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3 Max-Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, Garching, D-85748, Germany
4 Centro de Estudios de Fisica del Cosmos de Aragon, Plaza San Juan 1, Planta-2, 44001, Teruel, Spain

3 November 2014

ABSTRACT

The combination of galaxy-galaxy lensing and galaxy clustering data has the po-
tential to simultaneously constrain both the cosmological galaxy formation models.
However, to fully exploit this potential one needs to understand the signals as well as
their joint covariance matrix. In this paper we perform a comprehensive exploration
of these ingredients, through a combination of analytic and numerical approaches.
First, we derive analytic expressions for the projected galaxy correlation function and
stacked tangential shear profile and their respective covariances, which include Gaus-
sian and discreteness noise terms. Second, we measure these quantities from mock
galaxy catalogues derived from the Millennium-XXL simulation and semi-analytic
models of galaxy formation. Specifically, we investigate the error properties by slic-
ing the 27 h´3Gpc3 simulation volume into 216 subcubes, and using four different
luminosity-selected galaxy catalogues. We find that on large scales (R ą 10 h´1Mpc),
the galaxy bias is roughly linear and deterministic. On smaller scales (R À 5 h´1Mpc)
the bias is a complicated function of scale and luminosity, determined by the different
spatial distribution and abundance of satellite galaxies present when different magni-
tude cuts are applied, as well as by the dependence of the mass of haloes hosting the
central galaxies on magnitude. Our theoretical model for the covariances provides a
reasonably good description of the measured ones on small and large scales. However,
on intermediate scales p1 ă R ă 10 h´1Mpcq, the predicted errors are „2–3 times
smaller, suggesting that the inclusion of higher-order, non-Gaussian terms in the co-
variance will be required for further improvements. Importantly, both our theoretical
and numerical methods show that the galaxy-galaxy lensing and clustering signals are
not independent from each other, but have a non-zero cross-covariancematrix with sig-
nificant bin-to-bin correlations. Future surveys aiming to combine these probes must
take this into account in order to obtain unbiased and realistic constraints.

Key words: Cosmology: theory. Gravitational lensing: weak

1 INTRODUCTION

Since the first pioneering attempt to measure the galaxy-
galaxy lensing (hereafter GGL) signal by Tyson et al.
(1984), there have been significant technological develop-
ments in deep and wide-field astronomy, which have lead to
the emergence of GGL as one of the most promising probes
for simultaneously constraining both the cosmological and
galaxy formation models.

The first robust detection of the GGL signal was made
by Brainerd, Blandford & Smail (1996) using 90 arcmin2

‹ l.marian@sussex.ac.uk

of imaging data from the 5m Palomar telescope. They
showed that whilst the tangential shear profile around
individual galaxies was too weak to be measured, the
stacked signal around all lens galaxies could be detected
with high signal-to-noise. Since then there has been a
rapid explosion in the field: the addition of the Wide-Field
Camera to the Hubble Space Telescope enabled a number of
key GGL studies (Griffiths et al. 1996; Hudson et al. 1998;
dell’Antonio & Tyson 1996; Leauthaud et al. 2012). The
improvement of ground-based facilities such as the Canada-
France-Hawaii Telescope has also led to significant develop-
ments (Wilson et al. 2001; Hoekstra, Yee & Gladders 2004;
Parker et al. 2007; van Uitert et al. 2011; Hudson et al.
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2013; Velander et al. 2014). However, perhaps the most
prolific work in this area comes from the analysis of
the data from the Sloan Digital Sky Survey (hereafter
SDSS) (McKay et al. 2001; Guzik & Seljak 2001, 2002;
Sheldon et al. 2004; Hirata et al. 2004; Mandelbaum et al.
2005, 2006c,a,b; Johnston et al. 2007; Sheldon et al.
2009b,a; Nakajima et al. 2012; Mandelbaum et al. 2013).
All these works have revealed that the GGL signal is a
complex function depending on a number of galaxy proper-
ties, such as luminosity, colour, spectral type etc. The key
importance of GGL is that it enables one to make a direct
link from galaxy properties to the underlying dark matter
distribution. Indeed, these works have also constrained the
mass, density profiles, ellipticity of the dark matter haloes
hosting the lens galaxies.

One of the first to realize that cosmic shear could help
to simultaneously constrain galaxy formation and cosmol-
ogy, through directly measuring the bias, was Schneider
(1998). Schneider’s approach of using aperture mass filters
was implemented by Hoekstra et al. (2002) who directly
measured galaxy bias, establishing that it was a compli-
cated function of scale. This approach was further theo-
retically developed for the Halo Occupation Distribution
(hereafter HOD) framework by Guzik & Seljak (2001) and
later Seljak et al. (2005) and Yoo et al. (2006). More recent
work has been performed by Cacciato et al. (2009, 2013)
who have combined the results from GGL and galaxy clus-
tering (hereafter GC) studies, along with measurements of
the galaxy luminosity function (hereafter GLF) from SDSS
to constrain the parameters of the Conditional Luminos-
ity Function (hereafter CLF) model – which fully speci-
fies the link between a given dark matter halo and the
galaxies it hosts, albeit with assumptions about the func-
tional form of the CLF (Yang, Mo & van den Bosch 2003;
van den Bosch et al. 2013). An interesting result to emerge
from this work, was that if one did not include the GGL mea-
surements in the analysis, then equally good fits to the CLF
model parameters could be obtained for either WMAP1
or WMAP3 cosmology (Spergel et al. 2003, 2007). Includ-
ing the GGL data broke this degeneracy and identified the
WMAP3 parameters as the preferred cosmological model.

Whilst there has been significant progress in attempt-
ing to understand and interpret the GGL signal (see also
Baldauf et al. 2010; Saghiha et al. 2012), our understand-
ing of how to perform a robust likelihood analysis with such
data sets has been lacking. For example, in the recent devel-
opment of the CLF framework (van den Bosch et al. 2013;
Cacciato et al. 2013; More et al. 2013), the GGL and GLF
measurements were taken to have diagonal covariance ma-
trices, and the GC covariance matrix was obtained from
jackknife estimation. Moreover, these probes were assumed
to have zero cross-covariance. This is clearly a gross sim-
plification. A better analysis of the errors was performed by
Leauthaud et al. (2012) and Mandelbaum et al. (2013), who
used numerical simulations to estimate the covariance ma-
trices of the GGL and GC measurements. However, again in
their analysis the cross-covariance of the two measurements
was assumed to be negligible.

If upcoming surveys such as DES, J-PAS, Euclid, and
LSST are to optimally constrain the cosmological model,
then it is inevitable that they must also jointly constrain
the model of galaxy formation. The best way to do this

will be to combine the GGL, GC and GLF measurements.
This will require not only accurate models for the signals
themselves, but also accurate modelling of the covariance
and cross-covariance matrices of these probes.

In this paper we develop an analytical framework to
compute both the covariance and cross-covariance of GC
and GGL. Our work builds upon the analysis of the earlier
work of Jeong, Komatsu & Jain (2009) for GGL and that of
Smith & Marian (2014a,b) for the GC signal. We then use
the semi-analytic galaxy catalogues and dark matter distri-
bution from the Millennium-XXL (hereafter MXXL) simula-
tion (Angulo et al. 2012) to directly measure these observ-
ables and their associated auto- and cross-covariances, for
several bins in luminosity. Unlike the CLF approach, semi-
analytic models (hereafter SAM) make no direct assumption
on how galaxies populate dark matter haloes. Instead, they
attempt to model the relevant physical processes for galaxy
formation and evolution, and how these are affected by en-
vironment and assembly history. Thus, the nonlinearity and
stochasticity of galaxy bias are predictions, not assumptions
in our study.

The paper is structured as follows. In §2 we present the
necessary theoretical expressions for modelling the stacked
tangential shear profiles and projected galaxy clustering sig-
nals. In §3 we present expressions for their associated auto-
and cross-covariances. In §4 we provide an overview of the
MXXL-simulation and the SAM galaxy catalogues that we
use. In §5 we present the measurements of the GGL and GC
signals for a set of luminosity bins, and compare them with
the predictions from the theory. In §6 we present our re-
sults for the GC and GGL covariance and cross-covariance
matrices. In §7 we summarize our findings and draw our
conclusions.

2 THEORETICAL PREDICTIONS FOR THE

GGL AND GC SIGNALS

In this section we present theoretical expressions for the
stacked tangential shear signal of a population of galaxy
lenses and the signal for the projected galaxy correlation
function.

2.1 Overview of required lensing ingredients

In the flat-sky approximation, the complex shear is writ-
ten in terms of the convergence as (Bartelmann & Schneider
2001)

γpθq “ 1

π

ż

R2

d
2
θ

1
κpθ1qDpθ ´ θ

1q , (1)

where the lensing kernel is defined to be,

Dpθq ” pθ2y ´ θ
2
x ´ 2iθxθyq{|θ|4, (2)

with θx and θy being the Cartesian components of the Eu-
clidean vector θ “ pθx, θyq. These equations can be written
in Fourier space as:

γplq “ 1

π
κplqDplq, with Dplq “ π

l2x ´ l2y ` 2ilxly

|l|2 , (3)

where lx and ly are the Cartesian components of the vector
l; γplq and Dplq and are the Fourier transforms of γpθq and
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Dpθq respectively. From Eq. (3), the complex shear can also
be written using the polar coordinates of the Fourier vector
l as:

γplq “ γ1plq ` iγ2plq “ κplqrcosp2φlq ` i sinp2φlqs. (4)

The tangential shear at position θ with respect to position
θ0 (where θ and θ0 are defined with respect to the same
origin), is:

γtpθ;θ0q “ ´γ1pθq cosp2φθ´θ0

q ´ γ2pθq sinp2φθ´θ0

q, (5)

where φθ´θ0
is the polar angle of the relative position vector

θ ´ θ0. Combining the last two equations, one can write:

γtpθ;θ0q “ ´
ż

d2l

p2πq2 κplq cosr2pφθ´θ0
´ φlqs ei l¨θ

. (6)

Finally, we define the azimuthal average of the tangential
shear as:

γt,apθ;θ0q “
ż 2π

0

dφθ´θ0

2π
γtpθ;θ0q. (7)

With the help of the very useful Bessel relation

Jnpxq “
ż 2π´α

α

dφ

2π
e
i rnφ´x sinpφqs

, (8)

one obtains the following equation which will recur many
times in this section:

J2pxq “ ´
ż 2π

0

dφ

2π
cosr2pφ ´ φ

1qsei x cospφ´φ1q
. (9)

Therefore the azimuthal average of the tangential shear is:

γt,apθ;θ0q “
ż

d2l

p2πq2 κplqJ2plθqei l¨θ0 . (10)

2.2 Estimator for the stacked tangential shear

In galaxy-galaxy lensing, the signal of individual lenses is
very weak, so in order to improve the signal-to-noise of this
probe, one has to stack the signals of several lenses. Suppose
there is a population of Ng galaxy lenses at positions xi in
a chosen coordinate system. Suppose also the total area of
the survey to be

ş
d2x “ Ωs. The number density of these

lenses can be written as a sum over their positions:

ngpxq “
Ngÿ

i“1

δDpx ´ xiq , (11)

where x is a 2D vector in the survey area. Using the above
equation, an estimator for the tangential shear of such a lens
population at an arbitrary position θ with respect to the
location of the galaxy centres xi is (Jeong, Komatsu & Jain
2009):

pγg
t pθq “ 1

Ng

Ngÿ

i“1

γtpxi ` θ;xiq

“ 1

Ng

ż

Ωs

d
2
x ngpxqγtpx ` θ;xq . (12)

We define the fluctuation in the number density of lenses as
ngpxq “ n̄gr1 ` δgpxqs, where the mean angular density of
lens galaxies is n̄g “ Ng{Ωs. At this point we also introduce
the definitions of the convergence and galaxy density auto-

and cross-power spectra, which shall be used throughout this
paper:

xκplqκpl1qy “ p2πq2δDpl ` l
1qCκκplq ;

xδgplqδgpl1qy “ p2πq2δDpl ` l
1qCggplq ;

xδgplqκpl1qy “ p2πq2δDpl ` l
1qCgκplq . (13)

