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Preface

From April 18 through 22, 2005, Schloß Ringberg at Lake Tegernsee has provided the much enjoyed
venue of a Workshop on Interdisciplinary Aspects of Turbulence. The origin of this workshop dates back
to the summer of 2003 when Christian Beck expressed his interest and support in an interdisciplinary
meeting on turbulence which one of us, Friedrich Kupka, suggested to be held and to be hosted as part
of the activities of the hydrodynamics group of the MPI for Astrophysics at Garching near Munich in
Germany.

The workshop was attended by 43 participants from 12 countries plus a few additional participants
from the Munich area attending on a day-by-day basis. This crowd could just be handled by the seating
and dining facilities at the Ringberg Castle.

As the term “turbulence” is used for an enormous variety of phenomena, at least some common
grounds had to be suggested as preferred topics for contributions to the workshop. A very distin-
guishing feature of turbulence which was chosen for this purpose is its superior mixing capability
compared to, for example, kinematic processes. A detailed quantitative prediction of how turbulent
mixing occurs has turned out to be an extremely difficult problem. This has been demonstrated by
work in astrophysics, atmospheric physics, ocean physics, and engineering.

The workshop hence brought together researchers from these four fields and from the fields of non-
linear dynamics and statistical mechanics who are interested in turbulent mixing, self-organisation of
large scale structures, and related properties of turbulence and the interdisciplinary aspects underlying
these questions. The venue and size of the workshop were very appropriate to help vivid discussion
within each individual field and also among the different fields, so as to share common problems and
learn from one another.

Topics discussed during the workshop included the different approaches of modelling and simu-
lations used in the various areas, the possibilities of testing them within individual areas through
observation (and including statistical methods), the conclusions drawn on the underlying physics and
mathematics – or the lack of them ! –, and most importantly, an intercomparison as well as an
interchange of methods and views with researchers working in the different areas represented at the
conference.

A total of 40 contributions of varying length has been presented as part of the workshop programme
which also featured a number of separate discussion sessions. The following Proceedings contain a
collection of extended abstracts of 30 of the contributions which were presented at the workshop. An
electronic version of it is available at:
www.mpa-garching.mpg.de/mpa/publications/proceedings/proceedings-en.html

PDF files of the talks of several participants are posted on the workshop webpage:
www.mpa-garching.mpg.de/hydro/Turbulence/

References related to oral contributions not included in this volume can be found at pp. 182.
We are grateful to our co-members of the Scientific Organizing Committee of this workshop –

Christian Beck (Queen Mary, Univ. of London, UK), Hans Burchard (Baltic Sea Res. Institute, Ger-
many), Vittorio Canuto (GISS/NASA, USA), Bérengère Dubrulle (CNRS Service d’Astrophysique,
CE Saclay, France), Wolfgang Hillebrandt (MPI for Astrophysics), Friedrich Kupka (chair, MPI for
Astrophysics), Martin Oberlack (TU-Darmstadt, Germany), Sergej Zilitinkevich (Finnish Meteorolog-
ical Institute, Helsinki, Finland) – who helped us in inviting participants who all vividly interacted
with each other not only among their own but also across other disciplines as well.
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The success of the workshop, of course, also depended on the financial support by the Max-Planck-
Gesellschaft via the Dr. Ernst Rudolf Schloeßmann foundation and, needless to say, on the enormous
efficiency and friendliness of Mr. Hörmann and his crew. We would also like to express our gratitude
to Fr. Maria Depner for her help in arranging accommodation of the workshop participants and in
preparing these proceedings.

Garching, August 2005

Friedrich Kupka Wolfgang Hillebrandt
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S. Décamp, J. Sommeria 42

Superstatistics and atmospheric turbulence
S. Rizzo, A. Rapisarda 52

Interaction of internal gravity waves with a unidirectional shear flow
C. Staquet 56

A Level Set Based Flamelet Model for the Prediction of Combustion
in Spark Ignition Engines
J. Ewald, N. Peters 68

Broken symmetry and coherent structure in MHD turbulence
J.V. Shebalin 77

Energy spectrum and transfer flux in Hydrodynamic and MHD turbulence
T. Gotoh, K. Mori 93

Turbulent transport in magnetized plasmas
F. Jenko 99

Dynamo and Alfvén effect in MHD turbulence
Wolf-Christian Müller, R. Grappin 102



5

Radiatively-driven convection in ice-covered lakes:
observations, LES, and bulk modelling
Dmitrii V. Mironov 105

Non-local features of turbulence in stably stratified
geophysical boundary layers
Sergej S. Zilitinkevich 112

A new spectral theory of turbulent flows with stable stratification
S. Sukoriansky, B. Galperin 115

Anisotropic large-scale turbulence and zonal jets in computer simulations,
in the laboratory, on giant planets and in the ocean
B. Galperin, S. Sukoriansky, N. Dikovskaya 125

Stratified Shear turbulence at very high Reynolds numbers
Helmut Z. Baumert 133

On the validity of the Millionshchikov quasi-normality hypothesis
for convective boundary layer turbulence
V. M. Gryanik, J. Hartmann 135

Turbulent convection in astrophysics and geophysics - a comparison
F. Kupka 141

Situations in stars where thermohaline convection
(fingers regime) is expected to take place
S. Vauclair 149

The need for small-scale turbulence in atmospheres of substellar objects
Christiane Helling 152

Flow Patterns and Transitions in Rotating Convection
K.L. Chan 159

Gravoturbulent Fragmentation: Star formation and the interplay
between gravity and interstellar turbulence
S. Kitsionas, R.S. Klessen 161

Turbulent Combustion in Type Ia Supernova Models
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Superstatistical turbulence model

Christian Beck

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1
4NS, UK

Abstract

Recently there has been some progress in modeling the statistical properties of turbulent flows using
simple superstatistical models. Here we briefly review the concept of superstatistics in turbulence. In
particular, we discuss a superstatistical extension of the Sawford model and compare with experimental
data.

Turbulence is a spatio-temporal chaotic dynamics generated by the Navier-Stokes equation

~̇v = −(~v∇)~v + ν∆~v + ~F . (1)

In the past 5 years there has been some experimental progress in Lagrangian turbulence measurements,
i.e. tracking single tracer particles in the turbulent flow. Due to the measurements of the Bodenschatz
[1, 2, 3] and Pinton groups [4, 5] we now have a better view of what the statistics of a single test particle
in a turbulent flow looks like. The recent measurements have shown that the acceleration ~a as well as
velocity difference ~u = ~v(t+ τ)−~v(t) on short time scales τ exhibits strongly non-Gaussian behavior.
This is true for both, single components as well as the absolute value of ~a and ~u. Moreover, there are
correlations between the various components of ~a, as well as between velocity and acceleration. The
corresponding joint probabilities do not factorize. Finally, the correlation functions of the absolute
value |~a| and |~u| decay rather slowly.

How can we understand all this by simple stochastic models? There is a recent class of models
that are pretty successful in explaining all these statistical properties of Lagrangian turbulence (as
well as of other turbulent systems, such as Eulerian turbulence [6, 7, 8], atmospheric turbulence
[9, 10, 11] and defect turbulence [12]). These are turbulence models based on superstatistics [13].
Superstatistics is a concept from nonequilibrium statistical mechanics, in short it means a ‘statistics
of statistics’, one given by ordinary Boltzmann factors and another one given by fluctuations of an
intensive parameter, e.g. the inverse temperature, or the energy dissipation, or a local variance. While
the idea of fluctuating intensive parameters is certainly not new, it is the application to spatio-
temporally chaotic systems such as turbulent flow that makes the concept interesting. The first
turbulence model of this kind was introduced in [14], in the meantime the idea has been further
refined and extended [15, 16, 3, 8]. The basic idea is to generate a superposition of two statistics, in
short a ‘superstatistics’, by stochastic differential equations whose parameters fluctuate on a relatively
large spatio-temporal scale. In Lagrangian turbulence, this large time scale can be understood by
the fact that the particle is trapped in vortex tubes for quite a while [3]. Superstatistical turbulence
models reproduce all the experimental data quite well. An example is shown in Fig. 1. The theoretical
prediction which fits the data perfectly is given by

p(a) =
1

2πs

∫ ∞

0
dββ−1/2 exp

{
−(log(β/µ))2

2s2

}
e−

1
2
βa2 (2)

with µ = e
1
2
s2 and only one fitting parameter, s2 = 3.0. A similar formula as eq. (2) was already

considered in [17], though without a dynamical interpretation in terms of a stochastic differential
equation with fluctuating parameters.
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Figure 1: Probability density of an acceleration component of a tracer particle as measured by Bo-
denschatz et al. [1, 2]. The solid line is a theoretical prediction based on lognormal superstatistics
(s2 = 3) [16].

The key ingredient of superstatistical models is to start from a known model generating Gaussian
behaviour, and extend it to a superstatistical version exhibiting ‘fat tails’. In general, in these types
of models one has for some dynamical variable a the stationary long-term density

p(a) =

∫ ∞

0

√
β

2π
f(β)e−

1
2
βa2dβ, (3)

where f(β) is some suitable probability density of a fluctuating parameter β. The function f(β) fixes
the type of superstatistics under consideration. In particular, it is responsible for the shape of the
tails [18]. Note the mixing of two statistics, that of a and that of β.

In Lagrangian turbulence, one may first start from a Gaussian turbulence model, the Sawford
model [19, 20]. This model considers the joint stochastic process (a(t), v(t), x(t)) of an arbitrary
component of acceleration, velocity and position of a Lagrangian test particle, and assumes that they
obey the stochastic differential equation

ȧ = −(T−1
L + t−1

η )a− T−1
L t−1

η v

+
√

2σ2
v(T

−1
L + t−1

η )T−1
L t−1

η L(t) (4)

v̇ = a (5)

ẋ = v, (6)

L(t): Gaussian white noise
TL and tη: two time scales, with TL >> tη,
TL = 2σ2

v/(C0 ε̄)
tη = 2a0ν

1/2/(C0ε̄
1/2)

ε̄: average energy dissipation
C0, a0: Lagrangian structure function constants
σ2
v variance of the velocity distribution
Rλ =

√
15σ2

v/
√
νε̄ Taylor scale Reynolds number.
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For our purposes it is sufficient to consider the limit TL → ∞, which is a good approximation for large
Reynolds numbers. In that limit the Sawford model reduces to just a linear Langevin equation

ȧ = −γa+ σL(t) (7)

with

γ =
C0

2a0
ν−1/2ε̄1/2 (8)

σ =
C

3/2
0

2a0
ν−1/2ε̄. (9)

Note that this is a Langevin equation for the acceleration, not for the velocity, in marked contrast to
ordinary Brownian motion.

Unfortunately, the Sawford model predicts Gaussian stationary distributions for a, and is thus at
variance with the recent measurements. So how can we save this model?

As said before, the idea is to generalize the Sawford model with constant parameters to a super-
statistical version. To construct a superstatistical extension of Sawford model, we replace in the above
equations the constant energy dissipation ε̄ by a fluctuating one. One formally defines a variance
parameter [16]

β :=
2γ

σ2
=

4a0

C2
0

ν1/2 1

ε3/2
, (10)

where ε fluctuates. Now, if β varies on a large spatio-temporal scale, and is distributed with the
distribution f(β), one ends up with eq. (3) describing the long-term marginal distribution of the
superstatistical dynamics (7). This is basically the type of model introduced in [14], there with f(β)
chosen to be a χ2-distribution. Models based on χ2-superstatistics yield good results for atmospheric
turbulence [9, 10], and ultimately lead to Tsallis statistics [21]. On the other hand, for laboratory
turbulence experiments one usually obtains better agreement with experimental data if f(β) is a
lognormal distribution. In view of eq. (10) this is clearly motivated by Kolmogorov’s ideas of a
lognormally distributed ε [22].

Superstatistical models are not restricted to Lagrangian turbulence but can be also formulated
for Eulerian turbulence [7, 14]. Fig. 2 shows that also here one obtains excellent agreement with
experimental data: Probability densities p(u) of longitudinal velocity differences u are well fitted by
lognormal superstatistics on all scales. The parameter s2 varies with the scale. In fact, not only the
distribution p(u) but also the distribution f(β) can be directly measured in experiments [8], and the
two can be consistently connected via the superstatistics formalism. Jung and Swinney [8] have also
experimentally confirmed a simple scaling relation between β and the fluctuating energy dissipation
ε.

It should be noted that if we know the probability densities p(u) analytically, as well as the
dependence of the parameter s2 on the scale r, we can also calculate moments of velocity differences
and thus determine scaling exponents ζm defined by

〈um〉 ∼ rζm .

Many different models of ζm can be constructed in such a way [16, 23, 24]. For further stochastic
models, see e.g. [25, 26, 27].
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Statistical mechanics of 2D turbulence with a prior vorticity distribution

P.H. Chavanis

Laboratoire de Physique Théorique
Université Paul Sabatier
118, route de Narbonne
31062 Toulouse, France

Abstract

We adapt the formalism of the statistical theory of 2D turbulence in the case where the Casimir
constraints are replaced by the specification of a prior vorticity distribution. A new relaxation equation
is obtained for the evolution of the coarse-grained vorticity. It can be used as a thermodynamical
parametrization of forced 2D turbulence (determined by the prior), or as a numerical algorithm to
construct arbitrary nonlinearly dynamically stable stationary solutions of the 2D Euler equation.

Two-dimensional incompressible flows with high Reynolds numbers are described by the 2D Euler
equations

∂ω

∂t
+ u · ∇ω = 0, ω = −∆ψ, u = −z×∇ψ, (1)

where ω is the vorticity and ψ the streamfunction. The 2D Euler equations are known to develop a
complicated mixing process which ultimately leads to the emergence of a large-scale coherent structure,
typically a jet or a vortex. Jovian atmosphere shows a wide diversity of structures: Jupiter’s great
red spot, white ovals, brown barges,... One question of fundamental interest is to understand and
predict the structure and the stability of these equilibrium states. To that purpose, Miller [1] and
Robert & Sommeria [2] have proposed a statistical mechanics of the 2D Euler equation. The idea is to
replace the deterministic description of the flow ω(r, t) by a probabilistic description where ρ(r, σ, t)
gives the density probability of finding the vorticity level ω = σ in r at time t. The observed (coarse-
grained) vorticity field is then expressed as ω(r, t) =

∫
ρσdσ. To apply the statistical theory, one

must first specify the constraints attached to the 2D Euler equation. The circulation Γ =
∫
ωdr

and the energy E = 1
2

∫
ωψdr will be called robust constraints because they can be expressed in

terms of the coarse-grained field ω (the energy of the fluctuations can be neglected). These integrals
can be calculated at any time from the coarse-grained field ω(r, t) and they are conserved by the
dynamics. By contrast, the Casimir invariants If =

∫
f(ω)dr, or equivalently the fine-grained moments

of the vorticity Γf.g.n>1 =
∫
ωndr =

∫
ρσndσdr, will be called fragile constraints because they must be

expressed in terms of the fine-grained vorticity. Indeed, the moments of the coarse-grained vorticity
Γc.gn>1 =

∫
ωndr are not conserved since ωn 6= ωn (part of the coarse-grained moments goes into fine-

grained fluctuations). Therefore, the moments Γf.g.n>1 must be calculated from the fine-grained field
ω(r, t) or from the initial conditions, i.e. before the vorticity has mixed. Since we often do not
know the initial conditions nor the fine-grained field, the Casimir invariants often appear as “hidden
constraints” [3].

The statistical theory of Miller-Robert-Sommeria is based on two assumptions: (i) it is assumed
that we know the initial conditions (or equivalently the value of all the Casimirs) in detail (ii) it
is assumed that mixing is efficient and that the evolution is ergodic so that the system will reach
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at equilibrium the most probable (most mixed) state. Within these assumptions1, the statistical
equilibrium state of the 2D Euler equation is obtained by maximizing the mixing entropy

S[ρ] = −
∫
ρ ln ρ drdσ, (2)

at fixed energy E and circulation Γ (robust constraints) and fixed fine-grained moments Γf.g.n>1 (fragile
constraints). This optimization principle is solved by introducing Lagrange multipliers, writing the
first order variations as

δS − βδE − αδΓ −
∑

n>1

αnδΓ
f.g.
n = 0. (3)

In the approach of Miller-Robert-Sommeria, it is assumed that the system is strictly described
by the 2D Euler equation so that the conservation of all the Casimirs has to be taken into account.
However, in geophysical situations, the flows are forced and dissipated at small scales (due to convection
in the jovian atmosphere) so that the conservation of the Casimirs is destroyed. Ellis et al. [6] have
proposed to treat these situations by fixing the conjugate variables αn>1 instead of the fragile moments
Γf.g.n>1. If we view the vorticity levels as species of particles, this is similar to fixing the chemical
potentials instead of the total number of particles in each species. Therefore, the idea is to treat the
fragile constraints canonically, whereas the robust constraints are still treated microcanonically. This
point of view has been further developed in Chavanis [7]. The relevant thermodynamical potential
is obtained from the mixing entropy (2) by using a Legendre transform with respect to the fragile
constraints [7]:

Sχ = S −
∑

n>1

αn Γf.g.n . (4)

Expliciting the fine-grained moments, we obtain the relative entropy

Sχ[ρ] = −
∫
ρ ln

[
ρ

χ(σ)

]
drdσ, (5)

where we have defined the prior vorticity distribution

χ(σ) ≡ exp

{
−

∑

n>1

αnσ
n

}
. (6)

We shall assume that this function is imposed by the small-scale forcing. Assuming ergodicity, the
statistical equilibrium state is now obtained by maximizing the relative entropy Sχ at fixed energy E
and circulation Γ (no other constraints). The conservation of the Casimirs has been replaced by the
specification of the prior χ(σ). Writing δSχ − βδE − αδΓ = 0, and accounting for the normalization
condition

∫
ρdσ = 1, we get the Gibbs state

ρ(r, σ) =
1

Z(r)
χ(σ)e−(βψ+α)σ with Z =

∫ +∞

−∞
χ(σ)e−(βψ+α)σdσ. (7)

This is the product of a universal Boltzmann factor by a non-universal function χ(σ) fixed by the
forcing. The coarse-grained vorticity is given by

ω =

∫
χ(σ)σe−(βψ+α)σdσ∫
χ(σ)e−(βψ+α)σdσ

= F (βψ + α) with F (Φ) = −(ln χ̂)′(Φ), (8)

1Some attempts have been proposed to go beyond the assumptions of the statistical theory. For example, Chavanis
& Sommeria [4] consider a strong mixing limit in which only the first moments of the vorticity are relevant instead of the
whole set of Casimirs. On the other hand, Chavanis & Sommeria [5] introduce the concept of maximum entropy bubbles

(or restricted equilibrium states) in order to account for situations where the evolution of the flow is not ergodic in the
whole available domain but only in a subdomain.



13

where χ̂(Φ) =
∫ +∞
−∞ χ(σ)e−σΦdσ. It is easy to show that F ′(Φ) = −ω2(Φ) ≤ 0, where ω2 = ω2−ω2 ≥ 0

is the local centered variance of the vorticity, so that F is a decreasing function [8]. Therefore, the
statistical theory predicts that the coarse-grained vorticity ω = f(ψ) is a stationary solution of the 2D
Euler equation and that the ω−ψ relationship is a monotonic function which is increasing at negative
temperatures β < 0 and decreasing at positive temperatures β > 0 since ω ′(ψ) = −βω2. We also note
that the most probable vorticity 〈σ〉(r) of the distribution (7) is given by [9]:

〈σ〉 = [(lnχ)′]−1(βψ + α), (9)

provided (lnχ)′′(〈σ〉) < 0. This is also a stationary solution of the 2D Euler equation which usually
differs from the average value ω(r) of the distribution (7) except when χ(σ) is gaussian. We note
that the ω − ψ relationship predicted by the statistical theory can take a wide diversity of forms
(non-Boltzmannian) depending on the prior χ(σ). The coarse-grained vorticity (8) can be viewed as
a sort of superstatistics as it is expressed as a superposition of Boltzmann factors (on the fine-grained
scale) weighted by a non-universal function χ(σ) [3]. Furthermore, the coarse-grained vorticity (8)
maximizes a generalized entropy (in ω-space) of the form [10]:

S[ω] = −
∫
C(ω)dr, (10)

at fixed circulation and energy (robust constraints). Writing δS − βδE − αδΓ = 0 leading to C ′(ω) =
−βψ − α and ω′(ψ) = −β/C ′′(ω), and comparing with Eq. (8), we find that C is a convex function
(C ′′ > 0) determined by the prior χ(σ) encoding the small-scale forcing according to the relation [3]:

C(ω) = −
∫ ω

F−1(x)dx = −
∫ ω

[(ln χ̂)′]−1(−x)dx. (11)

The preceding relations are also valid in the approach of Miller-Robert-Sommeria except that χ(σ) is
determined a posteriori from the initial conditions by relating the Lagrange multipliers αn>1 to the
Casimir constraints Γf.g.n>1. In this case of freely evolving flows, the generalized entropy (10) depends
on the initial conditions, while in the case of forced flows considered here, it is intrinsically fixed by
the prior vorticity distribution.

In that context, it is possible to propose a thermodynamical parameterization of 2D forced turbu-
lence in the form of a relaxation equation that conserves circulation and energy (robust constraints)
and that increases the generalized entropy (10) fixed by the prior χ(σ). This equation can be ob-
tained from a generalized Maximum Entropy Production (MEP) principle in ω-space [10] by writing
the coarse-grained 2D Euler equation in the form Dω/Dt = −∇ · ω̃ũ = −∇ · J and determining the
optimal current J which maximizes the rate of entropy production Ṡ = −

∫
C ′′(ω)J · ∇ωdr at fixed

energy Ė =
∫

J · ∇ψdr = 0, assuming that the energy of fluctuations J2/2ω is bounded. According
to this principle, we find that the coarse-grained vorticity evolves according to [10, 7]:

∂ω

∂t
+ u · ∇ω = ∇ ·

{
D

[
∇ω +

β(t)

C ′′(ω)
∇ψ

]}
, ω = −∆ψ, (12)

β(t) = −
∫
D∇ω · ∇ψd2r
∫
D (∇ψ)2

C′′(ω)d
2r

, D ∝ ω
1/2
2 =

1√
C ′′(ω)

, (13)

where β(t) is a Lagrange multiplier enforcing the energy constraint Ė = 0 at any time. These
equations increase the entropy (H-theorem Ṡ ≥ 0) provided that D > 0, until the equilibrium state
(8) is reached. The diffusion coefficient D is not determined by the MEP but it can be obtained from
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a Taylor’s type argument leading to expression (13)-b [7]. This diffusion coefficient, related to the
strength of the fluctuations, can “freeze” the relaxation in a sub-region of space (“bubble”) and account
for incomplete relaxation and lack of ergodicity [11, 12]. The relaxation equation (12) belongs to the
class of generalized Fokker-Planck equations introduced in Chavanis [10]. This relaxation equation
conserves only the robust constraints (circulation and energy) and increases the generalized entropy
(11) fixed by the prior vorticity distribution χ(σ). It differs from the relaxation equations proposed
by Robert & Sommeria [13] for freely evolving flows which conserve all the constraints of the 2D Euler
equation (including all the Casimirs) and increase the mixing entropy (2). In Eqs. (12)-(13), the
specification of the prior χ(σ) (determined by the small-scale forcing) replaces the specification of the
Casimirs (determined by the initial conditions). However, in both models, the robust constraints E
and Γ are treated microcanonically (i.e. they are rigorously conserved). Furthermore, in the two-
levels case ω ∈ {σ0, σ1}, the two approaches are formally equivalent and they amount to maximizing a
generalized entropy (10) similar to the Fermi-Dirac entropy at fixed circulation and energy [12]. In the
viewpoint of Miller-Robert-Sommeria, this entropy describes the free merging of a system with two
levels of vorticity σ0 and σ1 while in the other view point, it describes the evolution of a forced system
where the forcing has two intense peaks described by the prior χ(σ) = χ0δ(σ − σ0) + χ1δ(σ − σ1) [7].

The relaxation equations (12)-(13) can also be used as a numerical algorithm to construct stable
stationary solutions of the 2D Euler equation. Indeed, Ellis et al. [6] have shown that the maximization
of a functional of the form (10) at fixed energy and circulation determines a stationary solution of
the 2D Euler equation of the form ω = f(ψ), where f is monotonic, which is nonlinearly dynamically
stable. Since the stationary solution of Eqs. (12)-(13) maximizes S at fixed E and Γ (by construction),
this steady solution of the relaxation equations is also a nonlinearly dynamically stable stationary
solution of the 2D Euler equations (1). Thus, by changing the convex function C(ω) in Eq. (12), we
can numerically construct a wide diversity of stable solutions of the 2D Euler equations. This is a
potentially interesting procedure because it is usually difficult to solve the differential equation −∆ψ =
f(ψ) directly and be sure that the solution is (nonlinearly) dynamically stable. These nonlinearly
stable steady states can be an alternative to the statistical equilibrium state in case of incomplete
relaxation, when the system has not mixed efficiently (non-ergodicity) so that the statistical prediction
fails. In case of incomplete relaxation we cannot predict the equilibrium state but we can try to
reproduce it a posteriori.

Finally, we have proposed in [10] to develop a phenomenological/effective statistical theory of 2D
turbulence to deal with complex situations. The idea is that some types of entropy functional S[ω] (in
ω-space) may be more appropriate than others to describe a given physical situation. For example,
the enstrophy functional turns out to be relevant in certain oceanic situations [14] and the Fermi-
Dirac type entropy in jovian flows [15, 8]. Certainly, other functionals of the same “class” would
work as well for these systems. In addition, other classes of functionals S[ω] may be relevant in other
circumstances. Therefore, as a simple and practical procedure to describe a given system, we propose
to pick a functional S[ω] in the “class of equivalence” appropriate to that system and use it in the
parameterization (12)-(13). We can thus describe the time evolution of the system on the coarse-
grained scale. This approach is not completely predictive because we need to know in advance which
type of entropy S[ω] describes best such and such situation. In practice, it must be determined by
trying and errors (e.g. by comparing with oceanic data). But once a specific entropy has been found
for a physical situation, we can work with it for different initial conditions specified by the robust
constraints E and Γ (the effect of the Casimirs is reported in the chosen form of entropy S[ω]). The
idea is that the entropy S remains the same while E and Γ are changed. The problem is rich and non-
trivial even if S has been fixed because bifurcations can occur depending on the control parameters
E, Γ. This heuristic approach can be viewed as a simple attempt to account for the influence of the
Casimirs while leaving the problem tractable. We use the fact that the Casimirs lead to non-standard
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(i.e. non-Boltzmannian) ω − ψ relationships at equilibrium which are associated with non-standard
forms of entropy S[ω] in ω-space. We propose to fix the S-functional depending on the situation. We
do not try to predict its form, but rather to adjust it to the situation contemplated. This is based on
the belief that some functionals S[ω] are more relevant than others for a given system. Whether this
is the case or not remains to be established. All the ideas presented here can be generalized to the
case of quasi-geostrophic or shallow-water equations [8].
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Abstract

For the characterization of complex structures we present an approach which is based on the theory
of stochastic Markov processes. With this analysis we achieve a characterization of the systems whose
complexity may be based on nonlinear noisy dynamics or multiscale features like multifractal scaling.
We show how based on the estimations of Kramers-Moyal coefficients it is possible to reconstruct from
pure, parameter free data analysis the stochastic equations in form of a Fokker-Planck or a Langevin
equation.

Introduction

The better understanding of complex systems is still a scientific challenge. Often the question is posed
to characterize given data with respect to its complexity. In a first step one can split this task into
two aspects [1].
(1) There are systems with a pronounced scale dependent complex structure like this is the case
for the well known problem of turbulence. Here it is believed that it is the cascade like process
of large vorticities creating smaller ones as the smaller create even smaller ones and so on, which
causes the complexity. This cascade procedure leads to a scale dependent disorder or, respectively,
the scale dependent complexity of a turbulent field, whose understanding is still considered as one
major unsolved scientific problem.
(2) Besides these scale dependent complex structures there is the second class of systems characterized
by nonlinear dynamics which may become more sophisticated by the involvement of noise. Systems
whose complexity is given by nonlinear dynamics evolving in time, like chaotic systems, we call time
dependent complex systems. Definitely this classification is not a rigorous one, systems of hierarchical
coupled nonlinear dynamical subsystems are some how intermediate.

In this contribution we want to summarize recent works which showed ways how to characterize
complex systems of both categories in a more complete way. Namely, in these works it was worked out
how to reconstruct in a parameter free way to reconstruct nonlinear stochastic equations from given
data. These reconstructed stochastic equations, given as a Fokker-Planck equation or a Langevin
equation enables to achieve the general n-scale joint statistics of a scale dependent complex system,
and accordingly the underlying nonlinear evolution equations for a time dependent complex system.

Turbulence – scale dependent complexity

As already mentioned, the profound understanding of turbulence is up to now regarded as an unsolved
problem. Although the basic equations of fluid dynamics, namely the Navier Stokes equations, are
known for more than 150 years, a general solution of these equations for high Reynolds numbers, i.e.
for turbulence, is not known. Even with the use of powerful computers no rigorous solutions can be
obtained. Thus for a long time there has been the challenge to understand at least the complexity of



17

an idealized turbulent situation, which is taken to be isotropic and homogeneous. This case will lead
us to the well known intermittency problem of turbulence, which is nothing else than the occurrence
of heavy tailed, non-Gaussian statistics. The central question is to understand the mechanism which
leads to this anomalous statistics (see [2, 3, 4]).

The intermittency problem of turbulence can be reduced to the question about the statistics of
the velocity differences over different distances l, measured by the so-called increments q(l, x) = u(x+
l) − u(x). Usually the velocity increments are taken from the velocity component in direction of the
distance vector l, the so-called longitudinal velocity increments. By the use of energy considerations,
a simple l-dependence of q(l, x) was proposed. It can be shown that the dissipation of energy takes
place on small scales, namely, scales smaller than the so-called Taylor length θ. On the other hand,
the turbulence is generated by driving forces injecting energy into the flow on large scales, l > L0,
where L0 is given by the correlation length. Thus the cascade process causes the transition of q(l, x) to
q(l′, x) with l′ < l, where the same amount of energy is transferred from one scale to another as long as
L0 > l, l′ > θ. This range is called the inertial range, where the turbulent field develops independently
from boundary conditions and dissipation effects. It has been proposed that in this range universal
features of turbulence arise.

Kolmogorov proposed that the disorder of turbulence expressed by the statistics of q(l, x) and
its n-th order moments < q(l, x)n > should depend only on transferred energy ε and the scale l:
< q(l, x)n >= f(ε, l). By simple dimensional arguments it follows that

< q(l, x)n > = < εn/3 > ln/3. (1)

The simplest ansatz is to take ε as a constant, thus the Kolmogorov scaling n/3 of 1941 is obtained
[5]. Based on some comments of Landau, Kolmogorov and Oboukhov proposed in a refined model
with a lognormal distribution for ε, i.e. not ε but lnε has a Gaussian distribution, and obtained for
< εn/3 > an additional scaling term, leading to the so-called intermittency [6] correction [7]

< q(l, x)n > = lξn with ξn =
n

3
− µ

n(n− 3)

18
and n ≥ 2 (2)

with 0.25 < µ < 0.5 . The form of the scaling exponent ξn, which is related to multifractal scaling
behavior, has been heavily debated during the last decades (for further details see [2]).

Here we want to point out that this nonlinear scaling exponent ξn, has the direct consequence that
the probability densities of p(q(l, x)) cannot be Gaussian, but must change their form with the scale
l.

The velocity increment specifies the complexity of the turbulent velocity field between two mea-
surement points separated by the length scale l. As a next step, taking somehow the cascade idea
literally, the velocity increment q(l, x) is regarded as a stochastic variable in the scale l. Complete
information about this stochastic process would be available from the knowledge of not only the one
scale properties like < q(l, x)n > or p(q(l, x)) but properties of all possible n-scales given by the
joint probability density functions (PDF) p(q1, q2, q3, . . . ; qn). (Note we use here a simplified notation:
q(li, x) = qi.) Since this is practically impossible to obtain for empirical data, suitable simplifications
are needed.

As a first simplification we will require the process to be Markovian. In this case the n-scale joint
PDF factorize into chains of two-scale conditional PDF p(qi+1|qi) describing the probability of finding
the increment qi+1 on the scale li+1 under the condition that another increment qi on a larger scale li is
found. It follows that now the complete stochastic information is already available from the knowledge
of the two-scale conditional PDF. This simplification can be tested by evaluating

p(q1|q2, . . . , qn) = p(q1|q2) (3)
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which is feasible for experimental data, at least for n = 3. Our second simplification requires the noise
included in the process to be Gaussian distributed.

Given these two conditions, it is known [8] that the process obeys a Fokker-Planck equation

− ∂

∂l
p(q, l|q0, l0) =

{
− ∂

∂q
D(1)(q, l) +

∂2

∂q2
D(2)(q, l)

}
p(q, l|q0, l0). (4)

which describes the evolution of the conditional PDF from larger to smaller length scales (Note due
to this direction of the process we have inserted the − prefactor). The Fokker-Planck equation is
determined by the two Kramers-Moyal-coefficients D(1)(q, l) and D(2)(q, l), where D(1) is commonly
denoted as drift term, describing the deterministic part of the process, and D (2) as diffusion term,
determined by the variance of a Gaussian, δ-correlated noise. Here we should note that there are
different methods to verify that actually for given data the noise has these features (cf. [9, 10]).
Equivalently, the Langevin equation

− d

dl
q(l) = D(1)(q, l) +

√
D(2)(q, l) Γ(l) (5)

describes the process in the scale domain, using identical coefficients D (1) and D(2), together with the
Gaussian, δ-correlated noise term Γ(l).

To derive the Kramers-Moyal coefficients D(k)(q, l) (and thus obtain a Fokker-Planck or Langevin
equation), the limit ∆l → 0 of the conditional moments has to be performed [8, 11]:

D(k)(q, l) = lim
∆l→0

M (k)(q, l,∆l)/l , (6)

M (k)(q, l,∆l) :=
l

k!∆l

+∞∫

−∞

(q̃ − q)k p (q̃, l − ∆l|q, l) dq̃. (7)

This procedure is described in more detail in [9, 12]. For this contribution, it is sufficient to see from
Eqs. (6) and (7) that the Fokker-Planck equation can directly be obtained from experimental data by
the estimation of two-scale conditional PDF.

Based on this procedure we were able to reconstruct directly from the given data the corresponding
stochastic processes. Knowing these processes one can perform numerical solutions (see [9, 12, 13]).

It is easily seen that this method can also be applied to other scale dependent complex stuructures
like rough surfaces [12, 14, 15], to financial data [13, 16] or the cosmic background radiation [17].

nonlinear dynamics – time dependent complexity

It is straight forward to extend the above mentioned method for the analysis of time series. The
objection is now to reconstruct from given data q(t) the dynamical equation

d

dt
q(t) = D(1)(q, t) +

√
D(2)(q, t) Γ(t). (8)

To achieve this from given data the conditional probabilities p(q(t+ τ)|q(t)) for fixed values q(t) and
their corresponding conditional moments, i.e. the Kramers-Moyal coefficients, have to be estimated
[18, 19]. This method has been successfully applied to various problems in the field of complex
dynamical systems like the analysis of noisy chaotic electrical circuits [19], stochastic dynamics of metal
cutting [20], systems with feedback delay [21], meteorological processes like wind-driven Southern
Ocean variability [22, 23] traffic flow data [24] and the dynamics of particles of different sizes in a
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running avalanche [25]. A quantitative comparison of this method of time series analysis with others
is reported in [26].

As a further application also data spoiled by measurement noise can be treaded with this method.
The basic idea here is that instead of the dynamical variable q(t) a variable y(t) = q(t) + σ(t) is
analyzed, where σ(t) represents an additive measurement noise. The conditional moments are now
performed with y(t). A proper stochastic calculation shows how even in this case the underlying
dynamics can be reconstructed [27].
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2 Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany

The prototype model of self-organized criticality, the Bak–Tang–Wiesenfeld (BTW) sandpile in
two dimensions [1, 2], has a remarkable history [3], rich of developments and with some surprising and
contradictory aspects. In spite of being the most extensively studied model of transport in systems
slowly driven out of equilibrium, this sandpile remained for long very controversial as far as the scaling
properties of some avalanche quantities are concerned [4]. Recently this led many authors to focus
their attention on other models [5], with more standard and transparent avalanche scalings and with
presumed better applicability. On the other hand, when they proposed their sandpile, BTW had
clearly in mind that this could mimic qualitatively some features of turbulence. In this phenomenon
fluid flow obeys the non–linear Navier–Stokes equation and evolves under random perturbations into
a stationary state with scale invariant velocity correlations [6]. In the turbulent inertial regime a
continuous, non-dissipative transport of energy occurs from large to small length scales. This reminds
some BTW sandpile features: sand transport is driven by random grain addition, and is controlled
by non-linear local threshold mechanisms (toppling rule). Furthermore, the avalanches following each
grain addition have scale invariant probability distributions for quantities like the number of topplings,
the area, etc.

In spite of the original expectations, an analogy between self organized BTW critical dynamics
and turbulence could not be established until very recently [9]. More generally, the possible relation
between self-organized criticality and turbulence remained for long an obscure and controversial issue,
and the recent literature had a tendency to emphasize differences [7], rather than analogies [8].

In Ref. [10] it was first shown that the scaling of the probability distribution of the number of
topplings in the BTW avalanches can be consistently described within a multifractal framework.
Suspects that this distribution could obey some form of multiscaling rather than simple scaling were
expressed long before [11], but surprisingly got scarce attention in the subsequent literature. The
evidence of multiscaling for the probability distribution of the number of topplings and other BTW
avalanche quantities is presently based on analysis of extensive data for sandpiles of size up to 4096×
4096 [12]. Calling P (s, L) the probability to have an avalanche with s topplings in a sandpile of size
L, such analysis shows that

〈sq〉 =
∑

P (s, L)sq ∼ Lσq (1)

with a nonlinear q-dependence of σq indicating multiscaling. Models like the Manna stochastic sand-
pile [5] show instead a linear dependence, as appropriate for simple finite size scaling [10, 13].

The physical origin of the BTW multiscaling was identified [13] in the long range time correlations
existing for the toppling sizes of the waves [14, 3] into which avalanches can be decomposed. These
waves are distinguished by the number of times the avalanche seed site has toppled, and can be
regarded as bursts within each avalanche. The scaling properties of waves, when sampled globally
over a sequence of many avalanches, are well understood [14]. If measured in terms of interocurring
waves, the correlation time of wave sizes grows approximately as L0.7 [13]. As discussed below, on
temporal scales shorter than the correlation time, the statistics of waves shows novel, unexpected
features [9].

These peculiar correlations, not anticipated before, are also a very important feature of the BTW
model in view of possible applications. Indeed, the absence of correlations between the sizes of suc-
cessive avalanches has been indicated [7] as a serious handicap of the BTW and similar models in
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connection with applications to phenomena like solar flares [15]. In turbulence the (laminar) waiting
times between successive bursts above a given intensity threshold are distributed as a power law [16],
rather than exponentially, like in the case of BTW avalanches, which are normally uncorrelated [17].
However, this power law distribution of waiting times can be easily reproduced by considering BTW
wave bursts rather than avalanches [9].

The existence of correlations for wave sizes suggests the possibility that within the correlation time
the analog of an inertial turbulent scaling regime could be realized. By defining as in turbulence suit-
able time dependent structure functions for the wave signal, we could indeed verify the existence of an
inertial multiscaling with extended self-similarity features [9]. These functions are the analog of space
dependent velocity structure functions of fluid flow [6]. The similarity to turbulent scaling emerges
clearly also from the definition of a turbulent “dissipation rate” associated to the wave signal [9]. One
defines it as the square of the discrete time gradient of the wave size averaged over an interval of
time t. As a function of t its moments show multiscalings qualitatively similar to those valid for the
space averaged dissipation rate in fluid turbulence [6]. Thus, if observed at the wave time scale, BTW
dynamics provides an analog of intermittent, turbulent scaling phenomena.

The scaling analysis of the wave signal “dissipation rate” proposed in Ref. [9] for the BTW model
has been recently applied to time series relative to powerful X-ray flares [18] and turbulent thermal
convection in fluids [19]. Besides showing that this analysis is very suitable and widely applicable tool
in order to identify and characterize the intermittent character of a time series, Refs. [18, 19] reported
values of the dissipation multiscaling exponents which turn out to be surprisingly close to those found
for the BTW wave time series [9]. These facts suggest that the BTW model could play a prototypical
role with respect to various intermittent phenomena.

The presence of long range wave correlations and of inertial–like multiscaling in the BTW sandpile
rises the fundamental issue of understanding what property makes this model so peculiar in its class.
In Ref. [20] it has been shown that a single BTW model with quenched random toppling rules is
able to reproduce both the multiscaling of the standard, homogeneous BTW model, and the simple
scaling of the stochastic Manna sandpile [5]. If the number of sand grains released at each site upon
toppling is equal to the total number of grains the site receives when all neighboring sites topple, the
universality class of the quenched sandpile is that corresponding to BTW multiscaling. If this balance
is not precisely realized locally, but only on average across the system, the scaling falls in the Manna
universality class. The symmetry associated to the precise local toppling balance determines long time
correlations for the waves, which turn out to remain totally uncorrelated in its absence. The turbulent
scenario identified at the level of waves for the BTW model also relies on this basic symmetry.
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The multifractal formalism was introduced in the context of fully-developed turbulence data analy-
sis and modeling to account for the experimental observation of some deviation to Kolmogorov theory
(K41) of homogenous and isotropic turbulence [1]. The predictions of various multiplicative cascade
models, including the weighted curdling (binomial) model proposed by Mandelbrot [2], were tested us-
ing box-counting (BC) estimates of the so-called f(α) singularity spectrum of the dissipation field [3].
Alternatively, the intermittent nature of the velocity fluctuations were investigated via the computa-
tion of the D(h) singularity spectrum using the structure function (SF) method [4]. Unfortunately,
both types of studies suffered from severe insufficiencies. On the one hand, they were mostly limited
by one point probe measurements to the analysis of one (longitudinal) velocity component and to
some 1D surrogate approximation of the dissipation [5]. On the other hand, both the BC and SF
methodologies have intrinsic limitations and fail to fully characterize the corresponding singularity
spectrum since only the strongest singularities are a priori amenable to these techniques [6].

