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We introduce a new family of analytical coordinate systems for the Kerr spacetime representing
rotating black holes. We also propose a formalism that allows for a characterization of trumpet
geometries in the absence of spherical symmetry. Applying these notions to our new family of
coordinate systems we identify, for the first time, analytical and stationary trumpet slices for general
rotating black holes, even for charged black holes in the presence of a cosmological constant. We
present results for metric functions in this slicing and analyze the geometry of the rotating trumpet
surface.
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Many numerical relativity simulations adopt a 3+1 de-
composition in which the four-dimensional spacetime is
split into a foliation of three-dimensional spatial slices. In
the context of such a 3+1 decomposition the coordinate
conditions are imposed with the help of a lapse function
and a shift vector. A particular successful choice of co-
ordinates for the evolution of black-hole spacetimes are
so-called moving-puncture coordinates (see, e.g., [1, 2]
as well as numerous later simulations; see also [3] for a
pedagogical introduction). When evolved with moving-
puncture coordinates, black-hole spacetimes settle down
to a foliation in which the spatial slices take on a trum-
pet geometry. Trumpet slices end on a two-dimensional
trumpet surface that is embedded in the spatial slices and
encloses the spacetime singularity. The slices therefore
avoid spacetime singularities, and allow numerical sim-
ulations of black-hole spacetimes without special treat-
ment of the black holes.

The geometric properties of trumpet slices of (nonro-
tating) Schwarzschild black holes [4] are well understood
(see, e.g., [5–9]). On the trumpet surface the lapse van-
ishes (marking the boundary of the spatial slice), the
surface has a finite and non-zero proper area (ensuring
that the surface is removed from the spacetime singu-
larity) and it is an infinite proper distance away from
all points outside the trumpet surface itself (so that the
rest of spacetime is not affected by the presence of the
coordinate singularity). An embedding diagram, which
resembles a trumpet and gives these slices their name, is
shown, for example, in Fig. 2 of [7]. Understanding these
properties has been very helpful in both interpreting and
guiding numerical simulations. While the gauge condi-
tions used in many numerical relativity simulations re-
sult in trumpet slices that cannot be given in completely
analytical form, we have recently presented a different
but completely analytical family of trumpet slices of the
Schwarzschild spacetime in [10].

Generic black holes, however, rotate, and generic nu-
merical relativity simulations result in Kerr black holes
[11]. Evidently it would therefore be desirable to gain a
better understanding of the geometric properties of trum-

pet slices of the Kerr spacetime. While this has been
recognized as an interesting and important problem, it
appears difficult to generalize analytical results for those
trumpet slices realized for the gauge conditions used in
many numerical simulations (see, e.g., [12] for a numeri-
cal study; see also [13–17] for approaches to constructing
trumpet initial data for rotating black holes). In this pa-
per, we instead adopt the procedure of [18] to generalize
the above-mentioned family of analytical trumpet slices
[10] to rotating black holes. We thereby introduce a new
analytical coordinate system for the Kerr spacetime.

It is quite easy to verify that spherically symmetric
slices of the Schwarzschild spacetime can simultaneously
have all three properties of a trumpet surface proposed
above (vanishing lapse, finite proper area, and infinite
proper distance from any point off the surface). In the
absence of spherical symmetry it is not only more com-
plicated to evaluate these properties; a priori it is not
even clear whether all three conditions can be met si-
multaneously. Below we propose a formalism that allows
for a characterization of trumpet slices for axisymmetric
spacetimes, and we demonstrate that slices of constant
coordinate time in our new coordinate system for Kerr
spacetimes do indeed meet these criteria. With the ex-
ception of extreme Kerr black holes, for which surfaces of
constant Boyer-Lindquist time form trumpet slices (see,
e.g., [19]), our solutions represent, to the best of our
knowledge, the first analytical examples of stationary
trumpet slices in general rotating black holes.