Since the tangential shear with respect to an origin 0 van-
ishes on average xγtpθ|0qy “ 0, the ensemble average of the
estimator in Eq. (12) is

xpγg
t pθqy “ 1

Ng

ż

Ωs

d
2
x xngpxqγtpx ` θ;xqy

“ 1

Ωs

ż

Ωs

d
2
x xδgpxqγtpx ` θ;xqy

“ xδgp0qγtpθ;0qy

“ ´
ż

d2l

p2πq2 Cgκplq cosr2pφθ ´ φlqsei l¨θ
. (14)

In the above we have also used the homogeneity of the Uni-
verse, which makes the ensemble average of two cosmological
fields to be invariant under translations. We shall take ad-
vantage extensively of this property throughout this work.
With Eq. (9), we arrive at the azimuthally-averaged expres-
sion for the ensemble average of the stacked shear estimator:

xpγg
t,apθqy “

ż
d2l

p2πq2 CgκplqJ2plθq. (15)

Our goal is to compare theory predictions with estimates
from simulations, so we must take into account that the
measured tangential shear is bin averaged and not just az-
imuthally averaged. We introduce the bin area:

Apθiq ”
ż 2π

0

dφθ

ż θi
max

θi
min

dθ θ “ π
´
θ
i 2
max ´ θ

i 2
min

¯
, (16)

with θimin and θimax being the lower and upper bounds of
the radial bin i. The bin-averaged stacked tangential shear
estimator is defined by

xpsγg

t pθiqy ”
ż

Apθiq

d2θ

Apθiq
xpγg

t pθqy “ 2π

Apθiq

ż θi
max

θi
min

dθ θxpγg
t,apθqy(17)

Defining the bin-averaged Bessel function of order n to be:

sJnplθiq ”
ż

Apθiq

d2θ

Apθiq
Jnplθq, (18)

and using Eq. (15), we write the final expression for the
bin-averaged stacked tangential shear estimator

xpsγg

t pθiqy “ d2l

p2πq2 Cgκplq sJ2plθq. (19)

2.3 The projected galaxy correlation function

We define the estimator for the projected galaxy correlation
function to be:

pwggpRq ”
ż 2π

0

dφR

2π

ż χmax

´χmax

dχ pξggprq, (20)

where pξgg is an estimator for the 3D galaxy correlation func-
tion, χmax is the comoving projection length, and the posi-
tion vector r has the components tR,φR, χu in cylindrical
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coordinates. The estimator for the galaxy correlation func-
tion is discussed in section §A2 of the appendix, here we
just mention that it is unbiased, i.e. xpξggprqy “ ξggprq. The
galaxy correlation function can be written in terms of its
Fourier transform, the galaxy power spectrum:

ξggprq “
ż

d3k

p2πq3Pggpkq eik¨r

“
ż 8

0

dkK

p2πq3 kK

ż 8

8

dkzPggpkq

ˆ e
i kzχ

ż 2π

0

dφk e
i kKR cospφR´φ

k
q
, (21)

where the second line follows from expressing the wavevector
k in cylindrical coordinates, with components tkK, φk, kzu.
kz is the component along the line-of-sight and the magni-
tude k is defined in the standard way k “

a
k2

K ` k2
z . The

expectation of the projected galaxy correlation function es-
timator may therefore be written

x pwggpRqy “
ż 8

0

dkK

p2πq2 kKJ0pkKRq
ż 8

´8

dkzPggpkq

ˆ
ż χmax

´χmax

dχ e
i kzχ (22)

“ 4χmax

ż 8

0

dkK

p2πq2 kKJ0pkKRq

ˆ
ż 8

0

dkzPggpkqj0pkzχmaxq, (23)

where j0 is the zeroth order spherical Bessel function. Note
that we can also obtain an expression for the ensemble aver-
age of our projected correlation function estimator in spher-
ical coordinates, choosing a particular frame where r ‖ ez

x pwggpRqy “ 2

ż 8

0

dk

p2πq2 k
2Pggpkq

ż χmax

´χmax

dχj0pkrq

“ 4

ż 8

0

dk

p2πq2 k
2Pggpkq

ż χmax

0

dχ j0pk
a

R2 ` χ2q,

(24)

where in the last equality we took advantage of the fact
that the result did not depend on our particular choice of
frame, and switched back to cylindrical coordinates. Whilst
Eqs. (23) and (24) are expected to yield the same result,
the evaluation of the latter should more accurate since it
involves a single Bessel function integral.

Finally, we may apply the Limber approximation to
simplify Eq. (23). In this approximation it is only modes
that are transverse to the line-of-sight which contribute to
the power spectrum integral, and so the second integral in
Eq. (22) becomes,
ż 8

´8

dkzPggp
b

k2
K ` k2

zq
ż χmax

´χmax

dχ e
i kzχ

« PggpkKq
ż χmax

´χmax

dχ

ż 8

´8

dkz e
i kzχ “ 2πPggpkKq. (25)

Using this relation in Eq. (22) we find that the Limber-
approximated ensemble average of the projected galaxy cor-
relation function estimator is therefore1:

1 Note that this result can also be obtained if in Eq. (23) one
takes χmax Ñ 8.

x pwL
ggpRqy “

ż 8

0

dkK

2π
kKPggpkKqJ0pkKRq. (26)

3 SIGNAL COVARIANCE MATRICES

In this section we compute the auto- and cross-covariance
matrices of the stacked tangential shear signal and the pro-
jected galaxy correlation function.

3.1 The covariance matrix of the stacked

tangential shear estimator

The definition of the covariance of the estimator in Eq. (12)
is

Covrpγg
t spθ1,θ2q “ xpγg

t pθ1qpγg
t pθ2qy ´ xpγg

t pθ1qyxpγg
t pθ2qy (27)

The bin-averaged estimate of the GGL covariance is defined
according to Eq. (17) as:

Covrpsγg

t spθi, θjq ”
ż

Ai

ż

Aj

d2θ1

Ai

d2θ2

Aj

Covrpγg
t spθ1,θ2q. (28)

In appendix A1 we provide the complete details of the
derivation of the covariance of the stacked tangential shear
profiles. The main result is (c.f. Eq. (A14)):

Covrpsγg

t spθi, θjq “ 1

Ωs

ż 8

0

d2l

p2πq2
sJ2plθiq sJ2plθjq ˆ

"
C2
gκplq `

„
Cκκplq ` σ2

γ

2n̄s

 „
Cggplq ` 1

n̄g

*
, (29)

where σ2
γ{2 “ σ2

γ1 “ σ2
γ2 is the variance per shear component

in the measurement of one source galaxy, and n̄s is the mean
angular density of the source galaxies.

3.2 The covariance matrix of the projected galaxy

correlation function estimator

The azimuthally-averaged covariance of the projected corre-
lation function estimator can be written as a projection of
the covariance of the estimator for the 3D galaxy correlation
function, which we denote pξgg. Hence,

Covr pwggspR1, R2q “
ż 2π

0

dφR1

2π

dφR2

2π

ż χmax

´χmax

dχ1 dχ2

ˆ Covrpξggspr1, r2q. (30)

In the appendix A2 we provide complete details of the
derivation of the covariance matrix of pξgg and the final result
is given by Eq. (A25). On combining Eqs. (30) and (A25), we
arrive at the expression for the azimuthally-averaged covari-
ance of the projected galaxy correlation function estimator:

Covr pwggspR1, R2q“ 1

Vs

"
8χ2

max

ż 8

0

dkK

p2πq2 kKJ0pkKR1qJ0pkKR2q

ˆ
ż 8

´8

dkzj
2
0 pkzχmaxqPggp

b
k2

K ` k2
zq

„
Pggp

b
k2

K ` k2
zq ` 2p1 ` αq

n̄g



` 2

n̄2
g

“
wggpR1q ` 2χmaxp1 ` αq2

‰ δDpR1 ´ R2q
2πR1

*
, (31)

where α is a constant quantifying how dense the random
catalogue used to estimate the correlation function is rela-
tive to the galaxy data (see §A2 for more details). Note that
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in the above n̄g is the mean galaxy volume density, whereas
in §3.1 the same notation is used for the mean angular den-
sity of lens galaxies. As in the case of the ensemble-averaged
projected galaxy correlation function estimator, here too we
apply the Limber approximation to simplify the above re-
sult. The Limber-approximated covariance is given by:

CovLr pwggspR1, R2q“ 1

Vs

"
4χmax

ż 8

0

dkK

2π
kKJ0pkKR1qJ0pkKR2q

ˆPggpkKq
„
PggpkKq ` 2p1 ` αq

n̄g



` 2

n̄2
g

”
w

L
ggpR1q ` 2χmaxp1 ` αq2

ı
δDpR1 ´ R2q

2πR1

*
. (32)

Note that the survey volume can be expressed as Vs “
2χmaxAs, where As denotes the transverse area of the sur-
vey. If χmax Ñ 8, then we also have Vs Ñ 8 and the
Limber-approximated covariance becomes:

lim
χmaxÑ8

CovLr pwggspR1, R2q “ 2

As

"ż 8

0

dkK

2π
kKJ0pkKR1qJ0pkKR2q

ˆPggpkKq
„
PggpkKq ` 2p1 ` αq

n̄g


` p1 ` αq2

n̄2
g

δDpR1 ´ R2q
2πR1

*
.

Therefore, the Limber covariance is well-behaved in the
limit where χmax Ñ 8. Finally, using the definitions in
Eqs. (16) and (17), we write the expression for the bin-
averaged, Limber-approximated covariance of the projected
galaxy correlation function estimator:

CovLrpswggspRi, Rjq “ 2

Vs

"
2χmax

ż 8

0

d2kK

p2πq2
sJ0pkKRiq sJ0pkKRjq

ˆPggpkKq
„
PggpkKq ` 2p1 ` αq

n̄g



` δKij

n̄2
g

”
swL
ggpRiq ` 2χmaxp1 ` αq2

ı+
. (33)

3.3 The cross-covariance of the stacked tangential

shear and the projected galaxy correlation

function estimators

In this section our goal is to compute the cross-covariance of
the estimators for the stacked tangential shear and projected
galaxy correlation functions, defined by Eqs. (12) and (20).
To this avail, we follow the same procedure as before, and
define the cross-covariance as:

Covr pwggpR1q, pγg
t pR2qs ” x pwggpR1qpγg

t pR2qy
´x pwggpR1qy xpγg

t pR2qy , (34)

where R1 and R2 are two 2D position vectors. To simplify
this calculation, we shall use the angular correlation function
instead of the projected correlation function. This is justified
by the fact that our lenses are in a thin redshift slice, in
which case the two correlation functions are equivalent. In
appendix A3 we provide complete details of the derivation
of the cross-covariance matrix.

The final expression is given by (c.f. Eq. (A39)):

Covr pwggpθ1q, pγg
t pθ2qs “ ´ 1

Ωs

ż
d2l

p2πq2 Cgκplq
„
Cggplq ` 1

n̄g



ˆ cosr2pφθ2
´ φlqs

”
e
i l¨pθ2´θ1q ` e

i l¨pθ2`θ1q
ı
.

Figure 1. Luminosity function of semi-analytic galaxies in the
MXXL simulation, in the five SDSS bands r, g, u, i, z. Note that
artifacts produced by the finite mass resolution of the simulation
are evident for M ě ´20 – ´19.

Just like before we are interested in the cross-covariance ma-
trix of the bin-averaged measurements. In a similar fashion
to the analysis of the previous sections, we see that under
binning the above equation becomes:

Covrpswggpθiq, psγg

t pθjqs “ 2

Ωs

ż
d2l

p2πq2
sJ0plθiq sJ2plθjq

ˆ Cgκplq
„
Cggplq ` 1

n̄g


. (35)

Eq. (35) represents the bin-averaged cross-covariance of the
estimator for the angular galaxy correlation function and
the stacked tangential shear estimator. As expected, it has
no dimensions.

