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Abstract. We present a phenomenological modification of the standard perturbation theory predic-
tion for the bispectrum in redshift space that allow us to extend the model to mildly non-linear scales
over a wide range of redshifts, z ≤ 1.5. We test the regime of validity of this new approach with
dark matter particles and haloes with two different ΛCDM cosmologies, both consistent with current
data. We find that we can describe the bispectrum of dark matter particles with ∼ 5% accuracy for
ki . 0.10h/Mpc at z = 0, for ki . 0.15h/Mpc at z = 0.5, for ki . 0.17h/Mpc at z = 1.0 and for
ki . 0.20h/Mpc at z = 1.5. We apply this new formula to recover the bias parameters, logarithmic
growth rate f and σ8, by combining the redshift space power spectrum monopole and quadrupole with
the bispectrum monopole for both dark matter particles and haloes. We find that the combination
of these three statistics can break the degeneracy between b1, f and σ8. For dark matter particles
the new model can be used to recover f and σ8 with ∼ 1% systematic accuracy. For dark matter
haloes we find that f and σ8 present larger systematic shifts, ∼ 10%. The systematic offsets arise be-
cause of limitations in the modelling of the interplay between bias and redshift space distortions, and
represent a limitation as the statistical errors of forthcoming surveys reach this level. Conveniently,
we find that these residual systematics are mitigated for combinations of parameters. In particular,
the quantity fσ8 is still recovered with ∼ 1% accuracy. The improvement on the modeling of the
bispectrum presented in this paper will be useful for extracting information from current and future
galaxy surveys.
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1 Introduction

Over the last decade advances in astronomical spectroscopy and photometry of large samples of
galaxies have allowed the galaxy distribution to be measured to unprecedented accuracy. The analysis
of the resulting maps has yielded constraints on the growth rate of structures, the Universe expansion
history as well as on cosmological parameters.

The successful measurement of cosmological parameters relies on both the accuracy of the the-
oretical models as well as the precision of the statistics used. In the past, the precision of the
measurements was poor and a ∼ 10% statistical error on the measurement of the power spectrum
and even higher on the bispectrum was the limiting factor for discriminating among models and the-
ories. However, current and forthcoming surveys (BOSS [2]1, WiggleZ [3]2, DES [4]3, EUCLID [5]4)
are rapidly approaching to the 1% statistical precision for two-point statistics, and are constraining
higher-order statistics with similar jump in precision. This level of precision is comparable to the
accuracy of the theoretical models that have been developed. Consequently, a large effort has been
put into improving the theory, proceeding in different directions. The first step is to upgrade the
modeling of the statistics of dark matter in real space [6–10]. The second is to improve the bias model
in order to describe accurately how the galaxies trace dark matter, including non-linear, non-local and
non-Gaussian terms [11–13]. The third is to accurately model the mapping from real to redshift space
statistics [14–17]. Combining these improvements leads to a model to describe the 2-point statistics
with accuracy close to 1%. Although some progress have been made [18–27], we have not seen a
similar improvement for higher-order statistics.

Redshift space distortions (RSD), mean that the galaxy distribution observed in spectroscopic
surveys is distorted along the line of sight. These distortions depend on the growth rate of structures,

1Baryon Oscillator Spectroscopic Survey: http://www.sdss3.org/surveys/boss.php
2WiggleZ Dark Energy Survey : http://wigglez.swin.edu.au/
3Dark Energy Survey: http://www.darkenergysurvey.org/
4EUCLID: http://www.euclid-ec.org/
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and therefore offer a complementary technique (to those based on the cosmic expansion history) to
measure the matter content and to test gravity [28–30]. However, the accuracy of these tests relies
on the ability of the theoretical models to describe correctly the power spectrum and bispectrum
in redshift space. In a previous paper [1] we presented an improved phenomenological formula that
was able to predict the dark matter bispectrum in real space with a 5% precision up to scales of
k ≤ 0.4h/Mpc at z ≤ 1.5. As a natural continuation, we now extend that formula to redshift space,
making the model closer to observational data and thus useful to test gravity as well as cosmology.

