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Bayesian evidence of non-standard inflation:
Isocurvature perturbations and running spectral index
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Bayesian model comparison penalizes models with more free parameters that are allowed to vary
over a wide range, and thus offers the most robust method to decide whether some given data
require new parameters. In this paper, we ask a simple question: do current cosmological data
require extensions of the simplest single-field inflation models? Specifically, we calculate the Bayesian
evidence of a totally anti-correlated isocurvature perturbation and a running spectral index of the
scalar curvature perturbation. These parameters are motivated by recent claims that the observed
temperature anisotropy of the cosmic microwave background on large angular scales is too low
to be compatible with the simplest inflation models. Both a subdominant, anti-correlated cold
dark matter isocurvature component and a negative running index succeed in lowering the large-
scale temperature power spectrum. We show that the introduction of isocurvature perturbations is
disfavored, whereas that of the running spectral index is only moderately favored, even when the

BICEP2 data are included in the analysis without any foreground subtraction.

I. INTRODUCTION

Suppose that we wish to decide whether some data re-
quire the addition of a new parameter to a model. We
may compare the logarithms of the likelihood values eval-
uated at the best-fit parameters. For example, the con-
ventional x? method uses Ax? = —21n(L1/Ls). The ob-
vious problem of this approach is that the addition of a
new parameter is guaranteed to improve the fit, yielding
a smaller 2 value. But then, what does Ax? mean when
we find, say, Ax? = —7 by adding one more parameter?
Do the data require such a parameter?

To address this issue, some criteria for comparing mod-
els have been discussed in the literature. The Akaike
information criterion (AIC; [I]) and the Bayesian infor-
mation criterion (BIC; [2]) penalize models with more
parameters by adding to x? a term proportional to the
number of parameters. These criteria penalize all param-
eters equally regardless of predictability. For example,
consider two parameters, one being allowed to vary from
—1 to 1, and the other from 0 to 10'°. While AIC and
BIC penalize both parameters equally, a more sensible
criterion should penalize the latter more strongly.

In this paper, we shall apply Bayesian model compar-
ison [3] to test whether extensions of the simplest in-
flation models are required by the current cosmological
data. The Bayesian model comparison penalizes mod-
els with more free parameters that are allowed to vary
over a wide range. Specifically, we compute the Bayesian
evidence, Z, defined by

Z= /dNe L(datal@)P(8), (1)
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where L(data|@) is the likelihood of the data given the
model parameters 8, and P(0) is the prior probability.
We then compare two models by computing the loga-
rithm of the ratio of their evidences, In B = In(2;/2,).
Since the prior probability is normalized as | dVo P(6) =
1, P(0) at a given set of 8 becomes small when a model
contains more parameters varying over a wide range.
This gives that model a small Z, hence penalizing it
more strongly. The factor In B can be interpreted as the
mathematical odds between the models given the data,
which can also be expressed heuristically using the so-
called “Jeffrey’s scale”, according to which the evidence
for (or against) a model is said to be weak, moderate,
and strong if In B > 1, 2.5, and 5, respectively [4]. We
shall adopt Jeffrey’s scale throughout this paper.

Why consider extensions of the simplest inflation mod-
els? Here, the “simplest inflation models” refer to infla-
tion models driven by a single scalar field with a sim-
ple potential yielding approximately a power-law power
spectrum of the scalar curvature perturbation.

A detection of isocurvature modes of any form would
rule out all single-field inflation models. Moreover, a de-
tection of a cold dark matter (CDM) isocurvature mode
would shed light on the nature of CDM, e.g., axions [5].

Given that the measured deviation of the scalar curva-
ture power spectrum from scale invariance is 1—ng ~ 0.04
[6][7], the running spectral index, ps = dn,/dInk, is typi-
cally of order (1—n4)? = O(10~3); however, larger values
are possible if the third derivative of the potential of a
scalar field driving inflation is large [8]. Thus, a large
running index of order 1072 necessarily requires a new
energy scale in the potential (or a kinetic term of the
field [9]), making the models more complicated.