4 THE MXXL SIMULATION

The MXXL is the largest simulation in the Millennium se-
ries, with a volume of V “ r3 h´1Gpcs3 and 67203 dark
matter particles of mass mp “ 6.9 ˆ 109 h´1Md. The cos-
mological model corresponds to a flat ΛCDM universe with:
the matter density parameter Ωm “ 0.25; the dimensionless
Hubble parameter h “ 0.73; the amplitude of matter fluctu-
ations σ8 “ 0.9; the primordial spectral index ns “ 1; and
a constant dark energy equation of state with w “ ´1. For
a complete description of the MXXL we refer the reader to
Angulo et al. (2012).

Halo and subhalo catalogues were stored for 63 snap-
shots. The smallest object in these catalogues has a mass
„ 1.4 ˆ 1011 h´1Md. Merger trees were built by identify-
ing for every subhalo in each snapshot the most likely de-
scendant in the next snapshot. The trees were then used to
build a galaxy catalogue with the SAM galaxy formation
code L-Galaxies (Springel et al. 2005).

The L-Galaxies code corresponds to a set of differen-
tial equations that couple with the above-mentioned merger
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Figure 2. Galaxy properties as a function of absolute red-band magnitude. The galaxies are at redshift 0.24. Upper left panel: The ratio
of the number of galaxies of each type to the total number of galaxies in the respective magnitude bin. Upper right panel: The virial mass
of the host halo. Lower left panel: The average distance of galaxies to the central galaxy. Lower right panel: The mass of the subhaloes
where the galaxies formed.

trees and that encode the key physical mechanisms for
galaxy formation. Processes such as gas cooling, star for-
mation, feedback from SN and AGN, galaxy mergers, black
hole formation and growth, and generation of metals are all
implemented in a self-consistent manner. We refer the in-
terested reader to Guo et al. (2011); Henriques et al. (2012)
and references therein for specific details on the method,
and to Angulo et al. (2014) for details on the implementa-
tion in the MXXL simulation. Here, we just highlight that
the galaxy population of a given halo does not depend on
its mass alone, as commonly assumed in many models, but
also on the details of the halo assembly history and envi-
ronment. For each galaxy, the full star formation history is
stored, and when coupled with population synthesis models
and an assumed initial stellar mass function, it allows us to
compute the expected luminosity for each of the five SDSS
filters.

In Figure 1 we present the luminosity function for the
five SDSS bands. We find that all of the luminosity func-
tions show qualitatively similar behaviour: a steep fall-off
at bright magnitudes and a turn-over followed by a power-
law-like tail at intermediate and faint magnitudes. We also
see that for a given magnitude band there are greater abun-
dances of galaxies at red wavelengths than at blue. This is
qualitatively consistent with observational results from the

SDSS (Blanton et al. 2003). For the faintest magnitudes we
notice artifacts produced by the finite mass resolution of the
MXXL simulation. We elaborate on this next.

In the upper left panel of Figure 2 we present the rel-
ative abundance of central, satellite and orphan galaxies as
a function of their red-band absolute magnitude. ‘Central’
galaxies reside at the centres of the main halo(subhalo), and
are therefore the main galaxies of the FoF haloes. ‘Satellite’
galaxies inhabit satellite subhaloes within the FoF haloes.
‘Orphan’ galaxies are satellite galaxies whose dark matter
subhalo has been stripped down below the resolution limit
of the simulation. The figure clearly shows that the bright-
est galaxies (Mr ď ´18) are mostly centrals, while the
faintest (Mr ą ´17) are generally orphans. The satellites
with a resolved dark matter subhalo are sub-dominant for
all magnitude bins, but dominate among satellite galaxies
with Mr ă ´20. These features depend on the mass resolu-
tion of the simulation (see Figure B1 for an analogous figure
constructed from the higher-resolution Millennium simula-
tion). With a much higher mass resolution, central galaxies
would dominate at any luminosity and there would be no
orphan galaxies.

The upper right panel of Figure 2 shows how the mass
of the host haloes evolves with the galaxy luminosity. In-
dependent of the brightness of satellite and orphan galax-
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ies, the haloes hosting them are quite massive (Mvir P r3 ˆ
1013, 1014sh´1Md), whereas the haloes inhabited by central
galaxies display a substantial decrease in mass with decreas-
ing luminosity. This drop in halo mass spans more than two
orders of magnitude, starting at M „ 2 ˆ 1013 h´1Md.

The bottom left panel of Figure 2 shows the average
distance of the galaxies from the central galaxy, as a func-
tion of magnitude. By definition the distance of central
galaxies is zero. Satellite galaxies are on average most dis-
tant from the halo centre: the brightest have a separation
of „ 0.9 h´1Mpc, and the faintest of about 0.6 h´1Mpc.
On the other hand, orphan galaxies are on average within
r0.4, 0.6s h´1Mpc from the halo centre, which is a conse-
quence of tidal forces being stronger closer to the halo centre
where tidal disruption and mass loss happen.

Finally, the bottom right panel of Figure 2 presents the
evolution of the host subhalo mass with luminosity. For cen-
trals this is in fact the same as shown in the upper right
panel; the other two types follow the same trend as the cen-
trals. Note that the subhalo mass associated with the orphan
galaxies is defined to be the mass of the last subhalo tracked
before it fell below the mass resolution of the simulation. We
can see that there are no strong differences among different
types which is a consequence of the fact that the r-band
magnitude mostly traces the total amount of mass in stars,
which in turn depends primarily on the total amount of gas
available for star formation and thus on the mass of the host
dark matter structure.

In this paper we shall use only the red band, since most
of the GGL and GC studies to date have focused on this
band. We shall only consider galaxies with Mr ă ´19, split
into four absolute magnitude bins, with each bin spanning
a single unit of magnitude, except for the brightest bin for
which we take all galaxies with Mr ă ´22. We have en-
sured that above the chosen limit Mr ă ´19 our results are
qualitatively insensitive to the finite mass resolution of the
MXXL by explicitly comparing the GGL and GC signals
with those derived from the higher-resolution Millennium
simulation.

5 RESULTS I: CLUSTERING AND LENSING

MEASUREMENTS IN MXXL

5.1 Methodology for estimating the projected

correlation functions

In order to estimate the GGL and GC signals and their
covariance from the MXXL data, we divide the simulation
box into 216 subcubes of volume Vsub “ r500 h´1Mpcs3.
Each subcube therefore contains « 1.4 ˆ 109 dark matter
particles, as well as galaxies from the catalogues described
in section §4. For our analysis we assume both the Born
and Limber approximations, which allow us to perform all
of the computations at the fixed redshift z “ 0.24. For each
of the subcubes, we measure the projected matter-matter,
galaxy-matter, and galaxy-galaxy correlation functions. In
order to handle the huge data volume, we have developed
a fast k-D tree code in C++ with MPI parallelization. Our
algorithm is similar to that described by Moore et al. (2001)
and Jarvis, Bernstein & Jain (2004). However, rather than
invoking an approximate scheme for binning the pair counts

as is done in these algorithms, we place every particle exactly
into the correct radial bin. We have carefully tested that our
code obeys the pair counting scaling DD9 t3{2 and that it
reproduces exactly the answer obtained from a brute-force
pair summation code.

For the particular problem of computing the correlation
functions in the MXXL simulation, we count pairs in loga-
rithmic bins of the transverse distance R, and linear bins
of the line-of-sight distance χ. Since the subcubes do not
have periodic boundary conditions, we also cross-correlate
the data with a random catalogue to account for bound-
ary effects on the pair counts. With the pair counts for the
pR,χq bins, the 3D correlation function can be estimated by
using the unbiased and minimum-variance (in the limit of
no-clustering) estimator of Landy & Szalay (1993):

ξ̂ “ pD1D2 ´ D1R ´ D2R ` RRq{RR , (36)

where D1 and D2 represent the first and second data cata-
logues, and R is the random catalogue. D1D2, D1R, D2R,
and RR represent the respective pair counts. For auto-
correlations, D1 “ D2, while for cross-correlations e.g. of
galaxies and matter, they differ. Note that this estima-
tor perfectly matches the one we defined in Eqs. (A15)
and (A18), since we took the weights there to be constant.
The ratio of the number of data particles to the number of
particles from the random catalogue represents the α from
Eq. (A15).

Some details of how we estimate these correlations are
as follows. In order to obey computing time constraints, we
limit the random catalogues to 106 particles. To maintain a
value as low as possible for α, we subsample both the matter
and the galaxy data. The number of subsamples is 32. The
rate of sampling for matter is 1{4000, which gives us about
350,000 dark matter particles per subsample, while for each
luminosity bin we randomly select no more than 150,000
galaxies. These values correspond to α „ 0.3 for matter,
and α „ 0.15 for galaxies in each luminosity bin. The only
exception is the first luminosity bin, containing the brightest
galaxies, which has only about 20,000 galaxies per subcube,
and is therefore not subsampled. For each subsample, we
use different seeds to generate the random catalogues; we
have checked that given the number of data particles, the
number of random particles is sufficiently large not to yield
significant errors in the measured projected correlations.

We found that it was crucial to correct the projected
correlation functions for the integral constraint, otherwise
the results exhibited a strong dependence on the projection
length χmax. This owes to the fact that the total density
of objects in each subcube is not guaranteed to reach the
universal mean.

We implement the integral constraint in the estimates
of the 3D galaxy correlation function in a similar fashion
to the procedure described in Landy & Szalay (1993): To
begin, we define the ‘geometric factor’:

GppRi, χjq ” RRijř
i,j RRij dVij

, (37)

where RRij is the number of random pair counts for the bin
pRi, χjq, and dVij is the cylindrical volume of the respective
bin, i.e. dVij “ πpR2

i`1 ´ R2
i q∆χj , with ∆χj ” χj`1 ´ χj .

Thus GppRi, χjq is related to the number of pairs possible in
the bin ij relative to the total number of pairs in the survey
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Figure 3. Projected correlation functions measured for all 216 subcubes of the MXXL at redshift 0.24. The red, blue, and green lines
represent the matter-matter, galaxy-galaxy, and galaxy-matter correlation functions respectively. In each panel the galaxies are binned
according to their r-band absolute magnitudes.

volume. It is normalized to unity over the survey volume, i.e.ř
i,j GppRi, χjqdVij “ 1. The integral constraint is defined

by the equation:
ÿ

i,j

p1 ` pξijqGppRi, χjq dVij ” 1 ` ξVs , (38)

where pξij is the estimator introduced in Eq. (36) at the re-
spective bin. The integral-constraint-corrected estimator for
the projected galaxy correlation function is given by:

pwcorrpRiq “
Nχÿ

j“1

«
1 ` pξij
1 ` ξVs

´ 1

ff
∆χj , (39)

where Nχ is the number of bins in χ. We apply this to all of
the measurements.

Finally, we mention the choice of bins: we have 28 loga-
rithmic bins in R, spanning the interval r0.01, 54s h´1Mpc,
and 10 linear bins in χ, with a chosen χmax of 100 h´1Mpc.
We checked that the number of line-of-sight bins is suffi-
ciently large to obtain an accurate estimation of the pro-
jected correlation function.

To summarize: the projected correlation functions are

estimated through the following steps: i) use the tree code
to evaluate the 3D pair counts for each pR,χq bin, and for
every subsample; ii) build the Landy-Szalay estimator for
the 3D correlation function from the pair counts and deter-
mine the integral constraint factor; iii) add the line-of-sight
bins to obtain the projected correlation functions, i.e. com-
pute pwcorr following Eq. (39); iv) calculate the average of the
subsamples.

5.2 Galaxy and matter correlation functions

Figure 3 presents the projected matter-matter, galaxy-
matter, and galaxy-galaxy correlation functions – red, green,
blue solid lines respectively – from the 216 subcubes of the
MXXL. Each line corresponds to the estimate from one sub-
cube, and each panel to a magnitude bin, starting with the
brightest galaxies in the upper left corner, and down to
the faintest in the lower right corner. The measurements
have some scatter for the two brightest magnitude bins,
but are relatively tight otherwise. This plot also provides

c© 0000 RAS, MNRAS 000, 000–000
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Figure 4. The average galaxy bias for the various absolute-magnitude bins. The violet solid pentagons depict the bias computed as in
Eq. (40), while the green symbols show the bias estimated as in Eq. (40). The error bars correspond to errors on the mean of the 216
subcubes.