We start with a 3+1 decomposition of a spacetime M
with a metric gab; we will assume that both are axisym-
metric and that the metric is given in terms of spherical
polar coordinates t, R, θ, and φ. We then introduce a
foliation Σ of M that is formed by level-surfaces of the
coordinate time t; the spacetime metric gab can then be
written in the form

gab =

(
−α2 + βiβ

i βi
βj γij

)
(1)

where α is the lapse function, βi the shift vector, and
γab ≡ gab+nanb the spatial metric induced by gab on the

ar
X

iv
:1

40
9.

18
87

v1
  [

gr
-q

c]
  5

 S
ep

 2
01

4



2

spatial slice. Indices a, b, . . . run over spacetime indices,
while indices i, j, . . . run over spatial indices only, and

na = (−α, 0, 0, 0) (2)

is the future-pointing normal on the slices Σ. The proper
time τ as measured by normal observers advances accord-
ing to dτ = αdt. We also note that the determinant g of
the spacetime metric is given by

− g = α2γ, (3)

where γ ≡ det(γij).
We now perform an analogous 2+1 decomposition of

the spatial slices. We consider axisymmetric, closed hy-
persurfaces S of the spatial slices Σ, centered on the ori-
gin, that can be represented as level surfaces of a (poten-
tially) new radial coordinate R̄ = R̄(R, θ). In complete
analogy to the above, we can then write the spatial met-
ric γij , in the new barred coordinates, in the form

γı̄̄ =

(
σ2 + ωAω

A ωA
ωB hAB

)
, (4)

where σ and ωA play the same roles as α and βi above,
and where hı̄̄ ≡ γı̄̄ − sı̄s̄ is the surface metric induced
by γı̄̄ on S. Indices A, B . . . run over angular indices
only, and

sı̄ = (σ, 0, 0) (5)

is the outward-pointing normal on the surfaces S. The
proper distance between two surfaces, measured along
the normal, advances according to

dl = σdR̄. (6)

In analogy to (3), the determinant γ may be expressed
as

γ = J2γ̄ = J2σ2h, (7)

where γ̄ ≡ det(γı̄̄), h ≡ det(hAB) and where we assume
the Jacobian of the transformation from the unbarred to
the barred spatial coordinates J ≡ det(∂xı̄/∂xj) to be
finite and non-zero. Combining (3) with (7) we also have

− ĝ = J2α2σ2ĥ (8)

where ĝ ≡ g/ sin2 θ and ĥ ≡ h/ sin2 θ.
We can now characterize a trumpet surface at, say,

R̄ = R̄0 as follows. We require that this surface surround
all spacetime singularities and hence have finite (and non-

zero) proper area; we will therefore assume that ĥ be
finite (and non-zero) at R̄ = R̄0. We next require that the
surface have an infinite proper distance from any point
R̄ > R̄0; according to (6) this means that σ−1 must have
(at least) a single root at R̄0,

σ ∝ (R̄− R̄0)−n (9)

with n ≥ 1. As long as ĝ remains finite at R̄0, relation
(8) then shows that the lapse automatically has at least
a single root, marking the boundary of the spatial slice.
In fact, these arguments show that, as long as ĝ remains
finite and non-zero at R̄0, a trumpet surface can be iden-
tified as a closed surface with finite ĥ on which the lapse
α takes at least a single root.

In [10] we presented an analytical family of trumpet
slices for Schwarzschild black holes, parameterized by
the areal radius of the trumpet surface 0 ≤ R0 ≤ M .
The family contains, as a special member, Painlevé-
Gullstrand coordinates [20, 21] for R0 = 0 (for which the
trumpet disappears). Several authors (including [18, 22–
24]) have suggested procedures that generalize Painlevé-
Gullstrand coordinates for Kerr black holes. We now
adopt the procedure of [18] to generalize the entire family
of trumpet slices for rotating black holes. As discussed
in [18], we can transform from Boyer-Lindquist coordi-
nates [25] (tBL, RBL, θBL, φBL) to generalized Painlevé-
Gullstrand coordinates (t, R, θ, φ) by defining

dtBL = dt−
(R2 + a2)

√
f2 − (R2 − 2MR+ a2)

(R2 − 2MR+ a2)f
dR,

(10)
and

dφBL = dφ− a
√
f2 − (R2 − 2MR+ a2)