A motivation to consider these extensions of the sim-
plest single-field inflation models comes from the ob-
servational data of the cosmic microwave background
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(CMB). The Planck collaboration claims that the CMB
temperature power spectrum data that they obtain at
low multipoles are too low to be compatible with the
best-fit power-law (ps = 0) adiabatic curvature pertur-
bation spectrum [7]. Both a negative running index and a
nearly scale-invariant CDM isocurvature component that
is anti-correlated with the curvature perturbation can
lower the low-multipole power, reducing this apparent
“tension” in the Planck temperature data [10].

This tension is exacerbated [I1], if a significant frac-
tion of the B-mode polarization detected at degree an-
gular scales by the BICEP2 collaboration [12] originates
from the primordial, nearly scale-invariant gravitational
waves generated during inflation, as such gravitational
waves add extra power to the temperature power spec-
trum at low multipoles [13]. Then, do the Planck and
BICEP2 data require either a negative running index or
an anti-correlated CDM isocurvature perturbation? This
is the question that we shall address in this paper using
Bayesian model comparison.

Ref. [I4] computed the Bayesian evidence of a running
index, showing that evidence for running is insignificant.
Our results differ from theirs because of the choice of the
data set and the prior probability on the amplitude of
gravitational waves. Ref. [I5] computed Ax? for isocur-
vature perturbations, but did not perform a Bayesian
model comparison; thus, they were unable to conclude
whether the data required isocurvature perturbations.

The structure of this paper is as follows: We describe
the models in Section and present the data sets we
use and the analysis method in Section [[TTl We describe
our results in Section [[V] and conclude in Section [V}

II. MODELS
A. Model I: Running scalar spectral index

We write the scalar curvature power spectrum as
Pr(k) = A kne—1aeInk (2)

where n, and p, are the scalar spectral index and its
running, respectively, and k& = k/(0.05 Mpc™') is the
normalized wavenumber. The tensor power spectrum is

Pr(k) = ro.05 AgkT0-05/8 (3)

where rq o5 is the tensor-to-scalar ratio defined at k =
0.05 Mpc 1.

In the top panel of Fig. [1| we compare the tempera-
ture power spectrum data, D; = I(I + 1)C;/(27), mea-
sured by Planck [16] with three representative models.
The solid line shows the best-fit six-parameter adiabatic
ACDM model with p; = 0 and 7995 = 0. The short-
dashed line is the sum of the solid line and the tensor
temperature power spectrum with rg g5 = 0.2, showing
how adding the tensor power spectrum with the tensor-
to-scalar ratio suggested by the BICEP2 data (without
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FIG. 1. Comparison of the ACDM and extended models.
In both panels, the solid lines show the scalar CMB power
spectrum of the six-parameter ACDM model, while the short-
dashed lines show the sum of the solid lines and the tensor
power spectrum with a tensor-to-scalar ratio of r¢. 05 = 0.2.
The symbols with error bars show the Planck measurements
[16]. (Top panel:) The long-dashed and dot-dashed lines show
the sum of the tensor power spectrum and the scalar power
spectrum with negative and positive running indices, respec-
tively, with |ps| = 0.03. (Bottom panel:) The long-dashed
and dot-dashed lines show the sum of the short-dashed line
and totally anti-correlated and correlated CDM isocurvature
components, respectively, with an isocurvature-to-curvature
ratio of & = 0.01.

foreground subtraction) exacerbates the tension between
the model and the Planck temperature data. The long-
dashed line has 7g.05 = 0.2 and a negative running index
of ps = —0.03, which brings the model back in agree-
ment with the data. The dot-dashed line has a positive
running index, yielding a bad fit.

