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Abstract. An essential quantity required to understand the physics of the early Universe, in
particular the inflationary epoch, is the primordial scalar potential Φ and its statistics. We
present for the first time an all-sky reconstruction of Φ with corresponding 1σ-uncertainty
from WMAP’s cosmic microwave background (CMB) temperature data – a map of the very
early Universe right after the inflationary epoch. This has been achieved by applying a
Bayesian inference method that separates the whole inverse problem of the reconstruction
into many independent ones, each of them solved by an optimal linear filter (Wiener filter).
In this way, the three-dimensional potential Φ gets reconstructed slice by slice resulting in a
thick shell of nested spheres around the comoving distance to the last scattering surface. Each
slice represents the primordial scalar potential Φ projected onto a sphere with corresponding
distance. Furthermore, we present an advanced method for inferring Φ and its power spectrum
simultaneously from data, but argue that applying it requires polarization data with high
signal-to-noise levels not available yet. Future CMB data should improve results significantly,
as polarization data will fill the present `−blind gaps of the reconstruction.
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1 Introduction & motivation

The cosmic microwave background radiation (CMB) is presently one of the most informative
data sets for cosmologists to study the physics of the early Universe. Of actual interest
is in particular the verification of the existence of an inflationary phase of the Universe and
investigations of the physical properties of the involved inflaton field(s). An essential quantity
is thereby the primordial adiabatic scalar potential Φ. Its statistic, especially the two-point
function, was determined during inflation, when the quantum fluctuations of the inflationary
field were frozen during their exit of the Hubble horizon. This statistic is conserved on super-
horizon scales during the epoch of reheating until the individual perturbed modes re-enter
the horizon. Therefore, significant information on the inflationary phase is encoded in the
observable quantity Φ. The processes translating the initial modes after their horizon re-entry
into the observed CMB fluctuations are described by the so-called radiation transfer functions,
see Refs. [1, 2]. As a consequence, many inference methods aim at constraining parameters
of the early Universe involve Φ or their statistics. Therefore the CMB fluctuations provide a
highly processed view on the primordial scalar potential. In this work, we attempt, however,
their direct reconstruction and visualization via Bayesian inference.

The Planck observation, Ref. [3], of the almost homogeneous and isotropic CMB have
shown that the statistical deviations from Gaussianity of the primordial modes/perturbations
are still consistent with zero. Therefore, the two-point correlation function of Φ seems to
describe nearly fully the statistics of the early Universe up to high accuracy. This fact
simplifies the inference of these modes significantly (see, e.g., Ref. [4, 5]), and enables a well
justified all-sky reconstruction of the primordial scalar potential from real data.

This work is organized as follows. In Sec. 2 we present a Bayesian inference approach
to reconstruct the primordial scalar potential. This method, initially proposed by Ref. [2],
requires the knowledge of the primordial power spectrum. We show further how Φ and
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its spectrum can be inferred (unparametrized) even without such an a priori knowledge or
assumption. In Sec. 3, we reconstruct the primordial scalar potential with corresponding
1σ-uncertainty from WMAP temperature data [6] and partially its initial power spectrum.
In Sec. 4, we summarize our findings. Exact derivations of all used reconstruction methods
can be found in appendices A-C.

2 Inference approach

We derive the inference methods within the framework of information field theory (IFT) [7],
where Φ is considered to be a physical scalar field, defined over the Riemannian manifold
R3. Since there is no solid evidence that Φ is non-Gaussian, we assume its statistics to be
Gaussian with a covariance matrix determined by its power spectrum1, i.e.,

Φ←↩ G(Φ, PΦ) with PΦ(k, q) ≡
〈

ΦΦ†
〉

(Φ)
= (2π)3δ(k − q)PΦ(k). (2.1)

Thereby we introduced the notation

G(a,A) ≡ 1√
|2πA|

exp

(
−1

2
a†A−1a

)
and 〈 . 〉(a) ≡

∫
Da . G(a,A), (2.2)

with corresponding inner product

a†b ≡
∫
R3

d3x a∗(x)b(x) (2.3)

for the fields a, b. Here, † denotes a transposition, t, and complex conjugation, ∗. The CMB
data, on the other hand, are of discrete nature, i.e., d ≡ (d1, . . . , dn)t ∈ Rn, n ∈ N.