We use a suite of N-body simulations that consists of 60 independent realisations with a total
effective volume of ∼ 829 [Gpc/h]3 to constrain the free parameters of the new formula using the
measurements of the dark matter redshift space bispectrum monopole. With such a large volume,
we ensure that the statistical errors are much smaller than those of current or forthcoming surveys.
Thus, we can safely quantify the systematic shifts that the fitting formula may introduce. We also
use the obtained formulae to model the bispectrum of dark matter haloes in redshift space, and to
recover parameters of cosmological interest such as the logarithmic growth rate of structure, f and
the amplitude of the (linear) power spectrum σ8. Comparing the recovered values to the input ones,
we can quantify any possible systematics.

This paper is organized as follows. In § 2 we present the state-of-the art theoretical formulae for
the 2- and 3-point statistics in Fourier space. In § 3 we detail the simulations we use to test these
formulae and we also introduce the estimator we use for extracting information from power spectrum
and bispectrum measurements. In § 4 we present the power spectrum multipole measurements from
simulations. In § 5 we present the improved fitting formula for the dark matter bispectrum and we
compare it to standard perturbation theory predictions. In § 6 we compare how the new formula is
able to describe the halo bispectrum. In § 7 we show the ability of the formula for recover the biases
and growth factor for both dark matter particles and haloes. Finally in § 8 we discuss the conclusions
of this paper.

2 Theory

The matter density power spectrum, Pδδ, and bispectrum, Bδ, are the two- and three-point correlation
functions in Fourier space,

〈δ(k)δ(k′)〉 ≡ (2π)3δD(k + k′)Pδδ(k), (2.1)

〈δ(k1)δ(k2)δ(k3)〉 ≡ (2π)3δD(k1 + k2 + k3)Bδ(k1,k2), (2.2)

where δ(k) ≡
∫
d3x δ(x) exp(−ik · x) is the Fourier transform of the dark matter overdensity field,

δ(x) ≡ ρ(x)/ρ̄−1, ρ is the dark matter density and ρ̄ its mean value; δD is the Dirac delta distribution
and 〈. . .〉 the ensemble average (or average over different realisations). Note that the bispectrum
function is only defined when the 3 k-vectors form a closed triangle. Also, we identify the bispectrum
with the real part of the left hand side of equation 2.2. When the distribution of matter is isotropic,
the bispectrum is independent of the particular orientation of the triangles. In this case, we can write
B(k1,k2) ≡ B(k1, k2, k3), where k3 ≡ −k1 − k2.

In order to link the n-point statistics for haloes (the same applies to any dark matter tracer) to
that of the mass, we need to introduce a bias model. In this paper, we opt for the halo bias model
proposed by [12], which is able to account for both non-linearities and non-localities. Recently, it has
been shown that gravitational evolution can induce non-local terms in the halo distribution. These
non-local terms appear as a second-order correction for the halo power spectrum. However, for the
bispectrum non-localities contribute to leading order. Thus, it is essential to have a bias model that
is able to account for these corrections to the halo bispectrum, even at large scales. According to this
model, the halo density field is,

δh(x) = b1δ(x) +
1

2
b2[δ(x)2 − σ2] +

1

2
bs2 [s(x)2 − 〈s2〉] + higher order terms (2.3)
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where σ2 and 〈s2〉 ensure the condition 〈δh〉 = 0. Non-linearities are included in δ(x)2, whereas the
non-localities are described by the tidal tensor term s(x),

s(x) ≡ sij(x)sij(x), (2.4)

sij(x) = ∂i∂jΦ(x)− δKr
ij δ(x), (2.5)

where Φ(x) is the gravitational potential, ∇2Φ(x) = δ(x), and δKr
ij is the Kronecker delta. The relation

between dark matter and halo over-densities is parametrised through the bias parameters: the linear
bias term b1, the non-linear bias term b2 , and the non-local bias term bs2 . Most higher-order terms
only contribute at small scales and we do not consider them here. However, there are some that can
be renormalised as large-scale contributions and therefore must be considered for consistency. We will
come back to this point in § 2.1. For b1 = 1, b2 = 0, bs2 = 0 and null third order biases, we recover a
local and linear bias of unity (i.e., no bias) which applies to the dark matter.

