This archive is a catalogue of the gravitational wave signals of 26 supernova core collapse models as described in detail in these two papers: 1. Dimmelmeier, H., Font, J.A., and M\"uller, E., "Relativistic simulations of rotational core collapse. I. Methods, initial models, and code tests", Astron. Astrophys., 388, 917-935 (2002); astro-ph/0204288. 2. Dimmelmeier, H., Font, J.A., and M\"uller, E., "Relativistic simulations of rotational core collapse. II. Collapse dynamics and gravitational radiation", Astron. Astrophys., 393, 523-542 (2002); astro-ph/0204289. It contains the following files: signal_A1B1G1_N.dat signal_A1B1G1_R.dat signal_A1B2G1_N.dat signal_A1B2G1_R.dat signal_A1B3G1_N.dat signal_A1B3G1_R.dat signal_A1B3G2_N.dat signal_A1B3G2_R.dat signal_A1B3G3_N.dat signal_A1B3G3_R.dat signal_A1B3G5_N.dat signal_A1B3G5_R.dat signal_A2B4G1_N.dat signal_A2B4G1_R.dat signal_A3B1G1_N.dat signal_A3B1G1_R.dat signal_A3B2G1_N.dat signal_A3B2G1_R.dat signal_A3B2G2_N.dat signal_A3B2G2_R.dat signal_A3B2G4_N.dat signal_A3B2G4_R.dat signal_A3B2G4_soft_N.dat signal_A3B2G4_soft_R.dat signal_A3B3G1_N.dat signal_A3B3G1_R.dat signal_A3B3G2_N.dat signal_A3B3G2_R.dat signal_A3B3G3_N.dat signal_A3B3G3_R.dat signal_A3B3G5_N.dat signal_A3B3G5_R.dat signal_A3B4G2_N.dat signal_A3B4G2_R.dat signal_A3B5G4_N.dat signal_A3B5G4_R.dat signal_A4B1G1_N.dat signal_A4B1G1_R.dat signal_A4B1G2_N.dat signal_A4B1G2_R.dat signal_A4B2G2_N.dat signal_A4B2G2_R.dat signal_A4B2G3_N.dat signal_A4B2G3_R.dat signal_A4B4G4_N.dat signal_A4B4G4_R.dat signal_A4B4G5_N.dat signal_A4B4G5_R.dat signal_A4B5G4_N.dat signal_A4B5G4_R.dat signal_A4B5G5_N.dat signal_A4B5G5_R.dat The initial models are rotating gamma = 4/3 polytropes in equlibrium with a central density rho_c_ini = 1.0 * 10^10 g/cm^3. Each collapse model is specified by three parameters, A, B, and G: A1: A = 5.0 * 10^9 cm A2: A = 1.0 * 10^8 cm A3: A = 5.0 * 10^7 cm A4: A = 1.0 * 10^7 cm B1: beta_rot_ini = 0.25% B2: beta_rot_ini = 0.5% B3: beta_rot_ini = 0.9% B4: beta_rot_ini = 1.8% B5: beta_rot_ini = 4.0% G1: gamma_1 = 1.325 G2: gamma_1 = 1.32 G3: gamma_1 = 1.31 G4: gamma_1 = 1.30 G5: gamma_1 = 1.28 The parameter _R/_N in the signal name stands for a simulation in relativistic/Newtonian gravity, respectively. Thus, for example 'signal_A2B4G1_R.dat' is the gravitational wave signal emitted by model A2B4G1 in relativistic gravity. One model, A3B2G4_soft, has been simulated with a soft equation of state. For details we refer to paper 1 as listed above. All signals have been obtained by using the quadrupole 'stress formula', Eq. (A.5) in the above listed paper 2. Column 1 is the coordinate time 't' in units of milliseconds. Column 2 is the signal amplitude 'A^E2_20' in units of centimeters. To convert the signal to a strain 'h^TT' at a distance 'R' from the source and an angle 'theta' between the equatorial plane and the observer, use this formula: h^TT = 1/8 sqrt(15/pi) (sin theta)^2 A^E2_20 / R. For an observer in the equatorial plane, this yiels: h^TT = 8.8524 * 10^-21 (A^E2_20 [in 10^3 cm]) / (R [in 10 kpc]). This waveform catalogue can be obtained freely from this URL: http://www.mpa-garching.mpg.de/rel_hydro/ ----------------------------------------------------------------- 23 June 2004, Harald Dimmelmeier (harrydee@mpa-garching.mpg.de).