Figure 5. The average cross-correlation coefficient, e.g. Eq. (41) as a function of transverse radius. Left panel: The full range.Right

panel: Zoom-in.
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a check that none of the subcubes displays any anomalous
behaviour.

5.3 Galaxy bias and cross-correlation coefficient

We may obtain the galaxy bias parameter either from the
galaxy-galaxy or galaxy-mass projected correlation func-
tions through:

bggpRq “
d

wggpRq
wmmpRq ;

bgmpRq “ wgmpRq
wmmpRq . (40)

Figure 4 presents the two bias estimates for all magnitude
bins and averaged over all 216 subcubes of the MXXL sim-
ulation. There are several points worth noticing in these fig-
ures. Firstly, on large scales, we see that both bgg and bgm
appear to be constant and qualitatively consistent with one
another. We also note that the bias is relatively similar for
the fainter bins, but it increases sharply for the brightest
galaxies. This luminosity dependence of the bias in SAM
models is consistent with earlier studies (see Smith 2012, and
references therein), and can be understood from Figure 2.
There we see that it is only for the brightest magnitude bin
that the host haloes of both the central and satellite galax-
ies are very massive. For the fainter bins, the mass of the
host haloes decreases with luminosity in the case of central
galaxies, while remaining relatively constant in the case of
the satellites. Thus the bias of the latter is boosted. This ex-
planation is consistent with the picture where an individual
galaxy inherits the bias of the halo hosting it.

On smaller scales, we notice that bgm ą bgg: the scale
where this transition occurs decreases with increasing ab-
solute magnitude, ranging from R „ 1 h´1Mpc for the
brightest galaxies to R „ 0.07 h´1Mpc for the faintest bin.
The fact that bgm ą bgg can be qualitatively understood
from the following reasons. The 3D galaxy-galaxy correla-
tions in SAM models obey an exclusion condition, which is
that individual galaxies cannot come closer than the sepa-
ration of the sum of their individual subhalo virial radii. On
scales smaller than this, the correlation function drops to -
1. Whereas for the galaxy-matter cross-correlation function
no such exclusion is present and one simply probes the den-
sity profile of matter around galaxies – which is known to
be cuspy (Hayashi & White 2008). However, in projection
these effects are less significant, but nevertheless still oper-
ate and lead to the shape shown in Figure 4. The transition
scale varies with magnitude because the halo mass of cen-
tral galaxies decreases with increasing absolute magnitude
(c.f. Figure 2).

The cross-correlation coefficient can be defined as:

rgmpRq ” wgmpRqa
wggpRqwmmpRq

” bgmpRq
bggpRq . (41)

Note that this is not the same as is usually understood in
statistics, where the cross-correlation coefficient of two vari-
ablesX and Y is constrained to be |r| ď 1. Eq. (41) is defined
in terms of correlation functions, and hence provided R ‰ 0
it is not required to obey the condition |r| ď 1. Indeed if
either the galaxy-galaxy or matter-matter correlation func-
tions cross zero, which they most certainly do, then r is

formally divergent. Nevertheless, the diagnostic properties
of r are key: if the galaxy bias were linear and deterministic
then r “ 1, and measurements of either wgm or wgg may
be directly related to the underlying matter distribution,
modulo an amplitude factor. However, any departure from
unity indicates that the bias is either nonlinear or stochas-
tic, or both (for more discussion see Dekel & Lahav 1999;
Seljak & Warren 2004).

Figure 5 shows the cross-correlation coefficient as a
function of the transverse scale R. We find that on large
scales, the correlation coefficient approaches unity for the
four magnitude bins that we have considered. This implies
that, at least for the SAM galaxies in MXXL, the large-scale
bias is linear and deterministic and that it describes both the
galaxy-galaxy and galaxy-matter correlation functions. On
small scales we see that the correlation coefficient decreases
sharply and then shoots up above unity. This is consistent
with the nonlinear scale-dependent bias presented in Fig-
ure 4. Note that the small-scale clustering of galaxies is very
sensitive to the treatment of dynamical friction of orphan
galaxies, so we do not wish to over-interpret the results of
Figures 4 and 5 for R ă 100 h´1kpc.

5.4 Comparison of the measured and theoretical

projected galaxy correlation function

In Figure 6 we show again the projected galaxy correlation
functions for the four magnitude bins, but this time we have
averaged the data over the 216 MXXL subcubes. The error
bars are plotted on the mean. The solid lines present the
theoretical predictions. We evaluate the theory as follows:
instead of a direct numerical evaluation of Eq. (26), which
would require a model for Pggpkq, we determine the pro-
jected nonlinear matter correlation function under the Lim-
ber approximation by replacing Pgg Ñ Pmmpkq. We then
simply multiply this quantity by the measured bias, e.g.
Eq. (40):

w
L
ggpRq “ bggpRqwL

mmpRq . (42)

In computing wL
mm we use the nonlinear matter power spec-

trum fitting formula halofit (Smith et al. 2003).
In Figure 6 we see that on small scales R ă 0.1 h´1Mpc,

the predictions underestimate the measured wgg by roughly
„ 20%. These discrepancies are attributed to the fact that
halofit underpredicts the true nonlinear matter power
spectrum on small-scales (Takahashi et al. 2012). It is also
interesting to note that the faintest galaxies yield high pro-
jected correlation functions around 1 h´1Mpc, most likely
due to contributions from the satellite galaxies, which in-
habit higher-mass haloes and are therefore more biased.

5.5 The stacked tangential shear of galaxies

As mentioned earlier, since the full particle data was not
available for a large set of redshifts, we were not able to
perform ray-tracing simulations. Instead, we use the Born
approximation to make lensing observables from the MXXL
data. In real terms, this means that the convergence is ob-
tained as a weighted line-of-sight integration of the matter
density fluctuations (Bartelmann & Schneider 2001):
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Figure 6. Left panel: The projected galaxy correlation function for various magnitude bins. The symbols denote the average of the 216
subcubes, the error bars are on the mean. The lines represent the theoretical predictions of Eq. (26). Right panel: The excess surface
density. Symbols and lines are just like in the left panel.

κpθq “ 3H2
0Ωm

2c2

ż χ

0

dχ
1 χ

1pχ ´ χ1q
χ

δpχ1θ, χ1q
apχ1q , (43)

where we have assumed a flat space-time geometry and H0

is the Hubble constant, c is the speed of light, δ is the linear
matter density perturbation and a is the expansion factor.

If we now reexamine Eq. (15) it can be proven that the
azimuthally-averaged tangential shear about a randomly-
selected point θ0 which we take to be 0, may be written
in real space as (Schneider 2005):

γt,apθq “ κpθq ´ κapθq . (44)

If instead of random points we consider the centre of a
lens galaxy as the reference point, then on averaging over
all galaxies the above expression becomes (Guzik & Seljak
2001):

xpγg
t,apR, zl, zsqy “ xy∆ΣpR, zlqy

Σcritpzl, zsq , (45)

where we used the relation θ “ R{χpzlq and the differential
surface mass density is given by

y∆ΣpR, zlq “ ρ
0
m

“pswgmpă R, zlq ´ pwgmpR, zlq
‰
, (46)

In the above ρ0m is the comoving matter density of the Uni-
verse, and we have assumed that the circularly-averaged tan-
gential shear is sourced only by the matter associated with
a single lens galaxy. The critical surface-density for lensing
is given by:

Σcritpzl, zsq ” c2

4πG

DApzsq
DApzl; zsqDApzlq

where DApzsq, DApzlq, and DApzl; zsq represent the
observer-source, observer-lens, and lens-source angular di-

ameter distances, respectively. To keep the notation com-
pact, we shall omit the dependence on zl, zs and write the
critical density simply as Σcrit.

From our earlier discussion in §2.2 we see that an al-
ternative way to compute the stacked tangential shear is
through Eq. (15). In the Limber approximation and assum-
ing once again that only matter associated with the lens
galaxy creates the shear signal we have:

xpγg
t,apR, zl, zsqy “ ρ0m

Σcrit

ż
d2kK

p2πq2PgmpkK, zlqJ2pkKRq. (47)

We shall use Eq. (46) to compute the excess surface den-
sity both analytically and from the simulation data. For
the theoretical predictions, we choose to compute wgm us-
ing Eq. (26), but with Pgg replaced by Pgm. We prefer this
approach to that offered by Eq. (47), because it allows us to
obtain ∆Σ in the same way from both the simulations and
the theory. At larger R this choice is unimportant, however
at smaller radii, owing to the fact that the radial binning
does not start at R “ 0, it plays a more important role and
the results from Eqs. (45) and (47) differ systematically.

The right panel of Figure 6 presents a comparison be-
tween the theoretical predictions and measurements of ∆Σ
as a function of the transverse spatial scale R, for the four
magnitude bins considered. The symbols correspond to the
simulations and the lines to the theory predictions. On large
scales, R ą 10h´1Mpc, we see that similar to wgg, the
shear amplitudes in the three faintest bins are comparable,
whereas the brightest galaxies have a higher amplitude. On
smaller scales, R ă 0.5 h´1Mpc, we find a systematic trend:
the brighter the galaxies the larger the amplitude of the
tangential shear profile. This finding is in accord with the
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GGL measurements from the SDSS by Mandelbaum et al.
(2006c).

On closer inspection of the faintest luminosity bin, we
see that it appears to have a somewhat broad, flattish shear
profile, with a very slight second peak at „ 1 h´1Mpc,
and higher amplitude than the brighter bins (excepting the
brightest bin) on intermediate scales 2 ă R ă 10 rh´1Mpcs.
This might be due to the increased relative abundance of
satellite galaxies compared to centrals. The satellite galax-
ies are mainly hosted by high-mass haloes and have an av-
erage distance from the centre of the main halo that is
roughly on the order of „ 0.5 h´1Mpc, and so we expect
that their tangential shear profiles receive two significant
contributions: the first from the dark matter associated with
their own subhalo; the second comes as the shear profile ra-
dius encompasses the central cusp of the main halo. This
qualitatively explains the broadening of the profile of the
faintest bin. We also note that the theory underpredicts the
measurements more significantly than for wgg. This can be
attributed to the small-scale inaccuracies of halofit con-
tributing to swgmpă Rq at all radii.

6 RESULTS II: COVARIANCE MATRICES

FROM THE MXXL

6.1 Covariance of the projected correlation

function

In Figure 7 we present the errors on the mean projected
galaxy correlation function, divided through by the signal,
as a function of the transverse scale R, and for the magnitude
bins discussed previously. The blue pentagons in the figure
represent the noise-to-signal ratio estimated directly from
the N “ 216 subcubes. The unbiased estimator of the mean
and covariance is:

〈pswggpRiq
〉

” 1

N

Nÿ

k“1

pswgg,kpRiq, (48)

CovrpswggspRi, Rjq ” 1

N ´ 1

Nÿ

k“1

”
pswgg,kpRiq ´

〈pswggpRiq
〉

ı

ˆ
”
pswgg,kpRjq ´

〈pswggpRjq
〉

ı
, (49)

where pswgg,k is the bin-averaged estimate of the projected
correlation function from the kth subcube. The covariance
and error on the mean are then simply obtained by further
dividing the right-hand side of Eq. (49) by the number of
subcubes N . The red triangles denote the predictions ob-
tained from direct evaluation of Eqs. (26) and (33), where
we scaled the variance to the entire MXXL volume.

The theoretical predictions for the brightest galaxies
agree extremely well with the measured errors. This owes to
the fact that on large scales, R ą 10 h´1Mpc, the errors are
determined by the Gaussian part of the variance. On smaller
scales these objects are relatively sparse, and so the shot-
noise contribution to the variance quickly dominates. Both
of these two limits are well characterized by our formula.

For the fainter magnitude bins there is reasonably good
agreement between our model and the data on both large
(R ą 10 h´1Mpc) and small (R ă 0.1 h´1Mpc) scales. The
former is due to the prominence of Gaussian contributions
on large scales, whereas the latter is due to the shot noise

dominance on small scales. However, on intermediate scales
(0.1 h´1Mpc ă R ă 1 h´1Mpc), the agreement is not so
good, and we see that the data have errors roughly a factor
of „2 larger than the predictions. This is to be expected,
since for these scales the non-Gaussian corrections (e.g. the
connected part of the trispectrum and also the bispectrum),
which we neglected in deriving Eq. (33) are significant and
have the effect of increasing the errors.