B. Model II: CDM isocurvature

When we study an isocurvature component, we use
Eq. for the scalar curvature power spectrum with ps =
0. We continue to use the same tensor power spectrum as
Eq. . We write the power spectrum of an isocurvature



Parameter Description Priors
wy = QA baryonic energy density [0.020, 0.025]
we = Qch? dark matter energy density  [0.080, 0.016]
1009 sound horizon at last scattering [1.34, 1.045]
T optical depth [0.05, 0.18]
Ns scalar spectral index [0.90, 1.05]
log(10'°4,) scalar amplitude (2.9, 3.2]
70.05 tensor-to-scalar ratio [0.0, 1.0]
@ isocurvature-to-curvature ratio (0.0, 1.0]
Ps scalar running spectral index [-0.1, 0.1]

TABLE I. Parameters considered and prior ranges. In addi-
tion to these, all standard Planck nuisance parameters are left
free and marginalized over.

component, S, as
Ps(k) = aAd, k=1, (4)

where n;s, is the corresponding spectral index, and «
is the isocurvature-to-curvature power ratio at k =
0.05 Mpc~!. We shall assume that R and S are totally
anti-correlated (or correlated) throughout this paper. We
thus write the cross-correlation power spectrum between
R and S as

Prs(k) = £/ Pr(k)Ps(k). (5)

To minimize the number of parameters, we set nig, = n;.

In the lower panel of Fig. [l| the solid line shows the
best-fit six-parameter adiabatic ACDM model with o = 0
and rp.05 = 0. The short-dashed line is the sum of the
black line and the tensor temperature power spectrum
with 7905 = 0.2, again showing that the BICEP2 data
without foreground subtraction exacerbate the tension.
The long-dashed line has rg.05 = 0.2 and a totally anti-
correlated isocurvature component with o = 0.01, which
brings the model back in agreement with the data. The
dot-dashed line has a totally correlated isocurvature com-
ponent with o = 0.01, yielding a bad fit.

III. DATA AND ANALYSIS METHOD

We use the Planck temperature power spectrum from
the 2013 public release [I6], with the addition of the
WMAP 9-year polarization data [I7] as combined in the
default analysis by the Planck collaboration, as well as
the B-mode polarization power spectrum released by the
BICEP2 collaboration [12].

We also include a suite of baryon acoustic oscillation
(BAO) distance scale measurements by the BOSS and
6dF collaborations, using the BOSS data release 9 (DR9)
measurement at z ~ 0.57 [18], the DR7 measurement at
z ~0.35 [19], and 6dF result at z ~ 0.1 [20]. We do not
use any supernovae or Hy data.

We perform a Bayesian Monte Carlo exploration of
the parameter space, using nested sampling as imple-
mented in the public code MULTINEST [21] 22], used as

an alternative sampler within the Cosmomc/CAMB code
[23, 24]. This method allows us to directly estimate the
Bayesian evidence of each model and its uncertainties,
and to compare them.

We let the parameters vary freely within the ranges
described in Table [l As the nested sampling algorithm
starts from uniform sampling over the whole parameter
space, it is desirable to choose tight prior ranges such
that the sampling is efficient. We thus choose a prior
distribution for the standard ACDM parameters that is
narrow, while being sufficiently broad so that the poste-
rior likelihood of the six parameters is zero near the edges
of the prior.

The prior distribution of the new parameters, i.e.,
r0.05, @, and ps, is chosen such that the power of ten-
sor or isocurvature perturbations does not exceed that
of the scalar curvature perturbation (rg5 € [0,1] and
a € [0,1]), and that the running spectral index is not
too much bigger than |1 — n,| (ps € [—0.1,0.1]). These
prior distributions make physical sense and are compat-
ible with expectations from inflation.

In addition to the parameters shown in Table [, we
include the entire list of the standard Planck nuisance
parameters, over which we marginalize. As in the stan-
dard Planck analysis, we account for massive neutrinos
with a total mass fixed at Y m, = 60 meV.

IV. RESULTS
A. Frequentist analysis: Ayx?

Let us first show the results from the frequentist anal-
ysis using the usual Ay? statistics. The sixth column
of Table [lI| shows Ax? values between ACDM+rg 5 and
the other models. Negative values indicate a better fit
over the former model. The first column shows the data
combinations. When the BICEP2 data are included, we
find Ax?2 = —7.1 and —4.2 for the running spectral in-
dex and the anti-correlated CDM isocurvature models,
respectively. The isocurvature mode gives a smaller im-
provement because, while it reduces the low-multipole
temperature power spectrum, it gives a non-negligible ex-
tra power near the first acoustic peak at | ~ 200, which
is disfavored by the data.