In order to have an expression for the halo bias model in k-space we Fourier transform Eq. 2.3,

δh(k) = b1δ(k) +
1

2
b2

∫
dq

(2π)3
δ(q)δ(k− q) + (2.6)

+
1

2
bs2

∫
dq

(2π)3
δ(q)δ(k− q)S2(q,k− q) + higher order terms

where

S2(q1,q2) ≡ (q1 · q2)2

(q1q2)2
− 1

3
(2.7)

is defined from the Fourier transform of the tidal tensor,

s2(k) ≡
∫
d3x s2(x) exp(−ik · x) =

∫
dk′

(2π)3
S2(k′,k− k′)δ(k′)δ(k− k′). (2.8)

From the bias relation of Eq. 2.6, we now derive the expressions for the halo power spectrum and
bispectrum.

2.1 Halo power spectrum

The halo power spectrum, Ph,δδ(k), can be written as a function of the statistical moments of dark
matter [12, 31],

Ph,δδ(k) = b21Pδδ(k) + 2b2b1Pb2,δ(k) + 2bs2b1Pbs2,δ(k) + b22Pb22(k) + (2.9)

+ 2b2bs2Pb2s2(k) + b2s2Pbs22(k) + 2b1b3nlσ
2
3(k)P lin(k),

where P lin is the linear power spectrum. The definitions of the power spectra quantities, Pb2,δ, Pbs2,δ,
Pb22, Pb2s2, Pbs22 and σ2

3 can be found e.g., in [31]. Note that the contribution regulated by b3nl,
does not appear explicitly in Eq. 2.6. This contribution arises from higher-order terms, but can be
renormalized to be proportional to the linear power spectrum, which makes its contribution relevant
at large scales [12].

In this paper we assume that the non-local bias terms are given by their first-order predictions
in perturbation theory: bs2 = −4/7(b1−1)[32, 33] and b3nl = 32/315(b1−1) [13, 31], which have been
demonstrated to be a good approximation to N-body simulations results. Although b1 and b2 could
also be estimated using the peak background split formalism for a particular halo population, in this
paper we treat them as free parameters.

In order to describe the halo power spectrum and bispectrum in redshift space, we need to
incorporate the information of the velocity components into the formalism. θ(k) is the usual variable
that accounts for the peculiar velocities of dark matter particles, θ(k) ≡ [−ik ·vk]/[af(a)H(a)], where
a is the scale factor, H the Hubble parameter, f the logarithmic growth factor d ln δ/d ln a, and vk
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the k-space components of the velocity. Two power spectra can be defined using the dark matter
velocity field θ,

〈δ(k)θ(k′)〉 ≡ (2π)3δD(k + k′)Pδθ(k), (2.10)

〈θ(k)θ(k′)〉 ≡ (2π)3δD(k + k′)Pθθ(k), (2.11)

where Pδθ and Pθθ are the density-velocity and the velocity-velocity power spectra, respectively, for
dark matter. In this paper we assume that the velocity fields are the same for dark matter and haloes
(i.e., no velocity bias). Thus, the cross δθ power spectrum for haloes can be written as,

Ph,δθ(k) = b1Pδθ(k) + b2Pb2,θ(k) + bs2Pbs2,θ(k) + b3nlσ
2
3(k)P lin(k). (2.12)

As for Eq. 2.9, the power spectra terms can be found in [31].
According to [11, 16] (TNS model hereafter), the density halo power spectrum in redshift space

can be expressed as a function of density and velocity galaxy statistics in real space,

P
(s)
h (k, µ) = DP

fog(k, µ;σPfog)
[
Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k)+ (2.13)

+ b31A(k, µ, f/b1) + b41B(k, µ, f/b1)
]
.