To compare the off-diagonal elements of the predicted
and measured covariance from Eqs. (33) and (49), we choose
to examine the correlation matrix. For any covariance matrix
CrXs, the correlation matrix rrXs, can be defined as:

rrXsij “ CrXsija
CrXsii CrXsjj

, (50)

where the subscript X is a place-holder for the statistic. The
correlation matrix obeys the constraint |rrXsij | ď 1, @i, j.

Figure 8 shows four rows of the correlation matrix of
rrpswggs at radii pRi, Rjq as a function of Rj and at fixed
radius Ri. The fixed scales correspond roughly to Ri “
0.01, 0.1, 1, 10 h´1Mpc, and in each panel can be quickly
determined by noting that rrpswggspRi “ Rjq “ 1. From left
to right, each column represents a magnitude bin.

There are some notable trends: when the fixed scale Ri

is large (bottom row of the figure), the neighbouring bins
of the matrix are significantly correlated, and the strength
of the correlations is rrpswggs ą 0.5. There is a decrease in
the correlation coefficient as one considers brighter magni-
tude bins. These findings are in good agreement with our
Gaussian model. When the fixed scale is small pRi “ 0.01q,
for the brighter galaxy bins there is virtually no evidence for
bin-to-bin correlations. Again this is consistent with the pre-
dictions of our model, and is attributed to the fact that for
so few objects the shot-noise errors simply dominate. How-
ever, when we consider the intermediate scales (second and
third rows of panels in the figure), the model predictions un-
derestimate the bin-to-bin correlations that are exhibited by
the data. We interpret this as a sign that the non-Gaussian
contributions to the covariance matrix, which we have ne-
glected in our model, are significant.

6.2 Covariance of the stacked tangential shear

Figure 9 presents the errors on the mean of the stacked tan-
gential shear as a function of the transverse scale R. The
blue pentagons in the figure represent the noise-to-signal
ratio estimated directly from the 216 MXXL-subcubes esti-
mated through:

xpsγg

t pRiqy ” 1

Σcrit

1

N

Nÿ

k“1

y∆ΣkpRiq, (51)

Covrpsγg

t spRi, Rjq ” 1

Σ2
crit

1

N ´ 1

Nÿ

k“1

”
y∆ΣkpRiq ´ xy∆ΣkpRiqy

ı

ˆ
”
y∆ΣkpRjq ´ xy∆ΣkpRjqy

ı
, (52)

where y∆ΣkpRiq is the estimate of the excess surface density
from the kth subcube.
Let us now turn to the theoretical predictions. We note that
Eq. (29) can be rewritten for ∆Σ at the lens redshift zl and
using the Limber approximation as done in section §3.2 and
Eq. (47). In the following, we shall ignore the shape-noise
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Figure 7. The noise-to-signal for the projected galaxy correlation function. The red triangles represent the theory prediction, and the
blue pentagons the simulation measurements.

Figure 8. The correlation coefficient from Eq. (50) for the projected galaxy correlation function. From top to bottom, the rows present
four scales: Ri “ 0.01, 0.1, 1, 10 h´1Mpc. From left to right, the columns depict the four magnitude bins, as indicated in each panel. The
symbols are the same as in the figure above.
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Figure 9. The noise-to-signal for the stacked tangential shear. The red triangles represent the theory predictions, while the blue pentagons
correspond to the simulation measurements.

Figure 10. The correlation coefficient from Eq. (50) for the stacked tangential shear. Just like in Figure 8, the rows present four scales:
Ri “ 0.01, 0.1, 1, 10 h´1Mpc. From left to right, the columns depict results for increasingly fainter galaxies, as indicated in each panel.
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contribution from Eq. (29), since the latter is not an issue
for our measurements. What is an issue however, given that
we determine the matter distribution from an N-body sim-
ulation of finite resolution, is the particle shot noise which
accompanies Pmm. We therefore write the final expression
for the measured bin-averaged covariance of the excess sur-
face density as:

CovryĚ∆ΣspRi, Rjq “ 1

As

pρ0mq2
ż

d2kK

p2πq2
sJ2pkKRiq sJ2pkKRjq

ˆ
"„

PmmpkKq ` 1

n̄p

 „
PggpkKq ` 1

n̄g


` P2

gmpkKq
*
, (53)

where all the power spectra are taken at redshift zl; the
transverse area of the survey As was introduced in §3.2; n̄p

and n̄g are the mean particle and galaxy densities in the
simulation. The above covariance has dimension of L´4, as
expected.

The theory predictions of Eq. (53) are presented as the
red triangles in Figure 9 . As in the case of wgg, we see that
the agreement between theory and measurements is good on
large (R ą 10 h´1Mpc) and small (R ă 0.1 h´1Mpc) scales.
However, on intermediate scales the theory underestimates
the true errors. We also notice the predictions are increas-
ingly poor for the fainter galaxies. For the brightest galaxies
the discrepancy at R „ 1h´1Mpc is roughly a factor of „ 2,
whereas for the faintest galaxies it is roughly „ 3. Thus,
compared to wgg, the predictions for the stacked shear seem
worse, even for the shot-noise-dominated brightest galax-
ies. This suggests that the non-Gaussian contributions to
the variance are more important for the stacked tangential
shear than for the projected correlation function. However,
in a real shear survey this discrepancy may not be so crucial,
since the addition of the shape noise term will certainly be
a strong source of noise on small-scales. We shall test this
in future work.

Figure 10 presents four rows of the correlation matrix
of psγg

t at tRi, Rju as a function of Rj and for fixed Ri, with
the covariance estimated according to Eq. (52). The mea-
surements are represented in the figure as the blue pen-
tagons. The theoretical predictions are obtained by evaluat-
ing Eq. (53), and are denoted by the red triangles. The gen-
eral trends are similar to those found in Figure 8: on small
scales (Ri “ 0.01 h´1Mpc, i.e. the top row of the figure), the
theory and measurements show weak bin-to-bin correlations
and the measurements seem somewhat noisy. Qualitatively
they are consistent with uncorrelated noise. On large scales
(Ri “ 10.0 h´1Mpc, i.e. the bottom row of the figure), the
measurements show significant bin-to-bin correlations. How-
ever, the correlations appear to be somewhat weaker than
was found for the projected correlation function for more
distant bins. In addition, the Gaussian predictions of our
model do not describe these correlations as well as in the
case of wgg. On intermediate scales, 1 ă Ri ă 10r h´1Mpcs,
the correlations are significantly stronger for all magnitude
bins than predicted by our theoretical model. Once again,
this suggests that the tangential shear signal is significantly
more non-Gaussian on these scales than the projected galaxy
correlation function.

6.3 Cross-covariance of the projected correlation

function and stacked tangential shear

In order to perform a joint likelihood analysis of the combi-
nation of the projected galaxy correlation function and the
stacked tangential shear profile, one would start by writing
the joint vector of measurements:

X
T “

ˆ pswggpR1q
σrpswggspR1q

, . . . ,
pswggpRN q

σrpswggspRN q
, . . .

psγg

t pRN q
σrpsγg

t spRN q

˙
, (54)

where we have normalised the measurements by their di-
agonal errors, so as to obtain dimensionless numbers. N is
the number of transverse radial bins. Assuming a Gaussian
likelihood, the normalised data would then be written:

logLpX|φq 9
Nÿ

i,j“1

rXi ´ X̄ipφqs rrXs´1
ij

“
Xj ´ X̄jpφq

‰
, (55)

where X̄ipφq is the expectation of the theoretical model,
and rrXs´1 is the inverse correlation matrix. The correlation
matrix is built from four blocks:

rrXs “
ˆ

rrpswggs rrpswgg, psγg

t s
rrpsγg

t , pswggs rrpsγg

t s

˙
(56)

where the off-diagonal blocks are simply the transpose of
one another. Again we see that |rX | ď 1, i.e. the absolute
value of the determinant must be less than unity, through
the Cauchy-Schwarz inequality.

Figures 11 and 12 present four rows and columns
through the off-diagonal block rrpswgg, psγg

t s of the full corre-
lation matrix, respectively. Note that unlike the other block
matrices, the off-diagonal block is not symmetric, hence the
need to examine the columns as well as the rows. Just like be-
fore, the blue pentagons denote the measurements from the
216 MXXL subcubes. The cross-covariance was estimated
similarly to Eqs. (49) and (52):

Covrpswgg, psγg

t spRi, Rjq ” 1

Σcrit

1

N ´ 1

Nÿ

k“1

”
pswgg,kpRiq ´

〈pswggpRiq
〉

ı

ˆ
”
y∆ΣkpRjq ´ xy∆ΣkpRjqy

ı
. (57)

Owing to the fact that we use the excess surface mass density
as a proxy for tangential shear, we may rewrite Eq. (35) as:

CovrpswggpRiq,yĚ∆ΣpRjqs “ 2ρ0m
As

ż
d2kK

p2πq2
sJ0pkKRiq sJ2pkKRjq

ˆ PgmpkKq
„
PggpkKq ` 1

n̄g


. (58)

The theoretical predictions from this expression are pre-
sented in Figures 11 and 12 as the red triangles.

On small scales (R ă 0.1 h´1Mpc, i.e. the top row of
the figures), we see that for all of the magnitude bins consid-
ered, the cross-correlation coefficient is small pr ă 0.2q, and
reasonably consistent with the theoretical predictions from
Eq. (58). On large scales (R „ 10h´1Mpc, i.e. the bottom
row in the figures), the cross-correlation coefficient is larger,
with r „ 0.8 for some of the bins. Also, the theoretical pre-
dictions are qualitatively in agreement, although the mea-
surements do show a stronger degree of correlation. On in-
termediate scales (the middle two rows), the measurements
show stronger bin-to-bin correlations than predicted by the
theory. These correlations on intermediate to large scales
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Figure 11. The cross-correlation coefficient of the projected galaxy correlation function and the stacked tangential shear. As in the
previous Figures 8 and 10, the rows present four scales: Ri “ 0.01, 0.1, 1, 10 h´1Mpc. From left to right, the columns depict the galaxy
bins with decreasing brightness.

Figure 12. The cross-correlation coefficient of the projected galaxy correlation function and the stacked tangential shear, this time fixing
Rj “ 0.01, 0.1, 1, 10 h´1Mpc.
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are important to include in any joint likelihood analysis of
galaxy clustering and galaxy-galaxy lensing. Otherwise, the
likelihood search may lead to biased and over-optimistic pa-
rameter constraints.

7 CONCLUSIONS

In this paper we have explored the required ingredients for
performing a joint likelihood analysis of galaxy clustering
and galaxy-galaxy lensing. The combination of these probes
has the potential to enable simultaneous constraints of the
cosmological and galaxy formation model parameters.

In §2, we developed an analytic framework to predict
the projected correlation function and the stacked tangential
shears of a population of galaxies. We provided both exact
and Limber-approximated expressions for the observables
in the flat-sky limit. In appendix A we presented the full
derivations of the auto- and cross-covariance matrices. In §3
we summarized the results for the case where the underlying
density fluctuations are Gaussian and modulated by a shot-
noise contribution.

The theoretical predictions of the models were then
tested against measurements from numerical simulations of
structure formation. In §4 we provided a brief overview of
the MXXL simulation. The galaxy catalogues were gen-
erated using the Garching semi-analytic model (SAM) of
galaxy formation, which enabled us to compute the u, g,
r, i, z SDSS absolute magnitudes. As a diagnostic of the
SAM galaxies we presented the evolution of the galaxy lu-
minosity function for the five bands. We also explored cer-
tain properties of the galaxies as a function of absolute r

band magnitude (Mr), allowing us to understand the im-
pact of the finite mass resolution of the MXXL simulation on
the derived galaxy properties. Through detailed comparison
with the Millennium simulation, we determined that resolu-
tion effects were qualitatively important only for magnitudes
fainter than Mr ą ´19.

