{P \delta}{C_{P} g T}$

$$\frac{\varepsilon_{\mathbf{g}} = -c_{\mathbf{p}} T \left(\frac{\dot{\mathbf{T}}}{T} - \nabla_{\alpha} \frac{\dot{\mathbf{p}}}{P} \right)}{\dot{T} \neq 0 \text{ und } \dot{P} \neq 0 \text{ sein } !}$$

$$\frac{\partial L_r}{\partial M_r} = \varepsilon_N - \varepsilon_V - \frac{\partial u}{\partial t} + \frac{P}{Q^2} \frac{\partial Q}{\partial t} \qquad | \int_0^M ...$$

$$\Rightarrow L = -\frac{\partial E_N}{\partial t} - L_{\gamma} - \frac{\partial E_T}{\partial t} + \int_{0}^{M} \frac{P}{S^2} \frac{\partial S}{\partial t} dM_r$$

benützen wir $-E_{G} = 3 \int_{S}^{M} \frac{P}{S} dM_{r}$ (vgl. 3.2)

$$\frac{\partial L_{r}}{\partial M_{r}} = \mathcal{E}_{N} - \mathcal{E}_{V} - \frac{\partial u}{\partial t} + \frac{P}{9^{2}} \frac{\partial 9}{\partial t} \qquad \int_{0}^{M_{r}} dM_{r} = -\frac{\partial E_{N}}{\partial t}$$

$$\Rightarrow L = -\frac{\partial E_{N}}{\partial t} - L_{V} - \frac{\partial E_{T}}{\partial t} + \int_{0}^{M_{r}} \frac{P}{9^{2}} \frac{\partial 9}{\partial t} dM_{r} \qquad \int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$\int_{0}^{M_{r}} \mathcal{E}_{N} dM_{r} = -\frac{\partial E_{N}}{\partial t} = -\frac{\partial U}{\partial t}$$

$$-\frac{\partial E_{G}}{\partial t} = 3 \int_{0}^{M} \frac{\partial P}{\partial t} dM_{r} - 3 \int_{0}^{M} \frac{\partial S}{\partial t} dM_{r}$$

benützen jetzt nach t abgeleitete 2. Grundgleichung:

$$\rightarrow \int_{0}^{M} 4 \pi^{3} \frac{\partial}{\partial M_{r}} \left(\frac{\partial P}{\partial t}\right) dM_{r} = 4 \int_{0}^{M} \frac{\partial M_{r}}{r^{2}} \frac{\partial r}{\partial t} dM_{r}$$

rechte Seite

rechte Seite = $-4\frac{\partial}{\partial t}\int \frac{GMr}{r} dM_r = 4\frac{\partial E_G}{\partial t}$

$$-\frac{\partial E_6}{\partial t} = -4 \frac{\partial E_6}{\partial t} - 3 \int_0^M \frac{\partial g}{\partial t} dM_r \rightarrow \int_0^M \frac{\partial g}{\partial t} dM_r = -\frac{\partial E_6}{\partial t}$$

$$L + L_{y} = -\frac{\partial}{\partial t} \left[E_{N} + E_{T} + E_{G} \right]$$
 integrale Form des Energiesatzes

Beispiel: Sei Ly=0,
$$E_N = const., d.h. \dot{E}_N = 0$$

Energie satz :
$$L = -\dot{E}_T - \dot{E}_G$$
 $L = -\frac{1}{2}\dot{E}_G$ abgestr. E

Energie satz :
$$\dot{E}_{G} = -\dot{E}_{T} - \dot{E}_{G}$$
 \Rightarrow $\dot{E}_{T} = -\frac{1}{2}\dot{E}_{G}$ abgestr. Energie
Virial satz : $\dot{E}_{G} = -2\dot{E}_{T}$ \Rightarrow $\dot{E}_{T} = -\frac{1}{2}\dot{E}_{G}$ Erhöhung der inneren Energie

lebt ein Stern von
$$E_G$$
, so ist $\dot{E}_G < 0 \implies \dot{E}_T = -\frac{1}{2}\dot{E}_G > 0 \implies$ Stern heizt sich auf! Wegen L > 0 ist $\dot{E}_G = \int_{-r}^{M} \frac{\dot{r}}{r} \, dM_r < 0$

→ r < 0 für wesentliche Teile des Sterns → Kontraktion</p>

4.3 Zusammenhang zwischen Energiesatz und dem Virialsatz in allg. Form

$$\frac{\partial L_{r}}{\partial M_{r}} + \varepsilon_{v} = \varepsilon_{N} + \frac{\partial u}{\partial t} = -P\frac{\partial}{\partial t}\left(\frac{1}{9}\right) \int_{0}^{\pi} ... dM_{r}$$

$$\Rightarrow L + L_{v} + \dot{E}_{N} + \dot{U} = -\int_{0}^{\pi} P\frac{\partial}{\partial t}\left(\frac{1}{9}\right) dM_{r}$$

$$= -\int_{0}^{\pi} P\frac{\partial}{\partial t}\left(\frac{1}{9}\right) dM_{r}$$