(R2 − 2MR+ a2)f
dR, (11)

as well as dRBL = dR and dθBL = dθ, where f ≡ f(R)
is an arbitrary function. Choosing f(R) = R − R0 we
arrive at the line element

ds2 = −ρ
2 − 2MR

ρ2
dt2

+2

√
R2

0 + 2R(M −R0)− a2

R−R0
dtdR

−4aMR sin2 θ

ρ2
dtdφ+

ρ2

(R−R0)2
dR2

−2a

√
R2

0 + 2R(M −R0)− a2

R−R0
sin2 θdRdφ

+ρ2dθ2 +
sin2 θ

ρ2
ξ1dφ

2. (12)

Here M is the black hole’s mass, aM its angular momen-
tum, R0 is a – so far – arbitrary constant, and we have
defined

ρ ≡
√
R2 + a2 cos2 θ (13)

as well as

ξ1 ≡ ρ2(R2 + a2) + 2a2MR sin2 θ. (14)

We have verified that this solution satisfies Einstein’s
equations. In the limit of zero rotation, a = 0, we recover
the expressions of [10] for the Schwarzschild spacetime;
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for extreme Kerr, a = M , we recover the metric in Boyer-
Lindquist coordinates, provided we choose R0 = M .

It is now straightforward to verify that slices of con-
stant coordinate time are trumpet slices. We first com-
pute

− ĝ = ρ4 (15)

which is non-zero and finite as long as ρ is, so that the
arguments following eq. (8) apply. We then perform the
3+1 decomposition (1) and identify the lapse

α =
ρ(R−R0)

ξ
1/2
2

, (16)

where we have abbreviated

ξ2 = (R2 + a2)2 − a2(R−R0)2 sin2 θ, (17)

as well as the spatial metric γij = gij . For completeness
we also list the non-zero components of the shift

βR =
R2 + a2

ρ2
α2gtR (18a)

and

βφ = −aR
2 + a2 − (R−R0)2

ρ2(R−R0)2
α2. (18b)

Evidently, the lapse (16) has a single root in R at R = R0,
making this coordinate-sphere a candidate for a trumpet
surface. We therefore do not need to transform to a new
radial coordinate R̄, and instead may apply the 2+1 de-
composition (4) directly to surfaces of constant R. Drop-
ping the bars in the above expressions we identify

hAB =

(
γθθ 0
0 γφφ

)
. (19)

The rescaled determinant of this metric

ĥ = γθθγφφ/ sin2 θ = ξ1 (20)

is finite and non-zero at R = R0, as we required above
for a trumpet surface. Eq. (8) now implies automatically
that this surface is an infinite proper distance away from
all points with radii R > R0. To verify this, we identify

σ2 = γRR −
γ2
Rφ

γφφ
=

ρ2

(R−R0)2

ξ2
ξ1

(21)

from (4), so that the integral (6) indeed diverges at R =
R0. We can also insert eqs. (15), (16), (20) and (21)
into (8) to verify that this equation is indeed satisfied
with J = 1. This completes the identification of R = R0

surfaces as trumpet surfaces in the Kerr spacetime.
For gtR to be real, the free parameter R0 should be

chosen within the limits M −
√
M2 − a2 ≤ R0 ≤ M ,

meaning that the trumpet surface is always between the

FIG. 1: The proper area A of the trumpet surface (top panel)
as well as the proper circumferences C (bottom panel) of the
trumpet surface as a function of the squared spin parame-
ter (a/M)2, for R0 = M . The equatorial circumference is
measured along the equator at θ = π/2, while the polar cir-
cumference is measured at constant φ.