In the early nineties, a wavelet-based statistical approach was proposed as a unified multifractal
description of singular measures and multi-affine functions [6]. Applications of the so-called wavelet
transform modulus maxima (WTMM) method have already provided insight into a wide variety
of problems, e.g., fully developed turbulence, econophysics, meteorology, physiology and DNA se-
quences [7, 8]. Later on, the WTMM method was generalized to 2D for multifractal analysis of rough
surfaces [9], with very promising results in the context of the geophysical study of the intermittent
nature of satellite images of the cloud structure [10, 11] and the medical assist in the diagnosis in dig-
itized mammograms [11, 12]. Recently the WTMM method has been further extended to 3D analysis
of scalar data and applied to dissipation and enstrophy 3D numerical data issue from isotropic tur-
bulence direct numerical simulations (DNS) [13, 14]. Thus far, the multifractal description has been
mainly devoted to scalar measures and functions. In the spirit of a preliminary theoretical study of
self-similar vector-valued measures by Falconer and O’Neil [15], we generalize the WTMM method to
vector-valued random fields with the specific goal to achieve a comparative 3D vectorial multifractal
analysis of DNS velocity and vorticity fields [14, 16].

Let us note V(x = (x1, x2, x3)), a 3D vector field with square integrable scalar components Vj(x),
j = 1, 2, 3. Along the line of the 3D WTMM method [13, 14], let us define 3 wavelets ψi(x) = ∂φ/∂xi(x)
for i = 1, 2, 3 respectively, where φ(x) is a scalar smoothing function well localized around |x| = 0.
The wavelet transform (WT) of V at point b and scale a is the following tensor [14, 16]:

Tψ[V](b, a) =



Tψ1 [V1] Tψ1 [V2] Tψ1 [V3]
Tψ2 [V1] Tψ2 [V2] Tψ2 [V3]
Tψ3 [V1] Tψ3 [V2] Tψ3 [V3]


 , (1)

where

Tψi
[Vj ](b, a) = a−3

∫
d3r ψi

(
a−1(r − b)

)
Vj(r). (2)

In order to characterize the local Hölder regularity of V, one needs to find the direction that locally
corresponds to the maximum amplitude variation of V. This can be obtained from the singular value
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decomposition (SVD) [17] of the matrix (Tψi
[Vj ]) (Eq. (1)):

Tψ[V] = GΣHT , (3)

where G and H are orthogonal matrices (GTG = HTH = Id) and Σ = diag(σ1, σ2, σ3) with σi ≥ 0,
for 1 ≤ i ≤ 3. The columns of G and H are referred to as the left and right singular vectors, and the
singular values of Tψ[V] are the non-negative square roots σi of the d eigenvalues of Tψ[V]TTψ[V].
Note that this decomposition is unique, up to some permutation of the σi’s. The direction of the
largest amplitude variation of V, at point b and scale a, is thus given by the eigenvector Gρ(b, a)
associated to the spectral radius ρ(b, a) = maxj σj(b, a). One is thus led to the analysis of the
vector field Tψ,ρ[V](b, a) = ρ(b, a)Gρ(b, a). Following the WTMM analysis of scalar fields [9, 13, 14],
let us define, at a given scale a, the WTMM as the position b where the modulus Mψ[V](b, a) =
|Tψ,ρ[V](b, a)| = ρ(b, a) is locally maximum along the direction of Gρ(b, a). These WTMM lie on
connected surfaces called maxima surfaces (see Figs 1b,c and 1e,f). In theory, at each scale a, one
only needs to record the position of the local maxima of Mψ (WTMMM) along the maxima surfaces
together with the value of Mψ[V] and the direction of Gρ. These WTMMM are disposed along
connected curves across scales called maxima lines living in a (3+1) space (x, a). The WT skeleton is
then defined as the set of maxima lines that converge to the (x1, x2, x3) hyperplane in the limit a→ 0+.
The local Hölder regularity of V is estimated from the power-law behavior Mψ[V]

(
Lr0(a)

)
∼ ah(r0)

along the maxima line Lr0(a) pointing to the point r0 in the limit a → 0+, provided the Hölder
exponent h(r0) be smaller than the number nψ of zero moments of the analyzing wavelet ψ [18]. As
for scalar fields [6, 9, 13], the tensorial WTMM method consists in defining the partition functions:

Z(q, a) =
∑

L∈L(a)

(Mψ[V](r, a))q ∼ aτ(q) , (4)

where q ∈ R and L(a) is the set of maxima lines that exist at scale a in the WT skeleton. Then by
Legendre transforming τ(q), one gets the singularity spectrum D(h) = minq(qh− τ(q)), defined as the
Hausdorff dimension of the set of points r where h(r) = h. Alternatively, one can compute the mean
quantities:

h(q, a) =
∑

L∈L(a)

ln |Mψ[V](r, a)| Wψ[V](q,L, a) ,

D(q, a) =
∑

L∈L(a)

Wψ[V](q,L, a) ln
(
Wψ[V](q,L, a)

)
,

(5)

where Wψ[V](q,L, a) =
(
Mψ[V](r, a)

)q
/Z(q, a) is a Boltzmann weight computed from the WT skele-

ton. From the scaling behavior of these quantities, one can extract h(q) = lima→0+ h(q, a)/ ln a and
D(q) = lima→0+ D(q, a)/ lna and therefore the D(h) spectrum.

In References [14, 16], one can find the results of some test-applications of the tensorial WTMM
method to a 2D vector situation. Here we will report the results of the first application of this
methodology to the velocity (v) and vorticity (ω) fields generated by DNS of isotropic turbulence by
Lévêque using a pseudo spectral method solver. The DNS were performed using 2563 mesh points in
a 3D periodic box. The Taylor microscale is Rλ = 140. In Fig. 1 are illustrated the computation of
the WT modulus maxima surfaces together with the local maxima (WTMMM) of Mψ for one 3D
snapshot of the velocity and the vorticity field. In Fig. 2 are reported the results corresponding to
some averaging over 18 snapshots of (256)3 DNS run [16]. As shown in Figs. 2a and 2b, both the
Z(q, a) and h(q, a) partition functions display rather nice scaling properties for q = −4 to 6, except
at small scales (a . 21.5σW ) where some curvature is observed in the log-log plots likely induced by
dissipation effects [1, 19]. Linear regression fit of the data (Fig. 2a) in the range 21.5σW ≤ a ≤ 23.9σW
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Figure 1: 3D wavelet transform analysis of the velocity and vorticity fields from (2563) DNS by Lévêque
(Rλ = 140). ψ is the third order radially symmetric analyzing wavelet (the smoothing function φ(x) is
the isotropic mexican hat). Velocity field: (a) A snapshot of v(x) using a 64 gray level coding; in (b)
a = 22σW and (c) a = 23σW , are shown the TWT modulus maxima surfaces; from the local maxima
(WTMMM) of Mψ along these surfaces originates a black segment whose length is proportional to
Mψ and direction is along Gρ(x, a). Vorticity field: (d), (e) and (f) are equivalent to (a), (b) and
(c) but for the vorticity field ω(x). σW = 13 pixels.

yields the nonlinear τv(q) and τω(q) spectra shown in Fig. 2c, the hallmark of multifractality. For
the vorticity field, τω(q) is a decreasing function; hence h(q)(= ∂τ(q)/∂q)< 0 and the support of the
D(h) singularity spectrum expands over negative h values as shown in Fig. 2d. In contrast τv(q) is an
increasing function which implies that h(q) > 0 as the signature that v is a continuous function. Let
us point out that the so-obtained τv(q) curve significantly departs from the linear behavior obtained
for 18 (256)3 realizations of vector-valued fractional Brownian motions B1/3 of index H = 1/3, in good
agreement with the theoretical spectrum τ

B1/3(q) = q/3 − 3. But even more remarkable, the results
reported in Fig. 2b for h(q, a) suggest, up to statistical uncertainty, the validity of the relationship
hω(q) = hv(q)− 1. Actually, as shown in Fig. 2d, Dω(h) and Dv(h) curves are likely to coincide after
translating the later by one unit on the left. This is to our knowledge the first numerical evidence
that the singularity spectra of v and ω might be so intimately related: Dv(h + 1) = Dω(h) (a result
that could have been guessed intuitively by noticing that ω = ∇ ∧ v involves first order derivatives
only) [16]. Finally, let us note that, for both fields, the τ(q) and D(h) data are quite well fitted by
log-normal parabolic spectra [19]:

τ(q) = −C0 +C1q − C2q
2/2 ,

D(h) = C0 − (h− C1)
2/2C2 .

(6)

Both fields are found singular almost everywhere: Cv
0 = −τv(q = 0) = Dv(q = 0) = 3.02 ± 0.02

and Cω0 = 3.01 ± 0.02. The most frequent Hölder exponent h(q = 0) = C1 (corresponding to the
maximum of D(h)) takes the value Cv

1 ' Cω1 + 1 = 0.34 ± 0.02. Indeed, this estimate is much closer
to the K41 prediction h = 1/3 [1] than previous experimental measurements (h = 0.39 ± 0.02) based
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Figure 2: Multifractal analysis of Lévêque DNS velocity (•) and vorticity (◦) fields (d = 3, 18 snap-
shots) using the tensorial 3D WTMM method; the symbols (�) correspond to a similar analysis of
vector-valued fractional Brownian motions, BH=1/3. (a) log2 Z(q, a) vs log2 a; (b) hω(q, a) vs log2 a
and hv(q, a) − log2 a vs log2 a; the solid and dashed lines correspond to linear regression fits over
21.5σW . a . 23.9σW . (c) τv(q), τω(q) and τ

B1/3(q) vs q; (d) Dv(h + 1), Dω(h) vs h; the dashed
lines correspond to log-normal regression fits with the parameter values Cv

2 = 0.049 and Cω2 = 0.055;

the dotted line is the experimental singularity spectrum (C
δv//
2 = 0.025) for 1D longitudinal velocity

increments [19].

on the analysis of longitudinal velocity fluctuations [19]. Consistent estimates are obtained for C2

(that characterizes the width of D(h)): Cv
2 = 0.049 ± 0.003 and Cω2 = 0.055 ± 0.004. Note that these

values are much larger than the experimental estimate C2 = 0.025± 0.003 derived for 1D longitudinal
velocity increment statistics [19]. Actually they are comparable to the value C2 = 0.040 extracted
from experimental transverse velocity increments [19b].

To conclude, we have generalized the WTMM method to vector-valued random fields. Preliminary
applications [14, 16] to DNS turbulence data have revealed the existence of an intimate relationship
between the velocity and vorticity 3D statistics that turn out to be significantly more intermittent
than previously estimated from 1D longitudinal velocity increments statistics. This new methodology
looks very promising to many extents. Thanks to the SVD, one can focus on fluctuations that are
locally confined in 2D (mini σi = 0) or in 1D (the two smallest σi are zero) and then simultaneously
proceed to a multifractal and structural analysis of turbulent flows. The investigation along this line
of vorticity sheets and vorticity filaments in DNS is in current progress. We are very grateful to E.
Lévêque for allowing us to have access to his DNS data and to the CNRS under GDR turbulence.
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The classical Kolmogorov picture of fully developed small-scale turbulence suggests the scaling
form

〈∆vnl 〉 ∼ lζn ∼
〈
ε
n/3
l

〉
ln/3 ∼ ln/3−τn/3 (1)

of the structure functions within the inertial range η�l�L, confined within the dissipation and integral
scales η and L. ∆vl is a velocity increment and εl a coarse-grained amplitude of the energy dissipation.
However, the observed scaling of 〈∆vnl 〉 as well as 〈εnl 〉 is rather poor. This raises the question: if it
exists, what is the appropriate observable to detect rigorous scaling? The answer [2, 3, 4] is, two-point
correlations

〈εn1(x)εn2(x+ l)〉 ∼
(
L

l

)τn1n2

(2)

of the energy dissipation reveal a rigorous scaling over almost the entire inertial range η<l≤L. This
has been demonstrated for various data sets. It has also given rise to a new puzzle, that for large
Reynolds numbers the intermittency exponent appears not to be universal, but to depend on the flow
geometry.

From a theoretical perspective, these observational findings call for an elegant stochastic description
of the energy-cascade process. Prototype models are random multiplicative cascade processes [7, 8,
13, 6]. However, due to their inherent hierarchy of scales these models are not homogeneous in
space. A spatially homogeneous and causal model generalization has been presented in Ref. [12]. Its
parameters are fully determined from the lowest-order two-point correlations (2). With no room for
further adjustments, this model is also capable to describe the observed three-point statistics

〈εn1(x1)ε
n2(x2)ε

n3(x3)〉 ∼
(

L

x3 − x1

)α13
(

L

x2 − x1

)α12
(

L

x3 − x2

)α23

(3)

with high precision. Moreover, it also explains the scale correlations observed for breakup coefficients
as an artifact of the observation [5]; see also previous work [10, 11, 1, 9] on this topic.
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A one-dimensional stochastic model for turbulence simulation
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Abstract

A stochastic model for one-dimensional (1D) simulation of 3D hydrodynamic turbulence, denoted
one-dimensional turbulence (ODT), is motivated and introduced by describing the development path
that led to the present formulation.

One-dimensional models of turbulent premixed combustion

The research effort described here began with an effort to develop a minimal model of turbulent
premixed combustion. The initial outcome was a formulation in which the instantaneous state of a
turbulent flame is idealized as a bit vector (row of integers 0 or 1) in which each pair of adjacent bits
interacts in two ways.

First, each 0 is converted into a 1 at a mean rate B times the number (0, 1, or 2) of adjacent
bits in state 1. This process represents laminar burning with laminar flame speed L/B, where L is
the nominal spatial separation of adjacent bits. Note that there is some subtlety even at this level
of description. The middle bit in a 101 configuration is deemed to burn twice as fast as in a 100 or
001 configuration because flames consume it from both sides, which is a reasonable but not uniquely
plausible idealization of flame propagation. Also, this is a random process but could be plausibly
formulated as a deterministic process.

Second, each pair of adjacent bits is exchanged (e.g. 01 to 10, 10 to 01, 00 and 11 unaffected) at a
mean rate R, thus idealizing turbulent advection with eddy diffusivity RL2. (Note that bits execute
simple random walks with event rate 2R.) Like laminar burning, this process is random in time,
namely a Poisson process with mean event rate R for each bit pair. Model dynamics are governed by
one non-dimensional parameter, γ = R/B, which can be viewed as an idealization of the quantity u ′/S
that governs 3D turbulent combustion, where u′ is the rms velocity fluctuation and S is the laminar
flame speed. The mean number of 0-to-1 conversions per time interval 1/B is then the model analog
of uT /S, where uT is the turbulent burning velocity.

For a step-function initial bit profile, this process relaxes to statistically steady propagation that
captures some qualitative features of turbulent premixed combustion [1]. It has been shown that model
analog of uT is governed by the KPP velocity-selection principle in the large-γ limit [2]. To improve
the physical realism of this formulation, it was extended by allowing exchanges of the positions of
non-adjacent bit pairs, idealizing the effects of turbulent eddies of various sizes [3].

Linear-eddy model

Though bit-pair exchange over a range of bit separations reflects the range of eddy motions in turbu-
lence, it does not reflect the coherence of eddy motions, meaning that a large eddy displaces a larger
volume of fluid in a given direction than does a small eddy. Accordingly, an exchange process denoted
block inversion was introduced, involving the reversal of the order of bits j through j+l−1 to represent
a size-l eddy [4]. This change was necessitated by the application of the 1D approach to diffusive scalar
mixing rather than flame propagation; bit-pair exchange gives far too rapid length-scale reduction in
this context. This artifact occurs also for flame propagation, but is less severe in that context because
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uT is more sensitive to the distance and frequency of the largest bit displacements than to the amount
of fluid transported.

Block inversion introduces scalar discontinuities at eddy endpoints. From a spectral viewpoint,
this corresponds to transfer of scalar fluctuations from finite wave-number k to k = ∞, violating the
spectral locality of length-scale reduction that is a hallmark of the inertial-range turbulent cascade
[5].

To remedy this artifact, the scalar-mixing formulation, denoted the linear-eddy model (LEM), was
improved by introducing a new exchange process, termed the triplet map [6]. In fact, this is not a
pair exchange, but rather, a permutation of cell indices j through j + l− 1. Taking l to be a multiple
of 3, the triplet map permutes the cell indices into the new order j, j + 3, j + 6, . . . , j + l − 3, j +
l − 2, j + l − 5, j + l − 8, . . . , j + 4, j + 1, j + 2, j + 5, j + 8, . . . , j + l − 4, j + l − 1. This
operation reduces the separation of any pair of cells by no more than a factor of three, thus satisfying
the scale locality of length-scale reduction. It is the simplest of a family of permutations that preserve
scale locality, and is optimal in that no other member of the family enforces as low a bound on the
maximum scale-reduction factor.

LEM is parameterized by a Péclet number Pe, which is the eddy diffusivity associated with trans-
port by the triplet-map sequence divided by the molecular diffusivity (which is the diffusive-mixing
analog of the laminar flame speed in premixed combustion). On this basis, LEM has been used
to study the dependencies of turbulent mixing and reaction processes on Pe and on the initial and
boundary conditions imposed on one or more scalar profiles that evolve on the 1D domain [7]-[13].

One-dimensional turbulence

LEM simulates mixing induced by parametrically specified turbulent advection. To obtain a model
that, instead, predicts turbulent flow evolution, profiles of one or more velocity components were
introduced on the 1D domain, and the random selection of individual eddies (here parameterized
by j, l, and time of eddy occurrence) was generalized [14]. In LEM, the eddy rate is a prescribed
function of l, reflecting known inertial-range cascade scalings, and also depends on j if the flow is
spatially inhomogeneous. In the predictive flow model, denoted one-dimensional turbulence (ODT),
the sampling rate for each eddy (parameterized by j and l) is a function of the instantaneous flow state,
based on turbulence production and dissipation mechanisms that are conventionally used to estimate
eddy time scales [15]. A key distinction here is that conventional estimation based on mixing-length
phenomenology is applied to quantities subject to some form of averaging or filtering, but in ODT,
mixing-length phenomenology is applied to instantaneous property profiles that are not subject to
averaging or filtering.

In ODT, the molecular process that evolves concurrently with eddy events (i.e., the analog of
laminar flame propagation in premixed combustion and molecular diffusivity in LEM) is molecular
viscosity, as prescribed by the viscous-dissipation term of the momentum equation. The correspond-
ing non-dimensional parameter that governs constant-property flow evolution in ODT is a Reynolds
number, Re. In ODT, as in 3D flow simulation, the nominal Reynolds number is defined in terms
of domain geometry and flow initial and boundary conditions, but the turbulent Reynolds number,
defined in terms of u′, the mean energy dissipation rate, and the kinematic viscosity, is an outcome of
simulated flow evolution rather than an input.

Velocity profiles in ODT do not advect fluid, but they influence triplet-map advection through their
role in determining eddy-sampling rates. In this sense they are auxiliary variables, but in addition,
they are the flow observables. The tight two-way coupling between velocity-profile evolution and
eddies (triplet maps advect velocity profiles) maintains overall consistency of velocity statistics and
mapping-induced transport.
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Buoyancy effects have been incorporated into ODT, and buoyant stratified flows have been studied
extensively [14]-[20]. In fact, buoyancy alone (velocity profiles omitted) is a sufficient input to eddy
rate determination to provide a reasonable representation of some flows of interest, motivating a
simplification of ODT that is termed density-profile evolution (DPE) [14], [16]. ODT has also been
used to study free-shear flow [21]-[23] and combustion [24]-[26].

1D substructure within 3D flow solvers

Both LEM and ODT have been used as subgrid models within large-eddy simulations (LES). LES
with LEM-based subgrid closure has been applied to turbulent combustion [27]-[28]. ODT has been
used as a near-wall momentum closure for LES of channel flow [29] and as a bulk momentum closure
for LES of decaying homogeneous turbulence [30].

A concept for full multi-physics subgrid closure using ODT has been articulated [31] and has
been further refined in recent unpublished work. The strategy is as follows. Three flow solutions are
advanced concurrently. In each, the 3D domain (assume a Cartesian mesh of cubic control volumes) is
spatially refined in one of the three coordinate directions. The intersections of this refinement (stack
of thin slices) with the set of 3D control volumes defines a 2D array of ODT domains filling the 3D
domain. On a fast time scale, ODT processes evolve within individual ODT domains (here assuming
compressible treatment; 1D gas dynamics plus eddy events). On a slow time scale, 3D effects are
introduced by fluxing flow variables laterally between adjacent ODT domains within a given array.

The lateral fluxes are based on property transfers across the corresponding interfaces during ODT
evolution on 1D domains normal to those interfaces. In this manner, each array of ODT domains
aligned in a given direction provides the other arrays with the information needed for closure of
lateral fluxes between the ODT domains on those arrays.

This synergistic coupling of the three flow solutions (i.e., evolution on the three arrays of ODT
domains) results in self-contained flow evolution based only on ODT-level variables. Because this
formulation is compressible (or pseudo-compressible for low-Mach-number applications), it does not
require a 3D solve of a Poisson equation to enforce continuity. Hence, filtering or averaging at the
3D-control-volume level is not needed except to generate output statistics.

This formulation involves much of the methodology developed for ODT-based 3D simulation of
incompressible flow [30], but the incorporation of 1D gas dynamics into ODT will be a major extension
involving considerable technical uncertainty. For example, application of a triplet map to a dilatational
flow automatically introduces a form of vortical-acoustic coupling, but it remains to be determined
whether this representation is physically realistic.

Full multi-physics treatment requires various extensions of the ODT model itself, such as treatment
of flows with large density contrasts (demonstrated recently [23]) and multiphase phenomena (one
aspect of which has been addressed [32]). Progress toward full multi-physics treatment will involve a
series of further incremental steps.

Discussion

The one-dimensional stochastic simulation method described here is an outgrowth of an approach
that was initially intended as an idealized conceptual model of turbulent combustion. This effort was
motivated the recognition that interactions between turbulence and microscale phenomena involve
qualitatively different physical behavior than turbulent flow evolution per se, and therefore may require
modeling treatments that are fundamentally different from those developed for other purposes, e.g., for
weather forecasting or airfoil design. The effort has evolved from fundamental study to development
of a computational methodology that might provide useful predictive capabilities beyond what is
presently available. The essential benefit of the approach in this context is the ability to provide
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spatial resolution in 1D rather than 3D, with commensurate reduction of computational cost. Current
efforts focus on demonstrating predictive capability of this approach that will establish it as a cost-
effective alternative to existing computational models of multi-physics turbulent flow.
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Abstract

Algebaric Reynolds stress models have been proven to be a powerful and inexpensive tool to predict
turbulent stresses. In this study, the sensitivity of these models on their coefficients is investigated.
Using standard mathematical optimization techniques it is studied whether predictions can be im-
proved by tuning the model coefficients. As test problem the turbulent round jet as experimentally
investigated by [4] is chosen. Improvement is found by tuning the model coefficients. However, for
non-homogeneous turbulence there is a fundamental flaw in the modeling approach associated with
the weak equilibrium assumption.

Introduction

Turbulence models based on the transport equations for the individual Reynolds stresses are about to
replace the standard two-equation models in scientific and industrial flow computations. The effort
of carrying further transport equations is usually prohibitively expensive and there is considerable
interest in appropriate algebraic approximations.

Algebraic Reynolds stress models

Starting from the exact Reynolds stress transport equation, assuming infinite Reynolds number and
invoking the assumption that the turbulence is close to its equilibrium state (weak equilibrium assump-
tion), the Reynolds stress equations can be simplified significantly. The weak equilibrium assumption
states that for the Reynolds stress anisotropy tensor bij = uiuj/(2K) − 1/3δij convective and third-
order (turbulent diffusion) terms balance with the time-rate-of-change terms, i.e.,

∂bij
∂t

+ Uk
∂bij
∂xk

+D(bij) ≈ 0, (1)

with mean flow components Uk and turbulent diffusion D(bij). Now, the system of partial differential
equations is reduced to the following set of nonlinear algebraic equations,

2bij(P − ε) = Pij + φij −
2

3
εδij , (2)

where Pij = −(uiuk∂Uj/∂xk+ujuk∂Ui/∂xk) is the corresponding production term, φij is the pressure-
strain model while P = 1/2Pkk = −2KbijSij and ε are production and dissipation rate of turbulent
kinetic energy, respectively. The pressure-strain model φij is usually modelled in terms of the mean
strain rate and rotation rate tensors, Sij = 1/2(∂Ui/∂xj+∂Uj/∂xi) andWij = 1/2(∂Ui/∂xj−∂Uj/∂xi)
as

φij = −2

(
C0

1 + C1
1

P

ε

)
bij + C2Sij + C3

(
bikSkj + bjkSik −

2

3
bmnSmnδij

)

+C4(bikWjk + bjkWik),
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where C1 −C4 are coefficients. Inserting the pressure-strain model, the corresponding algebraic equa-
tion for the Reynolds stress anisotropy reads

bij = g

(
α1Sij + α2(SikWkj −WikSkj) + α3(S

2
ij −

1

3
δijS

2
kk)

)
. (3)

For convenience, strain rate and rotation tensors are non-dimensionalized by the eddy turnover time
scale K/ε, such that S∗

ij = K/ε ·Sij ,W ∗
ij = K/ε ·Wij are now dimensionless quantities. The ’*’ will be

omitted in the following. The coefficients g and αi are related to the coefficients of the pressure-strain
model by

g = 2 · (C0
1 + P/ε(C1

1 + 1) − 1)−1, α1 = (C2 − 4/3)/2, α2 = (C4 − 2)/2, α3 = (C3 − 2)/2. (4)

Note that due to the appearance of the production term P = −bijSij in g on the right hand side of
(3) this is still an implicit relation for the anisotropies bij . Its solution requires the solution of a cubic
equation, e.g. [1]. However, in the present study the production term P is assumed to be known. For
convenience, we define new coefficents βi(i = 1, 2, 3) which incorporate both g and αi, (i = 1, 2, 3),

βi = g · αi, (i = 1, 2, 3).

It might be noted that the turbulence model given by equation (3) is strictly valid only in homogeneous
turbulence where mean flow gradients are constant. It is therefore expected that in non-homogeneous
turbulence the coefficients are not universal. This has already been pointed out in early publications
(e.g., [2], [3]).

The round jet

We choose the turbulent round jet as an example for a non-homogeneous turbulent flow. High resolu-
tion experimental data are provided by [4]. The round jet is stationary and has only one direction of
homogeneity, the azimuthal direction. Therefore it is a demanding task for the turbulence model (3).
In the following, we will refer to the axial and the radial direction as x1- and x2-direction, respectively.
Additional features of the round jet are depicted in figure 1. Part (a) shows the radial profile of the
dimensionless shear stress. It raises from zero at the axes to a constant value of about 0.14 over a
large region and finally getting smaller in the outer region. This is typical for free shear flows [5].
Part (b) depicts the ratio of turbulent kinetic energy production P over dissipation ε. As the ratio
is always smaller than one, the dissipation of turbulent kinetic energy must be balanced by transport
processes which make the turbulence non-local. Part (c) shows the ratio of mean flow time scale and
turbulence time scale. Based on the shear rate S = (2SijSij)

1/2 the appropriate mean flow time scale
is S−1 whereas the turbulence time scale is K/ε. Turbulence modelling is often based on simplified
turbulence conditions in which the time scale ratio is either large or small. Whereas a large ratio
allows the application of Rapid Distortion Theory (e.g., [6]), a small ratio allows the turbulence scales
to have time to equilibrate with the slowly changing mean flow. The most basic flow of this type is
decaying turbulence where S is zero. Part (c) reveals that neither of these requirements applies in the
round jet where SK/ε is neither large nor small but on the order of unity.

Linear Optimization

We wish to find the set of coefficients β = (β1, β2, β3)
T which, inserted in equation (3), reproduces the

experimental data for the components bij of the anisotropy tensor as close as possible. Additionally,
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Figure 1: Features of the turbulent round jet. The dimensionless coordinate η is the ratio of radial
and axial distance from the flow origin.

coefficient C0
1 C1

1 C2 C3 C4

Reference [7] 1.5 0 0.8 1.75 1.31

Reference [8] 1.8 0 0.8 2.00 1.11

Reference [9] 1.7 0.90 0.36 1.25 0.45

Table 1: Range of coefficients of the pressure-strain model according to several authors

the coefficients are subject to certain constraints which are dictated by physical considerations. The
corresponding least-squares minimization task reads as

1

2
||M · β − d||2 = min,

A · β ≤ c, (5)

where M represents the coefficient matrix, d the data vector, and A, c describe the linear system of
equations for constraints on β. Different coefficients of the pressure-strain model C1 − C4 have been
proposed by different authors [7], [8], [9] as shown in table 1. These proposals, the observed range of
0 ≤ P/ε ≤ 0.8 and the application of equation (4) allow to estimate constraints on the coefficients
βi, (i = 1, 2, 3). However, we extend the admissible range for β2 and β3 to positive values somewhat
arbitrarily,

−0.4 ≤ β1 ≤ 0,−0.6 ≤ β2 ≤ 0.8,−0.3 ≤ β3 ≤ 0.8.

Three approaches were tested. For reference, the values derived from the LRR-model [7] were taken.
They read

β
LRR

= (1 + 2P/ε)−1(−4/15,−1/8,−0.345)T . (6)

In the second one, the coefficients were assumed to be constant and the best constants are determined
from the optimization procedure (5). In the third approach, the coefficients are assumed to be linear
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functions of the Reynolds stress anisotropy invariants II = −1/2bijbij and III = 1/3bijbjkbki and the
normalized production-over-dissipation ratio P/ε− 1, i.e.,

βi = β
(0)
i + β

(1)
i · II + β

(2
i ) · III + β

(3)
i · (P/ε− 1), (i = 1, 2, 3) (7)

which will be referred to as the ’variable-coefficient-approach’. The invariants and the produc-
tion/dissipation ratio serve to describe the flow regime and are appropriate candidates for a general
scaling. The algorithm ’lsqlin’ from the commercial software package MATLAB 7.0.1 [10] is used to
solve the above optimization problem. It might be worth noting that from a physical point of view
the shear stress term b12 is the most important quantity. It is therefore questionable whether it is the
right strategy to determine an error in the L2-sense thus ignoring the dominant role of b12 over the
other three stresses. This issue might be addressed in further studies.

Numerical results

Figure 2 displays the computed anisotropies applying the model equation (3) along with the coefficients
from [7], given by equation (6). The agreement of the computed values (thin lines) with measured
data (thick lines) is poor. The model fails to predict the typical free shear flow feature of the constant
value of b12 over the range 0.06 ≤ η ≤ 0.17. Additionally, the slope of the b12-profile is overestimated
near the centre axis. The centre axis values of the normal stresses are far from the observed ones but
more striking is that even the qualitative behaviour of the profile is not predicted correctly. Where
the observed profiles become smaller the computed ones increase and vice versa. In summary, the
computed normal stresses tend to return to isotropy much faster than the experimental data indicate.
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Figure 2: Reynolds stress anisotropies from experiment (thick lines) and computed with the coefficients
proposed by [7], see equation (6) (thin lines).

For constant coefficients, the best agreement between model and data is achieved for the following
vector of coefficients:

β = (−0.065, 0.082, 0.027)T .
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coefficient β
(0)
i β

(1)
i β

(2)
i β

(3)
i range of βi

β1 -0.44 -20.3 -946 -0.33 −0.218 ≤ β1 ≤ 0

β2 -0.75 -43.0 -40.8 -0.98 0.094 ≤ β2 ≤ 0.800

β3 0.00 -1.89 -121 -0.02 0.004 ≤ β3 ≤ 0.045

Table 2: Computed values for the variable-coefficients approach (7)

For the variable-coefficients approach (7), the best agreement is achieved for the values listed in table 2.
The corresponding computed profiles are depicted in figure 3. It is clearly seen that both approaches
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Figure 3: Reynolds stress anisotropies from experiment (thick lines) and computed with constant
(dotted lines) and variable coefficients (thin solid lines).

improve the slope of the b12-profile. The variable-coefficients approach is even able to predict a
rather constant value for b12. Unfortunately, the normal stress anisotropies have not been improved
significantly compared to figure 2. The profile of b33 is in reasonable agreement with the experimental
data. However, this is the smallest quantity. For the variable-coefficients approach it is found that
close to the centre axis the normal stress profiles exhibit at least the correct qualitative behaviour.
From a further analysis it is found that it is mainly the first part of (3), i.e. the downgradient part,
that creates the unrealistic decrease of b11 and increase of b22. The observed ratios −b11/S11 and
−b22/S22 that might be regarded as the ’normal stress eddy viscosities’ are found to change sign
at η ≈ 0.08 and 0.06, respectively and reach absolute values as high as 60. That means that the
downgradient assumption for the normal stresses b11 and b22 leads to poor results and the other two
terms of our model (3) are not able to compensate for its deficiency. It might be speculated that
the local assumption inherent in the downgradient hypothesis and the model (3) underestimates the
inertia of the normal stresses which evolve more slowly than the corresponding mean strain rates S11

and S22. This interpretation is supported by the fact that the profile of b33 is in good agreement with
data. Apparently, the underlying weak equilibrium assumption (1) is well justified for the azimuthal
(the ’3’) component where the mean flow is zero. In constrast, the same assumption might not be
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justified for the axial and radial direction, respectively. Here, the turbulence does not instantaneously
adjust to local mean flow conditions. A more appropriate algebraisation procedure to replace equation
(1) is currently under investigation.
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Abstract

We study gravity currents flowing down a uniform slope in a homogeneous media with rotation. Those
dense overflows are of particular interest in oceanography, as it is an important mechanism in renewing
deep water as part of the global thermohaline convective cycle which has a strong impact on climate.
The large Coriolis turntable (Grenoble) is used to study at the laboratory scale, a gravity current in
similarity with the oceanic scales.

The propagation of such currents is strongly influenced by rotation, and its dynamics is turbulent
and unstable, which produces the mixing with the ambient. The experiments are used to determine
the stabilization depth of the main current along the coast, to measure the mixing and friction effects
in a rotating system and to observe development of instabilities, also seen in the ocean. Scaling
laws are derived from the initial parameters, describing the main properties of the flow in geostrophic
equilibrium along the slope, such as its position, width, velocity or density. These scaling laws suppose
that the buoyancy flux is conserved, which is verified by the experimental data analysis. The intensity
of the turbulent stress in these overflows is also investigated, and compared to the formation of cyclonic
eddies.

Introduction

Plumes are flows generated by a density contrast between a continuous source fluid and its environ-
ment, modifying the global distribution of temperature and salinity. In oceanography, these dense
overflows on a continental slope are very active as they take part in the production of the North
Atlantic deep waters. Cold water from Nordic seas or salty water from the Mediterranean Sea descend
into the Atlantic ocean over a sill, resulting in mass exchange with high density gradient, instabilities
and generation of mesoscale vortices. Observation of the dense overflow in the Denmark strait is pos-
sible from in-situ measurements of density [1]. Cooling of warm and salty waters from the Gulf stream
in the Nordic seas generates the descent and spreading of the denser water masses created, which
then propagate along the East Greenland coast, as shown in figure 1. This overflow is schematically
reproduced in laboratory experiments described below.

The bottom friction effects and the turbulent mixing process involved in these dense currents has
been studied by theoretical, numerical and experimental analysis, usually in non-rotating systems, as
reviewed by Simpson [2]. The first experiments performed to study the gravity current front, on a
non-rotating slope, were carried out by Ellison and Turner [3]. When the dense current flows down the
continental slope, entrainment of the ambient fluid causes mixing. In the case of a two-dimensional
plume on a slope (of inclination α) in a non-rotating system, Ellison and Turner [3] suggested that
the entrainment is proportional to the mean velocity U in the downslope direction x, with a propor-
tionality constant E. The mixing and turbulent entrainment theory has been further developed by
Turner [4], assuming that the entrainment parameter is a function of the Richardson number E(R i).
The mass continuity equation of the gravity current of height h, and the momentum conservation
equation are (for a homogeneous environment at rest, and bottom friction effects negligible compared
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Figure 1: Thickness of the dense layer of the gravity current (for densities σθ > 27.81Kg.m−3)
obtained from the Poseidon / Aranda dataset (1996-98). Bathymetry contours in meters (from Smith
and Sandwell) are drawn in black. The Greenland coast is visible on the upper left corner. Figure
from Käse et al. [1]

to entrainment):
d(Uh)

dx
= E U and

d(U2 h)

dx
= g′ h sinα

Assuming similarity of profiles, the gravity current thickness will increase linearly in distance to the
source dh/dx = E(Rio). The turbulent entrainment rate was measured experimentally [4] and can be
represented to a good accuracy by

E =
0.08 − 0.1Rio

1 + 5Rio
where Rio =

g′ h cosα

U2

The actual parameterization in oceanic numerical models make use of these theories, even though
the Coriolis effect was missing in the experiments. These mixing model have been extended to density
stratified environments by Baines [5], but the experiments show that it is not appropriate. The
resulting downflow has a uniform thickness until it reaches its level of equal density. A model based
on observations of the flow has been derived, describing the turbulent transfers in term of local
entrainment, detrainment and drag coefficients.

But the Coriolis effect due to the earth rotation, induces significant changes on large-scale flows
dynamics (Griffiths [6]). Laboratory experiments have been performed in rotating systems like White-
head et al. [7] who observed the generation of cyclonic vortices, similar to eddies seen in the Denmark
strait. Other experiments in quasi-laminar regime with no turbulent mixing confirmed this behaviour
(Lane-Serff and Baines [8] or Etling et al. [9]). In fact several types of flows are observed in rotating
experiments, as characterized by Cenedese et al. [10]: A laminar regime where no mixing occurs
between the current and the ambient fluid; a wave regime also described by Shapiro and Zatsepin
[11] where wave perturbation appear at the interface between the dense fluid and the ambient; and
an unstable regime with generation of periodic cyclonic vortices in the ambient fluid, over the gravity
current, modifying its propagation.

In fact, the Coriolis facility at LEGI (Grenoble) is the only turntable which allows the study of a
fully turbulent gravity current strongly influenced by rotation. Thanks to its large dimension (13m in
diameter), inertial regimes that characterize the ocean dynamics are approached.
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The purpose of this study is to determine experimentally the main characteristics of a gravity
current flowing down a slope in a rotating system. It is important to measure the effects of bottom
friction influencing the current’s final stabilized position along the slope, and the effects of mixing due
to entrainment and detrainment with the ambient fluid, that controls the density of the gravity current
and its velocity. Development of instabilities generating large cyclonic eddies propagating along the
incline slope, is also observed.

Experimental setup

The experiments are performed on the large Coriolis turntable (Grenoble) with the experimental setup
described in figure 2. The gravity current is created by salty water injected with a constant flux, in the
ambient fluid of uniform lower density. The controlled parameters are: the initial density difference
between the gravity current and the environment g ′o = ∆ρ/ρo; the initial flow flux Qo (generally
expressed as the buoyancy flux Bo = g′o Qo); and the rotation period T of the turntable giving the
Coriolis parameter f = 4π/T . Values of those experimental parameters are listed in table 3
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Figure 2: Schematic representation and picture of the experimental setup, with the position of the
probes and laser.

The dense fluid starts flowing down the incline slope s of 2m wide, 10m long and 15o of inclination.
It behaves as a gravity current in self-similarity, with intense mixing occurring at the interface with
the ambient fluid, as visualized in figures 3. It is then deflected by the Coriolis force and reaches
an equilibrium depth, in a state of geostrophic balance along the slope, with nearly horizontal mean
velocities. However a small part of the fluid moves downward in the bottom viscous boundary layer.
It is subject to a friction driven instability, as seen in figure 3a. Another instability, of baroclinic kind,
is observed over the main current, generating large vortices stretching over the whole water depth,
which greatly modifies the current propagation.

Velocity fields are measured by particle image velocimetry (PIV). The current is seeded with parti-
cles illuminated by a laser sheet directed along the slope at different heights from the bottom. Probes
are also used to record density variations at different locations.

Similarity between laboratory and oceanic scales

The similarity between experiments and the oceanic scale is determined by keeping non-dimensional
numbers constant. From the six dimensional parameters listed in table 3, one can define four indepen-
dent non-dimensional parameters. These are usually defined in terms of the initial current thickness
ho, width Lo and velocity Vo. These quantities are indirectly set by the flow rate Qo = ho Lo

2 Vo, or the
related buoyancy flux Bo = g′o Qo. To connect them to the known parameters, it is assumed that the
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a b

Figure 3: Visualization of the gravity current: a. The current (red dye) splits into a geostrophically
balanced jet flowing along the slope and a thin viscous layer descending the slope. The main current
is subjected to baroclinic instabilities which induce cyclonic vortices. These extend over the whole
water depth, as visualized by the black dye released above the current. b. The vertical cut (fluorescein
illuminated by a vertical laser sheet along the oblique line drawn in figure a) shows that the current
thickness decreases at the beginning of the slope before growing because of turbulent mixing.

gravity current has an initial speed Vo = c1
√
g′o ho (where c1 = 0.5, resulting from measurements),

and that the dense fluid adjusts itself in geostrophic equilibrium in the hydrostatic approximation (for

large scales): f Vo = g′o ho

Lo
.

From these relations, the thickness, width and velocity can then be expressed as:

Lo

Vo
ho

Inlet channel

ho =

√
2 f Bo
g′o

=
4 V 2

o

g′o
(1)

Lo = 2

(
2Bo
f3

) 1
4

=
4 Vo
f

(2)

Vo =
1

2
(2 f Bo)

1/4 (3)

The current width Lo is an important length scale as it should not exceed the width of the slope.
This implies that

Lo
W

= 2 5/4 f -3/4 B 1/4
o W � 1,

which is one of the non-dimensional parameter of table 3, kept small and constant. The width W of
the sloping bottom is considered sufficiently large so that it does not restrict the current width.

From the initial parameters (the Coriolis parameter f , the initial buoyancy flux Bo and the gravity
acceleration projected onto the horizontal (s g ′o)), only one non-dimensional number can be derived:

M = s g′o f
-5/4 B -1/4

o 2 3/4 =
sg′o
f Vo

=
topographic slope

initial geostrophic slope
(4)

This important quantity is also the ratio of the topographic slope s over the natural slope of the
isopycnals given by the initial geostrophic equilibrium (ho / Lo = f Vo / g′o).