2.1 Temperature only

To set up a Bayesian inference scheme for the primordial scalar potential Φ we have to know
how the data d are related to Φ. In the case of the data being the WMAP CMB temperature
map this relation is well known, given by [8]

d`m ≡ (RΦ)`m + n`m

= M `m
`′m′

B`′
2

π

∫
dk k2

∫
dr r2Φ`′m′(r)g

T
`′ (k)j`′(kr) + n`m,

(2.4)

where gT` (k) denotes the adiabatic radiation transfer function of temperature, j`(kr) the
spherical Bessel function, n ∈ Rn the additive Gaussian noise, and B` the beam transfer
function of the WMAP satellite. Repeated indices are implicitly summed over unless they
are free on both sides of the equation. We assume the noise to be uncorrelated to Φ. The
operator R, which transforms Φ into the CMB temperature map, is assumed to be linear
consisting of an integration in Fourier space as well as over the radial (comoving distance)
coordinate plus the instrument’s beam convolution and a foreground mask, M . Since there
is currently no hint for isocurvature modes we exclude them from all calculations.

The next logical step, the construction of an optimal2 linear filter within the framework
of IFT, e.g. the Wiener filter [9] (see, e.g., Ref. [7]), is straightforward. Given the actual, very
high resolution of current CMB data sets this, however, turns out to be extremely expensive.

1Here we assume that Φ is also statistically homogeneous and isotropic.
2Optimal with respect to the L2−error norm.
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Fortunately, there is a way to split this single computation of reconstructing the pri-
mordial scalar potential into multiple. Instead of reconstructing the three-dimensional Φ in
a single blow, one can reconstruct it spherically slice by slice, each slice corresponding to a
specific radial coordinate starting from r = 0 to beyond the surface of last scattering (LSS),
rLSS. To understand this procedure we want to recall the definition of the response stated in
Ref. [7], where R is the part of the data which correlates with the signal, RΦ = 〈d〉(d|Φ). It is
straightforward to show that this is equivalent to

R ≡
〈
dΦ†

〉
(Φ,d)

〈
ΦΦ†

〉−1

(Φ,d)
. (2.5)

To obtain the response acting on a sphere with corresponding comoving distance r it can now
also be defined as the expectation value of the data given Φ restricted to a sphere instead
of over the three-dimensional regular space, i.e., R(2)Φ(r = const.) = 〈d〉(d|Φ(r=const.)). The
exact derivation of this modification can be found in App. A and yields

R
(2)
`m
`′m′

(r) = M `m
`′′m′′

B`′′

∫
dk k2PΦ(k)j`′′(kr)g

T
`′′(k)∫

dk k2PΦ(k)j2
`′′(kr)

δ`′′`′δm′′m′

≡ M `m
`′′m′′

B`′′R`′′δ`′′`′δm′′m′ ,

(2.6)

with superscript “(2)” indicating that this response acts on the (two-dimensional) sphere
Φ`m(r = const.). Initially, we assume PΦ to be known (see Sec. 2.3 if not), i.e. that it is
determined via the primordial power spectrum of comoving curvature perturbations R, given
by

PR(k) ≡ 2π2

k3
As∗

(
k

k∗

)ns
∗−1

, (2.7)

with k∗ the pivot scale with related primordial scalar amplitude As∗ and scalar spectral index
ns∗. During matter domination, the relation

R = −5

3
Φ (2.8)

is valid. Hence, the primordial power spectrum of Φ is given by

PΦ(k) =
9

25

2π2

k3
As∗

(
k

k∗

)ns
∗−1

. (2.9)

Figure 3 shows the predicted data power spectrum using R(2)(r = const.) without instru-
mental beam, noise, or mask. Having this response, we are able to construct the (data-space
version of the) Wiener filter formula (see App. B.1 for details),

m(2)(r) = PΦ
` (r)R(2)†(r)

[
C̃TT +N

]−1
d, (2.10)

with PΦ
` (r) the primordial power spectrum projected onto the sphere at comoving distance r

and C̃TT = RPΦR† = MBCTTB†M † where

CXY` =
2

π

∫
dk k2PΦ(k)gX`(k)gY `(k). (2.11)