The definitions of the A and B terms can be found in [16] and only incorporate first-order corrections,
and consequently only depend on b1. Higher-order corrections would include b2, but in this paper
we ignore their contribution, which is assumed to be subdominant in the studied regime. The factor
DP

fog(k, µ, σPfog) was originally introduced to account for the fully non-linear damping caused by the
velocity dispersion of sub-haloes, commonly known as the Fingers of God (FoG) effect. For a haloes-
without-structure scenario, no internal velocity dispersion is expected and this term should be set to
unity. Previous studies of this model [11] have shown that this term is actually needed to describe
accurately the halo power spectrum which does not have FoG. The requirement of a FoG term for
describing haloes is therefore physically paradoxical. However, we should think of the damping term
in the model of Eq. 2.13 as a general damping required to correct the model for non-linear effects. As a
practical solution, we therefore allow a σPfog-term for describing the halo power spectrum. The physical
meaning of this term is not a internal velocity dispersion, but an effective parameter that improves the
description of the model. We parametrize the damping term through a one-free-parameter formula of
Lorentzian type [34, 35],

DP
fog(k, µ, σPfog[z]) =

(
1 + k2µ2σPfog[z]

2
/2
)−2

(2.14)

with σPfog(z) ≡ σP0 (z)f(z)D(z).
In this work, the dark-matter real-space statistics of Eqs. 2.1, 2.10, 2.11, are given by the 2-loop

resummed perturbation theory model described in [36] (2LRPT model hereafter). This model has
been shown in [36] to describe Pδδ within 2% accuracy up to k = 0.11h/Mpc for z = 0; k = 0.15h/Mpc
for z = 0.5; k = 0.22h/Mpc for z = 1; k > 0.25h/Mpc for z = 1.5.

It is convenient to express the P (s)(k, µ) power spectrum as an expansion in the Legendre poly-
nomial basis, P (`), defined as,

P
(`)
h (k) = (2`+ 1)

∫ 1

0

dµP
(s)
h (k, µ)L`(µ), (2.15)

where L` are the Legendre polynomials of order `. The first non-vanishing P (`) are the monopole
(` = 0), quadrupole (` = 2) and hexadecapole (` = 4),

P
(0)
h = P lin(k)

(
b21 +

2

3
fb1 +

1

5
f2

)
(2.16)

P
(2)
h = P lin(k)

(
4

3
fb1 +

4

5
f2

)
(2.17)

P
(4)
h = P lin(k)

(
8

35
f2

)
. (2.18)
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In this paper we only focus on the monopole and quadrupole, as the hexadecapole has low signal-to-
noise.

2.2 Halo bispectrum

The halo bispectrum of the density field, can be written according to Eq. 2.6 as,

Bh(k1,k2) = b31Bδ(k1,k2) + b21 [b2Pδδ(k1)Pδδ(k2) + bs2Pδδ(k1)Pδδ(k2)S2(k1,k2) + cyc.]

where we have neglected terms proportional to b22 and b2s2 , which are of higher-order. We consider
that none of these terms can be renormalised in such a way that they contribute on large scales, as
we did for b3nl in the power spectrum, and neglect them to leading order. Applying the tree-level
prediction for the dark matter bispectrum we write the halo bispectrum as a function of the matter
power spectrum,

Bh(k1,k2) = b31Pδδ(k1)Pδδ(k2)2F2(k1,k2) + b21b2Pδδ(k1)Pδδ(k2) + (2.19)

+ b21bs2Pδδ(k1)Pδδ(k2)S2(k1,k2) + cyc.,

where F2 is given by the second order kernel in standard perturbation theory (SPT) [37],

F2(ki,kj) =
5

7
+

1

2
cos(αij)

(
ki
kj

+
kj
ki

)
+

2

7
cos2(αij), (2.20)

where αij is the angle between the vectors ki and kj . It was shown that substituting the F2 kernel by
an effective kernel, namely F eff

2 , the dark matter bispectrum description can be extended to mildly
non-linear scales with respect to the tree-level prediction [1, 38],