The Burger number based on the initial width and velocity of the current is always constant:

Ro =
√
g′o ho

/
(f Lo) = 1/2
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Finally, the Reynolds number based on the initial current height Re = Vo ho / ν =
ν -1 (f Bo)

3/4 g′o
-1 2 -1/4 is of the order of 2000 or higher in most experiments. Even though this

value is much smaller than an oceanic case, it is admitted that global entrainment and turbulent
mixing properties do not depend on the Reynolds number for values higher than 1000. This similarity
explained in table 3 shows that a typical experiment reproduces a continental slope of 122km wide
and 3km deep.

Similarity : from laboratory Reference oceanic oceanic
to oceanic scale experiment example 1 example 2

Dimensional parameters

Slope height D [m] 0.5 3000 3000
Slope width W [m] 1.94 122 000 11 600

Coriolis parameter f = 4Π
T [s−1] 0.314 10−4 10−4

Reduced gravity g′o = g∆ρ
ρo

[ms−2] 0.3 0.02 1.8 10−4

Buoyancy source flux Bo = g′oQo [m4s−3] 2.4 10−4 1.3 105 9.2
Viscosity ν [m2s−1] 10−6 10−6 10−6

Dimensionless parameters

Topographic slope s = D
W 25.8 % 2.5 % 25.8 %

Mixing number M = s g′o
f Vo

4.44

Reynolds number Re = Vo ho
ν 2.3 104 2.8 109 2.5 107

Normalized width 25/4 f−3/4 B
1/4
o

W 0.25

Table 3: Simplified description of the similarity made to go from laboratory experiments to oceanic
scales: The first column represent to typical experiment used as a reference; the second column is a
typical oceanic case where dimensionless parameters are conserved, except for the topographic slope;
the third column is a less realistic case for which the slope is preserved as well, the source volume flux
is then very large with small density difference.

Scaling laws on the overflow

In order to analyse all the data obtained from the experiments, some scaling laws have been introduced.

The parameter M introduced in the similarity assumption can also be interpreted as a represen-
tation of the mixing. If M is small, there is no mixing and the current stays in the same state. While
if M is large, the current will reach a new state of geostrophic equilibrium along the slope. The
gravitational acceleration is balanced by the Coriolis effect, so that the slope of the interface of the
dense current is equal to the topographic slope. The along-slope speed (known as the Nof velocity) is
then:

U = g′ s / f

As the flow is deviated by the Coriolis effect, the associated length scale is L = U / f , with a velocity
also expressed as U = c2

√
g′ h.

It is assumed that the initial buoyancy flux is conserved Bo = ho Lo Vo g
′
o / 2 = h L U g′.

The dynamics of the current depends only on the initial buoyancy flux, and not on the other initial
parameters. Far enough from the source, the flow seems to forget its initial mass (g ′o) and momentum
(Qo) fluxes. It depends only on the buoyancy flux Bo. This is equivalent to the classical self-similarity
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assumption for turbulent plumes or jets, which has been extended here to gravity currents on a sloping
bottom, in presence of rotation.

A very important parameter is therefore the typical length scale Lo (equation 2) as it depends only
on the buoyancy flux, and scales with the Rossby radius of deformation.

From these estimates, some simple scaling laws are derived on the ratio of flow quantities along
the slope to their initial values, as a function of M :

g′

g′o
=

c
1/2
2 2 3/4

M ∝ 1

M
(5)

h

ho
= c -3/2

2 2 -5/4 M ∝M (6)

U

Vo
= c 1/2

2 2 3/4 , independent of M (7)

The characteristics of the current along the slope depend only on the initial buoyancy flux conserved

(or equivalently on the length scale Lo ∝ f−3/4 B
1/4
o ) and not on the initial conditions.

Experimental analysis

It is possible to check experimentally the assumption made to derive these scaling laws from the PIV
measurements in planes parallel to the sloping bottom. An example is presented on figure 6a. Density
profiles also enable to determine the width or thickness of the gravity current, and to quantify the
mixing process.

The first result concerns the depth reached by the flow in equilibrium along the slope. It is
determined by measuring the position of the maximum mean velocity along the slope at a distance
Lo from the inlet channel (see figure 6a). This distance scales with the Rossby radius of deformation
(Loc1 = (2 Bo f

−3)1/4) as shown by the graph 4. The downslope excursion is found to be (2.32 ±
0.05) (Lo c1), as obtained by Lane-Serff and Baines [8] for smaller Rossby numbers.

To summarize the experimental data, plots of the scaling laws are drawn. Figure 5a) shows the ratio
of the mean velocity of jet along the slope (measured from PIV) over the initial velocity (calculated
from equation 3). It is found to be independent of M as obtained from the scaling analysis.

Figure 5b) is a graph of the ratio of the reduced gravity of the current (measured by conductivity
probes as the maximum density excess at 7.2m from the inlet channel) over the initial reduced gravity
(known). This ratio is inversely proportional to M as expected.
Values of g′/g′o emphasize the intense mixing occurring at the interface with the ambient fluid, mainly
at the beginning of the descent of the overflow. Thereafter the geostrophically balanced jet flowing
along the slope suffers very little mixing.

Those results confirm that the fluid dynamics only depends on the initial buoyancy flux. The
fluid is in geostrophic equilibrium along the sloping bottom and M is the important parameter with
the length scale Lo. This behaviour is also obtained from the mean along-slope velocity U profiles
(made in the downslope direction), performed at the distance Lo from the channel. Those profiles,
drawn in figure 6b are normalized in velocities by U/Vo and in position by y/Lo. All the curves of the
experiments performed superimposed, even for runs with completely different initial parameters. This
emphasizes once again that there is a kind of universal law predicting the pattern of the flow such as
the along-slope velocity, the position of equilibrium or the width of the gravity current.
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Cyclonic eddies

The frequency of the cyclonic vortices is obtained either from density records at a fixed position, or
from velocity variations over the current. In both cases, the oscillations observed correspond to the
passing vortices. Figure 7 shows that the ratio of the vortices period over the turntable period is
constant. This is compatible with vortices created by a baroclinic instability.
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Figure 7: Ratio of the cyclones period over the turntable period.
Tcyclones

Tturntable
' 2

Mean velocities and turbulent stress

The velocity fields, averaged in time, can be used to investigate the intensity of velocity fluctuations
due to horizontal turbulence, and the Reynolds shear stress. Figure 8a) is an example of a velocity
profile perpendicular to a central streamline of the current. The velocity is maximum at the center.
The same graph also contains plots of the turbulent intensity of the transverse and longitudinal ve-

locity fluctuations (
√
u′2 ,

√
v′2). These intensities strongly depend on the cyclonic vortex formation

and propagation. Different kind of trajectory for the cyclones are observed, depending on the dense
current thickness. When the current is thick, eddies are carried along in its wake, and they stay over
it. Velocity fluctuations are therefore significant. But if the gravity current thickness is smaller, the
cyclones propagation is controlled by the beta effect corresponding to the sloping bottom, and eddies
leave the current to follow their own trajectory. Velocity fluctuations are weaker in that case. This
shows that the thickness of the gravity current over the height of the water column over it, is an
important parameter that has not been taken into account in the scaling set previously.

The second graph of figure 8 is a plot of the mean value of the product u′v′, which is the turbulent
shearing stress apart from a factor ρ. The curve is asymmetric about the center of the current. It is
positive where the mean shear (derivative of u) is negative and vice-versa. The sign of the Reynolds
shear stress correspond to the transport of momentum away from the center of the gravity current,
participating to the spreading of the flow due to horizontal turbulence. The value obtained for the
Reynolds stress is similar to that obtained for a self-preserving axisymmetric turbulent jet (Fukushima
et al. [12])

However from these PIV measurements, only horizontal exchanges can be analysed. It is not
possible to deduce the characteristics of vertical turbulence, nor of mixing due to entrainment. Precise
vertical velocity profiles are needed to analyse those momentum and salinity turbulent fluxes.
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Figure 8: a. Mean velocity profiles on a perpendicular to a streamline position, with turbulent
intensities of the velocity fluctuations across the gravity current. b. Corresponding turbulent shear
stress.

Conclusions

The dynamics of a dense water overflow on a continental slope has been reproduced in a laboratory,
including small scale turbulent mixing: effects of rotation and density stratification are reproduced in
dynamical similarity, and the gravity current is fully turbulent.

The existence of a self-similar gravity current on a slope in a rotating system has been demonstrated
by experimental results. The scaling laws for such flows has been obtained. The mixing of this current
with the surrounding fluid has then been characterized, providing support for modeling of turbulence
in such systems.
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Introduction

In this very short contribution we summarize some recent results on wind velocity data recorded at
Florence airport. More details can be found in the proceedings of two recent conferences [1] and
in a long paper in preparation [2]. In particular we show that one can describe this example of
atmospheric turbulence by means of the superstatistics approach proposed by Beck and Cohen [3].
The latter justifies the successful application of Tsallis generalized statistics in different fields [4], and
more specifically in turbulence experiments [5, 6].

Discussion of the results

The wind velocity measurements, were taken at Florence airport for a time interval of six months, from
October 2002 to March 2003. Data were recorded by using two anemometers, each one mounted on a 10
m high pole, located at a distance of 900 m. The sampling frequency was 3.3·10−3Hz. Despite this low
frequency, we found many similarities with microscopic turbulence data. We investigated correlations,
spectral distributions as well as probability density functions of velocity components of returns and
differences. In the following we discuss only returns of the longitudinal velocity components measured
by one of the two anemometers. We consider the one closest to the runway head 05 and labeled
RWY05. Returns are defined by the following expression

x(t)τ = V RWY 05
x (t+ τ) − V RWY 05

x (t) , (1)

Vx(t) being the longitudinal velocity component at time t and τ being a fixed time interval. The same
analysis was done also for the transversal components and for velocity difference between the two
anemometers with similar results [1, 2].

Our data show very strong correlations and power spectra with the characteristic -5/3 law in the
high-mid portion of the entire spectrum [1]. No significant difference was found for day and night
periods, when air traffic is almost absent.

The superstatistics formalism proposed recently by C. Beck and E.G.D. Cohen is a general and
effective description for nonequilibrium systems [3]. One can consider the fluctuations of an intensive
quantity, for example the temperature, by introducing an effective Boltzmann factor

B(E) =

∫ ∞

0
f(β)e−βEdβ , (2)

where f(β) is the probability distribution of the fluctuating variable β. Thus one gets for the proba-
bility distribution

P (E) =
1

Z
B(E) , (3)

with the normalization given by Z =
∫ ∞
0 B(E)dE . One can imagine a collection of many cells, each of

one with a defined intensive quantity, in which a test particle is moving. In our atmospheric turbulence
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studies, the time series of the wind velocity recordings, are characterized by a fluctuating variance,
so the returns (1), cannot be assumed to be a ”simple” Gaussian process. They show a very high
intermittent behavior stronger than that one usually found in small-scale fluid turbulence experiments.

Figure 1: (a) Variance fluctuations of the longitudinal wind velocity component for the anemometer
RWY05 obtained with a moving time window τ of one hour. (b) Standardized pdf of the fluctuating
variance corresponding to figure (a) (open points) are compared with a Gamma distribution (full line)
and with a Log-normal distribution (dashed line). The two curves share the same mean σ0 = 1.57
and variance Σ = 0.96 extracted from experimental data.

In our analysis we considered the following quantities: (i) the wind velocity returns x defined by
eq.(1), (ii) the corresponding variance of the returns x, which we indicate with σ, (iii) the fluctuations
of σ, whose variance we indicate with the symbol Σ.

Using a fixed time interval τ , we extracted from the experimental data the distribution for the
fluctuations of the longitudinal wind component variance. This was done in order to cut the time
series in ”small” pieces in which the signal is almost Gaussian and then apply superstatistics theory.
This fluctuating behavior of σ is plotted in Fig.1 (a) for a time interval τ = 1 hour. In Fig. 1 (b)
we then plot the probability distribution of the variance σ for τ = 1 hour. In this figure we plot for
comparison a Gamma (full curve) and a Log-normal (dashed curve) distribution characterized by the
same average and variance extracted from the experimental data. In this sense, the curves are not
fits of the data. The comparison clearly shows that the Gamma distribution is able to reproduce very
nicely the experimental distribution of the σ fluctuations. This is at variance with the Log-normal
distribution which is usually adopted in microscopic turbulence and which in this case is not able to
reproduce the experimental data. A similar behavior holds for different time intervals. Then following
ref.[3] one gets for the Gamma distribution

f(β) =
1

bΓ(c)

(
β

b

)c−1

e−β/b , (4)

with

c =

(
σ(β)

b

)2

=
1

q − 1
, bc =< β >= β0 , (5)

where 2c is the actual number of effective degrees of freedom and b is a related parameter. Inserting
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this distribution into the generalized Boltzmann factor (2), one then gets the q-exponential curve [4]

P (x) = (1 − (1 − q)β0E(x))
1

1−q . (6)

In our case we have E = 1
2x

2 with x defined by eq.(1) [1, 2, 3]. Considering the fluctuations of
the variance σ of the returns x, we get the following correspondence with the original superstatistics
formalism

β = στ , σ(β) = Σ(στ ) , β0 =< στ >= σ0 . (7)

Therefore , for the Gamma distributions which describes the experimental variance fluctuations, we
obtain the characteristic value c = 2.70 if τ = 1 hour. If τ = 3 hours we get c = 3.22. From these
values, using eq. (5), we have the corresponding q-values q = 1.37 and q = 1.31. In Fig.2 we plot the
probability density function P (x) of the experimental longitudinal returns for different time intervals,
i.e. 1 hour (full circles), 3 hours (open diamonds) and 24 hours (open squares). For comparison we
plot a Gaussian distribution (dashed curve) and the q-exponential curves (6) characterized by the
q-values extracted from the Gamma distributions for τ = 1 and τ = 3 respectively. The q-exponential
curves reproduce very well the experimental data which, on the other hand, are very different from
the Gaussian pdf. However one can notice that for a very long time interval, i.e. τ =24 hours, the
data are not so far from being completely decorrelated and therefore the corresponding experimental
pdf is closer to the Gaussian curve.

In a similar way one can extract theoretical curves which reproduce the pdfs of the wind velocity
differences with similar entropic q-values. In that case, however, an asymmetry correction has to be
considered to better reproduce the tails of the pdfs [1, 2].
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Conclusions

We have studied a temporal series of wind velocity measurements recorded at Florence airport for a
period of six months. The statistical analysis for the velocity components shows strong intermittent
fluctuations which exhibit power-law pdfs. Applying the superstatistics formalism, it is possible to
extract a Gamma distribution from the probability distributions of the variance fluctuations of wind
data. The characteristic parameter c of this Gamma distribution gives the entropic index q of the
Tsallis q-exponential distribution, which is then able to reproduce very well the velocity returns and
differences pdfs.
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Abstract

We investigate the interaction of a small-amplitude internal gravity wave packet with a unidirectional
shear flow in a stably-stratified rotating fluid. Ray equations and three-dimensional direct numerical
simulations of the Boussinesq equations are solved for this purpose. We focus on the situation where
the intrinsic frequency Ω of the wave packet increases as the packet propagates into the shear flow,
due to the horizontal dependence of this flow. We show that the wave packet is trapped in the
neighbourhood of the Ω = N surface (where N is the local Brunt-Väisälä frequency) and always
dissipates there, possibly through breaking. The wave packet is not able to induce any significant
effect upon the shear flow except when the latter is inertially unstable.

Geophysical context

Internal gravity wave motions are ubiquitous in stably-stratified fluids, being created by the buoyancy
force. In geophysical flows, internal gravity waves generally interact with a large scale shear flow: for
instance, the shear flow is the wind in the atmosphere [6] or a current in the ocean [2]. The former case
is very common: the blowing of a wind over a mountain range generates lee waves which next interact
with the wind. Recent research in the Sun has revealed that the differential rotation that exists in
this star creates a very strong shear at the basis of the convective zone, which must interact with the
waves that are produced there [23]. How does this shear flow interact with the waves is unknown. An
analogous interaction occurs when the waves encounter a temperature (or a density) front. Actually,
when Coriolis effects come into play, such a front creates a vertical shear via the thermal wind balance
so that the wave interact with both a density front and a shear. And when there is no large scale
shear or density front, as in the deep ocean, the wave field interacts with the shear flow it induces.

Ray theory

In the following, we focus upon the interaction of internal gravity waves with a large scale horizontal
shear flow ~U , and, when rotation is present, with a density front as well. The medium is assumed to
be infinite.

We consider a monochromatic wave of intrinsic frequency Ω and wave vector ~k (or a wave packet
with main intrinsic frequency and wave vector Ω and ~k). The intrinsic frequency is the frequency
measured in a frame of reference attached to the shear flow. In a stably-stratified medium with
constant Brunt-Väisälä frequency N rotating with angular velocity f/2, Ω and ~k are linked by the
dispersion relation

cos2θ =
Ω2 − f2

N2 − f2
, (1)

where θ is the angle that ~k makes with the horizontal.
The simplest, and main, effect of the interaction on the internal wave is the change of the intrinsic

wave frequency through the Doppler effect:

ω0 = Ω + ~k.~U, (2)
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ω0 being the frequency of the source that emits the waves. This source is supposed to be fixed in the
frame of reference relative to which ~U is measured. Ω changes as the wave propagates in the changing
velocity field, and may approach its lower or upper bound. In this case, further propagation is no
longer possible and, in the linear limit, the wave may either be trapped or reflected. Two academic
situations are usually considered. Within an atmospheric context, the mean flow is a horizontal wind
with a vertical shear U(z)~ix; within an oceanic context, the mean flow is a horizontal current with a
horizontal shear U(y)~ix.

The change in Ω as the wave packet propagates into the current is most easily predicted within the
WKB approximation (see [16], for a very clear presentation of this approximation). This approximation
relies upon the assumption that the properties of the fluid medium that affect the wave propagation
(~U and N , in the present case) vary slowly in time and space relative to the wave intrinsic frequency
and wavelength respectively. Hence, the medium may be assumed to be uniform and steady over a
length scale of order |~k|−1 and over a time of order Ω−1. Under this assumption, the evolution of
the wave vector is known along a ray (defined as d~x/dt = ~cg + ~U) and is driven by the gradients of
the ambient velocity and buoyancy fields. In this paper, we shall consider that the fluid medium is
steady (i.e. ∂U/∂t = 0, ∂N/∂t = 0). In this case, the absolute frequency is constant along a ray:
dω0/dt = 0, where d/dt = ∂/∂t + (~cg + ~U).∇ denotes the material derivative following a ray. The
equations governing the refraction of the wave vector along a ray, known as the ray equations, are:

dki
dt

= − ∂Ω

∂N

∂N

∂xi
− kj

∂Uj
∂xi

, (3)

that is, in the present case, with U = (U(y, z), 0, 0) and N(y, z)

dkx
dt

= 0 (4)

dky
dt

= − ∂Ω

∂N

∂N

∂y
− kx

∂U

∂y
, (5)

dkz
dt

= − ∂Ω

∂N

∂N

∂z
− kx

∂U

∂z
. (6)

As for the relative frequency, it changes along a ray according to the equation

dΩ

dt
= −cgikx

dU

dxi
, (7)

where cgi is the component of the group velocity along the direction xi.

Changes of the wave amplitude are inferred from the conservation of wave action. For any slowly
varying background, the action A = E/Ω, where E is the wave-induced energy, satisfies the conserva-
tion equation [7]:

∂A

∂t
+ ∇.[(~cg + ~U)A] = 0. (8)

Equation (8) implies that the action contained in a small volume δV moving with the absolute group
velocity is conserved, that is

d(AδV )

dt
= 0. (9)

The form of the WKB theory we use is the approximation of geometrical optics but, for simplicity,
the terminology WKB approximation will be employed hereafter.
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Figure 1: Sketch of a wave packet approaching a critical level z = zc, within the WKB approximation.
Two rays are shown in the vertical (x, z) plane, with ~cg+U(z)~ix being the absolute group velocity. The
intrinsic frequency of the wave packet at the critical level, ω0 − U(zc)kx (using the Doppler relation
(1)) vanishes there.

Horizontal mean flow with a vertical shear U(z)~ix

This situation was first investigated without rotation effect, when a wave packet propagates upwards
in a vertical shear flow such that its intrinsic frequency decreases. If there exists an altitude at which
Ω vanishes, the wave cannot propagate beyond this altitude, known as the critical level. Hence the
critical level acts as a wave filter. This level is also defined as the altitude at which the component of
the phase velocity of the wave along the wind direction equals the wind velocity (Figure 1).

The first theoretical approach to this problem was performed by Bretherton [6], who considered
the Boussinesq equations in a non-rotating frame, linearized about a basic state defined by the wind
and a linear stratification, under the WKB approximation. Note that this approximation implies that
the Richardson number (Ri = N 2/(dU/dz)2) is much larger than 1 everywhere [16]. For a wave packet
approaching the critical level, Bretherton [6] showed that the vertical component of the group velocity
cgz decreases as η2, where η is the distance of the wave packet to the critical level, while kz increases as
η−1. From the dispersion relation (1), Ω → 0 (since kx and ky are constant). Even if these results are
correct as the critical level is approched, the WKB approximation diverges in the immediate vicinity
of that level. The theory predicts that this level is reached in an infinite time (so that there should
be no transmitted component) and that the wave-induced energy increases without bound, as η−1.

Relaxing the WKB approximation, but still considering the linearized equations of motions and
assuming that the Richardson number is everywhere greater than 0.25, Booker and Bretherton [5]
showed that, for a monochromatic wave, momentum is actually transferred from the wave to the mean
flow at the critical level, except for a weak transmitted component whose energy is the incident wave
energy reduced by the factor exp[−2π(Ric−1/4)1/2], where Ric is the value of the Richardson number
at the critical level. The transfer of momentum to the mean flow is manifested as a discontinuity in
the vertical flux of wave-induced horizontal momentum ρu′w′(z) at the critical level (where the bar
denotes an average over a horizontal wavelength); this flux is otherwise constant with altitude in the
absence of critical level [9]. No component is reflected in this linear limit.

For a high enough wave amplitude, the incoming wave-induced energy is higher than that absorbed
by the shear flow and, consequently, the energy density increases in the neighbourhood of the trapping
level. Breaking eventually occurs, thereby partly dissipating the accumulated energy (since momentum
is conserved however, momentum will be locally deposited by the breaking waves). This process is
well-known to occur in the atmosphere. However [15], there is a subtle effect which implies that, unless
viscous effects are too strong, the linear theory always fails after some time: as the wave approaches
the critical level, its intrinsic phase velocity decreases faster than the wave-induced velocity along
the wind direction does because of absorption so that their ratio, which is one measure of the wave
steepness, increases. Hence, breaking may occur as well.
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(a) (b)

Figure 2: Laboratory experiment of an internal gravity wave interacting with a vertical shear flow.
Both the shear flow and the wave field are created by a moving topography. (a) The wave amplitude
is small enough for complete absorption of the wave field by the shear flow to occur; (b) for a larger
wave amplitude, the wave breaks below the critical level (from [14]).

This situation was studied in detail through several experimental works (f.i. [13], [14]) and is
exemplified in Figure 2a for a weak amplitude wave and in Figure 2b for a large amplitude wave. A
review of the breaking processes can be found in Staquet and Sommeria [19] and in Staquet [21], [22].

The work of Booker and Bretherton [5] was extended to rotating flows by Jones [11] and by Würtele
et al. [24]. Using a linearized approach, Jones [11] showed that, in addition to the classical critical level
(characterized by Ω = 0), two additional singular levels exist, corresponding to Ω = ±f . His paper
contains another important result: in a rotating fluid, the vertical flux of wave-induced horizontal
momentum is no longer conserved (away from the critical level). It should be replaced by the vertical
flux of wave-induced angular momentum for this conservation property to hold again (away from
the singular levels). Würtele et al. [24] further showed that the wave becomes evanescent in the
neighbourhood of the critical level (since the wave can only propagate for Ω2 > f2) so that the only
effective singular levels are those where Ω2 = f2. Würtele et al. [24] also investigated numerically the
situation of a time developing wave, being emitted from a source at t = 0. In this case, the singularity
develops in time as well : at early times, the propagating wave crosses the Ω = f (for instance) level
and decays in the evanescent region. As time elapses and the wave reaches a steady state (i.e. its
amplitude becomes constant), the singularity develops but non linear effects develop as well. As a
result, the wave breaks in the neighbourhood of the singular level and a reflected component is emitted;
the wave would be absorbed at the singular level in a linear regime. These results are thus analogous
to those found by Booker and Bretherton [5] at a critical level in a non rotating fluid. Würtele et al.
[24] also showed that the behaviour is notably different for a continuous spectrum of frequencies (such
as a lee wave generated by a flow over an arbitrary topography), in which case no singular behaviour
is encountered.

In the discussion above, the monochromatic wave propagates in the shear flow so that its intrin-
sic frequency decreases. When the wave propagates in a shear flow so that its intrinsic frequency
increases, it reflects onto the horizontal plane where Ω = N , in the linear limit. Jones [12] showed
that overreflection occurs when the local Richardson number is smaller than 0.25 somewhere, that
is, the shear flow is potentially unstable; the wave extracts energy from that flow when reflecting.
When nonlinear effects come into play (due to the high initial amplitude of the wave for instance) and
the background shear flow is stable, Sutherland [18] showed that a horizontally periodic wave packet
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Figure 3: Sketch of a wave packet approaching a trapping plane, within the WKB approximation, and
propagating against the current (~k.~U = kx.U < 0). Two rays are shown in the horizontal (x, y) plane,
with ~cgh + U(y)~ix being the component of the absolute group velocity in that plane. The intrinsic
frequency of the wave packet, ω0 − U(yt)kx, from the Doppler relation, is equal to the Brünt-Väisälä
frequency at the trapping plane (adapted from [20]).

permanently deposits momentum to the mean flow at altitudes close to and below the reflecting level;
when the wave packet is horizontally compact, a substantial part of the finite amplitude wave packet
energy may be transmitted.

Horizontal mean flow with a horizontal shear U(y)~ix

Theoretical results.

The behaviour of an internal gravity wave packet in a horizontally sheared current U(y)~ix was studied
thirty years ago within an oceanographic context, using the linear theory in the WKB approximation
[10], [16], [4], [1], [3]. Coriolis effects are ignored in all studies except in Olbers’ work. When the wave
packet enters into the current and propagates against it so that its intrinsic frequency increases (Eq.
(7) with xi = y), it cannot propagate beyond the position yt at which Ω = N . The mean flow being
barotropic, this position actually is a vertical plane if N is constant; this plane is hereafter referred to
as the trapping plane (Figure 3).

Since the properties of the medium in which the wave propagates vary only with y, kx and kz
remain unchanged (as well as ω0 as already noted, because the medium is steady). From the linear
dispersion relation (1), one easily infers that ky goes to infinity as Ω → N . More precisely, it can be
shown from WKB theory that ky ∼ η−1/2 as η → 0, where η refers again to the distance of the wave
packet to the trapping plane; moreover, cgy ∼ η3/2 and cgx, cgz → 0 as well [20]. The latter property
implies that the wave packet slows down in the neighbourhood of the trapping plane so that its energy
density locally increases (in other words, the wave-induced energy accumulates in the neighbourhood
of this plane). However, the WKB theory also predicts that this energy tends to infinity (E ∼ η−3/2)
and that the trapping plane is reached in an infinite time. As in the critical level situation, the two
latter results are unphysical and stem from the failure of the WKB theory in the immediate vicinity
of the trapping plane. Olbers [16] actually noted that, if E ∼ η−µ, the asymptotic behaviour of the
wave is regular or singular depending upon whether µ < 1 or µ ≥ 1. In the former case, the wave
reaches the plane in a finite time, and this plane is for instance a reflexion plane. In the latter case, the
wave reaches the plane in an infinite time; very strong gradients of the wave-induced Reynolds stress
form in the close neighbourhood of the plane, which yield momentum exchange with the mean flow.
Information upon the actual wave behaviour when µ ≥ 1 can be obtained by solving the linearized
equations of motions. Ivanov and Morozov [10] thus found that the total wave-induced energy may
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indeed increase, as opposed to the critical level situation studied by Booker and Bretherton [5]. In
this situation, momentum is transferred from the shear flow to the wave, so that the potential for
wave breaking exists. The three-dimensional numerical study of Staquet and Huerre [20], whereof
a summary is provided below, shows that an inertia-gravity wave packet may indeed break in the
neighbourhood of a trapping plane.

When the wave propagates along the current such that its intrinsic frequency decreases, ky de-
creases as well. If ky decays down to zero, Ω reaches a minimum value Ωmin, obtained by setting ky to
0 in the dispersion relation. The behaviour of the wave as Ω → Ωmin may be guessed by using WKB
theory. Note that the theory becomes less and less valid as the plane gets closer since the wavelength
along the y-direction increases. Assuming that the theory remains valid, ky ∼ η1/2, cgy ∼ η1/2 and
E ∼ η−1/2 as η → 0. Here, according to Olbers [16], µ = 1/2 so that the Ω = Ωmin plane is a reflexion
plane for the wave.

Öllers et al. [17] solved numerically the equation for the amplitude of a hydrostatic internal gravity
wave emitted away from the shear flow and propagating toward it. The wave behaviour (transmitted,
reflected, over-reflected) depends upon the stability of the shear flow. When the latter flow is inertially
stable, the wave is always reflected, with a possible transmitted component. When the shear flow is
inertially unstable by contrast, over-reflection is possible, with a reflection coefficient up to 3.25 (for
the case considered in the paper). One may wonder whether a high enough reflexion coefficient would
not lead to the instability of the reflected wave. Note the analogy between this behaviour and that
found by Jones [12] for an unstable vertical shear flow.

Numerical results.

The behaviour of a wave packet in a rotating, constant-N medium propagating into a barotropic
shear flow U(y)~ix has been investigated numerically by Staquet and Huerre [20]. The shear flow
consists of a horizontal shear layer (with a tanh profile) while the wave packet is a plane wave whose
amplitude is modulated by a gaussian function along the y-direction. The parameters of the wave
(its wave vector), of the shear flow (its maximum amplitude) and of the medium (the Brunt-Väisälä
and Coriolis frequencies) are chosen so that (i) the wave intrinsic frequency increases as the wave
propagates in the shear flow and (ii) a trapping plane exists.

The wave behaviour is illustrated in Figure 4 for a cyclonic shear flow (that is, the vorticity of
the shear flow is of the same sign as the Coriolis frequency). Constant contours of the density field
are displayed at successive times in a vertical (y, z) plane. At t = 0 (Figure 4a), the wave packet
is hardly visible due to its small steepness (s = 0.26). Because the horizontal shear flow does not
displace the isopycnals, it is not visible either. Since N is constant, the trapping plane is a vertical
plane and its intersection with the (y, z) plane is marked with a vertical line in the Figure. The wave
packet exhibits two major changes as it propagates toward the shear flow: the isopycnals steepen and
the wave amplitude increases. The former effect is accounted for by noting that, as ky increases, the
incompressibility condition reduces to kyuy + kzuz ' 0. Hence, the vector (ky, kz) is perpendicular to
the phase lines in the (y, z) plane. Since ky → +∞ while kz remains constant, the phase lines steepen.
The second effect results from the trapping of the wave. The local increase of the wave amplitude
makes the wave packet break (Figure 4e) and small-scale motions are produced. The latter motions
are quickly dissipated however because the primary wave packet is not forced. As well, the shear flow
is hardly modified by the momentum deposit that occurs during wave breaking.

The stage of the flow that follows breaking dramatically changes when the shear flow is anticyclonic
(Figure 5). Indeed, in this situation, the shear flow is subjected to an inertial instability, through which
small-scale motions are most amplified. The point is that the small-scale motions resulting from wave
breaking act as a perturbation to the shear flow, which triggers the instability. The medium is therefore
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Figure 4: Interaction of a wave packet (confined along the y-direction only) with a barotropic cyclonic
shear layer. Constant contours of the density field are displayed at successive times, expressed in
Brunt-Väisälä periods; (a) t = 0, (b) t = 1.9, (c) t = 3.8, (d) t = 4.6, (e) t = 5.6, (f) t = 11.4. The
vertical line in frame (a) marks the trapping plane.

considerably modified by the breaking of the wave in this situation, because it initiates the inertial
instability of the (very energetic) shear flow. The latter instability results in momentum and mass
transport: the shear of the background flow is weakened and a passive scalar is transported across the
trapping plane, namely across the shear flow [20].

Horizontal mean flow with both a horizontal and a vertical shear

What does happen if a wave packet in a stably-stratified rotating medium interacts with a (thermal
wind) balanced shear flow ~U(y, z) involving both a horizontal and a vertical shear? As discussed above,
the situation is not simple. For instance, when the intrinsic frequency Ω increases and approaches N ,
the wave packet should be reflected by the vertical shear ∂U/∂z but trapped by the horizontal shear
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Figure 5: Interaction of a wave packet (confined along the y-direction only) with a barotropic anticy-
clonic shear layer. Constant contours of the density field are displayed at successive times, expressed
in Brunt-Väisälä periods (a) t = 0, (b) t = 1.9, (c) t = 3.8, (d) t = 4.6, (e) t = 4.8, (f) t = 9.4. The
vertical line in frame (a) marks the trapping plane (from [20]).

∂U/∂y. Also, since the shear flow satisfies the thermal wind balance, a buoyancy field B(y, z) exists

as well such that f
∂U

∂z
= −∂B

∂y
.

We have investigated this situation in a simple context, when a wave packet confined both in the
y and z directions interacts with a horizontal shear layer with a sinusoidal vertical dependency [8].
We chose the parameters such that Ω first increases because of the horizontal shear of the background
flow. We explored the parameter range by solving the ray equations and performed three-dimensional
direct numerical simulations (DNS) to investigate the influence of nonlinear effects on the behaviour
of the wave packet.

A general behaviour is observed in the WKB theory, which is illustrated in Figure 6. The ray
trajectories are displayed in frame (a) and the intrinsic frequency Ω is plotted versus time in frame
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(b). In frame (a), the wave packet at initial time is represented by a set of twenty rays aligned along
two perpendicular segments. The Ω = N surface, plotted with a thick dashed line, displays two
important locations when the interaction with the shear flow is considered: (i) where the local radius
of curvature is minimum, corresponding to a maximum value of ∂U/∂y (location 1) and where the
local radius of curvature is maximum, corresponding to a minimum value of ∂U/∂y (location 2). In
the former case, the Ω = N surface is nearly vertical and is a trapping surface; in the latter case, the
surface is nearly horizontal and is reflecting. All rays propagate toward the Ω = N surface and reach
it, either in the neighbourhood of location 1 or of location 2. In the former case (location 1), the rays
are trapped at the surface and propagate along it downward, with a nearly vertical group velocity,
toward location 2. Note that the group velocity has strongly decreased when location 1 is reached.
All rays sooner or later reach location 2 and reflect there. The rays then propagate in the interior of
the shear flow within a wave guide made by the Ω = N surface. Frame (a) also displays grey points,
at which the steepness of the wave packet exceeds 1. This suggests that breaking may occur there,
resulting in irreversible mass and momentum transport. Note however that WKB theory is no longer
valid at the trapping plane (and at a reflecting surface) and that, most importantly as we shall see,
molecular effects have been ignored in this analysis.
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Figure 6: WKB predictions. (a) Trajectories of rays at t = 127.3 BVP (Brunt-Väisälä period) in a vertical
(y, z) plane. The rays start from the initial wave packet location. The thick dashed line marks the intersection
of the Ω = N trapping surface with the (y, z) plane and dotted lines represent contours of the shear flow velocity
U(y, z). Light grey circles are plotted at each time the steepness along a given ray exceeds the value of 1. (b)
Temporal evolution of the intrinsic frequency Ω of the wave packet normalized by the Coriolis frequency f .
Dashed line: WKB prediction for a central ray; solid line: DNS result at the packet centre; dotted line: N/f .
Results are compared over the duration of the DNS (t=240, that is 38.2 BVP) (from [8]).

DNS results are displayed in Figure 7 through constant contours of the fluctuating buoyancy field
b′ about the backgound field B. It should be stressed that the steepness of the wave packet is twice
smaller than in the barotropic case and that the varying horizontal shear (∂U/∂y) is smaller by a
factor 16. Hence, the wave-shear interaction, which scales like s2∂U/∂y, is smaller by a factor 50. The
interaction between the shear flow and the wave packet is therefore weak and one may consider that
the buoyancy fluctuations displayed in Figure 7 solely belong to the wave field. The DNS behaviour is
close to the WKB prediction up to the time the wave packet reaches the trapping surface at location 2
(at t ' 176 ' 28 BVP). This is attested in frame b) where the intrinsic frequency predicted by WKB
theory and the numerical simulation are compared. Molecular effects deeply change the subsequent
wave packet behaviour in the DNS, for two reasons. First, ky increases as the packet approches the
trapping surface, implying that small scales along the y-direction are produced. These small scales
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Figure 7: DNS results. Constant contours of the fluctuating buoyancy field b′ are plotted in a vertical (y, z)
plane at successive times (in unit of Brunt-Väisälä period): (a) t=0; (b) t=8.9, (c) t=13.4, (d) t=28. In frame
(a), dotted lines represent contours of the shear flow velocity U(y, z). The surface Ω = N is displayed with a
solid line on all frames (from [8]).

are very sensitive to molecular effects. The second reason, connected to the first, is that the packet
slows down as it approaches the trapping plane, which makes it also prone to molecular effects. As
a consequence, the nearly steady, small-scale packet is dissipated locally and does not penetrate into
the wave guide.

Conclusion

A single internal gravity wave packet interacting with an inertially stable shear flow is unlikely to
modify its environment: in the cases we consider, the wave packet is trapped by the shear flow and
dissipates locally, possibly through breaking. In geophysical flows however, waves are most often
generated by a permanent source (like the interaction of the tide with the topography in the ocean)
or, at least, are emitted during a long time with respect to their intrinsic period. Since the wave
packet slows down as it approches the trapping surface, a continuous emission of such packets would
result in their superposition in the neighbourhood of the trapping surface, and possibly in stronger
mean flow changes. We also showed that an entirely different behavior is observed when the shear
flow is inertially unstable (a situation which may occur at the equator), because the breaking wave
triggers the instability.

Despite the academic character of our study, a geophysical implication of our work can be proposed.
Thus, because the waves are unable to cross the shear flow and are dissipated in its neighbourhood, we
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expect weaker internal gravity wave activity to be found inside large-scale geophysical vortices than
outside.
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Abstract

A Flamelet Model based on the Level Set approach for turbulent premixed combustion is presented.
The original model [11, 12] is enhanced in order to consistently model the evolution of the premixed
flame from laminar into a fully developed turbulent flame. This is accomplished by establishing a linear
relationship between the thickness of the turbulent flame brush and the turbulent burning velocity.
Starting from there a model for the initial flame propagation of a spherical spark kernel immediately
after ignition and for the flame propagation in 3D space is derived. In contrast to other models, the
same physical modeling assumptions are employed for the phase initially after spark ignition and for
the later phases of flame propagation. The model is applied to a test case in an homogeneous charge
Spark Ignition (SI) engine.

Introduction

With respect to laminar premixed flames, Williams [19] postulated a kinematic equation for the
advection of the laminar flame based on the scalar G. The laminar approach then was subsequently
extended by Peters [10] to turbulent premixed flames. Due to the kinematic Level Set approach
employed, the turbulent burning velocity sT is model input into the kinematic equation and not a
reaction rate defined per unit volume. This approach therefore overcomes problems in case that the
(laminar or turbulent) flame thickness becomes small in comparison to the numerical grid used in the
problem simulation and in that limit, the reaction rate would become a delta peak, which is difficult to
be integrated numerically. Furthermore the interaction of the different physical phenomena of diffusion
and reaction that establish the structure of the premixed flame are physically correctly represented
by employing the burning velocity which is an eigenvalue of the premixed problem posed [9].

The first turbulent combustion model was then refined [11] by sub-dividing the flamelet combustion
regime into the corrugated flamelets regime, in which large scale turbulence is active and the thin
reaction zones regime, in which small scale turbulence dominates. In the latter regime, the smallest
turbulent scales act on the laminar flamelet. This is the cause of the so-called bending effect, by which
a decrease of the turbulent burning velocity is predicted for smaller Damkhler numbers.

The turbulent G-Equation concept was already successfully used for Spark Ignition (SI) Engine
applications, cf. Dekena et al. [5] or Tan et al. [16, 15]. In these works, two different models, one for
spark ignition and the phase immediately thereafter, and the other for the propagation of the fully
turbulent developed flame at later stages of the combustion process were used. The spark ignition
models in both cases predict lower turbulent burning velocities for the developing turbulent flame
kernel than the turbulent burning velocity expression in [11] which assumes a fully developed flame.
After a user given time period, the models are switched to the latter model equation.

In this work, a unified approach for the flame propagation during the phase immediately after
ignition and one the turbulent flame is developed is presented. The key idea is to consistently relate
the thickness of the turbulent flame brush to the turbulent burning velocity. Immediately after ignition
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the thickness of the turbulent flame brush is zero – except for the laminar flame thickness – and laminar
flame propagation is predicted.

The unified approach then is cast into two different numerical representations, one for the numerical
integration in 3D space on the numerical grid of the problem. The other representation assumes the
spark kernel to be spherical which allows for a grid-independent description of the developing spark,
therefore overcoming to a certain extent the necessity to refine the computational grid at the position
of ignition. Also, due to the geometry of the spark kernel assumed, effects of kernel curvature can
easily be assessed.

Unsteady Premixed Combustion Model

The turbulent premixed combustion flamelet model by Peters [11, 12] is based on three quantities

which are G̃, the mean flame front position, the variance of the flame brush G̃′′2 = `2f,t which is related
to the turbulent flame thickness `f,t, and the turbulent flame surface area ratio σ̃t.

At the mean flame front position G̃ = G0, the kinematic equation

〈ρ〉 ∂G̃
∂t

+ 〈ρ〉∇G̃ · ~̃u = 〈ρ〉D′
tκ̃|∇G̃| + (̃ρsT )|∇G̃| (1)

is applied while outside of this surface the distance constraint |∇G̃| = 1 is imposed. Since eqn. (1)
is pertinent to the class of Level Sets, appropriate numerical solving techniques need to be employed,
cf. [2, 13, 8]. The two terms on the r.h.s. are due to the modeling of the turbulent flame propagation.