X,Y can denote temperature T or polarization E−mode. Equation (2.10) provides an optimal
estimator of Φ`m(r) and was stated first in Ref. [10] without an exact derivation. The huge

– 3 –



advantage of this method is the reduction of computational time, by separating the whole
inverse problem into many independent distance-dependent ones. This method permits an
easy parallelization of the Wiener filter3 in the three-dimensional space. The 1σ uncertainty
of this estimate, ∆m(2)(r), is given by [7]

∆m(2)(r) ≡ ±
√

diag [D]

= ±

√
diag

[
PΦ
` − PΦ

` R
(2)†
(
C̃TT +N

)−1
R(2)PΦ

`

]
,

(2.12)

where we have introduced the posterior covariance D in data space. A proxy of this formula,
used in our numerical calculations, can be found in App. B.

2.2 Temperature and polarization

With future data releases of current experiments like Planck [11], it should be possible to
include polarization data (P) with acceptable signal-to-noise level into considerations. In-
cluding polarization measurements, parametrized by the Stokes parameters Q,and U , the
data is given by

d =

dTdQ
dU

 = RΦ +

nTnQ
nU

 (2.13)

with corresponding response

R =

MTB 0 0
0 MPB 0
0 0 MPB

W T,E
T,Q,U︸ ︷︷ ︸

≡RT,E
T,Q,U

RTRE
0

 , (2.14)

where RT,E captures the radiation transfer, i.e.,

(
RT,EΦ

)
`m
≡ 2

π

∫
dk k2

∫
dr r2Φ`m(r)gT,E` (k)j`(kr). (2.15)

The adiabatic radiation transfer functions are gT,E for temperature and E-mode polarization,
respectively. For the formal definition of gT,E see, e.g., Refs. [12, 13]. The operator W T,E

T,Q,U

transforms a vector, containing temperature and E-mode polarization, into Stokes I,Q, U
parameters, which are directly measured by experiments like WMAP or Planck. Therefore
the generalized data-space version of the Wiener filter equation reads

m(2)(r) = PΦ
` (r)

(
R

(2)
T

†
(r) R

(2)
E

†
(r) 0

)(
RT,ET,Q,U

)†
×

RT,ET,Q,U
CTT` CTE` 0

CTE` CEE` 0
0 0 0

(RT,ET,Q,U)† +N

−1dTdQ
dU

 ,

(2.16)

3The matrix inversion within Eq. (2.10), often solved by Krylov subspace methods like the conjugate
gradient method, is often computationally (very) expensive.
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where R(2)
X=T,E denotes the two-dimensional version of RX , analogous to Eq. (2.6). The

uncertainty is given analogously to Eq. (2.12).
The inclusion of polarization data will result in a significant improvement of reconstruc-

tion quality not least because gT` (k) and gE` (k) are out of phase and thus compensating the
`−blind spots of each other, which was also noticed by Ref. [10] and can be observed in their
Fig. 1. This is, however, only correct if the polarization data is not highly dominated by
noise.

2.3 Primordial power spectrum reconstruction

Once a signal estimate (optimally with uncertainty) is available the power spectrum of the
stochastic process underlying the signal generation might be inferred. Usually, however, an
initial guess of the signal power spectrum is required to obtain a Wiener filter signal in the
first place. This initial guess spectrum can affect the spectrum estimate and therefore might
act as a hidden prior. In order to forget the initial guess, the procedure of signal and spectrum
inference should be iterated until it has converged onto a spectrum that is then independent
of the initial starting value. Fortunately, the primordial power spectrum is constrained well
by the existing CMB data-sets so that this process should converge rapidly. This iterative,
unparametrized method was derived in Refs. [14, 15] and named critical filter. It can be
regarded as a maximum a posteriori estimate of the logarithmic power spectrum and the
assumption of a scale invariant Jeffreys prior of its amplitudes. The power spectrum on the
sphere is written as

PΦ
~̀~̀′ = δ~̀~̀′P

Φ
` with ~̀≡ (`,m). (2.17)

The iterative critical filter formula including a spectral smoothness prior is then given by
Eq. (2.10) and

PΦ
` =

∑
{~̀′|`′=`}

(
m

(2)
~̀ m

(2)†
~̀′ +D~̀~̀′

)
ρ` + 2(S lnPΦ)`

, (2.18)

where ρ` =
∑
{~̀′|`′=`} 1 is the number of degrees of freedom on the multipole ` and S an

operator that enforces smoothness (for details see Ref. [15]).