Berechnung der rechten Seite:

$$\frac{\partial P}{\partial M_r} = -\frac{GM_r}{411r^4} - \frac{\ddot{r}}{411r^2} / 411r^2 \dot{r} \quad ; \quad \frac{Def.}{2} \quad V_r = \frac{411}{3}r^3 \rightarrow \frac{\partial V_r}{\partial M_r} = \frac{1}{2}$$

$$\Rightarrow \dot{V}_{r} \frac{\partial P}{\partial M_{r}} = -\frac{GM_{r}}{r} \frac{\dot{r}}{r} - \dot{r} \ddot{r} = \frac{\partial}{\partial t} \left[\frac{GM_{r}}{r} - \frac{1}{2} \dot{r}^{2} \right]$$

$$= \frac{\partial}{\partial M_{r}} \left[\dot{V}_{r} P \right] - P \frac{\partial}{\partial M_{r}} \dot{V}_{r} = \frac{\partial}{\partial M_{r}} \left[\dot{V}_{r} P \right] - P \frac{\partial}{\partial t} \left(\frac{1}{S} \right)$$

$$\Rightarrow -P\frac{\partial}{\partial t}\left(\frac{1}{9}\right) = -\frac{\partial}{\partial Mr}\left[\mathring{V}_rP\right] - \frac{\partial}{\partial t}\left[-\frac{GMr}{r} + \frac{1}{2}\mathring{r}^2\right] \quad *$$

Bedeutung von $\frac{\partial}{\partial M_r} [\dot{V}_r P]$: $\dot{V}_r P = 4 \pi r^2 \dot{r} P = P \dot{r} = K \dot{r} = Leistung für$ Kontr./Expansion

Integration von (*) ergibt

$$-\int\limits_{0}^{M}P\frac{\partial}{\partial t}\left(\frac{1}{9}\right)dM_{r}=\left[\dot{V}_{r}P\right]_{0}^{M}-\frac{\partial}{\partial t}\left[E_{G}+E_{K}\right],\text{ wobei }E_{K}=\int\limits_{0}^{M}\dot{T}^{2}dM_{r}=\text{kin.}$$
 Energie

allg. Form des Energiesatzes in der integralen Form:

$$L + L_{\gamma} = -\frac{\partial}{\partial t} \left[E_{N} + U + E_{G} + E_{K} \right]$$

Wenn $\ddot{r} \neq 0 \longrightarrow E_K$ als mögliche Energiequelle

Der Virialsatz

Ausgangspunkt:
$$\frac{\partial P}{\partial Mr} = -\frac{GMr}{4\pi r^4} - \frac{\ddot{r}}{4\pi r^2} / 3V_r$$
, $\left(V_r = \frac{4\pi}{3}r^3\right)$

$$\Rightarrow 3V_r \frac{\partial P}{\partial Mr} = -\frac{GMr}{r} - r\ddot{r} = -\frac{GMr}{r} - \frac{1}{2} \frac{\partial^2 r^2}{\partial t^2} + \dot{r}^2$$

$$V_r \frac{\partial P}{\partial M_r} = \frac{\partial}{\partial M_r} [V_r P] - P \frac{\partial V_r}{\partial M_r} = \frac{\partial}{\partial M_r} [V_r P] - P \frac{1}{9}$$

$$\Rightarrow 3\frac{\partial}{\partial Mr} \left[V_r P \right] - 3\frac{P}{9} = -\frac{GMr}{r} - \frac{1}{2}\frac{\partial^2 r^2}{\partial t^2} + \dot{r}^2 \qquad \left| \int_0^M ... dMr \right|$$

$$\frac{1}{2}\frac{\partial^2}{\partial t^2}\int_0^M r^2dM_r - 2\int_0^M \frac{1}{2}\dot{r}^2dM_r = -3\left[V_rP\right]_0^M - \int_0^M \frac{GM_r}{r}dM_r + 3\int_0^M \frac{P}{3}dM_r$$

$$= \frac{3}{2}\theta \qquad E_K \qquad = 0 \qquad E_G \qquad , \theta = \text{Trägheitsmom.}$$

$$\frac{3}{4} \frac{\partial^2 \theta}{\partial t^2} - 2E_{K} = E_{G} + 3 \int_{0}^{M} \frac{P}{g} dM_{r}$$
 : allg. Form des Virialsatzes (für beliebige Zustands-

gleichung und Sterne mit rito)

Mit Zustandsgleichung:
$$\frac{P}{S} = (\chi-1)u$$
, $\chi = \frac{C_P}{C_V}$

$$= \frac{3 \frac{\partial^2 \theta}{4 \partial t^2} - 2E_K = E_G + 3(\gamma - 1) \int_0^M u dM_r = E_G + 3(\gamma - 1) U$$
 (\gamma unabh. von Mr)