The last term describes the averaged turbulent mass burning rate (̃ρsT ) and the first influences due
to curvature κ̃ ≡ ∇ · (∇G̃/|∇G̃|) of the mean front.

The equation for the variance is modeled in analogy to the variance equation for a passive scalar
[12]

〈ρ〉 ∂G̃
′′2

∂t
+ 〈ρ〉∇G̃′′2 · ~̃u = ∇ ·

(
〈ρ〉Dt∇G̃′′2

)
+ 2 〈ρ〉Dt(∇G̃)2 − cs 〈ρ〉 G̃′′2

ε

k
(2)

with the last two terms on the r.h.s. being the turbulent production and dissipation, respectively.
The relationship between the turbulent burning velocity sT and the flame propagation of the

laminar flamelet sL is established by σ̃t as:

sT = (1 + σ̃t)sL . (3)

Here, σ̃t is determined by an algebraic equation to be

σ̃t =
`f,t
`f

{
− b23

4b1

√
3cµcs
Sct

+

√
b43

16b21

3cµcs
Sct

+
csb

2
3

2

`f
sL

ε

k

}
, (4)

which establishes a linear relationship between the ratio of the turbulent to laminar flame thickness
`f,t/`f and the turbulent flame surface area ratio. The term in braces is only dependent on properties
of the laminar flamelet and the turbulent time scale of the flow. The expression (4) has been chosen
such that for `f,t being in equilibrium with the integral length scale of the surrounding flow, turbulent
burning velocity expressions as presented in [12] again are recovered. The laminar flame thickness
is defined with respect to the ratio of the thermal conductivity and the heat capacity of the flame,
evaluated at the position at the inner layer of the flame:

`f =
1

ρusL

λ

cp

∣∣∣∣
0

, (5)
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Symbol Value definition/origin

a4 0.37 Bray [3]
b1 2.0 experimental data [1]
b3 1.0 experimental data [4]
c0 0.44 = Cε1 − 1, [11]
c1 4.63 DNS, [18]

c2 1.01 =

√
3cµcs
4Sct

c1b
2
3

b1
c3 4.63 = c1b

2
3

cs 2.0 [10, 11]
Sct 0.7

Table 4: Constants for the level set based turbulent premixed combustion model.

The equation for the variance is modeled in analogy

(2)

with the last two terms on the r.h.s. being the turbulent

a)

rK
⇐
huṁK

Q̇ht

⇑
Q̇spk

⇓

mK(t)
TK(t)

Ĝ = G0

b)

rK

(x0, y0, z0)

Figure 1: a) Energy balance between the spark plug electrodes

Figure 1: a) Energy balance between the spark plug electrodes and the spark kernel. b) Connection
between spark kernel radius rK and filtered Ĝ-field.

where ρu indicates the unburnt gas mixture density and ‘0’ refers to the inner layer position.

The turbulent diffusivity in the curvature term of eqn. (1) in this work is expressed in analogy to
a mixing length approach as

D′
t =

√
cµcs
2Sct

`f,tk
1/2 , (6)

therefore the magnitude of the modification of the turbulent burning velocity due to curvature of the
mean flame front is dependent on the thickness of the turbulent flame. The constants in eqn. (6) again
are chosen such that for a state of equilibrium with the turbulent flow, the standard relationship for
the turbulent diffusivity of a scalar, Dt = νt/Sct, is obtained.

Spark ignition modeling

For the spark ignition model, the same physical modeling assumptions are used as for turbulent
premixed flame propagation in 3D space with respect to the turbulent burning velocity and the
expression for the variance (2). Additionally, kernel expansion effects due to electrical spark energy
and the effect of kernel curvature will be accounted for. The thermodynamical analysis is carried out
similar to Tan [17]. As a first approximation of the model it is assumed that the initial spark kernel is
spherical with a given initial position and radius. During the growth of this kernel to a fully turbulent
flame the kernel will be assumed to be subjected to convection of the background flow.

The energy balance depicted in figure 1a reads

Q̇spk + Q̇chem − Q̇ht =
dH

dt
− huṁK − V

dp

dt
, (7)
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where H represents the spark thermal and plasma enthalpy. Q̇spk denotes the gross electrical energy
transfer from the electrodes and Q̇ht the heat loss to the electrodes. Q̇chem accounts for the heat
release caused by combustion. hu denotes the specific enthalpy of the unburnt gas mixture which is
added to the spark by (laminar or turbulent) flame propagation through the mass stream ṁK .

The effect of spark energy deposited into the kernel and heat losses to the electrodes are related
to each other thus forming an effectivity coefficient ηeff , in the following assumed to be approximately
0.3:

Q̇ht ≈ (1 − ηeff)Q̇spk . (8)

The equation of continuity gives the following ordinary differential equation for the increase of
spark kernel mass:

dmK

dt
= ṁK = 4πr2

K ρusT,κ . (9)

Here rK is the radius of the kernel and sT,κ an expression for the flame propagation which takes into
account the turbulent burning velocity and the effect of laminar and turbulent kernel curvature as
done in equation (1). The radius can be readily obtained by

rK = 3

√
3mK

4πρb
; (10)

however, the density of the gas in the spark ρb needs to be known which is – depending on ignition
conditions – lower than the density of adiabatically burned gas due to plasma effects of the electrical
energy which cause an increased kernel temperature. In order to approximate this temperature TK
eqn. (7) needs to be further modified.

The derivative of the kernel enthalpy gives

dH

dt
= ṁKhK + ḣKmK (11)

and the heat release due to premixed combustion can be expressed as

Q̇spk = ṁK(had − hu) . (12)

The burning velocity sT,κ – modified by curvature effects – can be deduced from (1), in which the
curvature of the spherical kernel amounts to κ = 2/rK .

sT,κ = sT − 2

rK
D′
t (13)

An equation describing the thickness of the flame brush can be deduced from (2) by assuming uniform
turbulent profiles:

dG̃′′2
spk

dt
= 2D̂t, spk − cs

ε

k̂spk

G̃′′2
spk (14)

For engine combustion G̃′′2 = G̃′′2
spk = 0 as initial condition. The spark only sees only those

turbulent eddies which are smaller equal diameter of the eddy itself. When the flame kernel reaches
a specified size rK,end, the model is switched to the 3D equations.
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Figure 2: Unstructured computational grid of the closed engine geometry highlighting the modeled
spark plug. This mesh comprises 302,000 grid cells.

Bore 86mm
Stroke 86mm
Displacement 0.5L
Compression Ratio 10.3
Engine speed 2000 rpm
MAP 95 kPa
Intake mixture: propane/air w. φ = 0.6
Spark Timing 40BTDC
Spark Energy 60 J/s
Initial Spark Radius rK,0 = 1mm

Table 5: Operating parameters of the engine

Results

Basis of the model computation is a optical test engine operated in homogeneous charge mode fueled
with a lean propane/air mixture [6]. The operating parameters are listed in table 5. The numerical
computations were carried out by the code AC-FluX by Advanced Combustion GmbH, a Finite Volume
based CFD simulation tool that operates on unstructured meshes and is able to perform adaptive local
grid refinement during calculation.

The simulation was carried out employing two meshes, one with the intake ports modeled. After
intake valve closure, the calculation was interrupted at 90 degrees Crank Angle before Top Dead
Center (◦CA BTDC) and the solution at this time step was mapped onto a new grid featuring a closed
geometry which is shown in figure 2.

For the laminar flamelet calculation, laminar burning velocity correlations according to Mller et
al. [7] were employed with a correction of the burnt gas temperature in order to account for the effects
of rest gas in the previous cycle, which was assumed here otherwise as inert. For the flame diffusivity
λ/cp, the correlation for hydrocarbons due to [14] was used as basis.

In figure 3, a comparison of measured and calculated cylinder pressure is depicted. In figure 4 both
the evolution of the mean flame front surface and the global mass burning rate are plotted. It can
be seen, even although both quantities cannot be directly compared to each other quantitatively, the
increase in mass burning is preceded by the increase in surface of the mean flame front. This can be
explained by the fact that initially, flame propagation is close to laminar and it takes approximately
5◦CA after ignition to develop turbulent flame propagation. The area of the mean flame front surface
G̃ = G0 increases until about -3◦CA while the heat release increases until approx. 2◦CA after Top
Dead Center (ATDC). This can be explained by most parts of the flame coming into contact with the
wall region. After that, another increase of mean flame front surface can be observed, which does not
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Figure 3: Comparison of cylinder pressures Figure 4: Plot of the mean flame front surface
(measured on the left ordinate) and the global
mass burning rate (measured on the right ordi-
nate) during the combustion phase.

contribute to a repeated increase in flame surface because the flame propagates in the squish region.
Shortly after Top Dead Center (TDC), a sharp peak in mass burning rate is observed. 3D image
analysis of the simulation shows that at TDC (see figure 8b) in the in-cylinder region opposing the
spark plug a substantial area of the mean flame front surface is visible that is rapidly reduced by flame
propagation when the flame burns out in this region and continues to propagate into the squish region
further. This observation is also supported by the slope of the area(G̃ = G0) plot in figure 4, which
shows at the same time a steep decrease.

These observations are also supported by the results displayed in fig. 5. The quantity ṁ ′′ is equal to
the mass burning rate (ρsT ), averaged on the total mean flame surface area. Also the turbulent flame
surface area ratio σ̃t is averaged over the total mean flame surface area. It can be seen that the profile
of σ̃t predicts the evolution of the laminar flame kernel into a moderately turbulent flame to take place
within 5◦CA. As a comparison, the turbulent time scale k/ε at the spark plug immediately prior to
ignition spans for this engine speed 13◦CA. Immediately after Top Dead Center, both maximum values
of averaged σ̃t and mass burning rates are reached which coincide with the location of maximum heat
release.

The main mechanism that drives the development of the turbulent flame can be explained by
the comparison of the turbulent flame brush thickness `f,t with the turbulent length scale. In order
to facilitate the comparison, a turbulent length scale is defined for this purpose assuming produc-
tion=dissipation and neglecting the temporal and spatial derivatives in eqn. (2). The result is the
“algebraic flame brush thickness”

`f,t,alg ≡
√

2cµ
csSct

k3/2

ε
. (15)

Both the turbulent length scale and the flame brush thickness are again averaged over the mean flame
front surface area and therefore describe the turbulent scale that the flame sees. Both quantities are
increasing in time, while the turbulent flame brush thickness due to the initial condition starts at
zero and remains smaller than the turbulent length until immediately after TDC. This is explained
by the spatial distribution of the turbulent scales, which are small in vicinity to the wall and also in
the region of the spark plug and increase towards the inner region of the combustion chamber. The
flame therefore is ignited in regions where small turbulent eddies prevail and then later on expands
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burning rate ṁ′′ (right ordinate).

Figure 6: Comparison of turbulent flame brush
thickness `f,t and turbulent length scale `f,t,alg
averaged on the mean flame front surface.

into regions with larger turbulent eddies. The turbulent flame brush thickness requires time to follow
that increase in turbulent length.

The combustion regime in which the engine operates in that mode is depicted in figure 7. The
ratios v′/sL and `f,t,alg/`f are logarithmically averaged over the mean flame front surface. The average
of these quantities indicate that the combustion predominantly takes place in the corrugated flamelets
regime [11]. Until TDC the dimensionless turbulence intensity v ′/sL remains approximately constant.
After this point, this quantity decreases again since the flame burns out close to the wall and propagates
in the squish region.
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Abstract

The statistical theory of ideal magnetohydrodynamic (MHD) turbulence is extended to cases with and
without rotation, and with and without a mean magnetic field. One notable result is the discovery
of a new ideal invariant, the ‘parallel helicity,’ which arises when rotation and mean magnetic field
vectors are aligned. Numerical results from several long-time simulations of five general cases on a
323 grid are presented. The basic equations and statistical theory are symmetric under the parity or
charge reversal transformations. However, the presence of invariant cross, magnetic or parallel helicity
dynamically breaks this symmetry, because these helicities are pseudoscalars under parity or charge
reversal (or both). The basic theoretical result is that ideal MHD turbulence is, in general, non-ergodic
due to the decomposability of the constant energy surface in phase space. This non-ergodicity can be
manifested in the appearance of coherent structure as long as magnetic or parallel helicity is invariant.
The fact that MHD turbulence inherently contains coherent structure in certain general cases may
have important implications for dynamo theory.

Introduction

In this paper we study ideal (i.e., non-dissipative), homogeneous, three-dimensional (3-D), incom-
pressible, magnetohydrodynamic (MHD) turbulence in a rotating frame of reference with and without
a mean magnetic field. Ideal MHD turbulence without rotation and without a mean magnetic field has
energy, cross helicity and magnetic helicity as invariant integrals, but rotation removes cross helicity
and a mean magnetic field removes magnetic helicity from the set of invariant integrals. However,
there is a new invariant integral which arises when the angular velocity of rotation and the mean
magnetic field are both non-zero and collinear. This new invariant will be called the parallel helicity
and it is a linear combination of the cross and magnetic helicities.

Absolute equilibrium ensemble theory for these various cases of ideal MHD turbulence (with and
without rotation, and with and without a mean magnetic field) is presented here. The theory is gener-
ally non-ergodic, due to the presence of invariant helicities, and this non-ergodicity can be manifested
in the appearance of coherent structure, although this is not necessary. Here, the five general cases of
ideal, magnetized, rotating MHD turbulence are examined, both analytically and by numerical simu-
lation. Although real (i.e., dissipative) turbulence is not considered here, recent numerical simulations
have demonstrated that real 2-D MHD turbulence appears to have behavior similar to that seen in
the ideal limit [Shebalin 2005]

The results presented here may have relevance to a number of physical systems. Rotating, magne-
tized MHD turbulence seems to arise within and around the earth, the sun, distant stars, and other
astrophysical plasmas, as well as in magnetically confined laboratory plasmas. In the present work, we
assume that the source of the mean magnetic field is fixed with respect to rotation, e.g., a global solar
magnetic field that permeates relatively small, local regions within the solar convection zone. While
large-scale processes in the sun have been investigated elsewhere [Brun 2004, Fan 2004], the physical
arenas we wish to study are small regions, within an extensive magneto-fluid, where turbulence can
be considered homogeneous and incompressible, and where an externally imposed, constant magnetic
field can be considered to be co-rotating with the small volume of interest.
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To reiterate, the homogeneous MHD turbulence considered in this paper is ideal. Dissipation is,
of course, critical in realistic rotating, magnetized MHD turbulence, and various aspects of such flows
have been studied by many authors (see, for example, [Canuto 1986]). However, an investigation of
dissipative 3-D MHD turbulence with particular regard to symmetry and ergodicity is beyond the
scope of this work, and will, for the present, be deferred. Nevertheless, the results presented in this
paper may still be relevant to real turbulence, since the most important effects to be demonstrated
manifest themselves most strongly at the smallest dynamical wave numbers of the flow, i.e., the largest
eddies, where dissipation has the weakest effect.

Basic Equations

The non-dimensional form of the MHD equations in a rotating frame of reference with constant angular
velocity Ωo and a mean (i.e., uniform and constant) magnetic induction Bo are

∂ω

∂t
= ∇∧ [u ∧ (ω + 2Ωo) + j ∧ (b + Bo)] + ν∇2ω, (1)

∂b

∂t
= ∇∧ [u ∧ (b + Bo)] + η∇2b. (2)

(See, for example, [Lesieur 1997] and [Biskamp 2003]. Also, in the above and following sets of equa-
tions, ‘∧’ denotes the vector cross product.)

In addition to equations (1) and (2), we also have

∇ · u = 0, ω = ∇∧ u,

∇ · b = 0, j = ∇∧ b. (3)

In equations (1), (2) and (3), u, ω, b and j are the turbulent velocity, vorticity, magnetic induction and
electric current density, respectively, of the magneto-fluid. (The equations of rotating Navier-Stokes
fluid turbulence arise if b = Bo = 0.)

If we set ν = 0 in (1) and η = 0 in (2), we obtain the equations of ‘ideal’ MHD turbulence. While
any real flows have ν 6= 0 and η 6= 0, a study of ideal turbulence produces some interesting theoretical
results that may help in understanding aspects of real turbulence, particularly at larger scales of
the flow where dissipation is minimal. In the next two sections we will examine some theoretical
considerations, and following these, the numerical solution of eqs. (1) and (2).

Ideal MHD Turbulence

At this point, it is useful to ‘uncurl’ eq. (1), to produce the velocity equation for MHD turbulence:

∂u

∂t
= −∇p′ + u ∧ (ω + 2Ωo) + j ∧ (b + Bo) + ν∇2u. (4)

Here, the ‘total pressure’ is p′ = p+ 1
2 u

2 − 1
2 (r ∧ Ωo)

2, where p is the thermodynamic pressure and
the last term in p′ is the centrifugal potential. The pressure can, as usual, be determined by taking
the divergence of both sides of eq. (4) and solving the resulting Poisson’s equation. In doing so, there
is an ambiguity related to the choice of origin for r, but this does not effect the dynamics of the
homogeneous, incompressible magneto-fluid.

Let us define the vector potential a by b = ∇ ∧ a and ∇ · a = 0. We can then uncurl eq. (2) to
produce an equation for a:

∂a

∂t
= −∇Φ + u ∧ (b + Bo) + η∇2a. (5)
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In eq. (5), Φ is the electric potential.
Next, define the volume average of a quantity φ(r) in a periodic box of side length 2π as

[φ] ≡ (2π)−3

∫
φ(r)d3x. (6)

Since all functions are periodic, we can use equations (1) through (6), along with integration by parts
to derive the following relations:

dE

dt
= −2 (νΩ + ηJ) , (7)

dHC

dt
= Ωo · [b ∧ u] − 1

2
(ν + η) [j · ω] , (8)

dHM

dt
= Bo · [b ∧ u] − η [j · b] . (9)

Above, we have the (volume-averaged) energy E, enstrophy Ω, mean-squared current J , cross helicity
HK and magnetic helicity HM :

E =
1

2

[
u2 + b2

]
, Ω =

1

2

[
|ω|2

]
, J =

1

2

[
|j|2

]
, (10)

HC =
1

2
[u · b] , HM =

1

2
[a · b] . (11)

At this point we note that if Ωo = σBo, i.e., if Ωo and Bo are non-zero and parallel, then eq. (8)
can be added to −σ times eq. (9) to yield

dHP

dt
= −1

2
(ν + η) [j · ω] − η [j · b] , HP ≡ HC − σHM . (12)

The quantity HP will be called the ‘parallel helicity.’
When ν = η = 0, equations (7), (8), (9) and (12) lead us immediately to the invariant integrals

for MHD turbulence for various values of Bo and Ωo. First, if Bo = Ωo = 0, then E, HC and HM

are all constant. Second, if Bo 6= 0 but Ωo = 0, then E and HC are constant, but not HM . Third, if
Bo = 0 but Ωo 6= 0, then E and HM are constant, but not HC . Fourth, if Bo 6= 0 and Ωo 6= 0, with
Bo ∧ Ωo 6= 0, then only E is constant. Fifth, if Bo 6= 0 and Ωo 6= 0, with Ωo = σBo, then E and
HP are the only constants of the motion. The parallel helicity HP is a new invariant for 3-D MHD
turbulence, one that occurs only when Bo and Ωo are non-zero and collinear.

These various cases are placed in Table 6 for easier reference. Note that Case II can be thought of
as a particular example of Case V, one for which σ = 0, while Case III can be thought of as another
example of Case V, one for which σ → ∞. Thus, we see that as a mean field is applied or an overall
rotation is imposed or both, the number of invariants drop from three to two to one.

Absolute Equilibrium Ensembles

As is well known, the existence of integral invariants allows ideal MHD turbulence to be described
by Gibbsian statistical mechanics. The theory was initiated by [Lee 1952], partially developed by
[Kraichnan 1973, 1975], [Frisch 1975] and [Fyfe 1976], and then extended by [Shebalin 1982, 1983,
1989, 1996, 2002] and [Stribling 1990]. The physical fields u and b are represented by truncated
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Case Mean Field Rotation Invariants

I Bo = 0 Ωo = 0 E, HC , HM

II Bo 6= 0 Ωo = 0 E, HC

III Bo = 0 Ωo 6= 0 E, HM

IV Bo 6= 0 Ωo ∧Bo 6= 0 E
V Bo 6= 0 Ωo = σBo E, HP

Table 6: Invariants for ideal MHD turbulence (HP ≡ HC − σHM ).

Fourier series, whose coefficients are the ‘interacting particles’ of the canonical ‘absolute equilibrium
ensemble’:

u(x) =
∑

0<|k|≤K

ũ(k) eik·x, (13)

b(x) =
∑

0<|k|≤K

b̃(k) eik·x. (14)

The wave vectors k in k-space have integer components between −N/2 and +N/2, while the corre-
sponding discrete set of position vectors x in x-space have components that are integer multiples of
2π/N , where N is the number of grid points in each dimension. The ‘isotropic truncation’ radius is
K, which is chosen to ensure that retained coefficients fit within a sphere in k-space; the exact value
of K is dictated by algorithmic requirements [Patterson 1971]. Since u and b are both real, their
coefficients satisfy a ‘reality condition’, e.g., ũ(k) = ũ∗(−k), where ‘∗’ denotes complex conjugation.
Thus, only half of the k in the sums (13) and (14) are independent. Let the total number of k in these
sums be N , so that the number of independent k is

N ′ =
1

2

∑

0<|k|≤K

1 =
1

2
N . (15)

The number N ′ will appear again in later formulas.
The probability distribution function D of the absolute equilibrium ensemble, for Case I in Table

6, has the form

D ∼ exp(−αE − βHC − γHM ). (16)

The function D is normalized by requiring that its integral over the whole phase space defined by the
independent Fourier coefficients be unity. In regard to the other cases in Table 6, eq. (16) applies as
follows: Case II, set γ = 0; Case III, set β = 0; Case IV, set β = γ = 0; and in Case V, set γ = −σβ,
so that eq. (16) becomes

D ∼ exp(−αE − βHP ). (17)

Thus, to determine various ensemble predictions for Cases II through V in Table 6, we merely take
previously determined results for Case I ([Frisch 1975], [Shebalin 1989, 1994, 2002], [Stribling 1990])
and substitute for β and γ as indicated above.

Using (16), ensemble predictions for moments of the ũ(k) and b̃(k) can now be made for the
different cases in Table 6. Denoting the ensemble prediction of a quantity Q(k) by 〈Q(k)〉, the

predicted first-order moments are 〈ũ(k)〉 =
〈
b̃(k)

〉
= 0 for all cases. The ensemble predictions for

second-order moments are given in Table 7 for the five cases listed in Table 6.
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Case
〈
|ũ(k)|2

〉 〈
|b̃(k)|2

〉

I 3α(δ2 − γ2/k2) 3αδ2

δ4 − α2γ2/k2 δ4 − α2γ2/k2

II 3α/δ2 3α/δ2

III 3/α 3α

α2 − γ2/k2

IV 3/α 3/α

V 3α(δ2 − σ2β2/k2) 3αδ2

δ4 − σ2α2β2/k2 δ4 − σ2α2β2/k2

Table 7: Second-order moments (δ2 = α2 − β2/4).

In Table 7, the modal expectation values are for |ũ(k)|2 = |ũR(k)|2 + |ũI(k)|2 and |b̃(k)|2 =
|b̃R(k)|2 + |b̃I(k)|2, and the real and imaginary parts of these have equal share (i.e., one half of the
expected values in Table 7). Also, the expectation values of the modal helicities are

〈
ũS(k) · b̃S(k)

〉
= − β

2α

〈
|b̃S(k)|2

〉
,

S = R, I (18)〈
ãS(k) · b̃S(k)

〉
= α

〈
|ũS(k)|2 − |b̃S(k)|2

〉
.

The second-order moments in Table 7 are functions of the inverse temperatures α, β and γ, which
must be determined. Previous work ([Shebalin 1989, 1994, 2002]) has shown that α, β and γ can be
expressed in terms of one variable parameter, which can be chosen to be the expectation value of the
magnetic energy EM = 〈EM 〉, where EM = 1

2

[
|b|2

]
. Using E = 〈E〉, HC = 〈HC〉 and HM = 〈HM 〉,

we have for Case I,

α =
3N ′EM

EM (E − EM ) −H2
C

, (19)

β = −2α
HC

EM
, (20)

γ = α
E − 2EM

HM
. (21)

Note that while E , HC and HM are constant to within canonical fluctuations, EM can vary appreciably.
The inverse temperatures α, β and γ can be determined by minimizing an entropy functional with

respect to variation of a free parameter [Khinchin 1949], [Shebalin 1982, 1996] (here, the parameter
is EM ). This gives us a priori values for α, β and γ, which can then be placed in the expressions in
Table 7 to predict the shape of the ideal spectra for Case I. (One could also use the time-averaged
value of EM to give approximate, but still fairly accurate, a posteriori estimates of α, β and γ.)

Recall that the basic equations (1) and (2) are invariant under the discrete classical symmetry
transformations P (parity, or coordinate inversion: x → −x), C (charge reversal: e → −e), and
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(if ν = η = 0) T (time reversal: t → −t). However, helicities are not invariant under P and C
[Shebalin 1998]. In eqs. (19) – (21), HC and HM are pseudoscalars under P and C, while the energies
E and EM are scalars. (Under time-reversal, HC and HM are scalars.) Therefore, it is clear from eqs.
(20) and (21) that β is a pseudoscalar under P and C, and γ is a pseudoscalar under P , so that βHC

and γHM are scalars under P or C. Furthermore, eq. (19) indicates that α is a scalar under P or C.
Thus, both the governing equations (1) and (2), and the probability density functions (16) and

(17) are invariant under P , C and T . The importance of this is the following. The phase space Γ of
the absolute equilibrium ensemble of ideal MHD turbulence is defined by the independent components
of the Fourier modes ũ(k) and b̃(k) for 0 < k ≤ K; let the dimension of this phase space be denoted
by NΓ. In this phase space, the quadratic form E defines a hypersurface, and |HC | and |HM | define
two hypersurfaces each, all of dimension NΓ − 1. (We use |HC | and |HM | since both signs of HC and
HM are included in the statistical theory, by symmetry.)

The hypersurface defined by E is the surface of constant energy ΓE [Khinchin 1949]. The hy-
persurface ΓE will generally be broken into disjoint regions, in all cases except Case IV of Table 6,
because either HC or HM (or both) or HP are additional invariants. In each case in Table 6, it is
the intersection of ΓE with all the hypersurfaces associated with both signs of the invariant helicities
that is the subset of the phase space Γ on which the phase point can reside. In Case I, there are four
disjoint components, in Cases II, III and V, there two disjoint components, and in Case IV, there is
only one component [Shebalin 1998].

As an example, let us consider Case I of Table 6, for which there are three invariant integrals. The
surface of constant energy ΓE has dimension NΓ − 1, and this intersects with the surfaces of constant
±HC and ±HM to confine the phase point to subsets of Γ of dimension NΓ − 3. Let SC = sgn HC

and SM = sgn HM , where SC , SM ∈ {+,−}. Also let ΓE(SC , SM ) denote the component of ΓE on
which HC and HM have signs SC and SM , respectively. Since SC and SM are set functions which
separate one component from another, the components ΓE(SC , SM ) with different values of SC and
SM are disjoint (rather, effectively disjoint since we have a canonical ensemble).

Thus, the ensemble phase space contains a surface of constant energy ΓE that has subsets
ΓE(SC , SM ) on which essentially all ensemble phase points reside. The union of all these subsets
is the subset of Γ containing, with non-vanishing probability, all of the phase points that make up the
theoretical ensemble. Call this union the ‘reduced’ surface of constant energy Γ ′

E:

Γ′
E = ΓE(+,+) ∪ ΓE(+,−) ∪ ΓE(−,+) ∪ ΓE(−,−). (22)

It is clear that under P and C, Γ′
E → Γ′

E because Γ′
E has the topological structure given in (22),

i.e., a structure that ensures symmetry under P and C (and, of course, T ).

Inverse Temperatures

Equations (19), (20) and (21), are used to determine the inverse temperatures α, β and γ, respectively,
for Case I. These equations can be used for Cases II-V by making the substitutions discussed following
the probability distribution function (16). Also, for Cases II and IV, the substitution γ = 0 is
equivalent to the assignment EM = 1

2 E in eq. (21). Making the various replacements leads to the
results in Table 8 (for more detail, see [Shebalin 2002]).

The inverse temperatures α and β for Case V are determined as follows. First, if γ = −σβ, then
eqs. (19), (20) and (21) can be used to show that α and β satisfy two algebraic equations:

αE + βHP = 6N ′, (23)

αE − βHP +

(
β +

4/a2

β

)
HC = 0. (24)
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In fact, eqs. (19), (20) and (21) were originally found by setting up three similar algebraic equations
[Shebalin 1989]. Let us now define p, which is constant to within canonical fluctuations, and c, which
is a variable parameter:

p =
HP

E and c =
HC

E . (25)

Equations (23) and (24) can be solved to yield

α(c) =
3N ′

E
3p− 2c± p [1 + 16c(p− c)]

1
2

2p− c(1 + 4p2)
, (26)

β(c) =
3N ′

E
1 − 8cp∓ p [1 + 16c(p− c)]

1
2

2p− c(1 + 4p2)
. (27)

Here, the sign ± is chosen so that α > 0 and so that the second order moments in Table 7 are positive.

Case α β γ

I 3N ′EM −2αHC/EM α(E − 2EM )/HM

EM (E − EM ) −H2
C

II 6N ′E −4αHC/E 0

E2 − 4H2
C

III 3N ′ 0 α(E − 2EM )/HM

E − EM

IV 6N ′/E 0 0

V eq. (26) eq. (27) −σβ

Table 8: Inverse temperatures for Cases I–V.

Numerical Simulation

The MHD equations (1) and (2) were solved by a Fourier spectral transform method [Canuto 1988,
Boyd 2001] on an N 3 grid, where N = 32. The non-linear terms in eqs. (1) and (2) were de-aliased
by the Orzsag-Patterson technique of shifted-grids [Patterson 1971]. The de-aliasing technique sets
the maximum wave vector magnitude in eqs. (13) and (14) to K =

√
2N/3, corresponding to K2 =

227. The equations were integrated forward in time by a ‘partially corrected’ third-order method
[Gadzag 1976]. The time step size for all runs was ∆t = 10−3. The initial conditions are such that
the kinetic and magnetic Fourier modes have random phases and satisfy

|u(k)| = |b(k)| ∼ k exp(−k2/k2
p) at t = 0. (28)

The kinetic and magnetic energy spectra, defined as the modal energies integrated over solid angle
in k-space, are EK(k) and EM (k), respectively. Using (28), these energy spectra can be seen to have
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the form

EK(k) ≈ EM (k) ∼ k4 exp(−2k2/k2
p) at t = 0. (29)

For all runs reported here, the initial peak wave number is kp = 4.

Run Case Bo Ωo

A0 I (0, 0, 0) (0, 0, 0)
A1 II (0, 0, 1) (0, 0, 0)
A2 III (0, 0, 0) (1, 0, 0)
A3 IV (0, 0, 1) (1, 0, 0)
A4 V (0, 0, 1) (0, 0, 1)
A5 V (0, 0, 1

2 ) (0, 0, 1)
A6 V (0, 0, 1) (0, 0, 1

2 )

Table 9: Ideal MHD Simulations (ν = η = 0).

Seven runs are presented here. These all had the same initial conditions (E = 1.0000, HC = 0.3567
and HM = 0.1398 at t = 0). The values of Bo and Ωo associated with these runs are given in Table
9. In all of the runs in Table 9 the energy E is conserved to within 0.2%, although the kinetic and
magnetic energies can fluctuate significantly – (20% initially and about 3% when the ideal MHD
turbulence is in equilibrium).

For brevity, a minimum number of figures will be shown here. Rather, we will include such figures
for a future publication [Shebalin 2005a]. Suffice it to say that the runs in Table 9 behaved as expected,
i.e., HC was conserved in Runs A0 and A1, while HM was conserved in Runs A0 and A2. Also, HP , a
canonical invariant in Run A4, behaved as predicted, while HC and HM were no longer invariant. The
behavior of HP for Runs A5 and A6 was also a canonical invariant, as it was for Run A4. The values
of HP for A6, A4 and A5 were 0.2868 (σ = 0.5), 0.2169 (σ = 1.0) and 0.0771 (σ = 2.0), respectively.
These were not linear in σ, though a determination of the exact functional dependence is beyond the
scope of the present work.

As an example of the efficacy of the statistical theory, we use eqs. (26) and (27) to predict the
average energy spectrum for Run A4, and this is shown in Figure 1. The numerical average is taken
over the last quarter of the run (t = 1500 to 2000). Using the formulas (26) and (27) with s and
c as defined in eq. (25), and E , HC and HM determined by averaging from t = 0 to 2000, we get
α = 1.593067, β = −1.290033 = −γ. However, the low-k values of Eav(k) are very sensitive to the
value of β; adjusting this value to β = −1.303590 gives the fit in Figure 1. The goodness-of-fit in Figure
1 is typical of what is seen when the statistical theory is applied to any of the ideal cases in Table
9. Also, equilibrium spectra show no anisotropy because, in these ideal cases, there is no dissipation.
(The difference between isotropic ideal spectra and anisotropic real spectra in the presence of a mean
magnetic field was first explained in [Shebalin 1982, 1983].)

However, absolute equilibrium ensemble theory, as originally formulated ([Kraichnan 1973, 1975],
[Frisch 1975], [Fyfe 1976]) predicts that all Fourier modes will have zero mean, and this is not nec-
essarily so in any given ideal MHD simulation. In Figure 2, the evolution of the Fourier modes for
k = (1, 0, 0) in Run A0 is presented. The non-zero components of all of the independent Fourier modes
ũ(k) and b̃(k) define a phase space of large dimension (here, the dimension is about 105). Figure 2 is
essentially a projection of the phase trajectory into a plane; if the ensemble predictions were correct,
then the projected phase trajectory would be a random walk centered on the origin. That it is not is
evident in Figure 2, where the initial point of the trajectory is close to the origin, but after a transition
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Figure 1: Predicted and numerically averaged (t = 1500 to 2000) spectra for Run A4 in Table 9.

lasting from t = 0 to about t = 30, the phase point appears to arrive at an attractor in phase space.
This behavior can also be seen when modes with other values of k = |k| = 1 are examined. However,
when k > 1, the mean of the Fourier modes appears to be zero. Thus, non-ergodicity is manifested
in the modes with the lowest value of k, as simulated time averages do not match predictions of the
statistical theory.

In addition to examining the detailed behavior of individual modes, we can also examine time-
averaged behavior of all modes by defining the ‘coherent energies’ E c, EcK and Ec

M :

Ec = EcK +EcM , EcK ≡ 1

2

∑

k

|〈ũ(k)〉T |2 , EcM ≡ 1

2

∑

k

|〈ũ(k)〉T |2 . (30)

The Fourier coefficients in the sum are time-averaged, e.g.:

〈
b̃(k)

〉
T

≡ 1

T

∫ T

0
b̃(k, t)dt. (31)

If the dynamical system were ergodic, Ec would tend to zero with time; if not, the non-zero mean
Fourier modes effectively define a coherent structure in ideal MHD turbulence. The appearance of
coherent structures has been noted before in long-time 2-D simulations [Shebalin 1989, 2005] and in
some preliminary 3-D runs [Shebalin 1994]; here we see them for long-time 3-D runs. The explanation
for these coherent structures then, as now, lies in the disjoint nature of phase space [Shebalin 1998].

In Figure 3, the coherent energy for Runs A0–A4 are presented. It is clear that whenever magnetic
helicity remains an invariant (Runs A0 and A2), that the coherent energy E c is relatively large.
Furthermore, when coherent energy is evident, it is primarily magnetic, as in Runs A0 and A2, for
which Ec

M ≈ 0.12 at t = 2000; the difference between Ec for Runs A0 and A2 in Figure 3 is due
to Ec

K ∼ 0.06 for Run A0 and Ec
K ∼ 0 for Run A2. (Remember that total energy is E = 1). We

also see in Figure 3 that Ec for Run A4 settles into a small, but non-zero value; this is due to the
presence of HM in the invariant HP , as will be discussed presently. (Although these are ideal runs,
similar behaviour has been seen in long-time dissipative 2-D MHD runs, where ν 6= 0 and η 6= 0
[Shebalin 2005].)



86

0 10 20 30 40 50

0

10

20

30

40

50

k = (1,0,0)
  

 t = 0 to 2000

Re

Im
u

y
(k) 

u
z
(k) 

b
z
(k) 

b
y
(k) 

t = 0

Figure 2: Projection of the phase trajectory for Case I in Table 6 (Run A0 in Table 9).
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Figure 3: Coherent energy for Runs A0 – A4 in Table 9.
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One interesting point to note is that although the theoretically predicted and numerically observed
ideal MHD spectra are quite close, as in Figure 1, the ensemble prediction is that all of the power in the
spectrum for a given value of k is due to zero-mean Fourier modes, while numerical simulations shows
us that, in the case of k = 1, much of the energy seems locked up in the non-zero-mean part of the
mode, as Figure 2 clearly shows. This was seen before in ideal 2-D MHD turbulence [Shebalin 1982,
1989, 1994, 2005], and it appears again here in ideal 3-D MHD turbulence.

Another interesting point is that Runs A1 and A3 in Figure 3 have coherent energies that do not
level off but appear to fall exponentially towards zero. This indicates that magnetic helicity is critical
to the appearance of coherent structure in ideal MHD turbulence, since it is either an invariant or
part of an invariant (HP ) in those runs that do have non-zero coherent energy. In Runs A1 and A3,
the presence of non-zero Bo eliminates HM as an ideal invariant, due to the first term on the right
side of equation (9). In Run A3, Bo and Ωo are non-zero and not parallel, so that only E is an ideal
invariant; in this case we expect the phase surface ΓE of the absolute equilibrium ensemble to have
only one component, so that all Fourier modes do, in fact, have zero mean. However, In Run A1, HC

is still an ideal invariant, along with E, yet there appears to be no coherent energy. In this latter
case, the surface of constant energy ΓE must still have two disjoint components. The reason for the
appearance of zero-means in Run A1 is as follows.

When Bo 6= 0 but Ωo = 0, as in Run A1 (Case II of Table 6), we have two invariants, E and HC ,
and these can be transformed into two equivalent invariants E+ and E−,

E± = E ± 2HC =
1

2

[
|u ± b|2

]
=

1

2

[
|z±|2

]
. (32)

The quantities E+ and E− are the energies associated with the Elsässer variables [Elsässer 1956]

z+ = u + b, z− = u − b. (33)

Thus, we have two separate sets of variables, each having its own unique invariant. The phase space
Γ of the Fourier modes ũ(k) and b̃(k) is a ‘direct sum space’ [Halmos 1958],

Γ = Γ+⊕ Γ−. (34)

Here, Γ+ is the phase space of the z̃+(k) and Γ− is the phase space of the z̃−(k).

Using the Elsässer variables (33), the energy and cross helicity can be written as

E =
1

4

[
|z+|2 + |z−|2

]
, HC =

1

8

[
|z+|2 − |z−|2

]
. (35)

Thus, in Case II of Table 6, invariant energy and cross helicity are equivalent to the two invariant
energies E+ and E−.

The set of Elsässer Fourier modes z̃+(k) are constrained to move on a hypersphere Γ+
E+ in their

phase space Γ+, and the variables z̃−(k) are constrained to move on a hypersphere Γ−
E− in their phase

space Γ−. If HM is not an invariant, then there is no constraint on where the z̃+(k) can move on the
hypersphere Γ+

E+ , and where the z̃−(k) can move on the hypersphere Γ−
E− , in which case the surface

of constant energy for, say, HC > 0 is Γ+
E+× Γ−

E−, i.e., a product space [Hocking 1988] between Γ+
E+

and Γ−
E− .

Suppose that E+ = E1 and E− = E2, with E1 > E2. The product space in this case is Γ+
E1
× Γ−

E2
.

Under P or C, we have HC → −HC , which implies z̃+(k) 
 z̃−(k), so that, now, E+ = E2 and
E− = E1. Thus, Under P or C, a second component product space Γ+

E2
× Γ−

E1
appears. Therefore, the
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Figure 4: Phase space structure for Case II of Table 6.

reduced constant energy surface for Case II of Table 6 is

[
Γ+
E1
× Γ−

E2

]
∪

[
Γ+
E2
× Γ−

E1

]
= Γ′

E

(36)[
Γ+
E1
× Γ−

E2

]
∩

[
Γ+
E2
× Γ−

E1

]
= ∅.

Since Γ′
E has two disjoint components, as shown in (36), the system is non-ergodic. [The surface of

constant energy ΓE is broken into two components of smaller dimension (Γ′
E , the union of nested

‘hyper-tori’), rather than four components as in (22), because HM is not invariant here.]
To visualize this disjoint structure, consider Figure 4, which pertains to Case II of Table 6, repre-

sented by Run A1 in Table 9. The ensemble average is over both components (gray and black), while
a time average is taken only over the gray or the black component. Here, the subspaces Γ+

E1,2
and

Γ−
E2,1

in the union of direct product spaces are hyperspheres and thus symmetric about their respective
origins, so that the Elsässer variables have zero mean values for Case II of Table 6.

In terms of the Elsässer variables (33), the magnetic helicity can be written as

HM =
1

4

∑

k

k · [z+
R(k) − z−R(k)] ∧ [z+

I (k) − z−I (k)]. (37)

In Cases I and III of Table 6, the presence of a constant HM introduces a constraint which serves to
decompose the nested hypertori Γ+

E1
×Γ−

E2
and Γ+

E2
×Γ−

E1
into two components each, for a total of four

components of the reduced surface of constant energy Γ′
E , as shown in (22). In this case we have

coherent structure, in addition to non-ergodicity as evinced in the behavior of the coherent energies
for Runs A0 and A2 in Figure 3. Also, in Case V, where HP = HC − σHM is an ideal invariant, both
HC and HM affect the topology of the available phase space, as seen in the behavior of the coherent
energy for Run A4 in Figure 3.

