MPA-STARTSEITE 
Zurueck zur Startseite
 

  Aktuelle Forschung :: September 2004 Zur Übersicht

Kurze Gammablitze

Neue Modelle beleuchten rätselhafte Explosionen

Neue relativistische Simulationen am Max-Planck-Institut für Astrophysik ermöglichen es, bislang unbekannte Eigenschaften kurzer Gammablitze vorherzusagen. Der linkPfeilExtern.gifSwift Gamma-Ray Burst Explorer, eine Satellitenmission der NASA, deren Start für den Herbst 2004 geplant ist, wird diese Modelle einer Prüfung unterziehen.

Abb. 1: Phasen der Verschmelzung zweier Neutronensterne (von links oben nach rechts unten). Die Sterne heizen sich beim gegenseitigen Aufprall stark auf und es entsteht eine Wolke heißer Materie, die einen sehr viel dichteren, zentralen Überrest umgibt. Dieser kollabiert mit hoher Wahrscheinlichkeit zu einem schwarzen Loch. Die dargestellte Entwicklung dauert rund eine hundertstel Sekunde (Bild: Ruffert und Janka 2001).

Abb. 2:Ein heißer, dicker Akkretionstorus umgibt das rotierende schwarze Loch, das sich aus dem dichten Innern des Überrests einer Neutronensternverschmelzung gebildet hat. (Die Abbildung stammt aus einer aktuellen Veröffentlichung von Setiawan et al.)

Abb. 4: Die Energie des Jets für Materie mit Geschwindigkeiten von mehr als 99.995 Prozent der Lichtgeschwindigkeit, wie sie ein ferner Beobachter von verschiedenen Blickwinkeln relativ zur Jetachse aus messen würde, wenn er nichts von der engen Bündelung des Jets weiß, sondern annimmt, dass die Explosion isotrop erfolgt ist. Die verschiedenen Linien sind Ergebnisse verschiedener Modellrechnungen.

Gammablitze gehören zu den energiereichsten und hellsten Explosionen im Universum. Sie ereignen sich im Schnitt einmal am Tag, sind zwischen einer tausendstel Sekunde und mehrere hundert Sekunden lang, und werden in allen Himmelsrichtungen beobachtet. Ihre Gammastrahlung ist energiereicher als sichtbares Licht und kann von Satelliten im Weltraum gemessen werden. Gammablitze setzen in einer Sekunde eine Energiemenge frei, wie sie die Sonne in ihrer 10 Milliarden Jahre dauernden Entwicklung produziert.

Die mehr als 2700 aufgezeichneten Gammablitze können in zwei Gruppen eingeteilt werden. Die sog. langen Blitze emittieren Gammastrahlung für mehr als zwei Sekunden, während die kurzen Blitze unter zwei Sekunden strahlen.

Bislang konnten nur die langen Blitze genau beobachtet werden. Das bei ihnen gefundene "Nachglühen" in Röntgenstrahlung, sichtbarem Licht und Radiostrahlung hat es erlaubt, ihre Entfernung zu bestimmen. Es hat sich bestätigt, dass sie meist aus Milliarden von Lichtjahren entfernten Galaxien stammen. Bis vor kurzem waren die Quellen dieser Strahlung vollkommen unbekannt. Durch die genauere Beobachtung häuften sich allerdings Hinweise, dass sie bei gewaltigen Explosionen sehr schwerer Sterne erzeugt werden. Eine endgültige Bestätigung dieser Vermutung gelang mit dem Gammablitz vom 29. März 2003, linkPfeilExtern.gifGRB030329, der vom High-Energy Transient Explorer Satelliten linkPfeilExtern.gifHETE aufgezeichnet wurde. Erstmals konnte dieser Blitz zweifelsfrei mit der außergewöhnlichen Supernova SN 2003dh in zwei Milliarden Lichtjahre Entfernung linkPfeilExtern.gifin Verbindung gebracht werden.

Wo aber kommt die gewaltige Energie her, die in den Gammablitzen frei wird? Die am weitesten verbreitete Theorie besagt, dass die "Maschine" ein rotierendes schwarzes Loch ist, das sich bildet, wenn der zentrale Kern eines sterbenden Sterns instabil wird und unter seiner eigenen Schwerkraft in sich zusammenstürzt. Dieses neu entstandene schwarze Loch verschlingt nun den größten Teil der kollabierenden Sternmaterie und setzt andererseits riesige Energiemengen in Form zweier "Jets" frei. Diese Gasströme expandieren mit nahezu Lichtgeschwindigkeit in Richtung der Rotationsachse des Sterns. Bevor sie aus der Sternoberfläche ausbrechen, müssen sie sich ihren Weg durch dicke Schichten von Sternmaterie bahnen und werden dabei in sehr enge Strahlen gebündelt (siehe linkPfeil.gifAktuelle Forschung -- März 2000). Tatsächlich bestätigen Beobachtungen nicht nur den Ursprung langer Gammablitze von explodierenden Sternen, sondern liefern auch Hinweise darauf, dass die Gammastrahlung von eng gebündelten, hochrelativistischen Jets (mit Geschwindigkeiten von über 99,995 Prozent der Lichtgeschwindigkeit) stammt.