3 Temperature-only reconstruction of the primordial scalar potential

3.1 Input values and settings

We analyze the full resolution (nside = 512) coadded nine-year WMAP (foreground-cleaned)
V-band frequency temperature map, masked with the primary temperature analysis mask
(KQ85: 74.8% of the sky). The data as well as the corresponding beam transfer function
and noise properties (see App. C) we used can be found at http://lambda.gsfc.nasa.gov/
product/map/dr5/m_products.cfm [6, 16]. We did not take polarization data into consider-
ations due to the suboptimal signal-to-noise levels. To be consistent with the WMAP team’s
measurements we use the cosmological parameters obtained by their data analysis to com-
pute the radiation transfer function as well as the primordial power spectrum. In particular
this has been done by using gTfast4, which is based on CMBFAST5 [17]. We used the follow-
ing settings: pivot scale k∗ = 0.002 Mpc−1, spectral index ns∗ = 0.962, spectral amplitude
As∗ = 2.46 × 10−9, noise level σV−band

0 = 3.131 × 10−3 K, CMB temperature TCMB = 2.726

4http://www.mpa-garching.mpg.de/~komatsu/CRL/nongaussianity/radiationtransferfunction/
5http://lambda.gsfc.nasa.gov/toolbox/tb_cmbfast_ov.cfm
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Figure 1. (color online) All-sky maps of the reconstructed primordial scalar potential at different
comoving distances according to Eq. (2.10) in the vicinity of the recombination sphere with r = rLSS.
A Mollweide projection is used.

K, optical depth τ = 0.088, density parameters Ωb = 0.046, Ωc = 0.0231, ΩΛ = 0.723,
Hubble constant H0 = 70.2 km/s/Mpc, helium abundance YHe = 0.24, and the effective
number of massless neutrino species N eff

ν = 3.04. The resulting distance to the LSS amounts
1.40147× 104 Mpc.
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Figure 2. (color online) 1σ uncertainty maps of the corresponding all-sky maps of of Fig. 1 according
to Eq. (B.7) in the vicinity of the recombination sphere with r = rLSS. A Mollweide projection is
used. Note that the color bar for r = 0.80rLSS is a different one, showing the natrual bounds of the
uncertainty map. All uncertainty maps share this morphology.

3.2 Results

With the parameters defined in the previous paragraph, we have reconstructed a shell around
the last scattering surface (0.8 × rLSS to 1.1 × rLSS) in 151 slices as well as additional 6
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Figure 3. (color online) Predicted power spectra of data simulated with the estimator response
R(2) compared to the CMB data power spectrum. The `−blind spots move from large scales at
distances r < rLSS to small scales at r > rLSS. The amplitude of the predicted power spectra gets
maximal at r = rLSS. For clarity and comprehensibility we exclude the instrumental beam, noise, and
observational mask.

slices within the range (50%− 80%)× rLSS from real data, see Fig. 1. For all reconstructions
1σ-uncertainty maps are provided, see Fig. 2 as well as the relative 1σ-error along the radial
coordinate, see Fig. 4 (Right). A detailed description of the calculation of these uncertainty
maps can be found in App. B. The respective data files of the reconstruction can be found
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Figure 4. (color online) Left: Estimated primordial power spectrum of Φ(r = rLSS) according to
Eq. (2.18). Masking effects as well as the estimators power loss are compensated. At scales smaller
than ` ≈ 300 the reconstruction fails due to sub-horizon physics [10] and noise-dominance. Right:
Relative 1σ-uncertainty along the radial coordinate. Minimal values of σ correspond to Eq. (B.6)
with “no mask”, maximal values to the same equation with “all mask”.

at http://www.mpa-garching.mpg.de/ift/primordial/. For the most interesting sphere at
r = rLSS we also provide a power spectrum estimate, see Fig. 4 (Left). This power spectrum
estimate has been obtained with the critical filter formula with smoothness prior but without
iterations6 and D set to zero (defined in Eq. (2.12)).