Broken Ergodicity

Here, a summary of the preceding results is given, along with a more detailed discussion of ‘broken
ergodicity’. It has been noted in Section 4 that the governing equations (1) and (2), and the probability



89

density functions (16) and (17) are invariant under P , C and T , while HC , HM and HP are not. The
reason is that the probability densities (16) and (17) are invariant because the inverse temperatures
β and γ are pseudoscalars, so that the products βHC , γHM and βHP are scalars. Thus, when
the integration over all of phase space required to determine an ensemble expectation value is done
analytically, it includes regions with both signs of the helicities HC , HM and HP , which automatically

leads to 〈ũ(k)〉 =
〈
b̃(k)

〉
= 0.

Note that the expectation values of the pseudoscalars (under P or C) HC and HM (for Case I)
can be written in terms of the scalar (under P or C) partition function Z =

∫
DdΓ as

HC = −∂lnZ

∂β
, HM = −∂lnZ

∂γ
. (38)

Since β and γ are themselves pseudoscalars, the relations (38) are invariant under P or C (or T ).
Therefore, one may state that the theory predicts the signs of the scalars βHC and γHM , rather than
the signs of HC or HM alone. Alternatively, one may say that the absolute values |HC | and |HM | are
predicted and that ensemble expectation values are taken over those parts of the energy surface where
HC = ±HC and HM = ±HM .

However, when a numerical simulation is run, a given invariant helicity HC or HM will be either
positive or negative and will remain so during the dynamical evolution. Therefore, the symmetry
of absolute equilibrium ensemble theory is dynamically broken, and ensemble predictions are not
necessarily the same as time averages. That they are not the same is clear from the evidence presented

in Section 5, especially in the comparison of the time averages 〈ũ(k)〉T and
〈
b̃(k)

〉
T
, which are

generally nonzero for k = 1, with the ensemble averages for k = 1, which are zero. Some cases of ideal
MHD turbulence, as described by absolute equilibrium ensemble theory, are clearly not ergodic since
ensemble expectation values (analytical integrations) and time averages (numerical integrations) are
not equal. This situation is often called broken ergodicity [Palmer 1982].

Even if we did not happen to observe the inequality of time and ensemble averages the non-
ergodicity found in MHD turbulence is essentially tied to the decomposability or indecomposability of
the surface of constant energy ΓE in phase space. This is the content of the Khinchin-Birkhoff theorem
[Khinchin 1949, pp 55–57]: ‘the metric indecomposability of the surfaces of constant energy is a
necessary and sufficient condition for a positive answer to the ergodic problem . . . ’. The essential point
is that if metric decomposability occurs (i.e., a surface of constant energy has disjoint components),
then the system is non-ergodic, and conversely, if the surface of constant energy cannot be broken into
disjoint components, then the system is ergodic.

We note again that the occurrence of nonzero mean values of first-order time-averaged moments

such as 〈ũ(k)〉T and
〈
b̃(k)

〉
T

(i.e., coherent structure) is sufficient for non-ergodicity, but not neces-

sary. In the discussion of the Elsässer variables (33), it was seen in eqs. (36) and in Fig. 4 that the
surface of constant energy consisted of the union of two disjoint subpaces, indicating non-ergodicity.
However, the coherent energy for Run A1 in Figure 3 is clearly falling to zero, indicating a lack of
coherent structure. Thus, non-ergodicity is due to the presence of at least one invariant helicity (whose
sign serves as the set function that differentiates between unconnected components).

Conclusion

The results presented here are not exhaustive, and further studies are necessary to understand the
detailed effects that varying the parameter σ, the initial values of HC and HM , the magnitudes and
directions of Bo and Ωo as well as the Rossby number, Ro ≡

√
Ω/2Ωo, where the enstrophy Ω is
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defined in eq. (10). However, several novel features have been presented here. These include the
discovery of a new integral invariant, the parallel helicity HP .

A major topic requiring further investigation is a precise characterization of how the presence of
invariant integrals affects the topology of the available phase space. A step in this direction is the
realization that use of the Elsässer variables allows the invariant components of the surface of constant
energy ΓE to be represented as a union of the disjoint, direct product subspaces Γ+

E1
×Γ−

E2
and Γ+

E2
×Γ−

E1

called the reduced surface Γ′
E ; see eq. (36). If E and HC are constant, but not HM , then motion over

the hyperspheres Γ+
E1,2

and Γ−
E2,1

produces a zero-mean time average, as evidenced here numerically by

examining the time evolution of the coherent energy. The manifest symmetry of the Γ+
E1,2

and Γ−
E2,1

about their respective origins, in fact, requires that mean values of the various Fourier components be
zero. However, when HM or HP are constant, the surface of constant energy is broken into additional
disjoint components (in the case of constant HP , the dependence on σ is a topic requiring further
inquiry).

The results given here pertain to ideal 3-D MHD turbulence, and an important question is how the
broken ergodicity observed in this non-dissipative flow might also appear in realistic, i.e., dissipative,
3-D MHD turbulence. Results from 2-D simulations or real turbulence [Shebalin 2005] indicate that
broken ergodicity is still present, so perhaps similar effects will be seen in real 3-D flows. A numerical
investigation into this would benefit from a large computational grid, in order to make the maximum
wave number in the Fourier space as large as possible. Going to a large grid, of course, greatly
increases numerical run times, so that a numerical investigation in which several important parameters
are systematically varied may require a long-term research commitment; thus, smaller grids may still
prove useful. Further studies should also show the connection between broken ergodicity, selective
decay and inverse cascades more clearly. In addition, analytical theories of MHD turbulence do not
currently offer any explanations of the behavior reported in this paper, and perhaps this will be seen
as an inducement for an extension of these theories.

Finally, an essential physical feature uncovered here (and in previous work) is, in specific cases,
the presence of coherent structure in MHD turbulence. We have observed numerically that, in a
number of cases, coherent structures seem to arise spontaneously in MHD turbulence. This hints at
the possibility that magnetic dynamo activity may be more an inherent feature of MHD turbulence
and less an induced phenomenon due to rotation and convection. It may turn out that rotation and
convection (for example, in the earth’s outer core or in the sun’s convective zone) are needed as sources
of turbulence, and may also affect the level of coherent energy attained, but that it is the turbulence
itself that contains all that is required for dynamo action: broken ergodicity.
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Abstract

Transfer flux of the kinetic energy, passive scalar variance and of the total energy in MHD turbulence is
studied. It is found by direct numerical simulation and spectral theory of turbulence that the transfer
in the mean flux is local in scale, and that the energy transfer in 4-dimensions is more efficient than
that in 3d. Fluctuations of the transfer flux around its mean value become positive and negative and
are very intermittent as the scale decreases.

Introduction

In turbulence at large Reynolds numbers, energy is pumped in at the rate εin per unit mass and
unit time at macroscopic scale L, transferred at the rate Π to smaller scales by nonlinear interaction
through the inertial range, and then it is dissipated into heat at the rate εout at scale η due to molecular
viscosity [1, 2]. When turbulence is in a steady state, the averages of the above three rates are equal:
ε̄in = Π = ε̄out. Also for a passive scalar convected by turbulence and for the MHD turbulence the
same dynamics can be expected, in which the transferred quantities are the variance of the scalar
fluctuations and the sum of the kinetic and magnetic energy, respectively. The transfer flux Π (σ) due
to the nonlinear interaction, where σ is NS (Navier Stokes), θ (scalar), or M (MHD), is the most
fundamental quantity in the turbulence dynamics. The transfer occurs in stepwise (local cascade
process) or in a radiative way (nonlocal process) in scale space. We have examined the statistical
nature of Π(σ) by using direct numerical simulation (DNS) of the isotropic NS, scalar, and MHD
turbulence from the view points of (1) degree of locality of the mean transfer flux in wavenumber
space, (2) its dependency on the Reynolds number, (3) effects of spatial dimensions, (4) fluctuations
of the flux around its mean value.

Mean transfer flux

We assume that the turbulent fields are statistically homogeneous, isotropic, and in a steady state.
Spectra of the kinetic energy, magnetic energy, and the scalar variance are defined as

〈
u2

〉

2
=

∫ ∞

0
E(k, t)dk,

〈
b2

〉

2
=

∫ ∞

0
Eb(k, t)dk,

〈
θ2

〉

2
=

∫ ∞

0
Eθ(k, t)dk, (1)

respectively, where 〈 〉 denotes ensemble average. The equations for the spectra are

(
∂

∂t
+ 2νk2

)
E(k, t) = TNS(k, t), (2)

(
∂

∂t
+ (ν + µ)k2

)
EM (k, t) + (ν − η)k2ER(k, t) = TM (k, t), (3)

(
∂

∂t
+ 2κk2

)
Eθ(k, t) = Tθ(k, t). (4)
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where EM (k) = E(k) +Eb(k) and ER(k) = E(k) −Eb(k). We consider the only case of ν = η = κ in
which the contributions from the molecular action to the transfer flux are the same. Functions TNS ,
TM , and Tθ denote the energy, scalar, and MHD energy transfer functions, respectively and arise from
the nonlinear and/or convective terms in the fundamental equations. The mean transfer flux Π (σ) is
defined as [1, 2, 3, 4]

Π(σ)(k, t) =

∫ ∞

k
Tσ(k

′, t)dk′. (5)

Physical meaning of the transfer flux is the total amount of the energy, scalar variance, or the MHD
energy transferred from all the Fourier components below k to those higher than k by triad interactions.
On the other hand, the transfer functions Tσ’s are those quantities transferred to the wavenumber k,
and generally of the form of

Tσ(k) =

∫∫

∆
Sσ(k, p, q)dpdq, (6)

Sσ(k, p, q) = 2Real (Mσ : 〈wσ(p)wσ(q)wσ(−k)〉) , (7)

where Mσ(k) is a geometric factor arising from the nonlinear or convective terms, and wσ(k) denotes
the Fourier amplitude of the velocity, magnetic vectors or passive scalar. In the triad interaction
k = p + q, we define the scale disparity parameter α as the ratio of the longest to the shortest
wavenumber: [3, 4]

α =
Max(k, p, q)

Min(k, p, q)
. (8)

When α is close to unity, it means that fluid motions of similar size interact, while when α is very
large, motions at very large and very small scales interact. Thus, α measures the degree of locality or
nonlocality of the interactions among different scales. The mean transfer flux of Eq. (5) is written as
follows,

Π(σ)(k)

ε̄(σ)
=

∫ ∞

1
W (σ)(α, k)

dα

α
, (9)

W (σ)(α, k) =
1

ε̄(σ)

∫ ∞

k
dk′

∫ ∞

0
dp′

∫ ∞

0
dq′ Sσ(k

′, p′, q′, α), (10)

where ε̄(σ) denotes the mean dissipation rate for the kinetic and magnetic energy, or the passive scalar
variance. W (σ)(α, k) represents the fractional contributions to the total mean transfer flux from the
interactions in the range [α, α+ dα] at wavenumber k [3, 4, 5, 6, 7, 8, 9, 10, 11].

Figures 1 and 2 show the energy spectra in steady state in which curves are compensated by
multiplying k5/3 [13, 14]. It is clearly seen that the spectra of the kinetic and passive scalar have
small but finite width of flat portion at Rλ = 427, indicating that they obey the k−5/3 spectrum,
but it is difficult to definitely decide whether or not EM (k) ∝ k−5/3 at Rλ = 160 [14, 20, 21]. For
these spectra, we have computed W (σ), which are shown in Figs. 3 and 4 [15]. The W (σ) curves
attain the maxima at about α = 2 and slowly decay for large α, which indicates that the transfer of
the energy and scalar variance is local in scale. The smooth curves for W (NS) and W (θ) show the
theoretical prediction by the spectral theory of turbulence (Lagrangian Renormalized Approximation,
LRA) [15, 23]) which agrees well with the DNS curves. W (M) is very similar to W (NS) in spite of
the difference in the Reynolds numbers. Since in the MHD turbulence the kinetic energy dominates
the total energy spectrum in the low wavenumber range as seen in Fig.2, the effects of the magnetic
field on the transfer flux are expected to be small, which in turn implies that the locality of Π (NS) is
insensitive to the Reynolds numbers.
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Dimension effects

In order to see effects of the spatial dimension on the transfer of the kinetic energy in scale space,
we have examined the decaying NS turbulence in 4-dimensions and compared with the 3-dimensional
turbulence [16]. The initially Gaussian random velocity field with a support compact spectrum was
integrated in time. The total kinetic energy and the average energy dissipation are defined by Ed(t) =
d(U2

0 /2) =
〈
u2(x, t)

〉
/2 and dEd(t)/dt = −εd, respectively, where d = 3 or 4, so that the energy in

one direction is the same for both dimensions.

Variation of εd(t)/εd(0) is shown in Fig.5. The dissipation rates attain the maxima at about
k0U0t ∼ 1 in both dimensions. Initially the ratio ε4(0)/ε3(0) is about 4/3, but later ε4(t)/ε4(0)
becomes larger than ε3(t)/ε3(0). This fact indicates that the energy transfer in 4d is more efficient than
in 3d. Correspondingly to this, we observed that the normalized energy flux function Πd(k, t)/εd(t)
was larger in 4d than in 3d (figures not shown). The decay of the normalized turbulent energy is
shown in Fig.6; the curves are well fitted by (t− t0)

−n with n = 1.35 in 3d and n = 1.60 in 4d, where
t0 ≈ 0 [17, 18]. The larger exponent in 4d is due to the larger energy transfer rate.
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Fluctuations of the transfer flux

It is very interesting and important to know how much the flux fluctuates around its mean. The
probability density function (PDF) of the transfer flux is suitable for this purpose, but we need
expression for the transfer flux in the physical space. We use surrogate expression for the flux in the
physical space defined in terms of the structure functions by

Π̃(x, r) = − (δuL(x, r))3

r
, Π̃θ(x, r) = −δuL(x, r) (δθ(x, r))2

r
, (11)

which are motivated by the 4/5 and 4/3 laws [19, 22]. The means of the two members of Eq.(11) are

equal to Π(NS)(r) =
〈
Π̃(x, r)

〉
= ε̄NS , and Π(θ)(r) =

〈
Π̃θ(x, r)

〉
= ε̄θ for the separation distance r

in the inertial range, respectively.

Figures 7 and 8 show PDF’s of Π̃ and Π̃θ for Rλ = 427 and Sc = 1. Both PDF’s have cusps at
small amplitudes, and tails that become longer for large amplitudes as r decreases. Π̃ and Π̃θ take
positive or negative values, meaning that the energy and the scalar variance are transferred in both
directions, from small to large scales and from large to small scales. The PDF of Π̃θ is more positively
skewed than that of Π̃, which means that large negative amplitudes of the scalar transfer flux occur
less frequently than large positive amplitudes. This is due to the fact that there is no pressure term
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in the equation of the passive scalar, so that the scalar variance undergoes straining more persistently
and efficiently by the velocity field [15].

Summary

We have examined the nature of the transfer flux in the NS, MHD, and passive scalar turbulence.
The mean transfers are local in scale, which means that those quantities are transferred in stepwise
by the interaction among similar size of scales of motion. This is consistent with the conventional
understanding. It was also suggested that the locality in the transfer flux was insensitive to the
Reynolds numbers. The fluctuations of the flux around the mean value are very intermittent, and
both strong positive and negative fluctuations can occur, but they cancel mostly, and yield only small
mean value of the flux as net effects. When the spatial dimension was increased from 3 to 4, it was
found that the transfer of the kinetic energy was enhanced when compared to the case in 3d. This is
due to the fact that the role of the pressure in 4d becomes less important and strong velocity gradients
occur more frequently than in 3d.
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Turbulent transport in magnetized plasmas
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Abstract

This is a brief introduction to the area of plasma turbulence from a theoretical perspective. Hopefully,
it stimulates some cross-disciplinary exchanges and collaborations.

Introduction

As is widely known, turbulent flows play a central role in magnetic confinement fusion (MCF) research.
Turbulence, known for its high transport rates, causes the magnetic device to ’leak’. While in the
absence of turbulence, it would be possible to create a burning (i.e., self-sustaining) plasma in a
table-top device, real MCF experiments tend to have linear extensions of the order of 5-10 m. While
this ’brute-force’ solution (building bigger and thus more expensive experiments) to the turbulence
problem works, there is a significant amount of work being done to characterize, understand, and
control plasma turbulence. Encouraging results in this respect were obtained in the mid 1990s, when
it became possible to create so-called ’internal transport barriers’ in which the turbulent diffusivities
are suppressed by up to an order of magnitude over radially extended regions. This discovery showed
that turbulence control is indeed possible. The present contribution is meant as a brief introduction
to the area of plasma turbulence from a theoretical perspective.

Plasma turbulence versus fluid turbulence

The classic example of a turbulent system is that of a neutral fluid at high Reynolds number. Its
theoretical description is based on the Navier-Stokes equation, and many of its basic features can be
described in the framework of Kolmogorov’s scaling theory. Since many readers will be familiar with
this kind of turbulent dynamics, it might be useful to introduce plasma turbulence by stressing the
similarities and differences with respect to fluid turbulence.

First, turbulence in magnetized plasmas is quasi-two-dimensional. The strong background mag-
netic field leads to a strong anisotropy in the plasma particles’ motion. While they are able to move
more or less freely (up to magnetic mirror effects) along the magnetic field lines, the cross-field mo-
tion is restricted to slow drifts of the gyrocenters. This is reflected in the fact that the correlation
lengths of the turbulent fluctuations are, respectively, of the order of 10 m and 1 cm. One may
thus consider the turbulent dynamics to occur in planes perpendicular to the background magnetic
field which are then coupled by the parallel motion. Interestingly, the simplest theoretical description
of plasma turbulence, which is based on the two-dimensional model by Hasegawa and Mima [1], is
isomorphic to the Charney equation in geophysics. This fact leads to close links between those two
areas of research. Moreover, the Hasegawa-Mima-Charney equation is similar to the two-dimensional
Navier-Stokes equation. This allows for many useful comparisons between these two systems.

Second, plasma turbulence is not universal. While in fluid turbulence, one is usually interested
in the small spatial scales characterizing the inertial range which exhibit universal behavior, plasma
turbulence is subject to a variety of drive and saturation mechanisms on different spatio-temporal
scales. This means that often, an inertial range (in the strict sense of the word) does not exist. It is
common to name the type of turbulence for a given set of plasma parameters after its dominant drive
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mechanism, i.e., after a certain microinstability caused by radial gradients in the background density,
electron temperature and/or ion temperature. Under typical circumstances, the turbulent transport
in a plasma is dominated by the ’drive range’ scales, and simulations of the large-eddy type may be
performed, keeping the inertial range rather small and neglecting backscatter effects which tend to
complicate respective investigations in fluid systems.

Third, plasma turbulence may be studied within a number of frameworks, ranging from simple
fluid models to fully kinetic ones, and from simple 2D geometries to complicated 3D ones. So while
there is little doubt that ab initio simulations are to be based on the so-called gyrokinetic equation
(here, the fast gyrophase dependence has been removed analytically) in full toroidal geometry, it turns
out to be useful to also study reduced systems. The latter allow for the identification of basic physical
processes in systems that are easier to understand. On the other hand, the more complicated models
are necessary to avoid artefacts from over-simplifications, and they also allow for direct comparisons
with experimental results. Thus such a multi-level approach is very helpful.

Some special aspects of plasma turbulence: Structure formation, multi-scale dy-
namics, and particle statistics

One of the most fascinating aspects of plasma turbulence research is the tendency of the turbulent
system to form spatial and spatio-temporal structures. As has been discovered a few years ago, the
dominant eddies are sometimes strongly elongated in the radial (background gradient) direction.[2]
These structures were named ’streamers’, and their importance lies in the fact that the associated tur-
bulent transport can exceed basic mixing-length type estimates by more than one order of magnitude.
On the other hand, plasma turbulence is also often characterized by strong shear flows whose poten-
tial (stream function) depends solely on the radial coordinate.[3] These ’zonal flows’ are also observed
in a large number of other physical systems, ranging from laboratory shallow water experiments to
atmospheric jets to zonal flows on the solar system’s giant planets to accretion disks. Some examples
are presented in other contributions to this book of proceedings. Since streamers and zonal flows are
associated with flows in different perpendicular directions, one might expect that the plasma shows a
tendency to create states which are dominated by either one or the other. Simulations confirm this
intuition, and experiments looking for turbulent structures are also underway. The understanding
of structure formation has seen some progress in recent years, but a lot of physics remains to be
unravelled.

Another challenge in plasma turbulence research has to do with the fact that it tends to be
driven simultaneously by several microinstabilities on different spatio-temporal scales. Only very
recently have multi-scale simulations become feasible. The first of their kind are shown in Ref. [4].
This work allows for the conclusion that, in general, the superposition principle is violated. Some
underlying mechanisms are discussed in that paper. More work is underway. In particular, the idea of
catastrophy-like transitions between different flow states has been put forward by Itoh and co-workers
(see Refs. [23,25] in Ref. [4]). It will be a prime goal in our future work to verify or else falsify this
scenario, especially since it might be closely linked to the physics of transport barriers in which the
turbulent diffusivities are suppressed by up to an order of magnitude over radially extended regions.

A third area of active research centers around the statistics of passive particles in turbulent plasmas.
Although the transported plasma particles are usually not passive, this simplification still allows for
valuable insights into the turbulent dynamics. E.g., Vlad and co-workers have shown in a series
of papers since 1998 (see Ref. [5] and references therein) that their newly developed ’decorrelation
trajectory method’ is able to capture the trapping of particles in turbulent eddies, an effect which
is lost if the commonly used Corrsin approximation is used. Recently, we were able to confirm their
results by means of direct numerical simulations.[6] In the presence of finite Larmor radius effects,
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the transport coefficients can even increase with respect to the zero Larmor radius limit, in contrast
to naive expectations. Moreover, it was shown that particles embedded in a turbulent plasma may
exhibit ’strange’ (i.e., non-Gaussian) kinetics which can be described as a continuous time random
walk (CTRW).[7] Such an approach may be of help in the attempt to understand nonlocal transport
phenomena in MCF plasmas which cannot be captured by a conventional (Fickian) diffusion Ansatz.

Final remarks

In this short note, we tried to give the reader at least a flavor of some of the pressing open problems
in plasma turbulence research. What makes this field particularly interesting is that it combines
fundamental issues like structure formation or the statistics of particles in turbulent fields with the
quest for a novel source of energy. We believe that an intensified dialogue between people working in
plasma physics and those working in neighboring areas like fluid dynamics, geophysics, or astrophysics,
would be beneficial to both sides. Maybe this paper is useful in that respect.
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This extended abstract reports a spectral relation between residual and total energy, ER
k = |EM

k −
EK
k | and Ek = EK

k + EM
k respectively, as well as the influence of an imposed mean magnetic field on

the spectra. The proposed physical picture, which is confirmed by accompanying direct numerical
simulations, embraces two-dimensional MHD turbulence, globally isotropic three-dimensional systems
as well as turbulence permeated by a strong mean magnetic field. The results have direct implications
on the current understanding of the energy cascade in MHD turbulence.

In the following reference is made to two high-resolution pseudospectral direct numerical simula-
tions of incompressible MHD turbulence which we regard as paradigms for isotropic (I) and anisotropic
(II) MHD turbulence. The dimensionless MHD equations

∂tω = ∇× [v × ω − b× (∇× b)] + µ∆ω (1)

∂tb = ∇× (v × b) + η∆b (2)

∇ · v = ∇ · b = 0 . (3)

are solved in a 2π-periodic cube with spherical mode truncation to reduce numerical aliasing errors
[1]. The equations include the flow vorticity, ω = ∇×v, the magnetic field expressed in Alfvén speed
units, b, as well as dimensionless viscosity, µ, and resistivity, η.

Figure 1: Total (solid), kinetic (dashed), and magnetic (dotted) energy in a 10243 simulation of
decaying isotropic MHD turbulence (left) and in a 10242 × 256 simulation of anisotropic turbulence
permeated by a strong mean magnetic field, b0 = 5 (right, spectra are based on field perpendicular
fluctuations). The dash-dotted line in the graph on the left illustrates a k−3/2 power-law while the
dashed horizontals indicate k−5/3-behavior (left) and k−3/2-scaling (right). The dash-dotted curve
on the right shows the high-k part of the field-parallel total energy spectrum. The inset displays
the difference in the perpendicular total energy spectrum when switching resolution from 5122 (dash-
dotted) to 10242 (solid).

Simulation I evolves globally isotropic freely decaying turbulence represented by 10243 Fourier
modes. Total kinetic and magnetic energy are initially equal with EK = EM = 0.5. The dissipation
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Figure 2: Compensated and space-angle-integrated residual energy spectrum, ER
k =

∣∣EM
k −EK

k

∣∣, for
the same systems as in Fig. 1 (isotropic:left, mean magnetic field: right). The dash-dotted line depicts
scaling expected for a total energy spectrum following Iroshnikov-Kraichnan scaling.

parameters are set to µ = η = 1 × 10−4. Case II is a 10242 × 256 forced turbulence simulation with
an imposed constant mean magnetic field of strength b0 = 5 in units of the large-scale rms magnetic
field ' 1 with µ = η = 9 × 10−5.

Fourier-space-angle integrated spectra of total, magnetic, and kinetic energy for case I are shown
in Fig. 1 (left). To neutralize secular changes as a consequence of turbulence decay, amplitude
normalization assuming a Kolmogorov total energy spectrum, Ek → Ek/(εµ

5), ε = −∂tE, with
wavenumbers given in inverse multiples of the associated dissipation length, `D ∼ (µ3/ε)1/4. Clearly,

Kolmogorov scaling applies for the total energy in the well-developed inertial range, 0.01
<' k

<' 0.1.

In case II, pictured in Fig. 1 (right), strong anisotropy is generated due to turbulence depletion
along the mean magnetic field, b0. This is visible when comparing the normalized and time-averaged
field-perpendicular one-dimensional spectrum, Ek⊥ =

∫ ∫
dk1 dk2E(k⊥, k1, k2) (solid line) with the

field-parallel spectrum, defined correspondingly and adumbrated by the dash-dotted line in Fig. 1
(right).

While there is no discernible inertial range in the parallel spectrum, its perpendicular counterpart

exhibits an interval with Iroshnikov-Kraichnan scaling, Ek⊥ ∼ k
−3/2
⊥ [2, 3]. This is in contradiction

with the anisotropic cascade phenomenology of Goldreich and Sridhar for strong turbulence predicting

Ek⊥ ∼ k
−5/3
⊥ [4].

The observation that field-parallel fluctuations are restricted to large scales while the perpendicular
spectrum extends more than half a decade further suggests that the strong b0 constrains turbulence
to quasi-two-dimensional field-perpendicular planes as is well known and has been shown for this
particular system [5].

Another intriguing feature of system II is that EK
k ' EM

k with only slight dominance of EM (cf.
Fig. 1, right) in contrast to the growing excess of spectral magnetic energy with increasing spatial scale
for case I. Both states presumably represent equilibria between two competing nonlinear processes:

field-line deformation by turbulent motions on the spectrally local time scale τNL ∼ `/v` ∼
(
k3EK

k

)−1/2

leading to magnetic field amplification (turbulent small-scale dynamo) and energy equipartition by
shear Alfvén waves with the characteristic time τA ∼ `/b0 ∼ (kb0)

−1 (Alfvén effect).

By using the spectral EDQNM equation for the residual energy in spectrally local and non-local
approximations [6] and by assuming that the residual energy is a result of a dynamic equilibrium
between turbulent dynamo and Alfvén effect, one obtains for stationary conditions and in the inertial
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range,

ER
k ∼ kE2

k ∼
(
τA
τNL

)2

Ek . (4)

with τA ∼ (kb0)
−1, where b0 is the mean magnetic field carried by the largest eddies, b0 ∼ (EM)1/2,

and by re-defining τNL ∼ `/(v2
` + b2`)

1/2 ∼ (k3Ek)
−1/2. The modification of τNL is motivated by the

fact that turbulent magnetic fields are generally not force-free so that magnetic pressure and tension
contribute to eddy deformation as well.

Apart from giving a prediction which allows to verify the proposed model of nonlinear interplay
between kinetic and magnetic energy, relation (4) also has some practical utility. It is a straightforward
consequence of (4) that the difference between possible spectral scaling exponents, which is typically
small and hard to measure reliably, is enlarged by a factor of two in ER

k . Even with the limited
Reynolds numbers in today’s simulations such a magnified difference is clearly observable (e.g. dash-
dotted lines in Figs. 1 and 2).

In summary, based on the structure of the EDQNM closure equations for incompressible MHD
a model of the nonlinear spectral interplay between kinetic and magnetic energy is formulated. The
quasi-equilibrium of turbulent small-scale dynamo and Alfvén effect leads to a relation linking total
and residual energy spectra, in particular ER

k ∼ k−7/3 for Ek ∼ k−5/3 and ER
k ∼ k−2 for Ek ∼

k−3/2. Both predictions are confirmed by high-resolution direct numerical simulations of isotropic
turbulence exhibiting Kolmogorov scaling and forced anisotropic turbulence displaying Iroshnikov-
Kraichnan scaling perpendicular to the mean field direction. The findings limit the possible validity
of the Goldreich-Sridhar phenomenology to MHD turbulence with weak mean magnetic fields and
emphasize the important role of the Iroshnikov-Kraichnan picture for a large class of turbulent MHD
systems.
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Radiatively-driven convection in ice-covered lakes:
observations, LES, and bulk modelling
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Introduction

Convection driven by radiation heating is discussed. Such regime of convection is encountered in ice-
covered fresh-water lakes in late spring, when the snow cover overlying the ice disappears and the solar
radiation penetrates the ice. The solar heating is vertically inhomogeneous, the upper layers gain more
heat than the lower layers. As the water temperature is below the temperature of maximum density,
volumetric radiation heating raises the water density leading to gravitational instability that drives
convective motions. The structure of the evolving temperature profile shows evidence of penetrative
convection.

Following the pioneering study by Birge [2] and the first systematic study of radiatively-driven
convection in an ice-covered fresh-water lake by Farmer [5], a number of observational and modelling
studies have been performed that extended our knowledge of radiatively-driven convection in ice-
covered lakes (summaries are given in [5] and [18]). In this note, a brief summary of some recent
findings is presented. A bulk mixed-layer scaling suitable for radiatively-driven convection, the flow
structures present in the convective boundary layer (CBL), some turbulence statistics, and a bulk
model of radiatively-driven CBL are briefly discussed. The reader is referred to [1], [5], [6], [7], [9],
[10], [13], [14], [16], [17] and [18] for a more detailed account.

Data

Measurements of temperature fluctuations beneath the ice were taken in Lake Vendyurskoe during
the period 19–24 April 1999, using a temperature microstructure profiler [6]. The dissipation rate
ε of turbulence kinetic energy (TKE) was determined by fitting the Batchelor-type model tempera-
ture spectrum to the measured temperature spectra (see [6] for details of the procedure). The data
presented in Fig. 2(a) are the result of averaging over eleven profiles.

Large-eddy simulation (LES) data reported in [14], [13] and [18] are used. Convection is simulated
in a rectangular domain, doubly periodic in the horizontal x and y directions. Cases T1, T2 and T4 are
the low resolution runs with 64×64×64 grid points. Case L1 has higher resolution with 144×144×100
grid points in the x, y and z directions, respectively. Cases T1 and L1 mimic the CBL observed in
Lake Vendyurskoe, Karelia, north-western Russia, 21–23 April 1995 ([9], [10]). Case T2 mimics the
CBL observed in Lake Peters, Alaska, 16 May – 19 June 1959 [1]. A two-band approximation of the
decay law for the kinematic flux of solar radiation (i.e. the radiation heat flux divided by density and
specific heat of water), I(t, z) = Is(t)[a1 exp(−γ1z) + a2 exp(−γ2z)], is used in cases T1 and L1, and a
one-band approximation (a1 = 1 and a2 = 0) in case T2. Estimates of the solar radiation flux Is at the
lower surface of the ice, of the fractions a1 and a2 of the total radiation flux for different wavelength
bands, and of the attenuation coefficients γ1 and γ2 are taken from measurements. Case T4 is similar
to case T1, but a one-band approximation of the decay law is used, and the surface radiation flux is

2Corresponding address: Deutscher Wetterdienst, Abteilung Meteorologische Analyse und Modellierung, AP2003,
Kaiserleistr. 29/35, D-63067 Offenbach am Main, Germany. Phone: +49-69-8062 2705, fax: +49-69-8062 3721, email:
dmitrii.mironov@dwd.de
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set to an artificially large value. Further details of the simulations performed are given in [14], [13]
and [18].

The turbulence statistics are derived by averaging over horizontal planes and over a number of
recorded time steps. The sampling period covers several large-eddy turnover times, following the model
spin-up period. The turbulence quantities are normalised by the convective scales [18] of length, h−δ,
velocity, wR = [−(h − δ)BR]1/3, and temperature, θR = I(δ)/wR, prior to time averaging. Here,

BR = β[θ(δ)]I(δ) + β[θ(h)]I(h) − 2(h − δ)−1
∫ h
δ Idz is the buoyancy flux scale, and β = β(θ) is the

buoyancy parameter that depends on temperature θ. These scales are pertinent to convection driven
by radiation heating which is not confined to the boundary but is distributed over the water column.
The depth h to the CBL bottom is defined from the ice-water interface to the level in the entrainment
zone where the vertical buoyancy flux is a minimum. The depth δ of the stably stratified surface layer
that separates a convectively mixed layer from the lower surface of the ice is defined from the ice-water
interface to the level of the first zero-crossing of the vertical buoyancy flux. Results from simulations
of radiatively-driven convection are compared with the results from simulation of boundary-layer
convection driven by the surface buoyancy flux. The LES data from the case R0 reported in [12] are
used, where the now classical Deardorff ([3], [4]) convective scales, h, w∗ = (βQsh)

1/3 and θ∗ = Qs/w∗,
Qs being the surface temperature flux, are used to make turbulent quantities dimensionless.

The flow structure

Figure 1 illustrates the flow structure in simulation L1 of radiatively-driven convection and in simu-
lation R0 of convection driven by the surface buoyancy flux. The x − y plane vertical-velocity and
temperature snapshots are taken halfway through the CBL. Elongated patterns of descending mo-
tions and of positive temperature anomalies are readily identified in case L1. These patterns form a
quasi-regular mesh. The picture is rather different from that in simulation R0 of the CBL driven by
the surface buoyancy flux. More isolated structures often referred to as convective plumes are readily
identified in the central part of the surface-flux-driven CBL (see e.g. [11], [19] and [15] for discussions).

Mixed-layer scaling

Figure 2(a) shows the TKE dissipation rate from measurements and from LES. Numerical and em-
pirical data agree closely with each other. The dissipation rate profiles made dimensionless with the
length scale h− δ and the velocity scale wR show a clear tendency to group together, whereas the di-
mensional values of ε (not shown) differ by more than an order of magnitude between the simulations.
Figure 2(b) shows the dimensionless TKE obtained from LES. Although the dimensional TKE values
(not shown) differ significantly between the four cases, dimensionless TKE profiles group together
nicely. This lends considerable support to the mixed-layer scaling based on h− δ and wR ([5], [18]).

Skewness

Figure 3 shows the vertical velocity skewness Sw =
〈
w′3

〉
/
〈
w′2

〉3/2
and the temperature skewness

Sθ =
〈
θ′3

〉
/
〈
θ′2

〉3/2
. Primes denote turbulent fluctuations. The LES approximations to the ensemble

means are denoted by angle brackets. In both simulations L1 and R0, the vertical velocity field and the
temperature field are positively skewed, indicating that the downdraughts and positive temperature
anomalies are more localised than updraughts and negative temperature anomalies. Both Sw and Sθ
are larger in simulation R0 than in simulation L1, the difference in Sθ being larger in the mid-CBL
than the difference in Sw. As the skewness is indicative of the importance of non-local effects in
turbulence, Figure 3 suggests that turbulence in the radiatively-driven CBL is less non-local than
in the CBL driven by the surface buoyancy flux. This result is corroborated by the analysis of the
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Figure 1: Horizontal cross-sections of the dimensionless vertical-velocity fluctuations, w/wR and w/w∗,
and of the dimensionless temperature fluctuations, θ/θR and θ/θ∗, about their horizontal means for
simulation L1 – upper panels, and for simulation R0 – lower panels. L is the numerical domain size in
the x and y horizontal directions. Red (blue) colours correspond to high (low) values of w/wR,w/w∗,
θ/θR and θ/θ∗ as shown with the colour scale bars. Lines are zero contours.
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Figure 2: (a) dimensionless TKE dissipation rate ε(h−δ)/w3
R and (b) dimensionless turbulence kinetic

energy e/w2
R versus dimensionless depth (z − δ)/(h− δ). Heavy dotted curve shows measurements in

Lake Vendyurskoe [6]. Thin curves show LES data ([14], [13], [18]) for simulation L1 – solid curves,
T1 – dot-dashed curves, T2 – short-dashed curves, and T4 – long-dashed curves.
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Figure 3: Vertical profiles of the vertical-velocity skewness Sw and of the temperature skewness Sθ
for simulations L1 of radiatively-driven convection – solid curves, and R0 of convection driven by the
surface buoyancy flux – dashed curves.

budget of the temperature variance ([14], [13]). The relative importance of the third-order turbulent
transport term in the temperature variance budget (not shown) is reduced in case L1 as compared to
R0.
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Mixed-layer model

A bulk mixed-layer model is developed and applied to simulate the CBL deepening ([16], [17], [18]).
The model is based one a four-layer self-similar representation of the evolving temperature profile,
where a stably stratified surface layer, a convectively mixed layer, an interfacial entrainment layer,
and a stably stratified quiescent layer are distinguished. A stationary solution to the heat transfer
equation is used to describe the structure of the stably stratified layer just beneath the ice [1]. The
structure of the entrainment layer is approximated by the zero-order temperature jump [8]. The
evolution equation for the mixed-layer depth, the so-called entrainment equation, is derived, using
the TKE budget equation integrated over the mixed layer and the mixed-layer scaling. The model
is favourably tested against data from observations in a number of temperate and polar lakes [18].
Figure 4 illustrates the model performance.

An extension of the mixed-layer model for the case of salt water is proposed and tested against
observations ([7], [18]). Although the salinity is very low in most temperate and polar lakes, its
dynamical effect can be significant when the water temperature is close to the temperature of maximum
density.
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Figure 4: Successive temperature profiles in Lake Peters, Alaska, 16 May – 19 June 1959. θf is the
fresh-water freezing point. Solid curves are computed with the mixed-layer model. Symbols show
measured profiles [1]. A one-band approximation of the exponential decay law for solar radiation flux
is used with γ = 0.3 m−1. The surface radiation flux Is increases linearly from 4 · 10−7 K·m·s−1 to
8 · 10−6 K·m·s−1 over the period of simulation.
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Concluding remarks

Apart from being a prominent example of naturally occurring convective flows, a deep insight into the
structure and transport properties of radiatively-driven convection in ice-covered lakes is important
in many respects. An understanding of convection under the ice during spring is required for accurate
interpretation and prediction of chemical and biological processes in lakes. For example, convective
motions help suspend non-motile phytoplankton species in the surface layer, enhancing their growth.
Radiatively-driven convection in ice-covered lakes provides an excellent test case for turbulence models.
It is a rare example of geophysical convective flows where there is no mean shear. Data sets generated
through measurements in ice-covered lakes and through LES can be used to test and further develop
turbulence models of convective flows.
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Summary

Turbulent boundary layers control the exchange processes between the atmosphere and the ocean/
ice/land. The key practical problem is to determine the momentum, energy and matter fluxes in a
wide range of boundary-layer regimes from stable and neutral to convective. This paper focuses on
recently recognised non-local mechanisms typical of stable stratification, first of all, on the effect of
the free-flow stability on vertical transports in turbulent boundary layers. This work is motivated by
necessity to improve boundary-layer parameterisations in modern, very high resolution environmental
models, particularly, in coupled atmosphere-hydrosphere-biosphere models. Theoretical results are
compared with data from large-eddy simulation (LES) and data from field or lab experiments.

It is common knowledge that basic features of the stable boundary layer (SBL) exhibit a noticeable
dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional
boundary-layer meteorology was almost without exception the barotropic nocturnal SBL, which de-
velops at mid latitudes on the background of a neutral or slightly stable residual layer. The latter
separates the SBL from the free atmosphere. It is not surprising that the nature of turbulence in the
nocturnal SBLs is basically local, and their integral features do not depend on the properties of the free
flow. The near-surface and the inner portions of these layers are well described by the Monin-Obukhov
and the Nieuwstadt similarity theories, respectively. The nocturnal SBLs are sufficiently accurately
modelled using traditional, comparatively simple local closure schemes.

An alternative type of the SBL frequently observed in Polar and coastal regions is the long-lived
SBL that is the layer in which the stable stratification is maintained day and night. Then no residual
layer is observed, so that the SBL is placed immediately below the stably stratified free flow. Under
these conditions, the turbulent transports of momentum and scalars even in the surface layer - far
away from the SBL outer boundary - depend on the free-flow Brunt-Visl frequency, N . Furthermore,
integral measures of the long-lived SBLs (their depths and the resistance law functions) depend on N
and also on the baroclinic shear, S. One of essential mechanisms responsible for non-local features of
the long-lived SBLs is the damping effect of N on vertical extension of coherent eddies in the upper
part of the SBL. The above reasoning obviously calls for revision of the traditional theory. The papers
quoted in References and reflected in this presentation include the following developments:

• Generalised scaling for the surface layer turbulence accounting for the distant effect of the free-
flow stability. In the nocturnal SBL, this scaling is consistent with the classical Monin-Obukhov
theory.

• SBL depth formulation accounting for the free-flow stability, baroclinicity and non-steady pro-
cesses. It covers a wide range of regimes overlooked in earlier works and shows quite narrow
limits of applicability of the widely used bulk Richardson number approach. For the truly neutral
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planetary boundary layer it yields the Rossby-Montgomery depth-scale and for the nocturnal
SBL, the Zilitinkevich depth-scale.

• Generalised SBL bulk resistance and heat/mass transfer laws accounting for the effects of the
free-flow stability and baroclinicity on the A, B, C and D-stability functions. The inclusion
of the dependences on N and S results in essential collapse of LES data on these functions.
Thus the resistance and heat/mass transfer laws are rehabilitated as a practical tool the SBL
parameterisation. This approach has no alternative in very shallow SBLs, where traditional
surface-later flux-profile relationships become inapplicable.