In §5 we described our methods for estimating the pro-
jected correlations from the MXXL. This required the im-
plementation of fast and efficient algorithms, since the dark
matter distribution was represented by over 300 billion dark
matter particles and the galaxy catalogue contained more
than a billion objects. We thus developed a parallel k-D tree-
algorithm for computing all of the correlation functions.

We split the galaxy catalogues into four sub-samples
based on their Mr band magnitude, with the constraint
that Mr ă ´19. We also sliced the dark matter and
galaxy catalogues into a series of 216 subcubes of volume
500 h´3 Mpc3. As a step towards modelling the GC and
GGL signals, we examined the projected galaxy-galaxy and
galaxy-mass correlation functions using the estimator pro-
posed by Landy & Szalay (1993). We also computed the bias
coefficients as a function of scale from these statistics. We
found that on large scales, R ą 10 h´1Mpc, the bias was
consistent with being linear and deterministic. On smaller
scales, the bias possessed a complex scale dependence, which
varied with the magnitude bin through the larger number
of satellites and their spatial distribution, as well as the de-
creasing host mass for the centrals in the fainter bins. We
also found that the cross-correlation coefficient was signif-
icantly greater than unity on small scales. This could be

explained as a consequence of an exclusion effect – no two
galaxies may be closer than the sum of their respective virial
radii.

We next computed the excess surface-mass density ∆Σ,
which is directly proportional to the tangential shear, and
the projected galaxy correlation function for each of the
magnitude bins and for each of the 216 subcubes. These
were compared to the theoretical predictions in the Lim-
ber approximation. The evaluation of the theory required
a model for the nonlinear matter power spectrum and the
scale-dependence of the bias. For the former we used the
halofit code (Smith et al. 2003), the latter we took directly
from the measured bias. We found that on small scales the
theory underpredicted the measurements by À 20% for wgg

and by À 30% for ∆Σ. This was attributed to the dimin-
ished accuracy of halofit on small scales. Both functions
displayed complicated features for galaxies in the faintest
magnitude bin Mr ą ´20. This was again attributed to the
increased abundance of satellite galaxies.

In §6 we used the measured estimates of wgg and ∆Σ
from the subcubes to construct the auto- and cross- covari-
ance matrices. We found that on large and small scales
the errors were reasonably well described by the Gaus-
sian plus shot-noise model. However, on intermediate scales,
0.1 ă R ă 10 h´1Mpc, the measured errors were signifi-
cantly larger by a factor of „ 2–3. This suggests that in
order to accurately model the covariance matrix one needs
to take account of the non-Gaussian contributions from the
bi- and trispectrum.

Importantly, we found that the cross-covariance be-
tween wgg and ∆Σ was not zero. The elements of the cross-
covariance matrix showed significant bin-to-bin correlations
with r „ 0.8 for some elements on large-scales. This result
is important, since in a number of previous analysis it was
assumed that the information from GC and GGL could be
combined independently. Our results suggest that if these
correlations are neglected, then a standard likelihood anal-
ysis would lead to biased and over-optimistic constraints on
the parameters of the models.

In the future, more work will be required to establish
an accurate model of the GC and GGL signals on scales
R ă 5h´1Mpc. We note that, whilst the SAM model of
galaxy formation is not to be taken as an exact replica of re-
ality, it nevertheless captures many of the effects that we ex-
pect to have to model when constraining model parameters
with real data. It will also be important to determine how
well the combination of GC and GGL can actually break the
degeneracies between the galaxy-formation and cosmological
parameters. We shall aim to explore this in a future paper.
In the meantime, we note that Eifler et al. (2014) have ex-
plored clustering and lensing probe combinations and have
included additional non-Gaussian terms in the modelling of
the covariances. However, they have assumed a rather sim-
plistic modelling of the galaxy bias, which we showed here
it is not the case. This leads us to suspect that their results
will be somewhat over-optimistic.

Another possibility is the exploration of the Υ statis-
tic (Baldauf et al. 2010; Mandelbaum et al. 2013), which
was developed to remove the complicated scale-dependences
of the bias. However, what is not clear, is whether the Υ
statistic in combination with galaxy clustering can provide
constraints on both the cosmological and galaxy formation
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model that are competitive with the standard statistics. We
leave this for future work.
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APPENDIX A: DERIVATION OF THE AUTO- AND CROSS-COVARIANCE MATRICES

A1 Derivation of the covariance matrix of stacked tangential shear

To simplify the notation, from now on we shall consider that all 2D integrals are implicitly done on the survey area Ωs without
explicitly stating so in every case.
Using Eq. (11) we write:

xpγg
t pθ1qpγg

t pθ2qy “ 1

N2
g

ż
d
2
x d

2
y

Ngÿ

i,j“1

xδDpx ´ xiqδDpy ´ xjqγtpx ` θ1;xqγtpy ` θ2;yqy

“ 1

N2
g

„ż
d
2
xxngpxqγtpx ` θ1;xqγtpx ` θ2;xqy `

ż
d
2
x d

2
y xngpxqngpyqγtpx ` θ1;xqγtpy ` θ2; yqy


.(A1)

In the above double sum, the special case where i “ j gives rise to the 3-point function xngpxqγtpx ` θ1;xqγtpx ` θ2;xqy “
n̄grxγtpx`θ1;xqγtpx`θ2;xqy`xδgpxqγtpx`θ1;xqγtpx`θ2;xqys. Similarly, the case where i ‰ j yields a 4-point function which
can be expressed as xngpxqngpyqγtpx`θ1;xqγtpy`θ2;yqy “ n̄2

g txγtpx`θ1;xqγtpy`θ2;yqy`xδgpxqδgpyqγtpx`θ1;xqγtpy`
θ2;yqy ` xδgpxqγtpx ` θ1;xqγtpy ` θ2; yqy ` xδgpyqγtpx ` θ1;xqγtpy ` θ2; yqyu. Since this work assumes the Gaussianity of
all cosmological fields, we ignore their odd-point functions, as well as the connected functions. After decomposing the 4-point
function in the above relation in products of 2-point functions, in accordance to Wick’s theorem, we write Eq. (A1) as

xpγg
t pθ1qpγg

t pθ2qy “ 1

Ω2
s

"
1

n̄g

ż
d
2
x xγtpx ` θ1;xqγtpx ` θ2;xqy `

ż
d
2
x d

2
y rxγtpx ` θ1;xqγtpy ` θ2;yqy

` xδgpxqδgpyqyxγtpx ` θ1;xqγtpy ` θ2;yqy ` xδgpxqγtpx ` θ1;xqyxδgpyqγtpy ` θ2; yqy
` xδgpxqγtpy ` θ2;yqyxδgpyqγtpx ` θ1;xqys

)
. (A2)

We now proceed to the computation of each of the five terms in Eq. (A2), omitting for now the inverse square of the survey
area that multiplies the whole covariance. Our final goal is in fact the azimuthal average of the covariance in Eq. (27). We first
introduce the shape-noise contribution to the covariance of the tangential shear at θ1,θ2 with respect to the origins θ01,θ02:

xγtpθ1;θ01qγtpθ2;θ02qy “ σ2
γ

2n̄s

cosr2pφθ1´θ01
´ φθ2´θ02

qs δDpθ1 ´ θ2q, (A3)

where we defined σ2
γ{2 ” σ2

γ1 “ σ2
γ2 as the variance per shear component in the measurement of one source galaxy. We assume

the source galaxies to have a mean angular density of n̄s. In the above we also assumed that the shape noise does not correlate
different positions in the source plane, i.e. we ignore for example the effect of intrinsic alignments which might introduce
precisely such correlations.

Starting with the first term, we employ Eq. (6) to write:

T1pθ1,θ2q ” 1

n̄g

ż
d
2
x xγtpx ` θ1;xqγtpx ` θ2;xqy “ Ωs

n̄g

xγtpθ1;0qγtpθ2;0qy

“ Ωs

n̄g

„ż
d2l

p2πq2 cosr2pφθ1
´ φlqs cosr2pφθ2

´ φlqsCκκplq ` σ2
γ

2n̄s

cosr2pφθ1
´ φθ2

qsδDpθ1 ´ θ2q

,

Writing that δDpθ1 ´ θ2q “ δDpθ1 ´ θ2qδDpφθ1
´ φθ2

q{θ1, we compute the azimuthal average of the above equation using

Eqs. (7) and (9). Thus the first term of the covariance of the stacked shear estimator is:

T1,apθ1, θ2q ”
ż 2π

0

dφθ1

2π

dφθ2

2π
T1pθ1,θ2q “ Ωs

n̄g

„ż
d2l

p2πq2 CκκplqJ2plθ1qJ2plθ2q ` σ2
γ

2n̄s

δDpθ1 ´ θ2q
2πθ1



“ Ωs

n̄g

ż
d2l

p2πq2
„
Cκκplq ` σ2

γ

2n̄s


J2plθ1qJ2plθ2q, (A4)

where we have put the shape noise term in a similar form to the rest of the first term by using the Bessel identity:

δDpθ1 ´ θ2q
2πθ1

“
ż

d2l

p2πq2 J2plθ1qJ2plθ2q.

The second term of the covariance matrix is a constant, equal in fact to 0. This can be seen through a simple change of
variables: x1 “ x ` θ1 and y1 “ y ` θ2 which leaves the Jacobian unchanged, d2x1 “ d2x, d2y1 “ d2y. Relabelling x1 “ x and
y1 “ y, we write:

T2pθ1,θ2q ”
ż
d
2
x d

2
y xγtpx ` θ1;xqγtpy ` θ2;yqy

“
ż
d
2
x

ż
d
2
y xγtpx;x ´ θ1qγtpy;y ´ θ2qy “ x

ż
d
2
x γtpx;x ´ θ1q

ż
d
2
y γtpy;y ´ θ2qy “ 0. (A5)
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In the above we have used the ergodic theorem and implicitly assumed that the survey area is sufficiently large so that the
tangential shear integrated over it behaves like the ensemble average of the tangential shear, and is therefore equal to 0.

We now turn our attention to the calculation of the third term of Eq. (A2), henceforth denoted as T3.

T3pθ1,θ2q ”
ż
d
2
x d

2
y xδgpxqδgpyqyxγtpx ` θ1;xqγtpy ` θ2; yqy. (A6)

Changing variables x1 “ x ´ y and relabelling x1 “ x, we write

T3pθ1,θ2q “ Ωs

ż
d
2
x xδgpxqδgp0qyxγtpx ` θ1;xqγtpθ2;0qy (A7)

Note that T3 also has a contribution from shape noise, which we address below. We shall evaluate Eq. (A7) in Fourier space.
The Fourier transforms of the shear and galaxy density fluctuations are written as four integrals over the wave vectors which
can be reduced to two integrals, by using the definitions of the convergence and galaxy power spectra in Eq. (13):

T3pθ1,θ2q “ Ωs

"ż
d2l1

p2πq2
d2l2

p2πq2 Cggpl1q Cκκpl2q ei l2¨pθ1´θ2q cosr2pφθ1
´ φl2

qs cosr2pφθ2
´ φl2

qs
ż
d
2
x e

ix¨pl1`l2q

` σ2
γ

2n̄s

ż
d
2
x xδgpxqδgp0qy cosr2pφθ1

´ φθ2
qs δDpx ` θ1 ´ θ2q

*

“ Ωs

"ż
d2l

p2πq2 CggplqCκκplq ei l¨pθ1´θ2q cosr2pφθ1
´ φlqs cosr2pφθ2

´ φlqs

` σ2
γ

2n̄s

ż
d2l

p2πq2 Cggplqei l¨pθ2´θ1q cosr2pφθ1
´ φθ2

qs
*
. (A8)

We now calculate the azimuthal average of this term, using just as before Eq. (9). For the shape noise term we also change
variables to φ1

θ1,2
“ φθ1,2

´ φl.