Abb. 3: Ausgeschleudertes Gas um das schwarze Loch-Torus System mehr als eine halbe Sekunde nach Beginn der Energiefreisetzung am schwarzen Loch. Die axialen Jets (helle, weisse Gebiete) haben Geschwindigkeiten von über 99.995 Prozent der Lichtgeschwindigkeit und erstrecken sich weiter als 150000 km. Diese hochrelativistischen Gasströme erzeugen bei noch größeren Abständen vom schwarzen Loch einen Gammablitz. Das seitlich abströmende Gas ist wesentlich energieärmer und langsamer, es erreicht nur Geschwindigkeiten von maximal 98 Prozent der Lichtgeschwindigkeit (rote Gebiete). Das rechte Bild zeigt eine Vergrößerung der unmittelbaren Umgebung des zentralen schwarzen Lochs bis zu einem Radius von rund 400 km. Man sieht die Jetentstehung und den ausgedehnten Akkretionstorus, in dessen weisslichen Gebieten eine Gasdichte von mehr als 1000 Kilogramm pro Kubikzentimeter herrscht.

FILME: Diese Filme zeigen die Zeitentwicklung der hochrelativistischen Jets und des Akkretionstorus um das schwarze Loch, wobei in Fall A die Energiefreisetzung nach einer zehntel Sekunde aufhört und in Fall B die Energie am schwarzen Loch kontinuierlich, aber in stark abnehmender Stärke freigesetzt wird.


Die Filme sind im AVI/Xvid-Format und können beispielsweise mit linkPfeilExtern.gifmplayer abgespielt werden.

Rotierende, stellare schwarze Löcher entstehen aber auch bei anderen kosmischen Ereignissen, z.B. bei der Verschmelzung zweier Neutronensterne (Abb. 1) oder eines Neutronensterns mit einem schwarzen Loch. Solche kompakten Objekte umkreisen sich in Doppelsternsystemen Hunderte Millionen Jahre, wobei ihr Bahnabstand durch Gravitationswellen-Abstrahlung fortwährend schrumpft. Nach der unausweichlichen, finalen Katastrophe bleibt für Sekundenbruchteile ein dicker Ring heißer Materie um das schwarze Loch (Abb. 2). Schon seit langem argumentieren Theoretiker, dass Gammablitze ausgelöst werden könnten, wenn diese Materie im schwarzen Loch verschwindet. Verschmelzende kompakte Sterne gelten als heiße Kandidaten für die Herkunft der immer noch mysteriösen kurzen Gammablitze.

Wissenschaftler vom Max-Planck-Institut für Astrophysik haben nun mit genaueren Modellen untersucht, wie die hochrelativistischen polaren Jets durch Energiefreisetzung (z.B. durch Elementarteilchenprozesse) in unmittelbarer Nähe eines schwarzen Lochs entstehen. Die Computersimulationen berücksichtigen die Effekte von Einsteins Allgemeiner Relativitätstheorie. Sie bestätigen, dass kurze Blitze Eigenschaften besitzen sollten, die sich charakteristisch von denen langer Blitze unterscheiden. Weil das schwarze Loch nicht im Zentrum eines Sterns entsteht, müssen die Jets nicht ihren Weg durch dichte Sternschichten nach außen bahnen. Sie erreichen daher sehr schnell extrem hohe Geschwindigkeiten und werden dabei durch die dicke Gasscheibe um das Schwarze Loch in enge Strahlen gebündelt (Abb. 3). Sie besitzen Öffnungswinkel zwischen 5 und 10 Grad und sind nur wenig weiter als die Gammajets aus sterbenden Sternen. Die Modelle sagen vorher, dass außerhalb dieser polaren Kegel nur sehr schwache Gammastrahlung emittiert wird (Abb. 4). Von rund 100 Doppelsternverschmelzungen sollte deshalb nur einer einen beobachtbaren Gammablitz verursachen, wenn einer der Jets genau auf die Erde gerichtet ist. Kurze Gammablitze können fast genauso hell sein wie lange Blitze, obwohl ihre Energie 100 mal geringer ist.

Bislang war es nicht möglich, mit Satelliten detaillierte Messungen an kurzen Gammablitzen vorzunehmen. Es besteht aber Hoffnung, dass die Modellvorhersagen bald überprüft werden können. Im Herbst 2004 wird ein neues Instrument in den Erdorbit geschossen, der Swift Gamma-Ray Burst Explorer, den die NASA mit internationaler Beteiligung betreiben wird. Eines seiner Hauptziele ist es, endlich die Geheimnisse der kurzen Gammablitze zu lüften.


H.-Thomas Janka, M.A. Aloy, E. Müller

Literatur:

S. Setiawan. M. Ruffert und H.-Th. Janka, Monthly Not. R. Astron. Soc., 352, 753--758 (2004)

M.A. Aloy, H.-Th. Janka und E. Müller (2004), Astron. Astrophys., eingereicht (astro-ph/0408291).


drucken.gif Druckversion topPfeil.gif Top
© 2003—2022, Max-Planck-Gesellschaft, München
Letzte Änderung: 31.8.2004