The above theoretical results are verified against LES and atmospheric data. The new theory
answers a number of questions, which looked puzzling until present, in particular, how well-developed
turbulence is maintained in the stable surface layer at much larger Richardson numbers than the
classical theory permits. It affords development of principally improved SBL parameterisations for
use in applied environmental models.

The physical nature of the stably stratified turbulent layers in the ocean is principally the same
as in the long-lived atmospheric SBL. In both cases large eddies in the boundary layer are strongly
affected by the static stability in the adjacent free flow (the thermocline in the ocean or lakes), which
causes considerable reduction of the vertical extension of the vertical turbulent length scales. Thus the
above developments could be reformulated in oceanographic term and after appropriate modification
(in particular including the Langmuir circulations) and validation employed in ocean modelling.
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Introduction

Turbulence is one of the principal unsolved problems in physics. Difficulties in the theory of turbulence
stem from strong nonlinearity of the equations of motion. Various instabilities at large Reynolds
number Re lead to excitation of secondary flows, such as vortices and waves, developing on different
spatial and temporary scales. Nonlinear interactions between motions on various scales generate highly
irregular, “stochastic” flow field. Solutions exist only for simplest flows that are locally isotropic and
depend on a single nondimensional parameter Re.

In the context of geophysical, planetary and astrophysical turbulence, turbulent flows are further
complicated by such factors as spatial anisotropy and waves. On relatively small scales, gravity force
causes density stratification and emergence of internal gravity waves. On larger scales, Coriolis force,
caused by the planetary rotation, leads to flow quasi-two-dimensionalization and emergence of inertial
waves. On yet larger, planetary scales, the variation of the Coriolis force with latitude, or the so-
called β-effect, leads to the emergence of Rossby waves and flow zonalization. Models of turbulence
used to simulate all these flows must be capable of accounting for different effects on different scales.
Reynolds averaging does not differentiate between scales lumping them all together. On the other
hand, a spectral approach does account for scale-specific phenomena. This presentation is concerned
with the development of a spectral model for turbulent flows with stable density stratification.

Basics of the new spectral theory of turbulent flows with stable stratification

The theory is developed for a fully three-dimensional turbulent flow field with imposed vertical, sta-
bilizing temperature gradient. The flow is governed by the momentum, temperature and continuity
equations in the Boussinesq approximation,

∂u

∂t
+ (u∇)u − αgT ê3 = ν0∇2u− 1

ρ
∇P + f0, (1)

∂T

∂t
+ (u∇)T +

dΘ

dz
u3 = κ0∇2T, (2)

∇u = 0, (3)

where, P is the pressure, ρ is the constant reference density, ν0 and κ0 are the molecular viscosity
and diffusivity, respectively, α is the thermal expansion coefficient, g is the acceleration due to gravity
directed downwards, and T is the fluctuation of mean temperature Θ. The external solenoidal force
f0 mimics the effect of large-scale instabilities and maintains turbulence in a statistically steady state.
Note that the temperature equation (2) does not involve a separate forcing implying that the temper-
ature fluctuations are excited by the velocity fluctuations.

The central problem in solving Eqs. (1-3) is dealing with the nonlinearity. Another, but less se-
vere problem is caused by the coupling of equations (1) and (2). It would be natural to think of a
perturbative solution based upon the expansion in powers of Re. However, with large Re, this expan-
sion would be strongly divergent.
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The spectral approach appears to be the most appropriate to deal with both problems. The general
idea of this approach: since Re is small for smallest scales of motion, one can derive a perturbative
solution for these small scales. Then, using this solution, one can perform averaging over infinitesimal
band of small scale modes. This averaging yields corrections to “effective” or “eddy” viscosity and
diffusivity. Then, one repeats this procedure for the next band of smallest scales, etc. In this pro-
cess of successive small scale modes elimination the eddy viscosity and eddy diffusivity increase while
effective Re based upon eddy viscosity remains O(1).

Fourier-transformed velocity and temperature equations

Using continuity equation (3), eliminate pressure from the momentum equation. Then, write the
momentum equation in a self-contained form using formal solution to the temperature equation:

uβ(k̂) = Gαβ(k̂)f
0
α(k̂) − i

2
Gαβ(k̂)Pαµν(k)

∫
uµ(q̂)uν(k̂ − q̂)

dq̂

(2π)4
, (4)

T (k̂) = GT (k̂)fT (k̂) − iGT (k̂)kα

∫
uα(q̂)T (k̂ − q̂)

dq̂

(2π)4
, (5)

where k̂ = (ω,k) is a four-dimensional vector in Fourier space. The velocity Green function, Gαβ(k̂),
has a non-diagonal tensorial structure that reflects the anisotropy introduced by stable stratification,

Gαβ(ω,k) = G(ω,k) [δαβ +A(ω,k)Pα3(k)δβ3] . (6)

The auxiliary Green function, G(ω,k), is given by

G(ω,k) =
(
−iω + νhk

2 + νzk
2
3

)−1
, (7)

and the temperature Green function is

GT (ω,k) =
(
−iω + κhk

2 + κzk
2
3

)−1
, (8)

where νh, νz, κh and κz are horizontal and vertical eddy viscosities and eddy diffusivities, and Pαβ(k)
is the projection operator. The function A(ω,k) in Eq. (6) is given by

A(ω,k) = − N2

(
−iω + νhk2 + νzk2

3

) (
−iω + κhk2 + κzk2

3

)
+N2 sin2 φ

, (9)

where N ≡
(
αg dΘdz

)1/2
is the buoyancy, or Brunt-Väsälä frequency, and φ is the angle between k and

the vertical. Note that the complex poles in (9) are due to the presence of N in the denominator of
A. These poles reflect the appearance of internal waves in turbulent flow field. Finally, the forcing in
Eq. (5) is

fT (k̂) = −dΘ
dz
u3(k̂), (10)

expressing the fact that the temperature fluctuations are governed by the velocity fluctuations.
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Quasi-Normal Scale Elimination Model (QNSE)

We seek the solutions in the form of the Langevin equations:

uα(ω,k) = Gαβ(ω,k)fβ(ω,k), (11)

T (ω,k) = −dΘ
dz
GT (ω,k)u3(ω,k). (12)

Here, fβ(ω,k) is a stochastic force which represents the stirring of a given velocity mode by all other
modes. It is postulated to be Gaussian, solenoidal, zero-mean, white noise in time and homogeneous
in space. Thus,

〈fα(ω,k)fβ(ω
′,k′)〉 ∼ εk−3Pαβ(k)δ(ω + ω′)δ(k + k′). (13)

The Green functions Gαβ(ω,k) and GT (ω,k) include effective viscosities and diffusivities and describe
the damping of a mode k by nonlinear interactions with all other modes. The method based upon
Eqs. (11) and (12) is a mapping of the Fourier-transformed velocity and temperature fields onto
quasi-Gaussian fields whose modes are governed by the Langevin equations. The parameters of the
mapping, i.e., eddy viscosities and eddy diffusivities, are calculated using systematic process of suc-
cessive averaging over small shells of velocity and temperature modes that eliminates them from the
equations of motion. To ensure correct energy balance, the amplitude of the modal forcing is related
to the dissipation rate ε and the buoyancy destruction, i.e., balance is enforced between energy gain
due to the eddy forcing and energy loss due to the eddy damping. The energy budget is systematically
adjusted for every mode.

Corrections to effective viscosities and diffusivities

The mathematical procedure of the small-scale modes elimination algorithm is mathematically involved
and cannot be described here; the details are given in [1]. Analytical expressions for corrections for
the inverse velocity and temperature Green functions after one step in the small-scale elimination
procedure are:

∆G−1
αβ(ω, k, k3) = Pαµθ(k)

∫ >

Pνσβ(k − q)Gθν(ω − Ω, |k − q|, k3 − q3)Uµσ(Ω, q, q3)
dq dΩ

(2π)4
, (14)

∆G−1
T (ω, k, k3) = kαkβ

∫ >

Uαβ(Ω, q, q3)GT (ω − Ω, q, q3)
dq dΩ

(2π)4
, (15)

where the velocity correlation tensor is

Uµσ(q̂) = 2Dq−3Gαµ(q̂)G
∗
βσ(q̂)Pαβ(q) (16)

and
∫ >

means that the integration is performed over the shell of the smallest scales that are being
eliminated. These corrections, in turn, yield corrections to effective viscosities and diffusivities. Due
to anisotropy, corrections to viscosities and diffusivities are different in the vertical and horizontal
directions. Terms proportional to k2

3 and k2
h contribute to corrections in the vertical and horizontal

directions, respectively. Finally, a coupled system of four differential equations is obtained to calcu-
late all corrections. This system can be solved analytically for weak and numerically for arbitrary
stratification to obtain scale-dependent, horizontal and vertical eddy viscosities and diffusivities.
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Figure 1: Horizontal and vertical eddy viscosities and diffusivities normalized with the corresponding
value of the eddy viscosity in the neutral case, νn, as functions of k/kO, kO = (N3/e)1/2 is the Ozmidov
wave number. Dashed vertical line indicates the maximum wave number threshold of internal wave
generation in the presence of turbulence, Eq. (20).

QNSE model results

Figure 1 demonstrates different behavior of horizontal and vertical eddy viscosities and eddy diffu-
sivities with increasing stable stratification. While vertical viscosity and diffusivity are suppressed
compared to their values in neutral stratification, their horizontal counterparts are enhanced. Also,
while under the action of strong stable stratification the vertical eddy diffusivity becomes very small,
the vertical eddy viscosity retains a finite value compared to its corresponding neutral value.

Modification of the internal wave dispersion relation by turbulence

An approach based upon the Langevin equations provides a convenient framework for characterization
of nonlinear waves. Indeed, write the Langevin equation (11) as

G−1
αβ(ω,k)uβ(ω,k) = fα(ω,k). (17)

This equation describes linear, forced, stochastic oscillator whose eigenfrequencies are given by the
secular equation

det
[
G−1
αβ(ω,k)

]
= 0 (18)
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which yields the dispersion relation for internal waves in the presence of turbulence:

ω = ω0





1 −
(
k

kO

)4/3



(
κz
νn

− νz
νn

)
cos2 θ +

(
κh
νn

− νh
νn

)
sin2 θ

4 sin θ




2




1/2

. (19)

In the limit of strong stratification, classical dispersion relation for linear waves, ω = N sin θ, is
recovered. At small scales, turbulence dominates. Criterion for waves generation is:

kt(θ) = kO

∣∣∣∣∣
4 sin θ(

κz
νn

− νz
νn

)
cos2 θ +

(
κh
νn

− νh
νn

)
sin2 θ

∣∣∣∣∣

3/2

' 32kO| sin θ|3/2. (20)

RANS modeling

Invoking the energy balance equation, the turbulent exchange coefficients can be recast in terms of
the gradient Richardson number, Ri = N 2/S2, or Froude number, Fr = ε/NK, where S is the mean
shear and K is the turbulence kinetic energy, see Fig. 2.
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Figure 2: Horizontal and vertical turbulent exchange coefficients normalized with νn as functions of
Ri and Fr.

Following conclusions can be inferred from Fig. 2:

• For Ri > 0.1, both vertical viscosity and diffusivity decrease, with the diffusivity decreasing faster
than the viscosity (supposedly, due to the mixing from internal gravity waves);
• While, with increasing stratification, the vertical eddy diffusivity becomes small, the vertical eddy
viscosity remains equal to about 25% of its neutral value. This behavior indicates that internal waves
are more effective in mixing the momentum than the scalar;
• Horizontal mixing increases with Ri; the model accounts for flow anisotropy;
• The crossover from neutral to stratified flow regime is replicated as a sharp drop in the vertical eddy
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viscosities and eddy diffusivities compared to their neutral values;
• These results suggest that the critical Ri does not exist - turbulence survives even under very strong
stable stratification.

Comparison with experimental data

Vertical turbulent Prandtl number is important characteristic of momentum and temperature mixing
under the action of stable stratification. We have compared QNSE model predictions with laboratory
data from [2] and observations from [3]; see Figs. 3 and 4. In both cases the agreement was very good
even for large values of Ri.

Figure 3: Vertical turbulent Prandtl number as a function of Ri. Data points are laboratory measure-
ments from [2]; solid line represents QNSE models results.

Figure 4: Inverse Prandtl number, Pr−1
t = κz/νz, as a function of Ri. Experimental data points are

from [3].
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Turbulence spectra

Due to the flow anisotropy, traditional 3D energy spectrum provides only limited information. Various
1D spectra were computed analytically for weak stratification:

E1(k3) =
8

(2π)4

∫
U11(ω,k)dωdk1dk2 = 0.626 ε2/3 k

−5/3
3 + 0.214N 2k−3

3 . (21)

The QNSE model reproduces the k−3
3 spectrum; the transition from the Kolmogorov −5/3 to stable

stratification dominated −3 spectrum takes place on large scales. The coefficients in Eq. (21) are in
very good agreement with experimental data and LES [4].

For other 1D spectra one obtains:

E3(k1) =
8

(2π)4

∫
U33(ω,k)dωdk2dk3 = 0.626 ε2/3 k

−5/3
3 − 0.704N 2k−3

3 , (22)

E3(k3) =
8

(2π)4

∫
U33(ω,k)dωdk1dk2 = 0.47 ε2/3 k

−5/3
3 − 0.143N 2k−3

3 . (23)

The anisotropization of the flow field manifests itself as energy increase in the horizontal velocity
components at the expense of their vertical counterpart.

Comparison with experimental data: Composite spectrum of the vertical shear in
the upper ocean

Composite spectrum of the vertical shear in the upper ocean was compiled in [5]; it has never been
derived theoretically. We have succeeded to derive it analytically from the QNSE model in the limit
of weak stable stratification, k/kO ≥ 1; see Fig. 5. Note that although Eq. (21) has been derived in
the asymptotics k/kO ≥ 1, we have extended this solution beyond this range for illustration of the −3
slope.

Figure 5: Composite spectrum of the vertical shear in the upper ocean: data is from [5], the solid line
is Eq. (21).
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Figure 6: Evolution of the potential temperature (left panel) and wind (right panel) profiles in
CASES99 as simulated by the new K − ε model.

A new K − ε model

Based upon the QNSE theory, we have developed a new K − ε model. The effect of stratification
was incorporated in the ε-equation similarly to the effect of rotation in the Detering & Etling (1985)
model [6]. The new model has been implemented in the 1D version of the weather forecast model
HIRLAM and tested against observational data collected in several campaigns. Details of the new
model and extensive comparisons with data are given in [7]. Here we show only several examples
of these comparisons in order to demonstrate good agreement between the data and new model
predictions.

Conclusions

• The QNSE is a quasi-normal spectral model; its derivation is maximally proximate to first principles;
• The QNSE model explicitly resolves horizontal-vertical anisotropy induced by stable stratification;
• The model accounts for the combined effect of turbulence and waves;
• Anisotropic turbulent viscosities and diffusivities are in good agreement with experimental data;
• Anisotropic spectra are calculated; it is demonstrated that the energy of the horizontal flow compo-
nents increases at the expense of vertical component;
• Transition from the Kolmogorov to the N 2k−3

3 spectra for the 1D, E1(k3) spectrum is derived ana-
lytically for the first time;
• Model yields modification of the classical dispersion relation for internal waves that accounts for
turbulence;
• Model provides subgridscale closures for both LES and RANS;
• Theory has been implemented in K − ε model of stratified ABL;
• This K − ε model applies to engineering flows and ABL with/without effects of rotation and strati-
fication using invariant set of constants;
• Good agreement with CASES99, BASE and SHEBA data sets has been found for cases of moderate
and strong stable stratification.
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Figure 7: Vertical profiles of mean potential temperature (PT) for the cases of moderate (left panel)
and strong (right panel) stable stratification simulated with the new (solid line) and standard (dashed-
dotted line) K − ε models. The LES results by Kosovic and Curry (2000) [8] are shown by asterisks.
The initial PT profiles (marked as PT0) are shown by straight solid lines.
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Introduction

Planetary rotation, stable density stratification, geometrical constraints etc. lead to quasi-two-dimen-
sionalization of the atmospheric and oceanic circulation on large scales. On even larger scales, the
circulations are affected by the latitudinal variation of the Coriolis parameter (β-effect). The β-
effect breaks the horizontal isotropy of the flow field and facilitates its self-organization in the zonal
(east-west) direction giving rise to quasi-one-dimensional structures - zonal jets. The basic physics of
anisotropic turbulence with the β-effect can be captured by a two-dimensional (2D) vorticity equation
solved on a plane tangential to the spherical planetary surface (the so called β-plane approximation)
or on the entire surface of a rotating sphere. Anisotropic properties of this vorticity equation and
their manifestation in computer simulations, terrestrial and planetary environment are the subject of
this presentation.

Computer simulations

In 2D setting with small-scale forcing and without large-scale drag, vorticity equation does not have a
steady-state solution because due to inverse cascade, energy propagates to ever smaller wave number
modes. A steady state can be attained in flows where large-scale drag is introduced. Important
questions then arise about the physical nature of this steady-state and its sensitivity to the choice
of the drag, i.e., about the universality of the steady state. Due to the importance of these issues,
simulations with and without the drag will be discussed separately.

Unsteady simulations

There exist numerous studies of the 2D vorticity equation on β-plane; Chekhlov et al. [1] have
provided detailed analysis of anisotropic energy transfer and anisotropic spectrum. They considered
forced, non-steady-state vorticity equation,

∂ζ

∂t
+
∂

(
∇−2ζ, ζ

)

∂(x, y)
+ β

∂

∂x

(
∇−2ζ

)
= νo∇2ζ + ξ, (1)

where ζ is the fluid vorticity, νo is the molecular viscosity, and ξ is the forcing; x and y are directed
eastward and northward, respectively; the constant β is the background vorticity gradient describing
the latitudinal variation of the normal component of the Coriolis parameter, f = f0 +βy; the forcing ξ
was concentrated around some high wave number kξ, was supplying energy to the system with the rate
ε, and was assumed random, zero-mean, Gaussian and white noise in time. By equating the isotropic
turbulence turnover time and the period of the Rossby wave, one can find a transitional wave number
separating regions of turbulence and Rossby wave domination,

kt(φ) = kβ cos3/5 φ, kβ = (β3/ε)1/5, φ = arctan(ky/kx). (2)

The contour (2) in Fourier space has been coined “the dumb-bell shape” by Vallis and Maltrud [2] or
“lazy 8” by Holloway [3]. While the β-effect and ensuing flow anisotropy are relatively weak for the
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modes k > kβ, the modes inside the dumbbell are strongly anisotropic and Rossby wave dominated.
Furthermore, we have established by direct calculation that there exists strong anisotropic energy flux
to zonal modes from all other modes which rapidly increases for smaller modes [1]. As a result, the
energy spectrum becomes strongly anisotropic. For zonal (φ → ±π/2) and non-zonal, or residual
(φ 6= ±π/2) components, the following spectral distributions were established:

EZ(k) = CZβ
2k−5, φ = ±π/2; CZ 0.3 to 0.5, (3)

ER(k) = CKε
2/3k−5/3, φ 6= ±π/2; CK 4 to 6. (4)

A similar anisotropic spectral distribution was later found on the surface of a rotating sphere [4, 5].
In this case, β should be replaced by Ω/R, where Ω and R are the angular velocity and the radius of
the sphere, respectively. The zonal and residual spectra can then be written as

EZ(n) = CZ(Ω/R)2n−5, CZ ' 0.5, m = 0 (5)

ER(n) = CKε
2/3n−5/3, CK 4 to 6, m 6= 0., (6)

where n and m are the zonal and meridional wave numbers, respectively, for spherical harmonics
(precise definitions of EZ(n) and ER(n) are given in [5]). The transitional wave number kβ , defined
in Eq. (2), should be replaced by nβ = [(Ω/R)3/ε]1/5 in spherical geometry.

Steady-state simulations and the nature of universality

When large-scale drag is present, the balance between small-scale energy injection and large-scale
energy withdrawal makes a steady-state solution possible. To understand the physical nature of this
solution, the following important questions need to be addressed:

• What is the parameter range that admits the steady-state regime?
• How sensitive is the steady state to the large-scale friction?
• How sensitive is the steady state to the forcing?
• Is the steady state stochastic?

In our previous investigation [5, 6] it was found that the functional representation of the large-scale
friction should be close to the linear (Rayleigh) drag; higher-order inverse Laplacian formulation (the
so-called hypofriction) is expected to distort the inverse energy cascade and lead to a non-universal
behavior. In addition, the steep zonal spectrum results in very slow evolution of the flow field; if τ
is characteristic time scale of the large-scale drag, then the establishment of a steady-state has du-
ration of about 10 τ while to assemble sufficient statistics for spectral analysis, one needs to extend
integration to about 100 τ [7]. Keeping these requirements in mind, we have investigated the nature
of the steady-state in a series of long-term simulations using the 2D vorticity equation on the surface
of a rotating sphere. It was found that the parametric range which admits the flow regime with the
spectrum (5)-(6) is restricted by the following criteria:

(a) forcing acts on scales largely unaffected by β-effect;
(b) nβ/nfr should be at least half a decade, to ensure sufficient inertial range (nfr is the wave number
characterizing the large-scale drag);
(c) nfr ≥ 4 – large-scale drag is relatively small yet large enough to prevent accumulation of energy
in the largest available planetary modes;
(d) small-scale dissipation is large enough to suppress the enstrophy subrange.
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Parameter range delineated by these criteria is shown as triangle on Fig. 1. All simulations with
parameters complying with these limitations are shown as dots concentrated within the triangle; they
point to the existence of the universal anisotropic flow regime. On the other hand, most of the tri-
angles and stars pertain to simulations whose parameters are outside of the aforementioned triangle;
they reveal lack of universal behavior [8, 9].
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Figure 1: Parameter space of different flow regimes in β-plane turbulence.

Let us now collate information about manifestations of this universal flow regime in real world.

The Grenoble experiment

Recently, Read et al. [10] have conducted an experiment in the world’s largest rotating tank (known
as the Coriolis facility; its diameter is about 14 m) in Grenoble, France. The small-scale forcing was
delivered by a thin layer of salt carefully sprayed over the water surface; it generated small convective
plums. The experiments included cases of both straight and sloping bottom; the latter was to create a
topographic β-effect. The jet-like structures (zonation) developed in sloping bottom experiments only.
The energy spectrum became anisotropic; the non-zonal spectrum preserved the −5/3 slope while the
zonal spectrum became much steeper and exhibited the tendency to attain the theoretical −5 slope
given by Eq. (3) with the value of CZ close to 0.5.

Anisotropic turbulence and large-scale circulation on giant planets

Large-scale circulation in the cloud layers of the outer planets is a good candidate for the development
of the aforementioned anisotropic flow regime for the following reasons:

• large-scale planetary flows are two-dimensionalized due to the actions of stable stratification, rota-
tion, geometrical constraints, etc.;
• the outer planets are gaseous, they don’t have solid boundaries, such that their large-scale friction
is relatively low;
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• convective cells, solar and/or internal heating may provide the necessary small-scale forcing that
would give rise to anisotropic inverse energy cascade;
• the Burger number, Bu = (Ld/R)2, is small for all outer planets [11], leaving the possibility for flow
barotropization and development of the anisotropic inverse cascade in the barotropic mode (here, Ld
is the first baroclinic Rossby deformation radius);
• the inertial range is large since nβ/nfr ∼ 10 to 102;
• small nfr allows considerable energy accumulation in the barotropic mode such that it may dominate
the movement of the clouds and, thus, determines the shape of the cloud tracks.

Spectral analysis of zonal flows on the outer planets may help to determine the nature of their at-
mospheric circulations. Such analysis was performed using observational data from Voyager 1 and 2
and Hubble Space Telescope; its results are summarized on Fig. 2 borrowed from [5]. As one can see,
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Figure 2: Top row: observed zonal profiles deduced from the motion of the cloud layers; bottom row:
observed zonal spectra (solid lines and asterisks) and theoretical zonal spectra Eq. (5) (dashed lines)
on the giant planets [all spectra are normalized with their respective values of (Ω/R)2]. (Note that the
data for Uranus is very limited and only gives an idea of the spectral amplitude but not the slope.)

theoretical and observed spectra agree in both slope and the amplitude. A detailed discussion can be
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found in [11].

Direction of the equatorial jets in simulations on rotating sphere

Numerous simulations with 2D vorticity equation on the surface of a rotating sphere produced west-
ward equatorial jets. Although such jets agree with the circulation on Uranus and Neptune, they are
at variance with the equatorial jets on Jupiter and Saturn. This indeed could be a serious limitation
of the barotropic models. We have conducted a series of long-term simulations to investigate this issue
in detail; the results are summarized on Fig. 3. Obviously, the idea that the equatorial jet produced
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Figure 3: Zonal velocity profiles from various simulations using 2D vorticity equation on the surface
of a rotating sphere.

in barotropic simulations is always directed westward is fallacious although a certain preference to the
formation of westward equatorial jets was noticeable. Generally, the flow field was slowly evolving
and meandering in the north-south direction as a whole such that the equatorial jets could be either
eastward or westward; there were even situations when the equatorial jet did not exist at all. Slow
fluctuations of the flow field and dramatic changes in the direction of the equatorial jet indicate that
(a) the flow field was stochastic and (b) long-term simulations with any model are required to fully
understand the nature of the equatorial circulation.

The ocean-Jupiter connection

Eddy-permitting simulations of general oceanic circulation have consistently showed systems of sub-
surface narrow zonal jets filling the entire ocean domain; see, e.g., [12] for the Atlantic and [13] for
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the North Pacific. Recently, the narrow zonal jets signature has also been detected in the maps of the
surface geostrophic currents obtained from satellite altimetry [14]. Comparing the visual appearance
of the alternating zonal jets on the outer planets and in the ocean, Fig. 4 (source: [15]), one may
question whether or not the resemblance between the two is more than just a coincident. To answer

Figure 4: (a) Composite view of the banded structure of the disk of Jupiter taken by NASAs Cassini
spacecraft on December 7, 2000 (image credit: NASA/JPL/University of Arizona); (b) zonal jets at
1000 m depth in the North Pacific Ocean averaged over the last five years of a 58-year long computer
simulation [13]. The initial flow field was reconstructed from the Levitus climatology; the flow evolution
was driven by the ECMWF climatological forcing. Shaded and white areas are westward and eastward
currents, respectively; the contour interval is 2 cm/s.

this question, a spectral analysis of a 5-year long model-generated data set for the North Pacific [13]
was performed. A 60◦ in longitude sector of the Pacific was carved out. This sector was repeated 6
fold in the northern hemisphere, mirror-reflected relative to the equator and repeated 6 more fold in
the southern hemisphere to assemble a global dataset on the sphere. A spectral analysis in spherical
harmonics was performed to calculate both zonal and residual spectra [15]. The calculated spectrum
was averaged over the last 5 years of a 58-year long integration starting from the Levitus climatology.
As the simulated jets exhibit an equivalent barotropic structure, the analysis is based on the vertical
average from the surface to 500 m depth. The results of this analysis are shown on Fig. 5. The
averaged zonal and non-zonal oceanic spectra are presented in Fig. 5a. A −5 slope is immediately
evident for the zonal flows. Similarly to the case of giant planets (Figs. 5b and 5c), this slope extends
upward to the dominant scale of the zonal jets yet for smaller n the spectrum becomes flat. The
universality of EZ(n) is supported not only by the −5 slope, but also by the constancy of CZ ' 0.5
for all cases. The energy spectrum for the nonzonal components, ER(n), exhibits a slope close to
−5/3 over the range n = 60 − 120. The departure of ER(n) from the −5/3 slope for n > 120 could
be attributed to various factors, such as the interaction between barotropic and baroclinic modes, the
effect of direct forcing, damping by the bottom topography, etc. Currently, the resolution of the data
and the surface coverage are insufficient to determine ER(n) for the flows on outer planets. Let us
emphasize that both zonal and residual spectra of the horizontal currents have been obtained here
from fully 3D, realistic simulations of the circulation in the north Pacific rather than from idealized
barotropic 2D simulations used so far in theoretical studies.

For comparison, EZ(n) and ER(n) obtained from a model of 2D flow on a rotating sphere [5] are
shown in Fig. 5e. These spectra are averaged over the equivalent of about 300 years. As could be
expected, longer averaging produces smoother spectra. The observed zonal spectra for Jupiter and
Saturn (Figs. 5b and 5c) are, in fact, instantaneous spectra since the characteristic time for the large-
scale variability on these planets, obtained by simple energy balance arguments [16], is larger than
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Figure 5: Averaged and instantaneous zonal (thick solid lines) and non-zonal (thin solid lines) energy
spectra on rotating planets with small Bu (top row) and in barotropic 2D simulations on a rotating
sphere [5] (bottom row); the high wave number spikes on the latter correspond to the small-scale
forcing. All spectra are non-dimensionalized such that EZ(1) = CZ . Idealized −5 (thick dashed lines)
and −5/3 (thin dashed lines) slopes are superimposed, based upon equations (5) and (6).

the time of observations. Recent long-term observations of the Jupiter jets confirm low variability of
the off-equatorial jets main features. Note that the equatorial jets on the gas giants may be governed
by different mechanisms (e.g., deep rotating convection) and their variability may be higher. Finally,
Fig. 5d shows a typical instantaneous zonal spectrum from the 2D simulation. Large fluctuations are
characteristic of all instantaneous spectra. Instantaneous spectra (not shown here) in the ocean also
exhibit fluctuations of a similar magnitude.

The universal energy spectra of the zonal flows in terrestrial ocean, planetary atmospheres and the lab-
oratory suggest that the jets are maintained by the momentum flux from the eddies of smaller scales.
(In physical space, the convergence of eddy momentum flux balances the large-scale damping of the
jets.) A rigorous confirmation of the presence of the inverse energy cascade requires consideration of
the scale-by-scale budget of zonal kinetic energy which has not been performed yet.

Conclusions

• Both zonal and residual (when available) spectra found in the Grenoble experiment, on giant planets,
and in the subsurface oceanic circulation follow the same anisotropic distribution as those in computer
simulations;
• The coefficient CZ appears to be the same for all flows; CZ ' 0.5 may be a universal constant;
• Mid-depth zonal jets in the ocean and those on outer planets are governed by the same non-linear
dynamics and appear to be quasi-barotropic;
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• Cassini mission may provide better observational evidence for zonal jets’ vertical structure for both
Jupiter and Saturn;
• The Grenoble experiment links together data from the outer planets, subsurface oceanic circulation
and computer simulations and seems to confirm that all these flows are governed by strongly non-linear
dynamics with anisotropic inverse energy cascade;
• Mid-depth zonal jets may be important for climate dynamics as they are the fastest currents in the
deep ocean.
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At infinitely high Reynolds numbers turbulence may be treated as a gas of elementary vortex couples
(special Batchelor couples called vorticons) forming tangles of closed lines (∼ smoke rings). Similar
to Brownian particles in a plane, in a (not necessarily plane) cross section through a tangle the
‘footprints’ of those lines perform chaotic movements. When colliding, due to their spin they may
either be annihilated or chaotically reflected. The latter case represents diffusion of turbulence, the
former its dissipation.

The statistical treatment of this simplistic mechanic image gives a system of parabolic equations
(reaction-diffusion system) for turbulence kinetic energy, k, and enstrophy, Ω. It is free of empirical
parameters and describes experiments very well, including stratified turbulence and its collapse into
internal gravity waves. At solid walls, application of the adiabatic boundary condition for the turbu-
lence kinetic energy leads for the non-stratified case directly to the logarithmic law of the wall without
any further assumptions. The von-Karman constant is analytically derived as 1/

√
2 · π ≈ 0.399.

In the stratified case we find the Monin-Obukhov scaling, Φ = 1 + 4 · z/LMO, where LMO is
the Monin-Obukhov length and z the distance from the wall. The Prandtl-Kolmogorov relation
reads in this image KM = cµ k

2/ε with cµ = π−2 ≈ 0.101 where ε = kΩ/π is the dissipation rate
and KM the eddy viscosity. With the Monin-Obukhov length the Monin-Obukhov scaling reads
Φ = 1+4 · z/LMO and the turbulent Prandtl number function is σ = KM/KH = 1

2/(1− τ2/T 2) which
for structural equilibrium gives the following simple function of the gradient Richardson number, Rg:
σ = 1

2/(1−2 ·Rg). Here τ = 2π/Ω is the time scale of turbulence and T is the period of the buoyancy
oscillations.

Although the theory does not contain any spectral information (the dissipation is treated as an
instantaneous point process of vorticon annihilation), the closure is compatible with a Kolmogorov
spectrum and a Kolmogorov constant as follows, CK = 2

3 · π2/3 ≈ 1.43.

This image of turbulence compares well with observations by Businger et al. (1971), Dickey &
Mellor (1980), Rohr et al. (1988) as well as with ideas by Van Atta (1999) and by D’Asaro & Lien
(2000).

One of the consequences of the new view offered here is the necessity to not longer neglect those
short internal waves which are continuously generated by shear turbulence. They need to be taken
into account in the momentum balance through their internal wave drag. This means that the total
momentum flux in MO layers should almost vanish because the internal-wave drag 〈ũ w̃〉 almost
compensates the Reynolds stress 〈u′ w′〉.

The author thanks Hartmut Peters in Miami for his contributions to the present theory, Boris
Galperin in St. Petersburg/FL, Semion Sukoriansky in Beer-Sheva and Sergey Zilitinkevich in Helsinki
for important hints. Major parts of the talk may be found in [1, 2] in greater detail.
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Abstract

The Millionshchikov hypothesis of quasi-normal (Gaussian) distribution of the one-point fourth-order
moments fails for convective boundary layer conditions. This is because the effect the of the semi-
organized coherent structures (plumes) leads to skewed distributions, the third-order moments are
non-zero. New closures for fourth-order moments are suggested which take into account the self
organization of flow into coherent structures. These new closures depend on skewnesses. They are in
very good agreement with the aircraft measurements and large-eddy simulation data.

Introduction

The Millionshchikov hypothesis [1], [2] states that in higher-order turbulence closure (HOC) models
the one-point fourth-order moments (FOM) can be approximated as quasi-normal (Gaussian) even if
the third-order moments (TOM) are non-zero. For a long time this hypothesis was adopted without
discussion in a large number of turbulence closure models (see e.g., [3], [4]). Recent theoretical studies
(e.g., [5], [6], [7]), analyses of measurements (e.g. [6], [8]), and large-eddy simulation (LES) data
(e.g. [6], [7]) indicate that the Millionshchikov hypothesis fails for the FOM of vertical velocity and
temperature in convective boundary layer (CBL) conditions, while the FOM of horizontal along and
across wind components are close to Gaussian. In this paper we discuss (following [6], [7]) the problem
of refinement of the Millionshchikov hypothesis as applied to CBL conditions. We begin with showing
that the Gaussian parameterisation for FOM is a poor approximation for moments involving vertical
velocity and temperature fluctuations.

Testing of the Millionshchikov hypothesis versus data and LES

In Figure 1 the FOM are plotted versus their Gaussian parameterisations

a′b′c′d′ = a′b′ · c′d′ + a′c′ · b′d′ + a′d′ · b′d′, (1)

where a′, b′, c′, d′ are fluctuations of vertical w′, along wind u′, cross wind v′ velocity components and
temperature θ′. The measurements and LES data are plotted at the ordinate, and the parameterisa-
tions at the abscissae.

The aircraft measurements (dots) are obtained during the ARTIST-campaign [9] in a convectively
driven boundary layer over the ocean with 8-12 m/s wind speed. The LES data (solid lines) are from
a simulation of a convective boundary layer with 12 m/s geostrophic wind speed, which is described
in detail in [10]. Both data sets are scaled by Deardorff scaling.

All FOM involving the vertical velocity component or the temperature are significantly larger
than their Gaussian prediction. Thus the Gaussian parameterisation systematically underestimates
these FOMs, and gives an estimation of a lower bound for all these moments. Both aircraft mea-
surements and LES data show that the Millionshchikov hypothesis is applicable to horizontal velocity
components.
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Figure 1: Aircraft measurements (dots) and LES results (solid lines) of fourth order moments (ordi-
nates) versus their parameterisations (abscissae) based on the Gaussian assumption Eqs. (1). σf are
the explained variances.

As an indication for the suitability of the parameterisation we calculate the explained variances
σ2
f = 1 − (yi − f(xi))2/(yi − y)2, where yi are the aircraft measurements and LES data, respectively,

and f(xi) are the corresponding parameterisations. For the vertical wind component of the LES data,

the Gaussian parameterisation 3w′2
2

only explains 68% of the variance of w′4, and for the aircraft
data 67%. The agreement is worse for some cross moments for the aircraft data, since measurement
accuracy contributes significantly to the unexplained variance. The LES data do not suffer such errors
and lead to higher values of the explained variance.

The LES data are plotted as a continuous line in the order of increasing height. The loops in
these plots, especially for the moments w′4, w′3θ′ and w′2θ′2 represent an ambiguity of the relation
depending on height. The ambiguity of the Gaussian parameterisation is an unphysical feature and
an the essential disadvantage of any parameterisation.
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The refinement of the Millionshchikov hypothesis and new expressions for FOM

The drawbacks of the parameterisations (1) are linked to the fact that they do not include the effects
of the coherent structures [11] that are typical of CBL turbulence. In [6], [7] we assumed that deviation
of statistics from the Gaussian behaviour is caused by the most energetic CBL coherent structures -
plumes. The plume flow is characterized by narrow strong updrafts of warm air surrounded by wide
downdrafts of cold air. The plumes statistics is modeled with the help of 16-delta probability density
function (PDF) [7]

P (w′, θ′, u′, v′) = [puwfrδ(w
′ − wu)δ(θ

′ − θw) + pdcfrδ(w
′ − wd)δ(θ

′ − θc)+

pucfrδ(w
′ −wu)δ(θ

′ − θc) + pdwfrδ(w
′ − wd)δ(θ

′ − θw)]δ(u′ − uf )δ(v
′ − vr)+

[puwbrδ(w
′ − wu)δ(θ

′ − θw) + pdcbrδ(w
′ − wd)δ(θ

′ − θc)+

pucbrδ(w
′ − wu)δ(θ

′ − θc) + pdwbrδ(w
′ − wd)δ(θ

′ − θw)]δ(u′ − ub)δ(v
′ − vr)+

[puwflδ(w
′ − wu)δ(θ

′ − θw) + pdcflδ(w
′ − wd)δ(θ

′ − θc)+

pucflδ(w
′ −wu)δ(θ

′ − θc) + pdwflδ(w
′ − wd)δ(θ

′ − θw)]δ(u′ − uf )δ(v
′ − vl)+

[puwblδ(w
′ − wu)δ(θ

′ − θw) + pdcblδ(w
′ − wd)δ(θ

′ − θc)+

pucblδ(w
′ − wu)δ(θ

′ − θc) + pdwblδ(w
′ − wd)δ(θ

′ − θw)]δ(u′ − ub)δ(v
′ − vl), (2)

where δ(y) is the Dirac delta function. Here all p are the joint probabilities, and indices u, d, w, c, f, b, l, r
serve to denote updraft, downdraft, warm, cold, forward, backward, left, right fluctuations, respec-
tively. Thus puwfr, pdcfr are the joint probabilities of warm updraft wu, θw and cold downdraft wd, θc
together with the joint probability pucfr, pdwfr of cold updraft wu, θc and warm downdraft wd, θw in
along wind forward component uf with deviation to the right vr. The joint probabilities puwfl, pdcfl,
pucfl, pdwfl are the probabilities of warm updraft, cold downdraft, cold updraft and warm downdraft
of the along wind forward component with deviation to the left vl. The remaining joint probabilities
puwbr, pdcbr, pucbr, pdwbr and puwbl, pdcbl, pucbl, pdwbl of along wind backward streams ub with deviations
to the right vr and left vr, respectively, are defined in the same way.

The PDF model (2) is the generalization of the traditional mass-flux 2-delta PDF model [12], [13]
and 3-delta PDF models of [6] and [14].

Straightforward calculation of FOM using the PDF (2) leads to the FOM which are not functions
of SOM only, but of TOM as well. Precisely, the FOM are quadratic functions of the skewnesses

Sy = (y′3)/y′2
3/2

). Thus a measure of deviation of statistics from the Gaussian behaviour is provided
by the skewnesses of vertical Sw, the along wind Su, cross wind Sv horizontal velocity components
and temperature Sθ.

Assuming that effects of the semi-organized coherent structures (plumes) are dominating in the
limit of large skewnesses, and that in the limit of small skewnesses the FOM follow the Millionshchikov
hypothesis, we suggest to generalise the Millionshchikov hypothesis to the new FOM closure:

w′4 = a3

(
1 + d3S

2
w

)
w′2

2
, (3)

θ′4 = a4

(
1 + d4S

2
θ

)
θ′2

2
, (4)

w′3θ′ = a5

(
1 + d5S

2
w

)
w′2 w′θ′, (5)

w′θ′3 = a6

(
1 + d6S

2
θ

)
θ′2w′θ′, (6)

w′2θ′2 = a7(1 + d7
Cwθ

1 + 2C2
wθ

SwSθ)
(
w′2θ′2 + 2w′θ′

2
)
, (7)
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for vertical velocity and temperature fluctuations, and in a similar way for vertical velocity and
horizontal velocity fluctuations, e.g.

u′4 = a8

(
1 + d8S

2
u

)
u′2

2
, (8)

v′4 = a9

(
1 + d9S

2
v

)
v′2

2
, (9)

w′2u′2 = a10(1 + d10
Cwu

1 + 2C2
wu

SwSu)
(
w′2u′2 + 2w′u′

2
)
, (10)

w′2v′2 = a11(1 + d11
Cwv

1 + 2C2
wv

SwSv)
(
w′2v′2 + 2w′v′

2
)
. (11)

Here

Cwθ =
w′θ′

w′2
1/2
θ′2

1/2
, Cwu =

w′u′

w′2
1/2
u′2

1/2
, Cwv =

w′v′

w′2
1/2
v′2

1/2
(12)

and ai, (i = 3, ..., 11) and di, (i = 3, ..., 11) are dimensionless parameters.