Für Sterne im hydrost. Gleichgewicht (
$$\ddot{r}=0$$
): $3(\chi-1)U=-E_{G}$

a) 1-atomiges, ideales Gas:
$$P = nkT$$

$$3u = \frac{3}{2}nkT$$

$$2U + E_6 = 0$$

Mit
$$L_{y}=0$$
, $E_{K}=0$ (d.h. $\ddot{r}=0$), $\dot{E}_{N}=0$ folgt aus dem Energiesatz
$$L=-\frac{1}{2}\,\dot{E}_{G}$$

allg:
$$\gamma = 1 + \frac{2}{f}$$
, hier also: $\gamma = \frac{7}{5}$

$$\frac{6}{5}U + E_{\mathsf{G}} = 0 \qquad \Rightarrow \quad \dot{U} = -\frac{5}{6}\dot{E}_{\mathsf{G}}$$

Mit
$$L_{V}=0$$
, $E_{K}=0$ (d.h. $\ddot{r}=0$), $\dot{E}_{N}=0$ folgt aus dem Energiesatz
$$L=-\frac{1}{\dot{E}}$$

$$\frac{L = -\frac{1}{6} \dot{E}_{G}}{}$$

c) Photonengas :
$$P = P_{str.} = \frac{1}{3}\alpha T^4$$
 $\frac{P_{str.}}{9} = \frac{1}{3}u_{str.}$ $\Rightarrow y = \frac{4}{3}$

Mit
$$L_{V=0}$$
, $E_{K=0}$ (d.h. $\ddot{r}=0$), $\dot{E}_{N}=0$ folgt aus dem Energiesatz
$$L=0$$

d) Gesamtenergie wenn $E_{K=0}$, $E_{N=0}$:

$$E_{tot} = E_G + U = -(3\chi - 4)U = \frac{3\chi - 4}{3(\chi - 1)}E_G$$
 $\rightarrow L = -\frac{3\chi - 4}{3(\chi - 1)}\dot{E}_G$

Wegen
$$U > 0$$
 folgt $E_{tot} < 0$, d.h. gravitativ gebundener Stern nur wenn $\chi > 4/3$

4.4. Zeitskalen

a) nukleare Zeitskala: (Stern lebt praktisch nur von E_N, d.h.È_T, Ė_E«Ė_N)

$$\Rightarrow \frac{\partial L_r}{\partial M_r} = \mathcal{E}_N - \mathcal{E}_{\mathcal{V}} \quad \text{oder} \quad L + L_{\mathcal{V}} = -\frac{\partial E_N}{\partial t} \Rightarrow \frac{L + L_{\mathcal{V}}}{E_N} = -\frac{\partial \ln E_N}{\partial t} = \frac{1}{\tau_N}$$

$$T_{N} = \frac{E_{N}}{L + L_{Y}} : \text{nukleare Zeitskala}$$

b) thermische Zeitskala, Kelvin-Helmholtz-Zeit

$$\dot{E}_{N} = 0$$
 $\Rightarrow \frac{\partial L_{r}}{\partial M_{r}} = \mathcal{E}_{g}$ oder $L = -\frac{\partial}{\partial t} \left[E_{g} + E_{T} \right] = -\frac{3\chi - 4}{3(\chi - 1)} \frac{\partial E_{g}}{\partial t}$

1-atomiges Gas:
$$L = -\frac{1}{2} \frac{\partial E_G}{\partial t} = \frac{\partial E_T}{\partial t}$$

$$\frac{L}{E_G} = -\frac{1}{2} \frac{\partial \ln E_G}{\partial t} = \frac{1}{T_{KH}} \implies \frac{T_{KH} = E_G}{L} : Kelvin-Helmholtz-Zeit}$$

$$\frac{L}{E_T} = \frac{\partial \ln E_T}{\partial t} = \frac{1}{\tau_T} \Rightarrow \overline{\tau}_T = \frac{E_T}{L} : \text{ thermische Zeitskala}$$

c) wann ist Eg wichtig?

nach Def. ist
$$L = \frac{E_T}{T_T} = \frac{E_N}{T_N}$$
 $\stackrel{\frown}{\sim} \frac{T_T}{T_N} \approx \frac{T_{KH}}{T_N} \ll 1$

Energiesatz (Ly=0, E_K=0, ideales Gas mit $\chi = 5/3$):

$$L = -\frac{\partial}{\partial t} \left[E_{N} + E_{G} + U \right] = -\frac{\partial}{\partial t} \left[E_{N} - (3y-4)U \right] = -\frac{\partial}{\partial t} \left[E_{N} - U \right]$$

Sei
$$\Delta t = T_*$$
, so dass $\frac{\Delta E_T}{E_T} \approx 1$

Eg ist nur dann wichtig, wenn die charakteristische Entwicklungs-zeitskala $T_* \lesssim T_{\mathsf{T}} \approx T_{\mathsf{KH}}$ ist.