We also phenomenologically7 corrected for the effect of masking and power-loss in the
predicted power spectra of data simulated with the estimator response R(2) in comparison to
the power spectrum of Eq. (2.11). Therefore our spectrum estimate should rather be regarded
as providing a consistency check of the algorithm than to necessarily provide precisely the
cosmological power spectrum. Having stated these caveats, we like to note that a deviation
from the power-law primordial power spectrum is not apparent over roughly one order of
magnitude in Fourier space.

Some of the reconstructed slices of the primordial scalar potential might look suspiciously
crumby at first. The reason for this property are the `−blind spots in the response R`.
Figure 3 shows the noiseless data power spectrum, CTT` = RPΦR†, as well as the power
spectrum R(2)PΦ

` R
(2)† expected from noiseless, distance dependent data obtained with the

estimator response, d(2) = R(2)Φ. The `−blind spots are clearly recognizable, which move
from large scales at distances r < rLSS to small scales at r > rLSS, where the amplitude of
this power spectrum gets maximal at r = rLSS.

6With the correct application of the critical filter (iterative) one might be able to detect features in the
primordial power spectrum [5]. This, however, would require a highly resolved data set including polarization
to compensate for the `−bind spots (one cannot get rid of with temperature data only) with a high signal-
to-noise level in T -, Q-, and U -data maps. Perfect candidates for such data sets are future CMB experiments
and Planck polarization data releases.

7The power-loss is corrected by convolving the reconstructed Φ with α` ≡
√
CTT

` /(R2
`P

Φ
` ) ∀` : R2

`P
Φ
` 6= 0

before performing the power spectrum estimation. We also investigated how the mask affects the power
spectrum of Φ, by calculating βl ≡

〈
power

[
Rmask(Φ)

]
/PΦ

`

〉
where power[ . ] denotes the application of the

critical filter formula with smoothness prior. We re-scaled the inferred power spectrum with 1/β`.
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4 Conclusion & outlook

We have presented a reconstruction of the primordial scalar potential Φ with corresponding
1σ-uncertainty from WMAP temperature data. This has been achieved by setting up an
inference approach that separates the whole inverse problem of reconstructing Φ into many
independent ones, each corresponding to the primordial scalar potential projected onto a
sphere with specific comoving distance. This way the reconstruction is done sphere by sphere
until one obtains a thick shell of nested spheres around the surface of last scattering. This
results in a significant reduction of computational costs (since the reconstruction equation
(Wiener filter) parallelizes fully), if only the small region around the last scattering surface is
reconstructed, which is accessible through CMB data.

We did not include polarization information yet due to the suboptimal signal-to-noise
ratios of the WMAP polarization data. Hence we do not expect a huge improvement when
additionally including WMAP Stokes Q and U parameters into the Wiener filter equation.
This, however, will definitely change when the polarization data of Planck will be available in
the near future. Once one uses simultaneously temperature and polarization data, the `−blind
spots in the reconstructions will disappear and with it the crumbliness of the maps. At this
point it also might be more rewarding to apply the critical filer equations to simultaneously
obtain the power spectrum of the primordial scalar potential.
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A Response projected onto the sphere of LSS

The data is given by

d`m ≡ M `m
`′m′

aCMB
`′m′ + n`m = (RΦ)`m + n`m

= M `m
`′m′

B`′
2

π

∫
dk k2

∫
dr r2Φ`′m′(r)g

T
`′ (k)j`′(kr) + n`m.

(A.1)

Considering Gaussian statistics for the primordial curvature perturbations, Φ, the response
is defined by

R ≡
〈
dΦ†

〉
(Φ,d)

〈
ΦΦ†

〉−1

(Φ,d)
. (A.2)

Instead of using the full three-dimensional response R, we introduce a two-dimensional re-
sponse, R(2), which acts on the primordial potential projected onto the last scattering surface
(LSS), Φ(2) ≡ Φ (r = rLSS) = T̃Φ, where T̃ denotes the projection operator:

R(2) =
〈
RΦ(T̃Φ)†

〉
(Φ,d)

〈
T̃Φ(T̃Φ)†

〉−1

(Φ,d)
=
(
RPΦT̃ †

)(
T̃PΦT̃ †

)−1
. (A.3)