T3,apθ1, θ2q ”
ż 2π

0

dφθ1

2π

dφθ2

2π
T3pθ1, θ2q “ Ωs

"ż
d2l

p2πq2 Cggplq CκκplqJ2plθ1qJ2plθ2q

` σ2
γ

2n̄s

ż
d2l

p2πq2 Cggplq
ż dφ1

θ1

2π

dφ1

θ2

2π
e
i rlθ2 cospφ1

θ2

q´lθ1 cospφ1

θ1

qs

cosr2pφ1

θ1

´ φ
1

θ2

qs
+

“ Ωs

"ż
d2l

p2πq2 Cggplq
„
Cκκplq ` σ2

γ

2n̄s


J2plθ1qJ2plθ2q

*
. (A9)

Moving on to the fourth term of Eq. (A2), we take advantage of the homogeneity of the Universe and of Eq. (14) to write:

T4pθ1,θ2q ”
ż
d
2
x d

2
y xδgpxqγtpx`θ1;xqyxδgpyqγtpy`θ2;yqy “ Ω2

s xδgp0qγtpθ1; 0qyxδgp0qγtpθ2; 0qy “ Ω2
s xpγg

t pθ1qyxpγg
t pθ2qy(A10)

Note how this fourth term exactly cancels the second one of the covariance in Eq. (27), once we remember the factor of 1{Ω2
s

that we deliberately left out.

Proceeding to the fifth term, we make the change of variables x1 “ x ´y to eliminate one of the surface-area integrals on the
right-hand side. Relabelling x1 “ x, we obtain:

T5pθ1,θ2q ”
ż
d
2
x d

2
y xδgpxqγtpy ` θ2; yqy xδgpyqγtpx ` θ1;xqy “ Ωs

ż
d
2
x xδgpxqγtpθ2;0qyxδgp´xqγtpθ1;0qy, (A11)

Using Eqs. (6), (13), we can further write

T5pθ1,θ2q “ Ωs

ż
d2l

p2πq2 C
2
gκplq cosr2pφθ1

´ φlqs cosr2pφθ2
´ φlqs ei l¨pθ1`θ2q

. (A12)

The azimuthal average of this expression can be obtained with the help of Eq. (9):

T5,apθ1, θ2q ”
ż 2π

0

dφθ1

2π

dφθ2

2π
T5pθ1,θ2q “ Ωs

ż
d2l

p2πq2 C
2
gκplqJ2plθ1qJ2plθ2q. (A13)

Finally, putting together all the terms in Eqs. (A4), (A5, (A9, (A10), and (A13), as well as the factor 1

Ω2
s
that we left out

earlier, we reexpress Eq. (A2) as

Covrpγg
t spθ1, θ2q “ 1

Ωs

ż 8

0

d2l

p2πq2 J2plθ1qJ2plθ2q
"„

Cκκplq ` σ2
γ

2n̄s

 „
Cggplq ` 1

n̄g


` C2

gκplq
*
. (A14)

This equation concludes the theoretical predictions for the stacked tangential shear estimator and its covariance.
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A2 Derivation of the covariance matrix of the 3D-galaxy correlation function

We define a general estimator for the galaxy overdensity field with respect to a random galaxy catalogue as:

xFgpxq ” wpxq?
A

rngpxq ´ αnRpxqs, (A15)

where ngpxq is the galaxy number density field; wpxq is a weight function; nRpxq is the number density of a mock galaxy
catalogue, used to compute any excess correlation in our data set; α quantifies how dense the random catalogue is compared
to the galaxy data, i.e. the smaller α, the better the estimator:

α “ xngpxqy
xnRpxqy «

ş
d3x n̄gpxqş
d3x n̄Rpxq .

In the above, the mean density of galaxies can vary across the survey, if the survey is a small volume-limited one or simply
flux-limited. Note that the above definition of α insures that the density fluctuation estimator is unbiased, i.e. xxFgpxqy “ 0.
Finally, the normalization constant is:

A ”
ż
d
3
x n̄

2
gpxqw2pxq. (A16)

This estimator for the galaxy overdensity field has been reviewed in the recent work of Smith & Marian (2014a), who showed
that the galaxy correlation function is related to the covariance of the galaxy overdensity field estimator:

xxFgpx1qxFgpx2qy “ wpx1qwpx2qn̄gpx1qn̄gpx2q
A

„
ξggpx1,x2q ` p1 ` αq

n̄gpx2q δDpx1 ´ x2q

. (A17)

In the following, we shall assume that: i) our survey is volume-limited and large enough so that the galaxy number density
field has constant mean density; ii) the random catalogue also has constant mean density; iii) the weights are constant and
equal to 1. Whilst this means that our estimator is sub-optimal in terms of maximizing the signal-to-noise for the galaxy
correlation function, it is perfectly adequate for the purpose of this work. Under these assumptions, we define the estimator
for the galaxy correlation function as:

pξggpxq “
ż
d
3
y xFgpyqxFgpy ` xq, with x ‰ 0 (A18)

where we ignore the 0-lag correlation, affected by a shot noise term as seen in Eq. (A17). The reason for this is that our
measurements from numerical simulations will not contain the 0-lag contribution. The normalization constant also has the
simple expression A “ n̄2

gVs, where Vs is the survey volume. The estimator is unitless, and in the limit that the survey volume
is large, it is also unbiased. Its covariance is given by:

Covrpξggspr1, r2q “
ż
d
3
x d

3
y
”
xxFgpxqxFgpx ` r1qxFgpyqxFgpy ` r2qy ´ xxFgpxqxFgpx ` r1qyxxFgpyqxFgpy ` r2qy

ı
(A19)

To shorten the notation, we shall denote any function gpx1q ” g1, gpx1,x2q ” g12, gpx1,x2,x3q ” g123 and so on. We shall
also temporarily drop the subscript g from ‘galaxy’ in the correlation functions. The above covariance requires us to compute
the 4-point function x pF1

pF2
pF3

pF4y. Since the details for this calculation are fully explained in Smith & Marian (2014a), here
we just write directly the result, retaining the weights and varying mean densities for the moment in order to preserve the
generality of the calculation. For the same reason, we also retain some terms originating in the 0-lag correlations, and drop
them later.

x pF1
pF2

pF3
pF4y “

ś4

i“1
pwin̄iq
A2

"
ξ1234 ` ξ123

n̄4

pδ14D ` δ
24
D ` δ

34
D q ` ξ124

n̄3

pδ13D ` δ
23
D q ` ξ134

n̄2

δ
12
D ` ξ12ξ34 ` ξ13ξ24 ` ξ14ξ23

` ξ12

n̄3n̄4

pδ13D δ
24
D ` δ

14
D δ

23
D ` δ

24
D δ

23
D ` δ

13
D δ

14
D q ` ξ13

n̄2n̄4

pδ12D δ
14
D ` δ

12
D δ

34
D q ` ξ14

n̄2n̄3

δ
12
D δ

13
D ` 1 ` α

n̄2

ξ34δ
12
D

` 1 ` α

n̄3

pξ14δ23D ` ξ24δ
13
D q ` 1 ` α

n̄4

pξ12δ34D ` ξ13δ
24
D ` ξ23δ

14
D q ` p1 ` αq2

n̄3n̄4

pδ13D δ
24
D ` δ

14
D δ

23
D q

` p1 ` αq2
n̄2n̄4

δ
12
D δ

34
D ` 1 ` α3

n̄2n̄3n̄4

δ
12
D δ

13
D δ

14
D

*
. (A20)

We also need the ingredient x pF1
pF2yx pF3

pF4y which is shown in Smith & Marian (2014a) to be

x pF1
pF2yx pF3

pF4y “
ś4

i“1
pwin̄iq
A2

„
ξ12ξ34 ` 1 ` α

n̄2

ξ34δ
12
D ` 1 ` α

n̄4

ξ12δ
34
D ` p1 ` αq2

n̄2n̄4

δ
12
D δ

34
D


. (A21)

Putting together Eqs. (A20) and (A21) and rearanging the terms, we write

x pF1
pF2

pF3
pF4y ´ x pF1

pF2yx pF3
pF4y “

ś4

i“1
pwin̄iq
A2

"ˆ
ξ1234 ` ξ123

n̄4

pδ14D ` δ
24
D ` δ

34
D q ` ξ124

n̄3

pδ13D ` δ
23
D q ` ξ134

n̄2

δ
12
D

˙
` ξ14

n̄2n̄3

δ
12
D δ

13
D

`
„
ξ13 ` 1 ` α

n̄3

δ
13
D

 „
ξ24 ` 1 ` α

n̄4

δ
24
D


`
„
ξ14 ` 1 ` α

n̄4

δ
14
D

 „
ξ23 ` 1 ` α

n̄3

δ
23
D


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` ξ12

n̄3n̄4

pδ13D δ
24
D ` δ

14
D δ

23
D ` δ

24
D δ

23
D ` δ

13
D δ

14
D q ` ξ13δ

12
D

n̄2n̄4

pδ14D ` δ
34
D q ` 1 ` α3

n̄2n̄3n̄4

δ
12
D δ

13
D δ

14
D

*
(A22)

Just as in the case of the stacked tangential shear of galaxies from the previous section, here too we work under the assumption
of Gaussianity of the galaxy density field. In the above equation, the first term in round squares on the right-hand side vanishes
under this assumption, i.e. we ignore the connected 4-point correlation function, as well as the 3-point functions of the galaxy
density field. We shall also ignore all terms with contributions from the 0-lag correlations, e.g. terms containing δ12D and δ34D ,
and also contributions from the bin containing the value r “ 0, e.g. the terms with the products δ24D δ23D and δ13D δ14D . The reason
for the latter is that the binning of the simulation data starts from values larger than 0.

To write down the covariance for the estimator defined by Eq. (A18), we set the n̄i “ n̄g , wi “ 1, pi “ 1, 2, 3, 4q, and we
combine Eqs. (A19), (A22) discarding all the above-mentioned terms:

Covrpξggspr1, r2q “
ż
d
3
x d

3
y

"„
ξggpx,yq ` 1 ` α

n̄g

δDpx ´ yq
 „

ξggpx ` r1,y ` r2q ` 1 ` α

n̄g

δDpx ` r1 ´ y ´ r2q


`
„
ξggpx,y ` r2q ` 1 ` α

n̄g

δDpx ´ y ´ r2q
 „

ξggpx ` r1,yq ` 1 ` α

n̄g

δDpx ` r1 ´ yq


` ξggpr1q
n̄2
g

rδDpx ´ yqδDpx ` r1 ´ y ´ r2q ` δDpx ´ y ´ r2qδDpx ` r1 ´ yqs
*
, (A23)

where we have used the homogeneity of the Universe to write ξggpr1, r2q “ ξggpr1 ´ r2q. A little further manipulation of the
above equation gives us the expression for the covariance of the galaxy correlation function estimator in Eq. (A18)

Covrpξggspr1, r2q “ 1

Vs

"ż
d
3
x rξggpxqξggpx ` r1 ´ r2q ` ξggpx ` r1qξggpx ´ r2qs ` 2p1 ` αq

n̄g

rξggpr1 ` r2q ` ξggpr1 ´ r2qs

` 1

n̄2
g

“
ξggpr1q rδDpr1 ´ r2q ` δDpr1 ` r2qs ` p1 ` αq2 rδDpr1 ´ r2q ` δDpr1 ` r2qs

‰ *
. (A24)

Note that this expression is in accord with the work of Smith (2009), with the lag-0 and bin-0 contributions excluded.
Just like in the previous section on stacked tangential shear, we are actually interested in the azimuthally-averaged covariance.
To obtain the azimuthal average, we shall work in cylindrical coordinates, suitable to the projected correlation functions
discussed in subsection §2.3. Writing δDpr1 ´r2q “ δDpR1´R2q

R1
δDpχ1 ´χ2qδDpφR1

´φR2
q and δDpr1 `r2q “ δDpR1´R2q

R1
δDpχ1 ´

χ2qδDpφR1
´ φR2

` πq, we compute

Covrpξggspr1, r2q “
ż 2π

0

dφR1

2π

ż 2π

0

dφR2

2π
Covrpξggspr1, r2q

“ 1

Vs

"ż 8

0

dkK

p2πq2 kKJ0pkKR1qJ0pkKR2q
ż 8

´8

dkzPggpkq
„
Pggpkq ` 2p1 ` αq

n̄g

 ”
e
i kzpχ1´χ2q ` e

i kzpχ1`χ2q
ı

` 2

n̄2
g

„“
ξggpr1q ` p1 ` αq2

‰
δDpχ1 ´ χ2qδDpR1 ´ R2q

2πR1

*
(A25)

where we have used k “
a

k2
K ` k2

z , ri “
a
R2

i ` χ2
i , i “ 1, 2 for more compact notation, and Eq. (21) to express ξgg in

terms of Pgg. Eq. (A25) represents the azimuthally-averaged covariance matrix of the galaxy correlation function estimator
introduced in Eq. (A18).