Both models contain one more free parameter than
ACDM+47¢.05. While the Ax? values tell us that intro-
ducing one more parameter improves the fit, they do not
tell us whether the data require such a parameter.

B. Bayesian evidences

Next, we show the results from the Bayesian analy-
sis using the logarithms of the evidence ratio, In B. The
seventh column of Table [Tl shows In B values between
ACDM-+rg g5 and the other models. Positive values indi-
cate that the other models are favored over ACDM+7¢ o5.



Data Model Best fits Best-fit x? Ax? w.r.t. ACDM Ax? w.r.t. rACDM
Planck + WP ACDM — 9804.1 — 0.0
+ BAO + 70.05 ro.05 = 0.56 - 1073 9804.1 0.0 —
+ « a=0.60-10"3 9803.5 —0.6 —0.6
+ ps ps = —0.0096 9803.1 —-1.0 -1.0
+ 7r0.05 + @ r0.05 = 0.31 - 1073; 9803.3 —0.8 —0.8
a=0.58-10"3
+ r0.05 + ps r0.05 = 0.0014; 9802.8 —-1.3 —-1.3
ps = —0.012
Planck + WP + ACDM — 9860.2 — 40.1
BICEP2 B-mode + 70.05 r0.05 = 0.16 9820.1 —40.1 —
+ BAO + o a=0.11-10"72 9858.8 -14 38.7
+ ps ps = —0.015 9858.2 —2.0 38.1
+ 70.05 + @ r9.05 = 0.17; 9815.9 —44.3 —4.2
a = 0.0024
+ 7ro.05 + ps 7r0.05 = 0.18; 9813.0 —47.2 —7.1
ps = —0.026
TABLE II. Frequentist analysis results.
Data Model 95% c.l. posteriors In(Z) InB=AInZ Jeffrey’s scale InB w.r.t. rTACDM  Jeffrey’s scale
Planck + WP ACDM — —4940.57 4+ 0.04 — — 2.82 4+ 0.04 moderate in favor
+ BAO + 70.05 ro.05 € [0,0.12] —4943.39 + 0.02 —2.82 + 0.04 moderate against — —
+ a o € [0,0.0070] —4945.29 £ 0.04 —4.72 £ 0.06 moderate against —1.90 £ 0.04 weak against
+ ps ps € [—0.031,0.0029] —4942.26 +£ 0.04 —1.69 + 0.06 weak against 1.13 £0.04 weak in favor
+ 7r0.05 + « r0.05 € [0,0.19]; —4947.45 + 0.02 —6.88 £ 0.04 strong against —4.06 +0.03 moderate against
a € [0,0.0097)
+ ro.05 + ps r0.05 € [0,0.24]; —4943.27 + 0.03 —2.70 £ 0.05 moderate against 0.12 £ 0.04 inconclusive
ps € [—0.044, —0.0012]
Planck + WP + ACDM — —4968.69 + 0.05 — — —17.26 + 0.06 strong against
BICEP2 B-mode + 70.05 r0.05 € [0.096,0.23] —4951.43 +0.03 17.26 + 0.06 strong in favor — —
+ BAO + « a € [0,0.0078] —4973.09 + 0.14 —4.40 £ 0.15 moderate against —21.66 £0.14 strong against
+ ps ps € [—0.033,0.00063] —4969.86 + 0.03 —1.17 £ 0.06 moderate against —18.43 £ 0.04 strong against
+ r0.05 + @ ro.05 € [0.12,0.25]; —4953.52 +0.06 15.17 £0.08 strong in favor —2.09 + 0.07 weak against
a € [0,0.014]
+ 70.05 + ps  To.05 € [0.11,0.27]); —4948.88 £ 0.03 19.81 +0.06 strong in favor 2.55 +0.04 moderate
ps € [—0.049,0.011] in favor

TABLE III. Bayesian analysis results.