Assumption of Gaussian behaviour in the limit of zero skewness leads to

ai = 3 (i = 3, ..., 6, 8, 9), ai = 1 (i = 7, 10, 11), (13)

and requirement of 16-delta pdf in the limit of large skewness leads to

di =
1

3
(i = 3, ..., 6, 8, 9), di = 1 (i = 7, 10, 11). (14)

Such a choice is in agreement with (i) dimensional analysis, (ii) tensor invariance, (iii) symmetry
conditions, and (iv) realisability requirements. Our parameterisations for FOM (eqs. (3) to (11)) are
reversible in time, i.e. the moments remain the same under the transformation t→ −t, similar to the
Gaussian parameterisations (eqs. (1)). This parameterisation was called universial model in [6], [7].

Testing of new FOM versus data and LES

In Figure 2 we compare the refined Millionshchikov parameterisations given by eqs. (3) to (11) against
measurements and LES data. Judging by the explained variance, almost all moments show a better
agreement for both aicraft measurements and LES data. The exception is the FOM of the across wind
component v′4, which is virtually unchanged, since the skewness of v is very small.

We emphasize that the ambiguity in the relation between actual and parameterised moments has
disappeared, which could be seen from the collapsed loop in the LES data. The absence of ambiguity
shows that our new parameterisations are selfconsistent and physically grounded.

We also tested the parameterisations (3) to (11) with LES simulation data obtained for 4 and 0 m/s
geostrophic wind speed with all other boundary layer parameters unchanged. These data confirm in the
same way the unsuitability of the Millionshchikov hypothesis and show significantly better agreement
with our new formulations.

Conclusions

The measurements and LES data at CBL conditions show poor performance of the Millionshchikov
hypothesis. The results presented in Figures 1 and 2 show that the Millionshchikov hypothesis is not
suited for parameterisation of FOM involving the vertical velocity and temperature at CBL conditions.

The new parameterisations (3) to (11) have better a skill in predicting the FOM, and can be
used either to reduce the number of degrees of freedom of the traditional moment equations or to
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Figure 2: Aircraft measurements (dots) and LES results (solid lines) of fourth order moments (ordi-
nates) versus the new parameterisations Eqs. (3) to (11) (abscissae). σf are the explained variances.

generate new closure schemes. Since the parameterisations (3) to (11) express the FOM in terms of
second-order moments and TOM, the minimal closure model for convective conditions should be a
TOM closure model, see e.g. [6].

The new parameterisations are quite general. A recent study [15] shows that eqs. (3) to (7) is a
good approximation for FOM in deep-ocean convection with rotation conditions. Kupka has shown
that eqs. (3) to (7) can be used for parameterising FOM of convection in stars (see the article of F.
Kupka in this volume). Furthermore, the parameterisation ist also applicable for passive scalars like
the moisture in polar conditions [16].
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T. Georgiadis, A. Ippoliti, L. Kaleschke, C. Lüpkes, U. Maixner, G. Mastrantonio, F. Ravegnani,
A. Reuter, G. Trivellone, A. Viola, Berichte zur Polarforschung, 305, (1999) 81pp.
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Abstract

Energy transport by turbulent convection is studied in both astrophysics and geophysics. We briefly
outline the physics of convection as well as the differences between astrophysical and geophysical
turbulent convective flows. The case of convection in stars including our sun is described in more
detail. Reynolds stress models have been suggested for quantitative predictions for both stellar and
geophysical convection. One of the main problems of such models is how to account for the influence
of the observed large scale coherent structures. We discuss a possible solution which has first been
suggested for the convective planetary boundary layer and show how it performs when applied to
convection in our sun.

Astrophysical and geophysical convection

Both astrophysics and geophysics deal with systems where a fluid with a density ρ is stratified as
a function of depth by gravitational forces such that ρtop < ρbottom. In this case a temperature
stratification Ttop < Tbottom can become unstable, as hot fluid moving upwards expands (adiabatically)
by an amount sufficiently large for its density to become smaller than the density of the surrounding,
colder fluid at the new location further upwards. The result of this process is a net buoyancy force
which drives the convective motions. Such a buoyancy driven instability can occur in stars as well as
in the atmosphere and the oceans of the earth. The resulting flow carries heat, provides an efficient
way of mixing within the fluid, and in case of hot plasmas (i.e. in stars) it may also create a magnetic
dynamo and hence a (variable) magnetic field. The sun is a good example for such dynamo processes.

Astrophysical and geophysical convection involve huge length scales L and velocities U . The latter
may be as large as 1/3 of the speed of sound (as in the sun, for instance). Scales of a few km
(terrestrial) or even several 10000 to 100000 km (astrophysical) are to be compared with the scales of
dissipation in the mm to cm range, where viscous effects dominate. The resulting Reynolds numbers
Re = UL/ν (ν is the kinematic viscosity, [ν] = cm2 sec−1) are of the order of 108 (geophysical) to
1014 (astrophysical). Consequently, as Re � 1, the non-linear terms in the Navier-Stokes equations
such as U∇U completely dominate over the linear ones which involve viscosity and astrophysical as
well as geophysical convection are examples of turbulent flows. They are well known to feature large
scale, coherent structures such as granules in the case of the sun, downdrafts in the case of the ocean
and the sun, or thermals in the case of the convective planetary boundary layer of the earth.

What are the main differences between astrophysical and geophysical convection ? Let us focus
on stellar convection for the astrophysical case. There, a heat source such as nuclear fusion or heat
stored from preceeding evolutionary phases of the star, which is located in its central “core” or a
spherical shell around this core, provides the energy input into the “convection zone” from below (or
inside). Cooling is taking place through radiation (or conduction) at the top of such convection zones.
A mean molecular weight gradient (due to a change of the ratio of H over He) may further enhance
or inhibit convection. Stellar convection is hence intrinsically global (taking place within a sphere or
shell). It generates a highly compressible flow and is characterised by a very low Prandtl number, the
ratio of kinematic viscosity to thermometric conductivity (10−10 . . . 10−6, i.e. radiative heat transfer
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works much better in stars than conductive heat transfer does in air or water). The importance of
rotation varies from case to case. Magnetic fields always seem to go hand in hand with this type
of convection, but in more simple models they are usually neglected (the main argument being that
the magnetic fields cover only a small fraction of the surface area and contain only a small fraction
of the total energy of the convection zone). Cooling mostly occurs by radiation, especially close to
the surface. Stellar convection is ultimately driven by one or several of the following: high opacity,
which reduces the efficiency of radiative transport (thus steepening the temperature gradient); partial
ionisation, which lowers the adiabatic temperature gradient (thus making the fluid more unstable to
convection as well); or high luminosity, i.e. a high energy input from below (which requires a steep
temperature gradient to transport that amount of flux). The latter is more important in hot, massive
stars, while the former two are found in the outer layers of cooler, less massive stars. This includes
our sun and thus solar convection as a special case.

In geophysical convection, the source of heating or cooling is external (cold air above the open
water arctic ocean; the day time sun heating the surface underneath the planetary boundary layer).
It varies on a number of time scales (contrary to the much more continuously operating heat source
of stars) and is usually coupled to shear flows which are ultimately driven by rotation (winds, global
currents). Mean molecular weight gradients are even more important than in the stellar case. But
geophysical convection zones only occur in limited domains within a thin sphere. Compressibility is
less important than in the stellar case and magnetic fields can be neglected for most problems (except
for the laminar convection in the earth’s mantle). Radiative cooling may be important in some cases
(such as lakes – see the contribution by D. Mironov in this volume – or the cooling of clouds), but
there are also cases were it can be neglected as well (dry convective planetary boundary layer). Finally,
the Prandtl number is of order unity in most geophysical cases (between about 0.7 for air and 6 for
water). Nevertheless, convection in the atmosphere and in the ocean is a highly turbulent flow with a
tendency of forming large scale coherent structures with remarkable similarities to their astrophysical,
stellar counterparts (cf. flow patters in [14] and [11]).

Solar and stellar convection

The notion that stars with masses greater than about 1.1 times the solar one (M�) have convective
cores is now generally accepted in astrophysics. The central “convective sphere” is a consequence
of the high energy production in these stars and the resulting high luminosity is in agreement with
observations. However, these central convection zones do not reach the stellar surface. Probing
has hence to be done through indirect methods which rely, for instance, on pulsational and other
instabilities these stars can have. Direct observations of stellar convection are easily possible for stars
with about one solar mass or less. There, the convective flow is cooled through radiation which is
directly emitted into space. The convective motions leave their imprint on the observable radiation
field through velocity Doppler shifts and intensity variations. This direct way of probing is restricted
to layers visible from outside. For the sun this includes only the top ∼ 500 km of a convection zone
predicted to be 180000 km deep. The latter has been confirmed through indirect methods, particularly
helioseismology, which aims at reconstructing the solar density and sound speed profile from observed
(few ppm large) oscillations of our sun. Detection of stellar surface convection, which is not connected
to the core region, is possible also for stars slightly more massive than the sun, although the higher
rotational velocities found for these objects make measurements more difficult.

Our sun is the best studied example of stellar convection. The solar convection zone is characterised
by the following properties. Its overall geometry is that of a convective shell within a rotating sphere.
The zone features a density contrast of 625,000 and a temperature contrast of 350 between the bottom
and the top. It has a depth of 30% of the solar radius. The average Mach number of the flow is about
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10−4 and the Rossby number Ro = U/(fL) ∼ 0.1 (f is the rotation rate). It generates solar magnetic
fields and the solar activity cycle.

The visible part of the solar convection zone is dominated by large scale, upwards moving structures
known as granules which are embedded into a network of rapid and narrow downdrafts. The average
granule diameter is found to be around 1100 km. Near the surface the flow reaches Mach numbers of
0.3, i.e. velocities of 2 to 3 km s−1. Ro is around 300 for the granules, hence rotation plays only an
indirect role. The key physical process driving motions near the surface is the cooling of fluid. This
results in cold and dense gas sinking as drafts which give way to gas pushing upwards from below.
The best geophysical counterpart to this process is perhaps convection in the oceans. The similarities
include not only high Re numbers, but also a similar topological structure due to cooling from above
and a Rossby number of 10 to 25, i.e. Ro � 1. This makes a comparison between the two particularly
interesting, despite the different cooling mechanism and Prandtl number.

Numerical hydrodynamical simulations have become the favourite tool to study solar granulation.
From a theoretical viewpoint such calculations are large eddy simulations (LES), because they resolve
the large length scales which carry most of the kinetic energy and which are subject to most of the
radiative cooling. The unresolved scales are accounted for through simplified models. Detailed com-
parisons between such simulations and observed data have successfully been done for the calculations
by [15] and subsequent numerical simulations based on their work. Observed parameters investigated
include granulation sizes and life times, Doppler broadening of spectral lines, and indirect tests such
as oscillation frequencies and amplitudes of the average solar radiation field. Further corroboration
came from numerical simulations such as those by [14] which differ in the numerical methods used,
assumptions made on the microphysics (equation of state, etc.) and on the unresolved scales, as well as
in the treatment of the boundaries of the numerical simulation boxes. They predict the same average
flow velocities, temperature profiles, energy fluxes, and so forth. This confirms the robustness of the
numerical modelling of solar surface convection.

Why are astrophysicists interested in modelling stellar convection ? Convection has fundamental
effects on stellar radii and luminosities, on the energy distribution of the emitted radiation, and as
a result of all that on the actual observational parameters we find for a star with a given mass and
chemical composition at a certain age of its evolution. Another reason is the superior mixing capability
of turbulent convection compared to diffusion processes. Trace elements such as 7Li and 9Be can
be destroyed by nuclear fusion at temperatures low enough (2.5 to 3.5 106 K) to make the actual
depth of convection zones a distinguishing factor in the observable chemical composition. Through
mixing convective cores have access to much more hydrogen than their radiative counterparts. Thus,
convection changes observational features (spectral line shapes, ...), global properties (radius, ...),
as well as stellar structure and evolution (life times during different phases, ...). Unfortunately, so
far the non-linear, turbulent nature of stellar convection has prevented the successful derivation of
a general, fully predictive theory of this process from first principles only. Numerical simulations of
stellar convection provide an expensive, case-to-case approach which cannot be hooked into a general
stellar evolution code just as a global circulation simulation or a terrestrial climate simulation cannot
be coupled to simulations of individual tropical storm systems. Moreover, numerical simulations of
turbulent convection are not full “ab-initio” calculations either. Further progress in our theories on
turbulent convection is thus one of the most wanting questions in stellar astrophysics, but arguably
also in various geophysical disciplines.

Reynolds stress models

The Reynolds stress approach is a versatile formalism to model turbulent convection in global evolution
calculations. The main idea behind Reynolds stress models is to derive equations from the original
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Navier-Stokes equations in which the mean flow components and the mean stratification are seperated
from fluctuations around those mean values. The same procedure can also be applied to other fields
such as concentration of helium in a star or salt in the ocean. The most urging problem encountered
in the Reynolds stress approach is the fact that due to the non-linearity of the original equations any
equation derived for a certain fluctuating quantity, e.g. velocity u′, depends on products of (usually)
several of the involved fluctuating quantities (u′u′, ...). Those products are neither small nor do
they normally cancel each other. Thus, approximations beyond the original Navier-Stokes equations
become inevitable. To proceed only ensemble averages of the fluctuating quantities are considered.
The goal of the Reynolds stress approach is to derive a closed set of equations for the mean values
(of temperature, etc.) and some of the lower order moments of the fluctuations around them. The
predictive capabilties of models based on this approach have to be challenged by observational data
or by numerical simulations. Lack of a general theory of turbulent flows, or convective flows for
that matter, puts severe limits on the range of application for such models, because their underlying
approximations are often based on similarity arguments or motivated by mathematical simplicity. This
is the main reason why current diffusion type algebraic models are sought to be replaced for by more
complex ones which, for instance, account for non-locality and asymmetries in the turbulent flow.

The most advanced suite of turbulent convection models for both astrophysics and geophysics
was proposed in a series of papers by [1], [2], [4], and [5]. The models suggest a set of differential
equations for the turbulent kinetic energy q2, the squared temperature fluctuations θ2, the (convective)
temperature flux wθ, the vertical turbulent kinetic energy w2, and the kinetic energy dissipation rate
ε, which is coupled to the equations for the mean structure of the system. Various models were
also suggested for the higher order correlations (third order moments) in those papers. Successful
comparisons to numerical large eddy simulations and a water tank experiment were presented in [3]
and [5] and corroborated applicability to the dry convective planetary boundary layer.

For applications to stars, this approach was adapted in [9] to account for the fact that in optically
thin media such as stellar atmospheres, were radiation directly escapes into space, small length scales
are preferably damped (i.e. cooled) compared to large ones [9]. This is caused by large scales being
less transparent to radiation. In this form, the model was used in a code for computing the structure
of stellar envelopes — the outer layers of a star which are not hot enough to ignite nuclear fusion.
Comparisons of convective enthalpy flux as well as vertical and horziontal root mean square velocities
between this new model, a traditional one which neglects non-locality and flow topology, and numeri-
cal simulations were presented in [9] for the case of main sequence A-stars. The latter have a mass of
1.5 to 2.5 M� and shallow surface convection zones. In [12] this comparison was extended to envelopes
of various types of white dwarfs (remanents of stars with about half to one M� which have shallow
surface convection zones during parts of their long cooling phase taking place after nuclear fusion has
completely stopped). While the traditional convection model strongly underestimates the extent of
convective mixing when compared to numerical simulations, the new model is found to agree qualita-
tively very well (and also quantitatively). This is achieved without readjusting parameters when going
from the case in [9] to the case discussed in [12], whereas the old model requires major adjustments
of one of its parameters to match at least some results. Looking at observational constraints (surface
velocities, spectral energy distribution in the visual range) the new model also performs much better
([9], [12]) than its predecessor.

As the model is successful for such stars, why not use it for the sun as well ?

Coherent structures

The cases studied in [9] and [12] are characterised by rather small values of (velocity) skewness

(Sw = w3/w2
3/2

) within convectively unstable regions. Although the convectively mixed parts of
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Figure 1: Models for the flux of temperature fluctuations tested with simulation data from [13] for a
shallow convection zone with low skewness. The unstable zone is located between 30 and 55 on the
linear depth scale. Results are not scaled but given in dimensional units.

these convection zones are rather large (9 to 10 pressure scale heights, i.e., e-folding distances of the
total pressure), the actually unstable regions are small (one or two convection zones which are 1 to 1.5
pressure scale heights deep). The solar case is very different with a huge convectively unstable region
of 20 pressure scale heights. Both surface observations and numerical simulations indicate large values
of Sw for it. Most of the solar convection zone is very close to adiabatic, as radiative losses are very
small. The convection zones studied in [9] and [12] are quite the opposite: their temperature gradients
are far from adiabatic, because radiative transfer is still efficient enough to transport a large fraction
of the total flux.

A look at numerical simulations of convection with idealised microphysics (perfect gas, param-
eterised radiative conductivity) is instructive. Fig. 1 shows that the model used in [9] and [12] to
compute the correlation wθ2 is only roughly corresponding to the directly evaluation of this quantity
from a numerical simulation presented in [13]. Although the simulation was done for a much lower Re
number and higher Pr number than in stars, it resembles many other aspects of the cases discussed in
[9] and [12] such as size of the convectively unstable zone and the amount of convective flux in units
of total flux. A similar calculation for a much deeper convection zone with less radiative contributions
to energy transport (Kupka and Muthsam, to be published) shows the mismatch between model and
simulation becoming unacceptable for wθ2 (up to a factor of 10 inside the convection zone). The cases
for which the model developed in [5] and used by [9] and [12] has been successful were all charac-
terised by |Sw| ≤ 1 which also holds for the bulk part of the original problem, the convective planetary
boundary studied in [3]. But in deep convection zones, |Sw| > 1 is found for extended regions.

The skewness of turbulent convective flows is directly related to their flow topology. The latter is a
consequence of the boundary conditions of a convection zone (heating from below, cooling from above,
or both) and the non-local nature of the flow. Local excess cooling at the solar surface, for example,
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gives rise to downdrafts while fluid is pushing upwards around them. This creates the structure we
observe ([15]). It leads to the intrinsic inhomogeneity of turbulent convection and to the existence of
large scale coherent structures.

As the coherent structures are responsible for the main fraction of energy transport, result from
the non-local nature of turbulent convection, and are characterised by their skewness, a better model
for third order moments such as w3 and wθ2 is probably a key to improve Reynolds stress models
of convection. After all, third order moments represent non-locality within these models ([1] and
references therein). They can be related to skewness and the relative size of areas of up- and downflow
([4] and references in [7]). A model which accounts for the influence of coherent structures on third and
fourth order moments has been proposed by [7] (see also the contribution of Gryanik and Hartmann in
this volume). The model suggests an interpolation between the two limiting cases of zero skewness and
very large skewness and generalises previous expressions for these correlation functions. It has been
successfully tested with aircraft measurements and numerical simulations of the convective planetary
boundary layer ([7], [8]). In addition, it was tested by [10] using numerical simulations of ocean
convection. Fig. 2 shows another (yet unpublished) test using solar granulation simulation data from
[14]. The approximative expression wθθ3/θ2 matches almost exactly that one obtained from a direct
evaluation of wθ2. The match is all the more remarkable as it extends over many pressure scale heights
from the observable surface (around ln(P ) ∼ 11) well into the solar interior. Fig. 1 confirms a similar
success for the shallow convection zone studied by [13] (the larger deviation below that convection
zone, around a depth of 70, is in a region dominated by the much higher viscosity of that case).
Fig. 3 shows a test for the fourth order moment wθ3. A perfect model would yield a straight line at 1.
Clearly, the model proposed by [7] does a much better job than the standard one (which had implicitly
been assumed also in the Reynolds stress model used in [3], [5], [9], and [12]). The deviations are large
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(factor of 2) only near the (artificial) boundaries of the simulation domain.

An alternative model was suggested by [6] (and discussed by V.M. Canuto at this workshop).
The advantage of their formalism is to offer a complete Reynolds stress model which has already been
tested for the planetary boundary layer using aircraft data, rather than just approximations for certain
terms in the Reynolds stress equations, as proposed by [7] and [8]. However, it has not been tested
yet using ocean or solar simulation data.

As this example shows the exchange of ideas on turbulent convection modelling is possible despite
very different parameter ranges are encountered (Pr number) and specific physical processes (radiation,
...) are interacting with the flow. There are quite a few benefits from an such exchange of ideas. More
minds working on related problems may share their knowledge and a larger or at least different
parameter space can be accessed. A particular quantity may be directly measurable in one field thus
providing more insight into the physics influencing it and may become more clear. Questions such
as: “How universal is a particular model ?” might be sensibly posed. — And perhaps more likely be
answered ?

Acknowledgements

I would like to express my gratitude to H.J. Muthsam and F.J. Robinson for permission to use their
numerical simulation data.

References

[1] V. M. Canuto, Astrophys. Jour. 392 (1992) 218



148

[2] V. M. Canuto, Astrophys. Jour. 416 (1993) 331

[3] V. M. Canuto, F. Minotti, C. Ronchi, R. M. Ypma and O. Zeman, Jour. Atmos. Sci. 51 (1994)
1605

[4] V. M. Canuto and M. Dubovikov, Astrophys. Jour. 493 (1998) 834

[5] V. M. Canuto, Y. Cheng and A. Howard, Jour. Atmos. Sci. 58 (2001) 1169

[6] Y. Cheng, V. M. Canuto and A. M. Howard, Jour. Atmos. Sci. (2005) in press

[7] V. M. Gryanik and J. Hartmann, Jour. Atmos. Sci. 59 (2002) 2729

[8] V. M. Gryanik, J. Hartmann, S. Raasch and M. Schröter, J. Atmos. Sci., (2005) in press
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Thermohaline convection

Thermohaline convection (fingers regime) is a wellknown process in oceanography : warm salted
layers on the top of cool unsalted ones rapidly diffuse downwards even in the presence of stabilizing
temperature gradients. When a blob is displaced downwards, it wants to go further down due to its
overweight compared to the surroundings, but at the same time the fact that it is hotter contradicts this
tendancy. When the salt gradient is large compared to the thermal gradient, salted water normally
mixes down until the two effects compensate. Then thermohaline convection begins. While the
medium is marginally stable, salted blobs fall down like fingers while unsalted matter goes up around.
This process is commonly known as “salt fingers” (Stern 1960, Kato 1966, Veronis 1965, Turner 1973,
Turner and Veronis 2000, Gargett and Ruddick 2003). The reason why the medium is still unstable
is due to the different diffusivities of heat and salt (for this reason it is also called “double-diffusive
convection”). A warm salted blob falling down in cool fresh water sees its temperature decrease before
the salt has time to diffuse out: the blob goes on falling due to its weight until it mixes with the
surroundings.

The condition for the salt fingers to develop is related to the density variations induced by tem-
perature and salinity perturbations. Two important characteristic numbers are defined:

• the density anomaly ratio

Rρ = α∇T/β∇S (1)

where α = −( 1
ρ
∂ρ
∂T )S,P and β = ( 1

ρ
∂ρ
∂S )T,P while ∇T and ∇S are the average temperature and salinity

gradients in the considered zone
• the so-called “Lewis number”

τ = κS/κT = τT/τS (2)

where κS and κT are the saline and thermal diffusivities while τS and τT are the saline and thermal
diffusion time scales.

The density gradient is unstable and overturns into dynamical convection for Rρ < 1 while the
salt fingers grow for Rρ ≥ 1. On the other hand they cannot form if Rρ is larger than the ratio of
the thermal to saline diffusivities τ−1 as in this case the salinity difference between the blobs and
the surroundings is not large enough to overcome buoyancy (Huppert and Manins 1973, Gough and
Toomre 1982, Kunze 2003).

Salt fingers can grow if the following condition is satisfied:

1 ≤ Rρ ≤ τ−1 (3)

The stellar case

Thermohaline convection may occur in stellar radiative zones when a layer with a larger mean molec-
ular weight sits on top of layers with smaller ones (Kato 1966, Spiegel 1969, Ulrich 1972, Kippenhahn
et al 1980). In this case ∇µ = dlnµ/dlnP plays the role of the salinity gradient while the difference
∇ad −∇ (where ∇ad and ∇ are the usual adiabatic and local (radiative) gradients dlnT/dlnP ) plays
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the role of the temperature gradient. When ∇ad is smaller than ∇rad, the temperature gradient is
unstable against convection (Schwarszchild criterion) which corresponds to warm water below cool
water in oceanography. In the opposite case the temperature gradient is stable but the medium can
become convectively unstable if:

∇crit =
φ

δ
∇µ + ∇ad −∇ < 0 (4)

where φ = (∂ ln ρ/∂ ln µ) and δ = (∂ ln ρ/∂ ln T ) When this situation occurs, convection first
takes place on a dynamical time scale and the µ enriched matter mixes down with the surroundings
until ∇crit vanishes. Then marginal stability is achieved and thermohaline convection may begin as a
“secular process”, namely on a thermal time scale (short compared to the stellar lifetime!).

Stellar situations in which fingers should occur

Such an effect has previously been studied for stars with a helium-rich accreted layer (Kippenhahn
et al 1980). It was also invoked for helium-rich stars in which helium is supposed to accumulate due
to diffusion in a stellar wind (as proposed by Vauclair 1975) and for roAp stars in case some helium
accumulation occurs (Vauclair et al 1991).

A new interesting situation where thermohaline convection should occur is related to exoplanets
hosts stars. These stars present a metallicity excess compared to stars in which no planets have been
detected. This result is confirmed by all recent observations. However the reason for this excess is
still a subject of debate: is it primordial, is it the result of accretion or both? If hydrogen poor matter
is accreted on the top of a main-sequence type star with normal abundances, it creates an inverse
µ-gradient which may lead to thermohaline convection. Comparing the stellar case with the water
case, we can guess that metallic fingers will form if the following condition is verified :

1 ≤ |δ(∇ad −∇)

φ(∇µ)
| ≤ τ−1 (5)

with τ = Dµ/DT = τT/τµ where DT and Dµ are the thermal and molecular diffusion coefficients while
τT and τµ are the corresponding time scales.

The study of thermohaline mixing in stars is far from trivial. Detailed comparisons of numerical
simulations and laboratory experiments in the water case have recently been published (Gargett and
Ruddick 2003) but the stellar case may be different as mixing then occurs in a compressible stratified
fluid.

Although approximative, the computations show that metallic matter accreted onto a star should
not stay in the outer layers: it first turns over due to dynamical convection and then goes on diffusing
due thermohaline convection. This type of convection should be studied in the future with numerical
simulation. It may also have important effects in A-type chemically peculiar stars where the combined
effect of gravity and radiative acceleration can lead to metal accumulation in internal stellar layers.
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Abstract

Brown dwarfs and giant gas planets are substellar objects whose spectral appearance is determined
by the chemical composition of the gas and the solids/liquids in the atmosphere. Atmospheres of
substellar objects possess two major scale regimes: large-scale convective motions + gravitational
settling and small-scale turbulence + dust formation. Turbulence initiates dust formation spot-like
on small scale, while the dust feeds back into the turbulent fluid field by its strong radiative cooling.
Small, imploding dust containing areas result which eventually become isothermal. Multi-dimensional
simulations show that these small-scale dust structures gather into large-scale structures, suggesting
the formation of clouds made of dirty dust grains. The chemical composition of the grains, and
thereby the chemical evolution of the gas phase, is a function of temperature and depends on the
grain’s history.

Introduction

The first brown dwarf Gliese 229B has been discovered 10 years ago by direct imaging (Kulkarni &
Golimovsky 1995). These faint (L∗ = 10−7 . . . 10−1L�), cool (Teff = 500 . . . 3200K), and small (M∗ =
0.01 . . . 0.08M�) objects bridge the physical and chemical gap between the classical understanding of
stars (M∗ > 0.08M�) and planets (M∗ < 0.01M�). Much closer by, direct images revels spotty, cloudy,
and vortex surface pattern in the giant planet atmospheres in our own solar system (by the Cassini
and Galileo spacecrafts fly-bys of Saturn and Jupiter, respectively) which guide our imagination for
substellar but extra-solar atmospheres. The other major source of information is the measurement of
the energy distribution of the stellar radiative flux emerging from the object’s atmosphere (e.g. for
Gliese 229B Oppenheimer et al. 1998). The interpretation of the resulting spectral energy distribution
demands a certain compleatness3 of the adopted substellar atmosphere model. Substellar atmospheres,
i.e. giant gas planets and brown dwarfs, are very cool and therefore exhibit a rich molecular– and
solid–/liquid–phase chemistry. Transitions between the phase regimes are to be expected. Therefore,
models of substellar atmospheres – as the interface to the physical and the chemical state of the
object – need to represent the circuit of dust (Helling 1999, Woitke & Helling 2003) which includes
the formation of dust, the chemical composition of dust and gas, gravitational settling (rain), its
feedback on the dust formation process, and element replenishment by upward convective motions in
addition to hydrodynamics and radiative transfer. In contrast to terrestrial planets which possess their
solid surface as continues source of seed particles4, the actual formation of the first (solid or liquid)
surface out of the gas phase has to be considered in substellar atmospheres. Convection is an efficient
mechanism to continuously and intermittently dredge up fresh, uncondensed gaseous material from
the very bottom of the atmosphere. The convection furthermore serves as turbulence engine inside

3e.g. in modeling the molecular regime, chemistry and hydrodynamics
4Seed particles on Earth are called aerosols which are for instance volcanic dust and tire particles, or they come from

fire in the tropics and from smoke-tracks.
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τsink =
Hp

~v
◦

dr

15 min . . . 8 month dust settling

(a = 100µm . . . 0.1µm)

τconv = lconv
vconv

20 min . . . 3.5 h large scale

convection

τgr = 〈a〉
χnet 0.1 s . . . 1 1/2 min dust growth

(a = 0.1µm . . . 100µm)

τwave = L
|U |+cs

0.3 . . . 3 s wave propagation

τnuc = ρL0

J∗
≈ 10−3 s seed formation

τnum ≈ Re3L
105 5 · 105 yr 103 floating-point

(≈ 2×age of mankind) operations
per cell and ∆t
with 1 gigaflop

Table 10: Time scales of the processes involved in the circuit of dust in a substellar atmosphere.
Temperature T , density ρ, pressure scale height Hp, convective velocity vconv, and velocity of sound
cs are adopted from the model results by Allard et al. (2001) and Tsuji (2002). For more details on
τsink see (Woitke & Helling 2003).

the atmosphere. Consequently, modeling and understanding a substellar atmosphere means to model
and to understand a reactive, dust forming, turbulent fluid field.

Catching the small scales

Classical models for substellar atmospheres represent the whole turbulent scale spectrum by only
one scale, the mixing length. These models have given very reasonable fits to observed spectra in
certain wavelength regimes but are challenged by the progress in observational techniques which lead
to observations e.g. with higher resolutions and at longer wavelength (λ > 12µm). Other models like
Reynolds stress and LES are in progress, all of them being challenged by the closure problem, i.e. the
treatment of the smallest, unresolved scales.

In order to provide insight and understanding of the small scale regimes of a substellar atmosphere,
the interaction of turbulence and dust formation has been studied by utilizing 1D and 2D simulations in
the present work. The general phenomenology of a substellar atmosphere model can be demonstrated
by estimating the time scale of the individual processes (Table ). The gravitational settling time scale
of grains τsink is the largest and is comparable to a typical convective mixing time for large grains.
The smallest time is needed by the formation of seed particles out of the gas phase. The dust growth
time scale is of the order of the crossing time of an acoustic wave. Hence, two time regimes appear: (i)
a quasi-static regime governed by gravitational settling and large-scale convective motions, and (ii) a
dynamic regime governed by the dust formation and small-scale waves (turbulence). Actually, a third
regime (iii) is to be faced which concerns the computing time needed to resolve the turbulent problem
(last entry Table ). In order to tackle regime (iii), the small-scale regime (ii) was investigated. Here,
gravitational settling can be neglected and convection acts only indirectly as turbulence driver.

The following system of dimensionless equations has been solved where Eqs. 1– 3 are the equation
of continuity, of motion, and the energy equation, respectively. The source term in Eqs. 3 is due to
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Figure 1: The feedback between turbulence and dust formation in a 1D simulation of interaction
turbulence elements. The time evolution of all quantities is depicted at the site of maximum super-
position of the turbulence elements.
Parameter: Tref = 1900K, TRE = 1634K, ρref = 10−4g/cm3, M=0.1 (uref = 3 · 104cm/s), tref = 3s,
lref = 105cm. [numerical parameter: Nx = 500, Nk = 500, ∆x = 3.94 · 102cm, lmax = lref/2]
1st row: l.h.s. – ρ density, r.h.s. – p pressure; 2nd row: l.h.s. – T temperature (cross – time of
maximum wave superposition), r.h.s. – u fluid velocity; 3rd row: l.h.s. – log J∗/n<H> nucleation
rate [1/s], r.h.s. – log〈a〉 mean grain size [cm]; 4th row: l.h.s. – Vtot =

∑
Vs cumulative volumes

[%] (orange - VMgSiO3[s]
, brown - VMgSiO3[s]

+ VSiO2[s]
, green - VMgSiO3[s]

+ VSiO2[s]
+ VFe[s] , light blue -

VMgSiO3[s]
+VSiO2[s]

+VFe[s] +VAl2O3[s]
, dark blue - VMgSiO3[s]

+VSiO2[s]
+VFe[s] +VAl2O3[s]

+VTiO2[s]
), r.h.s.

– log ny number density of gaseous key species for dust formation [1/cm3] (orange - Mg, brown - SiO,
green - Fe, light blue - AlOH, black - TiO2).
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radiative cooling modeled by a relaxation ansatz.

(ρ)t + ∇ · (ρv) = 0 (1)

(ρv)t + ∇ · (ρv ◦ v) = − 1

M2
∇P − γ

M2

Fr
ρg (2)

(ρe)t + ∇ · (v[ρe+ P ]) = Rdκ (T 4
RE − T 4) (3)

(ρLj)t + ∇ · (v ρLj) = Danuc
d SejJ∗ + Dagr

d

jχnet

3
ρLj−1 (4)

(ρεx)t + ∇ · (v ρεx) = −
R∑

r=1

(νnuc
r ElDanuc

d
3
√

36πNl J∗ + νgr
r ElDagr

d nx,rvrel,xαr ρL2) (5)

Equations 4 (j = 0, 1, 2, 3; ρLj(~x, t) =
∫ ∞
V`
f(V, ~x, t)V j/3 dV dust moments, f(V, ~x, t) grain size distri-

bution function) model the dust formation as two step-process, namely, seed formation and mantle
growth/evaporation being the first and the second source term, respectively. Equations 5 are element
conservation equation for each chemical element εx (x= Mg, Si, O, Fe, Al, Ti) involved in the dust
formation processes, hence each source term in Eqs. 4 is a sink for Eqs. 5 (Helling et al. 2001 for
details). A strong coupling exists between Eqs. 1– 3 (5 equations) and Eqs. 4, 5 (11 equations) due
to the dust opacity κ since it changes by order of magnitudes if dust forms.

Turbulence ↔ Dust formation

The feedback between turbulence and dust formation can be studied in detail by 1D simulations.
Interacting turbulence elements are modeled as superimposing expansion waves. Figure demonstrates
the time evolution of the system at the site of constructive wave interaction.
Turbulence −→ Dust formation:
At about the time of superposition (black cross on T–curve, l.h.s. 2nd row), the nucleation thresh-
old temperature (here for TiO2 seed formation) is crossed and dust nucleation is initiated, hence the
nucleation rate J∗ increases. Many solid compounds are already thermally stable at such low tem-
peratures which results in a very rapid growth of a mantle on the surface of the seed particles (here
Mg2SiO4[s], SiO2[s], Fe[s], Al2O3[s], TiO2[s]). As the amount of dust formed increases, the opacity κ
of the dust-gas mixture increases by order of magnitudes. Therefore, the radiative cooling causes the
temperature T to drop considerably (l.h.s., 2nd row). A classical instability establishes where the
reason supports the cause. The cooler the gas, the more dust forms, the faster the temperature drops
etc. This run-away effect stops if all condensible material was consumed or if the temperature is too
low for further efficient nucleation. The time of maximum nucleation rate corresponds to a minimum
in mean grain size because suddenly the available gaseous material is needed for a much larger number
of grains.
Dust formation −→ Turbulence:
The strong temperature gradient causes a strong raise in density by a moderate pressure gradient.
Without such a strong cooling, pressure equilibrium should adjust. Hence, the dust forming areas
implode and cause a considerable disturbance of the velocity field (here up to 10%). A feedback-loop
turbulence ⇒ dust formation ⇒ turbulence established as result of non-linear coupling of the model
equations.
Chemistry:
Figure depicts in the lowest two panels the strong feedback of the turbulent dust formation process
on the chemical composition of the dust grains and on the remaining gas phase. The cumulative
dust volumes (l.h.s., 4th row) show that the dust composition changes according to the temperature
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from Mg2SiO4[s]/SiO2[s]/Fe[s]–rich (40%/40%/10%) with Al and Ti – oxide impurities to a mean grain
composition of 55% SiO2[s], 25% Fe[s], and 10% Mg2SiO4[s] with Al and Ti – oxide impurities. The
chemical composition of the dust is also imprinted in the element abundances of the gas phase and
the molecular abundances adjust accordingly.

Dust clouds growing from small −→ large

1D simulations allow a very detailed investigation of the physio-chemical interactions but fail to explain
2– or 3–dimensional phenomena like cloud or vortex formation as it was suggested by observations
of Saturn’s and Jupiter’s atmospheres. The study of the formation and the possible appearance of
large scale dust clouds in substellar atmospheres was performed utilizing a model for driven turbulence.
Turbulence is modeled by the superposition of Nk modes each having a Kolmogoroff velocity amplitude
(for details Helling et al. 2004). Convection is believed to drive the turbulence in a real substellar
atmosphere. The 2D simulation (Fig. ) is started from a homogeneous, dust free medium which
constantly is disturbed by the turbulence driving from the left, the right and the bottom side during
the simulation.

During the initial phase of the simulations small scale nucleation events occur where turbulence
causes the local temperature to drop below the nucleation threshold (compare Sect. ). Observe that
a locally maximum J∗ in Fig. a) is immediately followed by an subsequent increase in nd (panel
b). These dusty areas tend to increase as the fluid motion transports the dust into areas with a still
undepleted gas phase. And indeed, as the simulation proceeds in time, larger and more compact
cloud-like dust structures are formed (panel c). These large-scale structures are the result of the
hydrodynamic fluid motion which gathers more and more dust also by the vortices appearing in the
velocity field. Note the mushroom-like structure evolving e.g. in the right lower corner in panel c).
Strong radiative cooling causes these dusty areas to become isothermal. Eventually, the cloud will
leave the test volume or it will get disrupted and the small-scale fragments move out of sight. The
whole dust cloud formation cycle can start again only if metal species (Mg, Si, Fe, Al, Ti, O) are
replenished from outside like it has to be expected to occur by convection in a substellar atmosphere
(panel d).

Conclusion

Substellar atmospheres, i.e. atmospheres of giant gas planets and brown dwarfs, possess two scale
regimes: (i) the large-scale convection causing element replenishment of the upper atmosphere and
the counteracting gravitational settling of dust causing an element depletion of the upper atmosphere
(ii) small-scale turbulence and dust formation establishing a feedback loop.

Regime (i) can be considered as quasi-static with view on the dust formation process. The dynamic
regime (ii) is determined by the turbulence initiating spot-like dust formation on small spatial scales.
The strong radiative cooling by dust results in an implosion of the dust forming areas which eventually
become isothermal. Velocity disturbances occur which feed back into the turbulent fluid field. The
resulting mesoscopic flow gathers the dust in even larger, more compact cloud-like structures. The
final chemical composition of the grain is a function of the grains history.

Acknowledgements

The ESA research fellowship program at ESTEC is acknowledged. W. Traub and M. Fridlund are
thanked for discussion on aerosols. Most of the literature search has been performed with the ADS
system.



157

a) t = 0.369 s b) t = 0.391 s

c) t = 6.4 s d) t = 25 s

Figure 2: Tref = 2100K, TRE = 1980K, g = 105 g/cm2, ρref = 3.16 · 10−4g/cm3, M=1 (uref =
3 · 105cm/s), tref = 0.3, lref = 105cm [numerical parameter: Nx × Ny = 128 × 128, Nk = 500,
∆x = 3.94 · 102cm, lmax = lref/2]
log nd number of dust particles – false color (red = max, blue = min), log J∗ nucleation rate – contour
lines (green = max, red = min), ~v = vx + vy fluid velocity – vector arrows.
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Flow Patterns and Transitions in Rotating Convection

K.L. Chan

The Hong Kong University of Science & Technology

Turbulent rotating convection frequently occurs in stars and planets. The process is so complex
that its study often needs to resort to numerical simulations, especially since deep stratification is
commonly involved. In an astrophysical context, the circulation is global, and ideally, the flows should
be studied with a global model. In most instances, however, such is impractical due to the unaffordable
demand on computing resources. Besides the long integration time required for thermal relaxation,
the situation is worsened by the requirement of higher resolutions and shorter time steps in fast
rotation situations. Therefore, some researchers adopt the convection-in-a-box approach [1, 2] which
can only look at the idealized local behavior. A similar approach has long been used in geophysics;
idealized atmospheric flows (predominantly two-dimensional) have been studied in localized f-planes
and beta-planes. The results have been very useful in providing understanding for the basic flow
processes.

Here, we report a rather special result from our numerical study of localized, deep, turbulent,
rotating convection. The domain of each computation is a rectangular box termed ‘f-box’, a la f-plane.
The angular velocity vector is held fixed in each case, but the flows are very much three-dimensional,
and in particular the Coriolis force generated by the vertical velocity cannot be ignored.

Our main result can be summarized by a few sentences: Medium scale (width ∼ a few scale
heights) coherent structures (flow patterns) are ubiquitous in rotating convection flows. The forms of
the coherent structures depend on the Coriolis number (Co ≡ LΩ/V, reciprocal of the Rossby number)
as well as the aspect ratio of the f-box. Pattern changes induce corresponding qualitative changes in the
turbulence characteristics (e.g. moments of the fluctuating quantities). Therefore, coherent structures
are crucial for the understanding of rotating convection. They are more fundamental than the concept
of Reynolds stress. This conclusion is drawn from studying over one hundred cases of numerical
experiments covering different input fluxes from the bottom, different latitudes (φ), different rotation
rates (Ω), and different grid sizes. The corresponding locations of the boxes are from the equator to
the North pole, and the range of Coriolis number is from 0 to 18.