FIG. 2: The conformal factor ψ (23), the trace K of the ex-

trinsic curvature (22) and the magnitude of the shift
√
βiβi

(18) as a function of the lapse α (16) (which, unlike the ra-
dius, is invariant under spatial coordinate transformations).
Vanishing lapse α = 0 corresponds to the trumpet surface,
while α = 1 is spatial infinity. All graphs are shown for
a = 0.8M and R0 = M . In each case the solid (red online)
curve shows the relationship in the equatorial plane, while the
dotted (blue online) curve shows the relationship in the polar
direction. The inset in the top panel shows the conformal fac-
tor near the trumpet surface on a log-log scale. On this graph
the slope of both lines is indistinguishable from the slope of
α−1/2 ∝ (R−M)−1/2 = r−1/2, where the proportionality fol-
low from eqs. (16) and (23), and where r is a quasi-isotropic
radius (see below).
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inner and outer horizon of the Kerr black hole. The only
choice of R0 that can be used for all values of 0 ≤ a2 ≤
M2 isR0 = M , which further simplifies some of the above
expressions (see also [10]). In the Figures we show some
results for this choice. In particular, we show the proper
area (top panel) as well as both the equatorial and polar
circumferences (bottom panel) as functions of (a/M)2 in
Fig. 1. In Fig. 2 we show the magnitude of the shift (18),
the trace K of the extrinsic curvature Kij ,

K = γijKij =

√
M2 − a2

ρ2
∂R

(
(R2 + a2)α

R−M

)
, (22)

and a conformal factor ψ which, for our purposes here,
we define as

ψ ≡
(

γ

(R−M)4 sin2 θ

)1/12

=
ρ1/6ξ

1/12
2√

R−M
, (23)

as a function of the lapse (16) for a = 0.8M .

The above results can be extended to Kerr-Newman-de
Sitter black holes, i.e. rotating charged black holes [26]
in the presence of a cosmological constant Λ [27] with
Λ > −3/a2 for nonzero a. Defining

∆ ≡ R2 − 2MR+ a2 − ΛR2(R2 + a2)

3
+Q2, (24)

as well as

Ξ ≡ 1 +
Λa2

3
(25)

and

Ξθ ≡ 1 +
Λa2

3
cos2 θ, (26)

we find that the line element is

ds2 = −∆− a2Ξθ sin2 θ

Ξ2ρ2
dt2 + 2

√
(R−R0)2 −∆

Ξ(R−R0)
dtdR− 2

a
(
Λρ2(R2 + a2)/3 + 2MR−Q2

)
sin2 θ

Ξ2ρ2
dtdφ

+
ρ2

(R−R0)2
dR2 − 2a

√
(R−R0)2 −∆

Ξ(R−R0)
sin2 θdRdφ+

ρ2

Ξθ
dθ2

+
sin2 θ

Ξ2ρ2

((
R2 + a2

)(
R2 + a2

(
1 +

Λρ2

3

))
− a2

(
R2 − 2MR+ a2 +Q2

)
sin2 θ

)
dφ2. (27)

For Λ = 0 and Q = 0, the Kerr-Newman-de Sitter metric
(27) reduces to the Kerr metric (12), while for a = 0 and
Q = 0 it reduces to an extension of the family of [10]
to Schwarzschild-de Sitter spacetimes [28–31]. For a = 0
and Λ = 0, it reduces to a family of trumpet slicings of
the Reissner-Nordstrøm spacetime [32, 33]. As before,
slices of constant coordinate time t are trumpet slices,
with the trumpet surface at R = R0.

Most numerical simulations adopt quasi-isotropic spa-
tial coordinates, for which the coordinate radius r of the
trumpet surface vanishes. The above solution can be
transformed to such a coordinate system very easily with
the transformation r = R − R0 (for which the spatial
metric becomes isotropic in the limit a = 0.) We note,
however, that K is not single-valued on the trumpet sur-
face (see also Fig. 2). This is one indication that our
new coordinate system for Kerr is not well-suited for nu-
merical simulations (see also the discussion in [10]). It is
also not clear, a priori, whether the criteria for trumpet
surfaces (vanishing lapse, finite proper area, and infinite
proper distance from any point off the surface) are gener-
ally compatible with the gauge conditions typically used
in numerical relativity simulations of black holes. The

point of this paper, however, is to show how the charac-
terization of trumpet surfaces in spherically symmetric
spacetimes can be generalized for rotating black holes,
and to demonstrate analytically that such surfaces do
indeed exist. We introduce a surprisingly simple new co-
ordinate system for the Kerr spacetime, and present the
first analytical examples of stationary trumpet slices for
general rotating black holes.
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