A3 Cross-covariance matrix of stacked tangential shear and the projected galaxy correlation function

We shall compute the cross-covariance of the estimators for the angular correlation function of galaxies and the stacked
tangential shear. We take this approach because the angular correlation function in a thin redshift shell – which is our
assumption for the lens population throughout this study – is in fact equal to the projected correlation function.

Eq. (34) defines the cross-covariance, which can be further written as:

Covr pwggpθ1q, pγg
t pθ2qs “ 1

Ng

ż

Ωs

d
2
x d

2
y
!

x pFgpxq pFgpx ` θ1qngpyqγtpθ2 ` y;yqy ´ x pFgpxq pFgpx ` θ1qy xngpyqγtpθ2 ` y;yqy
)
, (A26)

where θ1 and θ2 are two angular position vectors, and the estimator for the galaxy overdensity field is defined by Eq. (A15),
only in this case for 2D vectors. The normalization constant is defined just as before A2D “

ş
d2x n̄2

gpxqw2pxq. Here we shall
assume unitary weights for which A2D “ Ωsn̄

2
g “ N2

g {Ωs.
The first factor in the curly brackets on the right-hand-side of the above equation can be written:

x pF1
pF2n3γt4;3y ” x pFgpz1q pFgpz2qngpz3qγtpz4 ` z3;z3qy

“ 1

A2D

 
xng1ng2ng3γt4;3y ´ α rxng1nR2ng3γt4;3y ` xnR1ng2ng3γt4;3ys ` α

2xnR1nR2ng3γt4;3y
(

(A27)

We compute these terms using the expansion of the galaxy number density as a sum of Dirac delta functions at the positions
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of the galaxies, e.g. Eq. (11). Starting with the first term,

xng1ng2ng3γt4;3y “
ÿ

i,j,k

xδDpz1 ´ xiqδDpz2 ´ xjqδDpz3 ´ xkqγtpz4;z3qy

” Ti‰j‰k ` Ti“j‰k ` Ti“k‰j ` Tj“k‰i ` Ti“j“k (A28)

Considering now the term with i ‰ j ‰ k, we use the fluctuation in the number density of galaxies ngpzq “ n̄gr1` δgpzqs just
like in sections §2.1. Dropping the subscript ‘g’ for simplicity, we write:

Ti‰j‰k “ n̄
3
gxp1 ` δ1qp1 ` δ2qp1 ` δ3qγt4;3y

“ n̄
3
g rxδ1δ2δ3γt4;3y ` xδ1δ2γt4;3y ` xδ1δ3γt4;3y ` xδ2δ3γt4;3y ` xδ1γt4;3y ` xδ2γt4;3y ` xδ3γt4;3y ` xγt4;3ys

“ n̄
3
g rxδ1δ2δ3γt4;3yc ` xδ1δ2yxδ3γt4;3y ` xδ1δ3yxδ2γt4;3y ` xδ2δ3yxδ1γt4;3y ` xδ1δ2γt4;3y ` xδ1δ3γt4;3y ` xδ2δ3γt4;3y

` xδ1γt4;3y ` xδ2γt4;3y ` xδ3γt4;3ys , (A29)

where we applied Wick’s theorem to the 4-point function in order to arrive at the last line. The subscript ‘c’ in the remaining
4-point function indicates that it is connected. We also used xγty “ 0 to remove the last term on the second line, and will
repeat this step henceforth without mentioning it explicitly. We proceed similarly with the other four terms in Eq. (A28).

Ti“j‰k “ n̄
2
gδ

12
D xp1 ` δ1qp1 ` δ3qγt4;3y “ n̄

2
gδ

12
D rxδ1γt4;3y ` xδ3γt4;3y ` xδ1δ3γt4;3ys ,

Ti“k‰j “ n̄
2
gδ

13
D rxδ1γt4;3y ` xδ2γt4;3y ` xδ1δ2γt4;3ys ,

Tj“k‰i “ n̄
2
gδ

23
D rxδ1γt4;3y ` xδ2γt4;3y ` xδ1δ2γt4;3ys ,

Ti“j“k “ n̄g δ
12
D δ

13
D xδ1γt4;3y. (A30)

Putting together all these terms, we rewrite Eq. (A28) as

xng1ng2ng3γt4;3y “ n̄
3
g

"
xδ1δ2δ3γt4;3yc ` xδ1δ2γt4;3y

ˆ
1 ` δ13D ` δ23D

n̄g

˙
` xδ1δ3γt4;3y

ˆ
1 ` δ12D

n̄g

˙
` xδ2δ3γt4;3y

` xδ1δ2yxδ3γt4;3y ` xδ1δ3yxδ2γt4;3y ` xδ2δ3yxδ1γt4;3y

` xδ1γt4;3y
ˆ
1 ` δ12D ` δ13D ` δ23D

n̄g

` δ12D δ13D
n̄2
g

˙
` xδ2γt4;3y

ˆ
1 ` δ13D ` δ23D

n̄g

˙
` xδ3γt4;3y

ˆ
1 ` δ12D

n̄g

˙*
. (A31)

We now address the second term of Eq. (A27) and use the fact that n̄g “ αn̄R:

xng1nR2ng3γt4;3y “ n̄R

ÿ

i,j

xδDpz1 ´ xiqδDpz3 ´ xjqγtpz4;z3qy “ n̄3
g

α

"
xδ1δ3γt4;3y ` xδ1γt4;3y

ˆ
1 ` δ13D

n̄g

˙
` xδ3γt4;3y

*
,

xnR1ng2ng3γt4;3y “ n̄3
g

α

"
xδ2δ3γt4;3y ` xδ2γt4;3y

ˆ
1 ` δ23D

n̄g

˙
` xδ3γt4;3y

*
,

xnR1nR2ng3γt4;3y “ n̄3
g

α2
xδ3γt4;3y. (A32)

Combining Eqs. (A31) and (A32), we obtain a final expression for the first part of the cross-covariance, i.e. Eq. (A27):

x pF1
pF2n3γt4;3y “ n̄3

g

A2D

"
xδ1δ2δ3γt4;3yc ` xδ1δ2γt4;3y

ˆ
1 ` δ13D ` δ23D

n̄g

˙
` xδ1δ3γt4;3yδ

12
D

n̄g

` xδ1δ2yxδ3γt4;3y

` xδ1δ3yxδ2γt4;3y ` xδ2δ3yxδ1γt4;3y ` xδ1γt4;3y
ˆ
δ12D ` δ23D

n̄g

` δ12D δ13D
n̄2
g

˙
` xδ2γt4;3yδ

13
D

n̄g

` xδ3γt4;3yδ
12
D

n̄g

*
. (A33)

We also need to compute the second part of the cross-covariance matrix given by Eq. (34). In completely similar way to the
calculation above, we write:

x pFgpz1q pFgpz2qy xngpz3qγtpz4;z3qy ” x pF1
pF2yxn3γt4;3y

“ 1

A2D

“
xng1ng2y ´ α pxnR1ng2y ` xng1nR2yq ` α

2xnR1nR2y
‰

xng3γt4;3y

“ n̄3
g

A2D

„
xδ3γt4;3y

ˆ
xδ1δ2y ` δ12D

n̄g

˙
. (A34)

Finally, putting together Eqs. (A33) and (A34), we obtain the desired result:

x pF1
pF2n3γt4;3y ´ x pF1

pF2yxn3γt4;3y “ n̄3
g

A2D

"
xδ1δ2δ3γt4;3yc ` xδ1δ2γt4;3y

ˆ
1 ` δ13D ` δ23D

n̄g

˙
` xδ1δ3γt4;3yδ

12
D

n̄g

` xδ1δ3yxδ2γt4;3y

` xδ2δ3yxδ1γt4;3y ` xδ1γt4;3y
ˆ
δ12D ` δ23D

n̄g

` δ12D δ13D
n̄2
g

˙
` xδ2γt4;3yδ

13
D

n̄g

*
. (A35)

The above equation is general in the sense that it contains both Gaussian and non-Gaussian terms, as well as contributions

c© 0000 RAS, MNRAS 000, 000–000



24 Marian et al. 2014

from the 0-lag correlations, i.e. all terms containing δ12D . Discarding the latter contributions, as well as the non-Gaussian ones,
we write a final and simplified expression:

x pF1
pF2n3γt4;3y ´ x pF1

pF2yxn3γt4;3y “ n̄3
g

A2D

"
xδ1δ3yxδ2γt4;3y ` xδ2δ3yxδ1γt4;3y ` xδ1γt4;3yδ

23
D

n̄g

` xδ2γt4;3yδ
13
D

n̄g

*
. (A36)

While Eq. (A35) provides the general result, Eq. (A36) encompasses the approximations that we have made throughout this
paper. Replacing this latter equation into Eq. (A26), we write:

Covr pwggpθ1q, pγg
t pθ2qs “ n̄3

g

Ng A2D

ż

Ωs

d
2
x d

2
y
!

xδgpxqδgpyqyxδgpx ` θ1qγtpθ2 ` y;yqy ` xδgpx ` θ1qδgpyqyxδgpxqγtpθ2 ` y;yqy

` xδgpxqγtpθ2 ` y;yqyδDpx ` θ1 ´ yq
n̄g

` xδgpx ` θ1qγtpθ2 ` y;yqyδDpx ´ yq
n̄g

*
. (A37)

We shall detail only the computation of first term of the above equation, since the steps are fairly similar to those taken in
sections §A1 and §A2. We label this first term C1 to shorten the notation. Using the definition of the correlation function as
the Fourier transform of the power spectrum, and noting that n̄3

g{Ng{A2D “ 1{Ω2
s, we write

C1 “ ´ 1

Ω2
s

ż

Ωs

d
2
x d

2
y

ż
d2l

p2πq2 e
i l¨px´yqCggplq

ż
d2l1

p2πq2 e
i l1

¨px`θ1´y´θ2q cosr2pφθ2
´ φl1 qs Cgκpl1q

“ ´ 1

Ω2
s

ż
d2l

p2πq2
d2l1

p2πq2 CggplqCgκpl1q cosr2pφθ2
´ φl1 qsei l

1
¨pθ1´θ2q

ż

Ωs

d
2
x e

ix¨pl`l1
q

ż

Ωs

d
2
y e

´iy¨pl`l1
q

“ ´ 1

Ωs

ż
d2l

p2πq2 CggplqCgκplq cosr2pφθ2
´ φlqsei l¨pθ2´θ1q

. (A38)

The remaining three terms of Eq. (A37) are computed in the same way, leading to the following result for the cross-covariance:

Covr pwggpθ1q, pγg
t pθ2qs “ ´ 1

Ωs

ż
d2l

p2πq2 cosr2pφθ2
´ φlqs

”
e
i l¨pθ2´θ1q ` e

i l¨pθ2`θ1q
ı
Cgκplq

„
Cggplq ` 1

n̄g


. (A39)

APPENDIX B: GALAXY CATALOGUE COMPARISON

Figure B1 presents various properties of galaxies from the Millennium simulation as a function of r-band magnitude, e.g.
the fraction of each galaxy type, the host halo mass, the distance to the central galaxy, and the subhalo mass. The galaxy
catalogue is very similar to the MXXL one, used throughout this paper. The figure serves as a dignostic for the impact
of resolution effects on the distribution of galaxies, and by comparing it to Figure 2 we selected only MXXL galaxies with
Mr ă ´19 as a ‘reliable’ sample.
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Figure B1. The analogue of Figure 2 for the Millennium simulation. The galaxy catalogue is very similar to that described in Guo et al.
(2011). The redshift is 0.24.
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