The so-called coherent structures are essentially rolls tilted in different ways and thus presenting
different impressions – either as convective rolls lying horizontally or slightly tilted, or as vortices with
some possible tilts from the vertical.

When the rotation rate is low (Co < 1), there is a negative shear in the mean zonal flow (eastward
flow decreases with height) that has a linear vertical profile and spans the full depth of the convection
zone (except at the pole, see [3]). It is basically a consequence of the conservation of angular momentum
[4]. In the low latitudes (< 45◦), vague features of east-west aligned rolls first appear; they can be
understood as cloud streets [5] or in terms of preferential growth of linear modes [6]. The roll feature
is most prominent at the equator.

When Co gets above 1, the alignment of the low-latitude rolls changes from east-west to north-
south. Correspondingly the zonal-meridional component of the Reynolds stress changes from removing
to feeding angular momentum towards the equator. The negative shear is compressed to shallower
and shallower layers in the top region. The local value of Co remains low (V higher, L lower) there.
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Remnant traces of east-west rolls can still be detected in this top region. In the lower region, the
mean zonal flow tends to zero [3].

The alignment transition at the equator, however, occurs at a much higher Co (between 3 and
6). Before that the shear in the zonal flow stays negative and linear throughout the depth of the
convection zone. Beyond a critical Co, it flips abruptly to a positive linear shear[7]. The positive shear
is associated with the dominance of cyclonic rolls over anticyclonic rolls (all north-south aligned).
For the same reason given in the previous paragraph, there is a shallow negative shear layer at the
top of the convection zone. This process is important for explaining the occurrence of equatorial
superrotation near the surface of the sun and the giant planets.

Coherent cyclonic structures in the form of vortices appear in the other latitudes around the same
Co. The sizes of the vortices decrease towards the pole (as the value of the parameter f = 2Ω sinφ
increases). These structures are accompanied by spotty horizontal distributions of thermal fields
and possess very large horizontal velocities. Their presence induces a big drop in the coherence of
the thermal variables with the vertical velocity. For example, the correlation coefficient between the
temperature fluctuation and the vertical velocity drops from the general level of 0.75 to 0.15.

A further transition of flow pattern is found in non-equatorial regions when Co reaches about 12 -
18. Anticylonic vortices become the dominant feature. They are stronger and larger than the cyclonic
vortices which still persist. This process may be important for the generation of the Great Red Spot
and White Ovals in the Jovian atmosphere.
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Gravoturbulent Fragmentation: Star formation and the interplay
between gravity and interstellar turbulence
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Introduction

Star clusters form by gravoturbulent fragmentation of interstellar gas clouds. The supersonic tur-
bulence ubiquitously observed in Galactic molecular gas generates strong density fluctuations with
gravity taking over in the densest and most massive regions. Once such dense cloud regions become
gravitationally unstable, collapse sets in to build up stars and star clusters.

Turbulence plays a dual role. On global scales it provides support, while at the same time it can
promote local collapse. Stellar birth is thus intimately linked to the dynamical behavior of the parental
gas cloud, which determines when and where protostellar cores form, and how they contract and grow
in mass via accretion from the surrounding cloud material to build up stars. Slow, inefficient, isolated
star formation is a hallmark of turbulent support, whereas fast, efficient, clustered star formation
occurs in its absence.

In this proceedings paper we discuss the dynamical complexity arising from the interplay between
supersonic turbulence and self-gravity and introduce the process of gravoturbulent fragmentation (Σ ).
The fact that Galactic molecular clouds are highly filamentary can be explained by a combination of
compressional flows and shear (Σ ). The dynamical evolution of nascent star clusters is very complex.
This strongly influences the stellar mass spectrum (Σ ). The equation of state (EOS) plays a pivotal
role in the fragmentation process. Under typical cloud conditions, massive stars form as part of dense
clusters. However, for gas with effective polytropic index greater than unity star formation becomes
biased towards isolated massive stars, which may be of relevance for understanding Pop III stars (Σ ).

Spatial Distribution and Timescale

Supersonic turbulence plays a dual role in star formation. While it usually is strong enough to
counterbalance gravity on global scales it will usually provoke collapse locally. For further references
see the reviews by Larson [15] and Mac Low & Klessen [17]. Turbulence establishes a complex network
of interacting shocks, where regions of high-density build up at the stagnation points of convergent
flows. These gas clumps can be dense and massive enough to become gravitationally unstable and
collapse when the local Jeans length becomes smaller than the size of the fluctuation. However,
the fluctuations in turbulent velocity fields are highly transient. They can disperse again once the
converging flow fades away [25]. Even clumps that are strongly dominated by gravity may get disrupted
by the passage of a new shock front [19].

For local collapse to result in the formation of stars, Jeans unstable, shock-generated, density
fluctuations must, therefore, collapse to sufficiently high densities on time scales shorter than the
typical time interval between two successive shock passages. Only then do they ‘decouple’ from the
ambient flow pattern and survive subsequent shock interactions. The shorter the time between shock
passages, the less likely these fluctuations are to survive. The overall efficiency of star formation
depends strongly on the wavelength and strength of the driving source [5, 9], (see also Σ ). Both
regulate the amount of gas available for collapse on the sonic scale where turbulence turns from
supersonic to subsonic [24].
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The velocity field of long-wavelength turbulence is dominated by large-scale shocks which are
very efficient in sweeping up molecular cloud material, thus creating massive coherent structures.
These exceed the critical mass for gravitational collapse by far. The situation is similar to localised
turbulent decay, and quickly a cluster of protostellar cores builds up. Prominent examples are the
Trapezium Cluster in Orion with a few thousand young stars. However, this scenario also applies
to the Taurus star forming region which is historically considered as a case of isolated stellar birth.
Its stars have formed almost simultaneously within several coherent filaments which apparently are
created by external compression [2]. This renders it a clustered star forming region in the sense of the
above definition.

The efficiency of turbulent fragmentation is reduced if the driving wavelength decreases. There is
less mass at the sonic scale and the network of interacting shocks is very tightly knit. Protostellar
cores form independently of each other at random locations throughout the cloud and at random times.
There are no coherent structures with multiple Jeans masses. Individual shock generated clumps are
of low mass and the time interval between two shock passages through the same point in space is
small. Hence, collapsing cores are easily destroyed again. Altogether star formation is inefficient, and
stars are dispersed throughout the cloud.

Altogether, we call this intricate interaction between turbulence on the one side and gravity on the
other – which eventually leads to the transformation of some fraction of molecular cloud material into
stars as described above – gravoturbulent fragmentation. To give an example, we discuss in detail the
gravitational fragmentation in shock-produced filaments that closely resembles structures observed in
the Taurus star forming region.

Gravitational Fragmentation of a Filament in a Turbulent Flow

In Taurus, large-scale turbulence is thought to be responsible for the formation of a strongly filamentary
structure [2]. Gravity within the filaments should then be considered as the main mechanism for
forming stars. Following earlier ideas by Larson [14], Hartmann [4] has shown that the Jeans length
within a filament, and the timescale for it to fragment are given by

λJ = 1.5 T10 A
−1
V pc, (1)

τ ∼ 3.7 T
1/2
10 A−1

V Myr. (2)

where T10 is the temperature in units of 10K, and AV is the visual extinction through the center of the
filament. By using a mean visual extinction for starless cores of AV ∼ 5, Eq. 1 gives a characteristic
Jeans length of λJ ∼ 0.3 pc, and collapse should occur in about 0.74Myr. Indeed, there are 3−4 young
stellar objects per parsec which agrees well with the above numbers from linear theory of gravitational
fragmentation of filaments [4].

In order to test these ideas, we resort to numerical simulations. We analyse a smoothed particle
hydrodynamics (SPH; [3, 22]) calculation of a star forming region that was specifically geared to the
Taurus cloud. Numerical implementation, performance and convergence properties of the method are
well tested against analytic models and other numerical schemes in the context of turbulent supersonic
astrophysical flows [9, 10, 11, 18].

This simulation has been performed without gravity until a particular, well defined elongated
structure is formed. We then turn on self-gravity. This leads to localised collapse and a sparse cluster
of protostellar cores builds up. Timescale and spatial distribution are in good agreement with findings
in Taurus [4]. For illustration, we show eight column density frames of the simulation in Fig. 1. The
first frame shows the structure just before self-gravity is turned on, and we note that the filament
forms cores in a fraction of Myr. The time-step between frames is 0.1Myr. The mean surface density
for the filament is 0.033 g cm−2, corresponding to a visual extinction of ∼7.5. Using Eqs. 1 and 2 this
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Figure 1: Evolution of the column density of an SPH simulation. The filament in the first frame (before
self-gravity is turned on) shows that turbulence is responsible in forming this kind of structures. The
small bar in the bottom-left of each frame denotes the Jeans length (Eq. 1) at this time. At later times,
self-gravity is turned on and the filament suffers gravitational fragmentation on a free-fall timescale
(Eq. 2).

value gives a Jeans length of λJ ∼ 0.2 pc, and a collapsing timescale of τ ∼ 0.5Myr. Note from Fig. 1
that the first cores appear roughly at t ∼ 0.3Myr, although the final structure of collapsed objects is
clearly defined at t = 0.5Myr. The typical separation between protostellar cores (black dots in Fig.
1) is about the Jeans length λJ .

This example demonstrates that indeed turbulence is able to produce a strongly filamentary struc-
ture and that at some point gravity takes over to form collapsing objects, the protostars. However,
the situation is quite complex. Just like in Taurus, the filament in Fig. 1 is not a perfect cylinder, the
collapsed objects are not perfectly equally spaced as predicted by idealised theory, and protostars do
not form simultaneously but during a range of times (between t ≈ 0.3 and 0.6Myr). Even though the
theory of gravitational fragmentation of a cylinder roughly applies, it becomes clear from looking at
Fig. 1 that the properties of the star forming region not only depend on the conditions set initially
but are influenced by the large-scale turbulent flow during the entire evolution. Gravoturbulent frag-
mentation is a continuous process that shapes the accretion history of each protostar in a stochastic
manner [7].

Mass Spectra of Clumps and Protostellar Cores

The dominant parameter determining stellar evolution is the mass. We discuss now how the final
stellar masses may depend on the gravoturbulent fragmentation process, and analyse four numerical
models which span the full parameter range from strongly clustered to very isolated star formation
[8].

Fig. 2 plots the mass distribution of all gas clumps, of the subset of Jeans critical clumps, and of
collapsed cores. We show four different evolutionary phases, initially just when gravity is ‘switched on’,
and after turbulent fragmentation has lead to the accumulation ofM∗ ≈ 5%, M∗ ≈ 30% andM∗ ≈ 60%
of the total mass in protostars. In the completely pre-stellar phase the clump mass spectrum is very
steep (about the Salpeter slope, −2.33, or less) at the high-mass end. It has a break and gets shallower
belowM ≈ 0.4 〈MJ〉 with slope −1.5. The spectrum strongly declines beyond the SPH resolution limit.
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Figure 2: Mass spectra of all gas clumps (thin lines), of the subset of Jeans unstable clumps (thin lines,
hatched distribution), and of collapsed cores (protostars: hatched thick-lined histograms). Different
evolutionary phases are defined by the fraction of mass converted into protostars and are indicated in
the upper right corner of each plot. Masses are binned logarithmically and normalised to the average
Jeans mass 〈MJ〉. The vertical line shows the SPH resolution limit. Shown also are two power-law
spectra with ν = −1.5 and ν = −2.33 [8].

Individual clumps are hardly more massive than a few 〈MJ〉. Gravitational evolution modifies the
distribution of clump masses considerably. As clumps merge and grow bigger, the spectrum becomes
flatter and extends towards larger masses. Consequently the number of cores that exceed the Jeans
limit increases. This is most evident in the Gaussian model of decayed turbulence, where the clump
mass spectrum exhibits a slope −1.5.

The mass spectrum depends on the wavelength of the dominant velocity modes. Small-scale
turbulence does not allow for massive, coherent and strongly self-gravitating structures. Together
with the short interval between shock passages, this prohibits efficient merging and the build up of a
large number of massive clumps. Only few clumps become Jeans unstable and collapse to form stars.
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This occurs at random locations and times. The clump mass spectrum remains steep. Increasing the
driving wavelength leads to more coherent and rapid core formation, resulting in a larger number of
protostars.

Long-wavelength turbulence or turbulent decay produces a core mass spectrum that is well ap-
proximated by a log-normal distribution. It roughly peaks at the average thermal Jeans mass 〈MJ〉
of the system [9, 10] and is comparable in width with the observed IMF [12]. However, this is still
debated [20]. The log-normal shape of the mass distribution may be explained by invoking the central
limit theorem [26], as protostellar cores form and evolve through a sequence of highly stochastic events
(resulting from supersonic turbulence and/or competitive accretion).

Effects of the Equation of State

So far, we focused only on isothermal models of molecular clouds. More generally, however, the balance
of heating and cooling in a molecular cloud can be described by a polytropic EOS, P = Kργ , where
K is a constant, and P, ρ and γ are thermal pressure, gas density and polytropic index, respectively.
A detailed analysis by Spaans & Silk [23] suggests that 0.2 < γ < 1.4 in the interstellar medium.

Figure 3: Top: 3-D distribution of the gas and protostars for different γ. Bottom: Mass spectra
of gas clumps (thin lines) and of protostars (collapsed cores: hatched thick-lined histograms) for the
corresponding cube above. The percentage shows the fraction of total mass accreted onto protostars.
The vertical line shows the SPH resolution limit. Shown also are two power-law spectra with ν = −1.5
(dashed-line) and ν = −2.33 (dotted line). (Figure adopted from Li et al. [16].)

Li, Klessen & Mac Low [16] carried out detailed SPH simulations to determine the effects of
different EOS on gravoturbulent fragmentation by varying γ in steps of 0.1 in otherwise identical
simulations. Fig. 3 illustrates how low γ leads to the build-up of a dense cluster of stars, while high
values of γ result in isolated star formation. It also shows that the spectra of both the gas clumps and
protostars change with γ. In low-γ models, the mass distribution of the collapsed protostellar cores
at the high-mass end is roughly log-normal. As γ increases, fewer but more massive cores emerge.
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When γ > 1.0, the distribution is dominated by high mass protostars only, and the spectrum tends to
flatten out. It is no longer described by either a log-normal or a power-law. The clump mass spectra,
on the other hand, do show power-law behavior at the high mass side, even for γ > 1.0.

This suggests that in a low-γ environment stars tend to form in clusters and with small masses.
On the other hand, massive stars can form in small groups or in isolation in gas with γ > 1.0.

The formation of isolated massive stars is of great interest, as usually, massive stars are found in
clusters. There are indications of isolated massive stars or very small groups of massive stars in the
bulge of M51 [13] as well as observations of massive, apparently isolated field stars in both the Large
and Small Magellanic Clouds [21]. This is consistent with our models assuming γ > 1.0.

High resolution simulations of the formation of Population III stars [1] suggest that in very metal-
deficient gas only one massive object forms per pregalactic halo. In the early Universe, inefficient
cooling due to the lack of metals may result in high γ. Our models then suggest weak fragmentation,
supporting the hypothesis that the very first stars build up in isolation.

This is further backed up by investigations that show that the characteristic mass for fragmentation
not only depends on the average thermal Jeans mass, but also on the detailed changes of the polytropic
index γ with density [6].
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Abstract

We review the astrophysical modeling of type Ia supernova explosions and describe numerical methods
to implement numerical simulations of these events. Some results of such simulations are discussed.

Astrophysical and numerical models

Type Ia supernovae (SNe Ia) are among the brightest and most energetic explosions observed in the
Universe. For a short time they can outshine an entire galaxy consisting of some hundred billions
of stars. Assuming that SNe Ia originate from a single stellar object, only two sources of explosion
energy come into consideration: the gravitational binding energy of the star and its nuclear energy.
Since for the particular class of SNe Ia no compact object is found in the remnant, they are usually
associated with thermonuclear explosions of white dwarf (WD) stars consisting of carbon and oxygen.
The currently favored astrophysical model assumes it to be part of a binary constellation and to
accrete matter from the companion until it comes close to the limiting Chandrasekhar mass. At this
stage, the central density of the WD reaches values at which nuclear burning of carbon towards heavier
elements ignites. After a simmering phase of several hundreds of years, a thermonuclear runaway in a
tiny region close to the center leads to the formation of a thermonuclear flame.

The astrophysical interest in SNe Ia is – among other things – founded on their relevance for
cosmology. On the basis of an empirical calibration relating their peak luminosities with the shapes of
their lightcurves they are a suitable tool to determine cosmological distances. The geometrical survey
of the Universe performed in this way led to one of the greatest surprises of modern astrophysics
pointing to the fact that the Universe is predominantly made of a so far unknown “dark energy”
component. SNe Ia distance measurements may in the future possibly contribute to the determination
of the equation of state of this dark energy. However, the empirical calibration applied here urgently
calls for a theoretical explanation and ongoing SN Ia cosmology projects crucially depend on increasing
the accuracy of the measurements by getting a handle on the systematic errors. This is achievable
only on the basis of a better understanding of the mechanism of SN Ia explosions.

To this end, we attempt to model SN Ia explosions from “first principles” in conjunction with
detailed comparison with observations of nearby objects. The goal is to construct numerical models
as parameter-free as possible.

Such a SN Ia explosion model has to describe the propagation of the thermonuclear flame from
the WD’s center outwards. Hydrodynamics in principle allows for two distinct modes here. One is
the so-called deflagration mode, in which the subsonic flame is mediated by the thermal conduction
of the degenerate electrons, and the other is a supersonic detonation in which the flame is driven by
sound waves.

A prompt detonation has been ruled out as a valid model for SNe Ia, since the entire star is
incinerated with sound speed here. Therefore the material has no time to pre-expand and is burned at
high densities where the nuclear reactions terminate in iron group elements. This is in disagreement
with observations showing that intermediate mass elements need to be produced as well. Hence, the
flame must start out subsonically in the deflagration mode. However, a laminar deflagration flame is
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much too slow to release sufficient energy to explode the star. The main issue of SN Ia models is thus
to identify mechanisms to accelerate the flame propagation.

This is the point where turbulence comes into play. The interaction of the flame with turbulent
motions defines burning in SNe Ia as a problem of turbulent combustion. The flame propagating from
the center of the star outwards produces an inverse density stratification in the gravitational field of
the WD leaving light and hot nuclear ashes behind while the fuel in front of it is dense and cold.
The resulting Rayleigh-Taylor instability leads to the formation of burning bubbles that buoyantly
rise into the fuel. The shear flows at the interfaces of these bubbles are characterized by a Reynolds
number of about 1014 and the Kelvin-Helmholtz instability generates turbulent eddies. These decay
in a turbulent energy cascade and the flame interacts with eddies on a wide range of scales. In this
way, the flame becomes corrugated and its surface area is enlarged. This enhances the net burning
rate and accelerates the flame propagation. A later transition of the flame propagation mode is still
hypothetical and not further discussed here.

For a numerical implementation of the deflagration SN Ia model, the scale down to which the
flame interacts with turbulent motions has to be considered. This is the so-called Gibson scale, at
which turbulent velocity fluctuations of the cascade reach values comparable with the laminar flame
speed. At the beginning of the explosion (the WD star has a radius of about 2000 km and ignites
inside the first ∼100 km), the Gibson scale is of the order of 104 cm. The flame width, however, is
less than a millimeter. Due to this huge scale separation, turbulent eddies interact with the flame
only in a kinematic way but leave the internal flame structure unaffected. Thus, burning proceeds in
the so-called flamelet regime of turbulent combustion for most parts of the explosion process. With
three-dimensional simulations on scales of the WD star, it is possible to reach resolutions down to
less than a kilometer. Of course, these simulations need to take into account effects of turbulence on
smaller (unresolved) scales, which is implemented via a sub-grid scale model (cf. the contribution of
W. Schmidt et al.). Complementary small-scale simulations are provided to test the assumptions of
flame propagation around and below the Gibson scale.

One has to keep in mind, however, that the explosion process takes place on an expanding back-
ground. Due to the energy release, the WD expands. With lower fuel densities, the flame structure
broadens and the laminar flame speed decreases [1]. Therefore the Gibson scale becomes smaller and
eventually, in the very late phases of the explosion, turbulent eddies may be capable of penetrating
the flame structure so that the distibuted burning regime is entered.

The numerical implementation of the outlined SN Ia model on scales of the WD star follows
[2] in a large eddy simulation (LES) approach. The resolved hydrodynamics is described by the
Prometheus implementation [3] of a higher-order Godunov scheme. Turbulence on unresolved scales
is taken into account with a sub-grid scale model. Seen from scales of the WD, the flame appears
as a sharp discontinuity separating the fuel from the ashes. Its propagation is modeled via the level
set method [4], where the flame velocity is set by the physics of the flamelet regime. Here, flame
propagation completely decouples from the microphysics of the burning and is determined by the
turbulent velocity fluctuations on the grid scale which are known from the sub-grid scale model. The
nuclear reactions are implemented in the simplified approach of [5].

Results

Numerical simulations on the basis of the outlined model have been shown to lead to explosions of the
WD star. A flame ignited near the center of the star (cf. top left panel of Fig. 1) develops the typical
“mushroom”-like features due to buoyancy instabilities (cf. top right panel of Fig. 1). It becomes
increasingly wrinkled and the generated turbulence accelerates the flame propagation. In this way,
the flame incinerates considerable fractions of the material (cf. bottom left panel of Fig. 1) and the
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t = 0.0 s t = 0.3 s

t = 0.6 s t = 10.0 s

Figure 1: Snapshots from a SN Ia explosion simulation. The WD star is indicated by the volume
rendering of the logarithm of the density and the isosurface corresponds to the flame front. The
snapshot at t = 10.0 s is not on scale with the other images. (Simulation from [6])

energy release is sufficient to gravitationally unbind the WD star. A snapshot of the density structure
of the remnant after the burning has ceased is shown in the bottom right panel of Fig. 1, where
the imprints of turbulent burning are clearly visible. The most vigorously exploding model so far
released about 7 × 1051 erg of energy [7]. Another important global quantity to asses the explosion
process is the mass of produced 56Ni, because its radioactive dacay powers the visible event. In the
mentioned simulation, 0.4M� of 56Ni were obtained. Both values are within the range of expectation
from observations, albeit on the low side. First synthetic light curves have been derived from explosion
simulations [8] and compare well with observations.

However, current deflagration models of SNe Ia seem to have difficulties reproducing observed
spectra. A spectrum of the late (“nebular”) phase at day 350 after explosion was recently derived [9]
from a very simple simulation. Although reproducing the broad iron lines of observed spectra well, it
showed strong indication of unburnt material at low velocities which is not seen in the observations.
Both features, however, share a common origin. The rising bubbles filled with ashes distribute iron
group elements over a wide range in velocity space and thus give rise to broad iron lines. At the same
time, downdrafts in between these bubbles transport unburnt material towards the center producing
the strong oxygen and carbon lines which are absent in the observations.
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This problem may in part be attributed to the simplicity of the underlying explosion simulation.
It was performed on only one octant of the star with rather low resolution and the flame was ignited
in a very artificial shape. Nonetheless, it seems likely that physical ingredients are still missing in
the explosion model. In particular, burning at late phases was ignored as yet. Fuel consumption was
ceased when the flame reached densities of unburnt material below 107 g cm−3, because the distributed
burning regime is expected to be entered here. A recent approach [10], however, modeled the transition
between the turbulent burning regimes by assuming flamelet scaling for the flame propagation velocity
above this density threshold and by applying Damköhler’s limit for the thin reaction zone regime [11]
below. The result strongly supports the conjecture that an implementation of burning at low densities
may help to cure current problems of the deflagration SN Ia model.
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We discuss a localised subgrid scale (SGS) model for fluid dynamical simulations which is based on
the dynamical equation for the SGS turbulence energy ksgs in the Germano consistent decomposition
[1]. Using standard closures, this equation can be written in the following form [3, 4]:
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Here, v is the velocity, |S∗|2 is the norm of the trace-free rate of strain tensor, and d is the divergence
of the resolved flow in a large-eddy simulation. The effective cutoff length is denoted by ∆eff . The
remaining parameters in the above equation are related to the different closures. For the rate of
energy transfer the well known eddy-viscosity closure is applied. The strength of the localised model
is the determination of the eddy-viscosity parameter Cν from local structural properties of the resolved
flow by means of a dynamical procedure [6]. The underlying similarity hypothesis was adopted from
[5]. The closure parameters Cλ and Cε are related to pressure and viscous dissipation, respectively.
For these parameters as well as the SGS turbulent diffusivity parameter Cκ, statistical methods are
applied [4]. The first term on the left hand side of equation (1) is kind of an Archimedian force
which accounts for the production of turbulence due to the buoyancy of SGS density perturbations.
In turbulent combustion problems, the effective gravity geff is determined by the density contrast
between ash and fuel [7].

We implemented the SGS model for the three-dimensional numerical simulation of type Ia super-
novae with the methodology outlined in [8]. The astronomical phenomenon called type Ia supernova is
currently explained by the thermonuclear explosion of a white dwarf composed of carbon and oxygen
which approaches the Chandrasekhar limit as a consequence of gas accretion from a companion star
[9]. The explosion is the consequence of a runaway which is initiated when the central density and
temperature exceed a certain threshold and thermonuclear flames are generated. Since the mass den-
sity of the nuclear ash is less than the density of the unburned material, Rayleigh-Taylor instabilities
produce turbulent convective flow. It is known that turbulence greatly enhances the burning process
by increasing the flame surface area and, consequently, the energy generation rate. This non-linear
burning process incinerates and disrupts the whole star in a matter of a second [2].

Because of the enormous Reynolds numbers, it is impossible to resolve the flow and the structure
of the flame surface completely. In a large-eddy simulation of the explosion, the flame fronts are
therefore propagated with a turbulent flame speed, st, which becomes asymptotically proportional to

the SGS turbulence velocity qsgs =
√

1
2ksgs in the turbulent burning regime [10, 11]:

st '
2√
3
qsgs (2)

The structure of the flame front and the dynamics of qsgs for two particular instants of a simulation
with 3843 finite-volume cells is illustrated in Fig. 1 and 2. Slightly less than half a second after
the ignition (Fig. 1) the flame geometry still resembles the axisymmetric initial condition, although
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Figure 1: Three-dimensional visualisation of the flame front in thermonuclear supernova simulation
at time t = 0.45 s after ignition (left). The colour shading indicates the SGS turbulence velocity
in logarithmic scaling. Contour sections illustrating the various contributions to the SGS dynamics
determined by equation (1) in a two-dimensional section perpendicular to the x-axis are shown on the
right.

the sinusoidal perturbations have evolved into mushroom-like shapes which are characteristic for the
Rayleigh-Taylor instability. One can also see secondary instabilities on top of the larger structures.
The burned material in the interior of the flames is highly turbulent as becomes apparent from the
rate of production and dissipation, respectively, shown in contour sections on the right of Fig. 1. The
production includes only the contributions from turbulent energy transfer across the cutoff length.
Buoyancy effects on subgrid scales, on the other hand, are typically weak compared to the energy
transfer. It is a hallmark of the localised model that the transfer of energy is concentrated in small
regions which appear as white spots in the contour plot. At t = 0.75 s (Fig. 1), the flames exhibit an
intricate structure which has been formed by turbulent eddies on many different scales. Turbulence is
already declining but the rate of nuclear energy generation is still high because of the very large flame
surface area. However, the star is rapidly expanding at this time and, in consequence, the burning
process will be quenched a few tenths of a second later.

The numerical simulation of type Ia supernovae is particularly challenging for a SGS model because
the evolution of the burning process is highly sensitive to the flame speed which, in turn, is coupled
to SGS turbulence. Moreover, the flow is both transient and inhomogeneous. As a result of recent
investigations we conclude that the predictions of the supernova simulations are significantly altered
by the localised SGS model.
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Figure 2: Same as in Fig. 1 for t = 0.75 s. Note the different spatial scale.
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Abstract

We plan to develop, implement, and apply a new numerical scheme for modeling turbulent, multiphase
astrophysical flows such as galaxy cluster cores and star forming regions. The method combines the
capabilities of adaptive mesh refinement (AMR) and large-eddy simulations (LES) to capture localized
features and to represent unresolved turbulence, respectively; it will therefore be referred to as Fluid
mEchanics with Adaptively Refined Large- Eddy SimulationS or FEARLESS. Recent advances in
the field of dynamical subgrid-scale (SGS) models for LES of thermonuclear supernovae enable us to
formulate a self-consistent SGS model on adaptive meshes based on local similarity arguments for
turbulent transport. Continuing our promising first tests, we intend to implement a full dynamical
SGS model into the existing AMR hydrocode enzo, followed by simulations of turbulent star forming
clouds and galaxy cluster turbulence.

Turbulence in astrophysical phenomena

Many problems of astrophysical hydrodynamics share two important attributes: First, the ubiquitous
presence of spatially localized features such as shocks, clumps, or composition discontinuities that
need to be numerically resolved or at least adequately modeled; and second, large Reynolds numbers
of the baryonic component indicating that fully developed, i.e. space-filling, turbulence is responsible
for the mixing and dissipation properties of the gas almost everywhere. Despite great advances in
computational fluid dynamics, an accurate handling of both aspects has so far proven to be very
difficult as specialized numerical techniques have seemed to be mutually incompatible.

Our project aims at significantly improving this situation. The following three fields are among
the most important problems of theoretical astrophysics that our approach may contribute to.

Turbulence in star formation

The efficiency, initial mass function (IMF), and feedback of star formation affects nearly every aspect
of theoretical astrophysics. It is well known that turbulence plays a key role in the fragmentation of
self-gravitating gas and in its support against gravity [1, 2]. The contribution of turbulence to the
statistical properties of the IMF by turbulent fragmentation [3, 4] and to the transport of angular
momentum during the collapse [5] are at the center of current theoretical and computational investi-
gations. Furthermore, planned facilities such as alma and jwst will enable us to observe the earliest
epochs of star formation in the universe.

The irregular shapes of molecular clouds and their complex emission line profiles indicate that
the gas motions are supersonic and vigorously turbulent. Supersonic turbulence produces localized
structures such as shocks and clumps which are amplified by gravity and cooling instabilities. Resolving
these features while simultaneously accounting for the presence of low-amplitude turbulence elsewhere
is one of the most challenging problems of computational astrophysics. Many simulations of turbulent
star formation have used the Lagrangian method of smoothed particle hydrodynamics (SPH) (see
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[2] for a review) whose capabilities for modeling turbulence are limited, however, as a result of its
numerical diffusivity.

Only recently has adaptive mesh refinement (AMR) been employed for modeling supersonic tur-
bulence in gas clouds [6, 4]. This work has demonstrated the potential of AMR to simulate turbulence
in principle, opening a promising new approach that we intend to follow and improve in our project.

Primordial star formation at redshifts z ≈ 30 − 40 plays a special role both theoretically and
observationally because of its relevance for the early chemical and gravitational evolution of galaxies
[7]. The pioneering AMR simulations of Abel, Bryan and Norman [8, 5] have shown the importance
of angular momentum transport during the collapse and the absence of fragmentation of the central
core. It will be interesting to see whether the effect of turbulence refinement (sec. ) in FEARLESS
will have a noticeable impact on these results. Together with supersonic self-gravitating turbulence,
the collapse of a primordial gas cloud will provide a well-defined test bed for comparisons of the
FEARLESS scheme with previous computations.

Turbulence in galaxy cluster cores

Understanding the evolution of the largest gravitationally bound structures in the universe has been
one of the most active and successful fields of research in modern astrophysics. On the theoretical side,
much of this progress is a result of the great advances in computational cosmological hydrodynamics,
i.e. the numerical modeling of self-gravitational fluids consisting of cold dark matter and baryonic gas,
coupled to a variety of relevant physical processes such as radiative cooling, supernova feedback, and
chemical enrichment. The core of these models usually consists of an N-body code for the gravitational
sector coupled to an Eulerian hydro solver. Great progress has been made regarding the resolution
of localized structures using adaptive mesh refinement (AMR) for grid-based solvers or Lagrangian
methods like smoothed particle hydrodynamics (SPH) [9, 10, 11]. Turbulence on unresolved scales,
on the other hand, has in most cases been neglected in cosmological hydrodynamical simulations.

Examples for the many reasons to improve numerical models of galaxy clusters are the search for
a solution of the cooling flow problem, the explanation of the rich substructure of cool cluster cores
seen with X-ray instruments such as xmm and chandra, and the fascinating prospect for directly
detecting cluster turbulence with the astro-e2 xrs high-resolution spectrometer. We will address
each of these problems in the following paragraphs.

X-ray observations of cluster cores have detected less cool gas than predicted by cooling-flow models
[12], suggesting that the mass deposition rate of cool gas is suppressed by an unknown mechanism.
Various solutions for this problem have been proposed, including feedback from star formation and
supernovae [13], turbulence induced by large-scale gas motions [14], and buoyant plasma bubbles from
AGN activity [15]. We expect hydrodynamical simulations of the latter two phenomena to be greatly
improved by using FEARLESS (due to the turbulence refinement effect, sec. ) and the level set method
for non-diffusive interfaces, respectively.

Observations with X-ray satellites have also shown evidence of spatially localized substructures
termed “cool fronts”, “cool bullets”, and “cool filaments” in galaxy cluster cores. Their most likely
origin is a combination of radiative cooling and star formation feedback resulting in a picture of
hierarchical mergers of cool subclusters [16]. Simulations of such structures involving multiple fluid
phases separated by a numerically unresolvable interface are usually limited by the inherent diffusivity
of the hydrodynamical scheme. Again, significant improvements can be expected by using interface
tracking methods such as the level set scheme proposed in our project.

Finally, the potential detection of turbulent gas motions in their X-ray spectra with the upcoming
astro-e2 mission further strengthens the need for highly resolved, self-consistent simulations of cluster
turbulence [17, 18]. Comparisons of observations with detailed simulations will help to differentiate
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between the various proposed mechanisms to ameliorate the cooling flow problem summarized above,
all of which are expected to give rise to turbulence.

Modeling of type Ia supernova explosions

Owing, among other things, to their potential as cosmological distance indicators, type Ia supernovae
have received widespread attention. Numerous observational campaigns are underway (e.g., the Euro-
pean Supernova Collaboration [19], the essence project [20], and the Nearby Supernova Factory [21]),
allowing us to compare theoretical models with observed spectra and light curves in unprecedented
detail.

The present consensus model for supernovae of type Ia is the thermonuclear explosion of a Chan-
drasekhar mass white dwarf [22]. The burning process proceeds as subsonic deflagration which is
driven by turbulence [23, 24]. The production of turbulence is a consequence of Rayleigh-Taylor in-
stabilities due to the lower mass density of nuclear ash as compared to the density of unprocessed
material [25].

By means of massively parallel computation on present day supercomputers, the three-dimensional
numerical simulation of type Ia supernova explosions has become feasible [26]. However, only the
largest dynamical scales can be numerically resolved because the Reynolds numbers are huge and
the corresponding number of degree of freedoms is beyond the capability of even the most powerful
computers today. Thus, one of the major challenges is to account for the interaction between turbulent
eddies and the flame propagation on unresolved length scales. This is achieved by means of a subgrid-
scale model [23].

The assumption that type Ia supernovae are the result of a pure deflagration has been challenged
because the corresponding numerical models fail to predict certain observational features correctly.
Perhaps the most severe problem is the significant amount of unburnt carbon and oxygen at low radial
velocities which occur in present deflagration models. Apart from that, the total amount of nickel and
the energy output are still short of typical observational values [27, 28]. A delayed detonation scenario
has been proposed which apparently resolves these difficulties [29, 30]. The transition from a subsonic
deflagration phase to a supersonic detonation is hypothetical, and no plausible mechanism has been
found in the particular case of thermonuclear combustion in white dwarfs [31]. On the other hand,
new developments in the area of the deflagration model suggest that highly turbulent deflagrations
may suffice to match observational features of type Ia supernovae. In particular, advances have been
made with more realistic initial conditions, enhanced resolution with non-static grids, and improved
subgrid scale models [28, 32] (see also ). In any case, more powerful numerical techniques are required
in order to settle the issue of the actual explosion mechanism.

Numerical Modeling Techniques

Adaptive mesh refinement

Considerable progress has been made in modeling as much flow structure as possible by direct nu-
merical computation. The most powerful method for the treatment of non-steady flows exhibiting
significant anisotropy and high degrees of intermittency is adaptive mesh refinement (AMR). AMR
is based on Eulerian continuum mechanics with a hierarchy of grid patches to approximate the flow
on various levels of resolution [33]. In localized regions developing structure on comparatively small
length scales, a higher level of refinement is applied while smoother portions of the flow are treated
with coarser grids. Astrophysical problems for which AMR is particularly well suited include strong
shocks [34] and gravitational collapse [35] among many other applications [10]. All cases exhibit locally
steep gradients of the state variables and/or rapid spatiotemporal changes in the velocity field.
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Only recently, first steps have been taken to explore the ability of AMR to model fully developed
turbulence [6]. The authors have demonstrated that AMR can exploit the fact that dissipation is
concentrated in spatial regions of dimension less than three at any instant of time. This is true even
for homogeneous turbulence which is commonly considered as “space filling” based on the properties of
its ensemble average. Although a detailed comparison of turbulence modeled with AMR and uniform
grid simulations remains to be done, it is already clear that AMR is one of the few candidates to
significantly extend the range of numerically achievable Reynolds numbers.

However, in the case of astrophysically relevant Reynolds numbers unmanageable levels of refine-
ment would be required in order to resolve the dissipative scales. Moreover, AMR suffers from an
intrinsic inconsistency when applied to turbulent flows: As new levels of refinement are added, the
velocity on the smallest scales is initially smooth, in contrast with the physical requirement of velocity
fluctuations on all scales above the viscous (Kolmogorov) scale. As sketched in fig. 1, this inconsistency
will be resolved in FEARLESS by using the subgrid-scale turbulence as an energy buffer (sec. ).

Large eddy simulations

In engineering applications as well as other fields of computational fluid dynamics, large eddy simula-
tions (LES) have been in use over several decades [36]. There is no hierarchy of dynamically changing
grid patches but one static grid that may be equidistant or unstructured. The conservation laws of
hydrodynamics are solved by means of spectral or finite-volume methods. Subgrid scale eddies of
size smaller than the grid resolution cannot be resolved by the numerical scheme. The stress exerted
by subgrid scale eddies onto resolved eddies that results in the transfer of kinetic energy from larger
towards smaller scales is accounted for by a heuristic model, a so-called subgrid-scale (SGS) model
[37]. An exact treatment of subgrid scale turbulence is impossible due to the non-linearity in the
dynamical equations which entails the fundamental closure problem in turbulence theory.

The selection of an appropriate SGS model is a notorious problem because of the considerable
variety of models that have been proposed. In astrophysical fluid dynamics, many researchers choose
the minimal solution of letting numerical dissipation drain kinetic energy from the resolved flow.
Engineers and atmospheric scientists, on the other hand, have recognized that numerical dissipation
is an insufficient solution at best [38, 39]. Turbulent burning in thermonuclear supernova explosions
is one of the few examples in astrophysics where a proper SGS model has been applied so far [23, 40].

LES is limited, however, in its representation of highly transient and localized phenomena. This
problem can be traced back to the fact that all SGS models are in some way based on the notion of
similarity. In other words, an LES must resolve the flow to an extent that turbulence becomes nearly
isotropic and scale-invariant towards the smallest resolved length scales. The anisotropy of the flow
stemming from large-scale features, such as boundary conditions and mechanical forces, is then mostly
confined in the range of “large eddy scales”. Under the conditions mentioned above, however, this
often becomes infeasible using a static grid approach. In this case, AMR would do a much better job
apart from the drawback that it fails to account for small-scale turbulence.

Combining AMR and LES

Few attempts has been made so far to apply AMR in combination with a subgrid-scale (SGS) model.
The outcome would be a FEARLESS scheme with locally adapting resolution (for a recent proposal
along these lines, see [41]). The central idea is to track turbulent regions in the flow and to explicitly
compute any transient or anisotropic features by means of AMR. For each grid patch, an SGS model
with the corresponding cutoff scale must then be invoked in order to capture the effect of yet smaller,
unresolved velocity fluctuations. The following conceptual and technical questions have kept the
development of FEARLESS from progressing very far until now:
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Figure 1: Comparison of the physical length scales of fully developed turbulence (a) with the partition
between resolved kinetic energy, unresolved kinetic energy, and thermal energy without (standard
AMR, (b)), and with (FEARLESS, (c)) an SGS model for unresolved turbulence. The arrows at the
grid scale in (b) and (c) represent the variability of the grid scale in AMR and are meant to clarify
the turbulence refinement effect.

1. How can the central similarity arguments of LES that are usually formulated in Fourier space
be transferred to a grid with locally varying resolution?

2. How can filters be implemented self-consistently across AMR patches?

3. How does subgrid-scale turbulence propagate between regions of varying resolution?

4. How can grid refinement and derefinement be made consistent with the presence of turbulent
velocity fluctuations that become resolved or unresolved?

Owing to our experience using localized SGS models in supernova Ia research [40, 42, 43], we are
now able to answer questions 1 and 2, while 3 and 4 are currently under investigation.

We expect the most noticeable difference between FEARLESS and standard AMR simulations to
be the turbulence refinement effect related to point 4 above. Assuming the existence of a turbulent
cascade on all scales above the (unresolvable) Kolmogorov length, the addition of grid patches must
account self-consistently for the kinetic energy of previously unresolved fluctuations that become a part
of the resolved flow (cf. fig. 1). We intend to implement this effect by explicitly forcing fluctuations on
the newly created small scales and subtracting the corresponding amount of energy from the subgrid-
scale energy of the SGS model. The inverse process of derefinement will be handled accordingly by
adding the appropriate kinetic energy to the SGS energy. Hence, the SGS model can be used as
an energy buffer for grid resolution changes, in addition to its usual application to mimic turbulent
mixing and dynamical pressure.

In situations with a large number of refinement levels, as typically encountered in the examples
of sec. , the turbulence refinement effect can potentially become the dominant source of turbulent



180

fluctuations on small scales. This is one of our main motivations for revisiting these problems with a
FEARLESS approach.
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