– 10 –

http://www.mpa-garching.mpg.de/~komatsu/CRL/nongaussianity/radiationtransferfunction/
http://www.mpa-garching.mpg.de/~komatsu/CRL/nongaussianity/radiationtransferfunction/
http://www.mpa-garching.mpg.de/ift/nifty/
http://healpix.sourceforge.net/


To derive the denominator at the distance of the LSS, we first transform it into position-space,(
T̃PΦT̃ †

)
n̂,n̂′

=

∫
d3x

∫
d3yδ (x− rLSSn̂) δ

(
y − rLSSn̂

′)
×
∫

d3k

(2π)3

∫
d3q

(2π)3
(2π)3δ(k− q)PΦ(k)e−ik·xeiq·y

=

∫
d3k

(2π)3
PΦ(k)e−irLSSk·n̂eirLSSk·n̂′ .

(A.4)

Vectors are printed in bold for reasons of clarity and comprehensibility; unit vectors are
denoted by .̂ Subsequently we use the Rayleigh expansion,

eik·r = 4π

∞∑
`=0

∑̀
m=−`

i`j`(kr)Y
m∗
` (k̂)Y m

` (r̂), (A.5)

as well as the transformation rules

f`m ≡
∮
dn̂ Y m∗

` (n̂)f(n̂),

f(n̂) =

∞∑
`=0

∑̀
m=−`

f`mY
m
` (n̂),

and
∮
dn̂ Y m

` (n̂)Y m′∗
`′ (n̂) = δ``′δmm′ ,

(A.6)

to obtain the final corresponding expression in the spherical harmonic space,(
T̃PΦT̃ †

)
`m
`′m′

=

∮
dn̂

∮
dn̂′ Y m

` (n̂)Y m′∗
`′ (n̂′)

∫
d3k

(2π)3
PΦ(k)

×
∑
`′′`′′′

m′′m′′′

(4π)2i`
′′′−`′′j`′′(krLSS)j`′′′(krLSS)Y m′′

`′′ (k̂)Y m′′′∗
`′′′ (k̂)Y m′′∗

`′′ (n̂)Y m′′′
`′′′ (n̂′)

=
2

π

∫
dk k2

∮
dk̂ PΦ(k)i`

′−`j`(krLSS)j`′(krLSS)Y m′∗
`′ (k̂)Y m

` (k̂)

=
2

π

∫
dk k2PΦ(k)j2

` (krLSS)δ``′δmm′ ≡ PΦ
` δ``′δmm′ .

(A.7)

PΦ
` denotes the primordial power spectrum projected onto the sphere of LSS.

To determine the numerator we fist have to transform PΦT̃ † into the basis of spherical
harmonics. Analogous to the calculation above we obtain(

PΦT̃ †
)

`m
`′m′

(r) =
2

π

∫
dk k2PΦ(k)j`(krLSS)j`(kr)δ``′δmm′ , (A.8)

and thus(
RPΦT̃ †

)
`m
`′m′

= M `m
`′′m′′

B`′′
2

π

×
∫
dk k2

∫
dr r2

{
2

π

∫
dk′k′2PΦ(k′)j`′′(k

′rLSS)j`′′(k
′r)

}
× gT`′′(k)j`′′(kr)δ`′′`′δm′′m′ .

(A.9)
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Using the identity ∫ ∞
0

dr r2j`(kr)j`(k
′r) =

π

2

1

k2
δ(k − k′) (A.10)

finally yields(
RPΦT̃ †

)
`m
`′m′

= M `m
`′′m′′

B`′′
2

π

∫
dk k2PΦ(k)j`′′(krLSS)gT`′′(k)δ`′′`′δm′′m′ . (A.11)

Putting the results together, the two-dimensional response is given by

R
(2)
`m
`′m′

= M `m
`′′m′′

B`′′

∫
dk k2PΦ(k)j`′′(krLSS)gT`′′(k)∫

dk k2PΦ(k)j2
`′′(krLSS)

δ`′′`′δm′′m′ . (A.12)

The response for arbitrary comoving distances r′ can be obtained by replacing rLSS by r′.