When the BICEP2 data are included, we find In B = 2.55
and —2.09 for the running spectral index and the CDM
isocurvature models, respectively. These results clearly
show the power of Bayesian model comparison: despite
an improved y?, the anti-correlated CDM isocurvature
model is disfavored by the data. The running spectral in-
dex model is still favored, and it is “moderately favored”
according to Jeffrey’s scale.

We show the marginalized 2D posteriors on the pa-
rameters of interest in Fig. 2] where we can see a visual
confirmation of the 95% confidence intervals shown in the
third column of Table [T} the scalar running is favored
at the 20 level, while the amount of anti-correlated CDM
isocurvature is consistent with zero.

We have tested the stability of our results when includ-
ing the Planck CMB lensing likelihood, removing BAOs,
and using Pj,  k instead of k~"/%. We find that the re-
sults are relatively robust, although the evidence in favor
of running is reduced in some of these cases: the addi-
tion of CMB lensing in particular reduces the evidence
to In B = 1.6, which is “weak” on Jeffrey’s scale. The
Planck collaboration also finds a reduced significance of
a running index when using the CMB lensing data [7].

Our results change more significantly if the same
method of Ref. [14] is used, where the posterior likeli-
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FIG. 2. Marginalized 2D posteriors on the tensor-scalar ratio,
running, and isocurvature parameters.

hood of the tensor-to-scalar ratio obtained by the BI-
CEP2 collaboration was used as a prior instead of calcu-
lating the full BICEP2 likelihood for each model. If we
use their method, we reproduce their results, which show
an even smaller evidence ratio for the running spectral in-
dex model, In B = 1.1. While applying the BICEP2 pos-
terior distribution on rg g5 as a prior is reasonable when
constraining the tensor amplitude only, the results will
be only approximately recovered if both rg g5 and ps are
varied simultaneously. We thus conclude that Ref. [14]
underestimated the evidence ratio for the running spec-
tral index model.



V. CONCLUSIONS

There are at least three easy ways to reduce the ap-
parent “tension” between the simplest inflation models
with a tensor mode and the current CMB data includ-
ing Planck and BICEP2. First, a sub-dominant CDM
isocurvature perturbation anti-correlated with the domi-
nant curvature perturbation [I5]; second, a negative run-
ning spectral index [12]; and third, a modification of the
large-scale primordial power spectrum [14, 25], 26].

We have performed a Bayesian model comparison of
the former two extensions against the simplest inflation
models. The anti-correlated CDM isocurvature compo-
nent reduces the CMB temperature power spectrum at
low multipoles, improving the agreement with the ten-
sor model with 7905 = 0.2 suggested by the BICEP2
data without any foreground subtraction. Nonetheless,
we have found that such an improvement is Bayesianly
disfavored, i.e., the data do not support such an extension
of the inflation model, despite that it gives an improved
X2 by Ax? = —4.2. This shows the power of the Bayesian
model comparison method. While this result necessarily
depends on the chosen prior on the amount of isocur-
vature, i.e., a € [0,1], this prior is physically motivated,
and there is little room for ambiguity on the prior choice.

We have then tested a model with a running spectral
index, as a negative running can also reduce the temper-
ature power spectrum at low multipoles. We have found
that a negative running spectral index is moderately fa-
vored with the log evidence ratio of In B = 2.55.

Our results are derived assuming that there is no fore-
ground contamination in the BICEP2 data. Any fore-
ground contributions will lower In B, and thus the anti-
correlated CDM isocurvature will be even more disfa-
vored, and the evidence for a negative running spec-
tral index will likely turn to be “weak” (InB < 2.5).
The BICEP2 collaboration finds that the polarized dust
emission could account for 30% of the measured B-mode
power spectrum, while others argue that 100% could be
accounted for by dust [27, 28]. Therefore, we conclude
that the current data do not require these particular ex-
tensions of the simplest inflation models.
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