B Wiener filter formula and uncertainty estimate in data space

The Wiener filter in data space is defined by

m(2)
w ≡

〈
Φ(2)

〉
(Φ|d)

= T̃ 〈Φ〉(Φ|d) = T̃
〈

Φd†
〉

(Φ,n)

〈
dd†
〉−1

(Φ,n)
d = T̃PΦR†

[
RPΦR† +N

]−1
d

= T̃PΦR†
[
C̃TT +N

]−1
d

Eq. (A.12)
= PΦ

` R
(2)†
[
C̃TT +N

]−1
d.

(B.1)

Formally, the corresponding posterior covariance matrix is constructed as

D = PΦ
` − PΦ

` R
(2)†
(
C̃TT +N

)−1
R(2)PΦ

` . (B.2)

The square root of its position space diagonal would give us the 1σ uncertainty map. However,
as the operator is not directly accessible to us, but is only defined as a sequence of linear
functions, calculating the diagonal requires very expensive probing routines which need to
evaluate the covariance matrix several thousand times before converging.

However, the covariance matrix becomes diagonal in spherical harmonic space under two
conditions: We assume that there is no masking in the data and the noise covariance N is
a multiple of the identity. The noise covariance matrix for TT data is already diagonal and
dominated by white uncorrelated noise. So this approximation seems appropriate given the
benefits in computational costs. The assumption that there is no masking is more drastic of
course. We therefore construct our uncertainty map out of the limiting cases of having no
masking and masking the whole sky. Both scenarios make the posterior covariance matrix
diagonal in spherical harmonic space.

The constant approximation to the noise covariance is constructed as

Ñn̂n̂′ =
trN

tr1
δ(n̂− n̂′). (B.3)

The response with no mask is diagonal in spherical harmonic space,

R̃ `m
`′m′

= B`R` δ``′ δmm′ , (B.4)
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and the response with an all-sky mask is zero. Therefore the covariance matrix is diagonal in
either case. Since a diagonal matrix in spherical harmonic space results in a constant diagonal
in position space, we can exploit the invariance of the trace to get the position space diagonal
of the covariance matrix,

Dn̂n̂ =
trD

4π
, (B.5)

where the trace is easily calculated in spherical harmonic space, where D is diagonal.
In a region that is fully masked and where the edges of the mask are further away than

the correlation length of Φ the uncertainty approaches the limiting case of an all-sky mask. In
a region that is fully exposed and more than a correlation length away from a masked region
the uncertainty approaches the limiting case of no mask. We therefore combine the two cases
into one map by setting the uncertainty to the “all-sky masked” value in regions which are
masked and to the “no mask” value in regions which are not masked, i.e.

σ2
n̂ =

{
Dall mask
n̂n̂ if Mn̂n̂′ = 0

Dno mask
n̂n̂ otherwise.

(B.6)

The interpolation between these two regions is dictated by the prior covariance. It describes
precisely how information is correlated between masked and unmasked regions. Our final
uncertainty map is therefore the result of a smoothing of σ with the normalized square root
of the prior covariance,

σsmooth =
1

N

√
PΦ
` σ, (B.7)

where

N =

∮
dn̂dn̂′

(√
PΦ
`

)
n̂n̂′

δ(n̂′). (B.8)

C WMAP noise characterization

The pixel noise level (in units mK) of a single map can be determined by σ = σ0/
√
Nobs,

where σ0 can be found at http://lambda.gsfc.nasa.gov/product/map/dr5/skymap_info.
cfm and the effective number of observations Nobs, which can vary from pixel to pixel, is
stored in the FITS file of a map, see http://lambda.gsfc.nasa.gov/product/map/dr4/
skymap_file_format_info.cfm. Thus, the noise covariance matrix of a single map is given
by

Nn̂,n̂′ =
σ2

0

Nobs(n̂′)
δn̂n̂′ . (C.1)

Including polarization data, the noise covariance matrix in position space has to be
generalized by

N−1 =

NTT
obs/σ

2
T 0 0

0 NQQ
obs /σ

2
P NQU

obs /σ
2
P

0 NQU
obs /σ

2
P NUU

obs /σ
2
P

 , (C.2)

where σT,P is the respective noise level of temperature and polarization as given by WMAP.
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