F eff
2 (ki,kj) =

5

7
a(ni, ki,a

F )a(nj , kj ,a
F ) +

1

2
cos(αij)

(
ki
kj

+
kj
ki

)
b(ni, ki,a

F )b(nj , kj ,a
F )(2.21)

+
2

7
cos2(αij)c(ni, ki,a

F )c(nj , kj ,a
F ),

where the definition of the a, b and c functions can be found in [1]. The set of aF ≡ {aF1 , aF2 , . . . , aF9 }
parameters is a empirical fit to N-body data,

aF1 = 0.484 aF4 = 0.392 aF7 = 0.128

aF2 = 3.740 aF5 = 1.013 aF8 = −0.722

aF3 = −0.849 aF6 = −0.575 aF9 = −0.926 .

This set of parameters does not depend on redshift and is assumed to be weakly dependent on
cosmology. Since the dependence of the F2 kernel with cosmology is assumed weak [39], we expect
the dependence of aF to be weak as well. We demonstrated the validity of this assumption in Appendix
B of [1].

To describe the halo bispectrum in redshift space on large scales, one can apply the standard
perturbation theory formalism. In this case, the form of the bispectrum formula is the same as that
in Eq. 2.19, but substituting the kernels by new redshift space ones [40–43],

B
(s)
h (k1,k2) = DB

fog(k1, k2, k3, σ
B
fog) [2Pδδ(k1)Z1(k1)Pδδ(k2)Z1(k2)Z2(k1,k2) + cyc.] (2.22)

where Zi are the redshift space kernels, in tree-level perturbation theory they are,

Z1(ki) ≡ (b1 + fµ2
i ) (2.23)

Z2(k1,k2) ≡ b1

[
F2(k1,k2) +

fµk

2

(
µ1

k1
+
µ2

k2

)]
+ fµ2G2(k1,k2) + (2.24)

+
f3µk

2
µ1µ2

(
µ2

k1
+
µ1

k2

)
+
b2
2

+
bs2

2
S2(k1,k2),
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and µ ≡ (µ1k1 + µ2k2)/k, k2 = (k1 + k2)2. F2 and G2 are the second-order real-space kernels of the
densities and velocities respectively [37],

G2(ki,kj) =
3

7
+

1

2
cos(αij)

(
ki
kj

+
kj
ki

)
+

4

7
cos2(αij). (2.25)

Below we will modify this expression to push further into the non-linear regime. DB
fog stands for the

Fingers-of-God (FoG) damping term due to the intra-halo velocity dispersion, analogously to Eq 2.14.
In this paper we assume that it is described by [40],

DB
fog(k1, k2, k3, σ

B
FoG[z]) =

(
1 + [k2

1µ
2
1 + k2

2µ
2
2 + k2

3µ
2
3]2σBFoG[z]2/2

)−2
, (2.26)

where σBfog(z) ≡ σB0 (z)f(z)D(z). In this paper we consider σP0 and σB0 to be independent parameters

having different roles, with σP0 acting as a general non-linear damping term while σB0 only corrects
for the FoG. Note that when f → 0, then Z1 → b1 and Z2 → b1F2 + b2/2 + bs2/2S2, and the real
space prediction is recovered.

As for the power spectrum, we can decompose the redshift space bispectrum in Legendre basis.
In particular the monopole is,

B
(0)
h (k1, k2, k3) =

∫
dµ1dµ2B

(s)
h (k1,k2) =

∫ +1

−1

dµ1

∫ 2π

0

dϕB
(s)
h (k1,k2) (2.27)

where ϕ has been defined to satisfy, µ2 ≡ µ1x12−
√

1− µ2
2

√
1− x2

12 cosϕ, with x12 ≡ (k1 ·k2)/(k1k2).
The expression for the halo bispectrum monopole can be analytically written in the absence of

FoG term (DB
fog = 1) as,

B
(0)
h (k1,k2) = Pδδ(k1)Pδδ(k2)b41

{
1

b1
F2(k1,k2)D(0)

SQ1 +
1

b1
G2(k1,k2)D(0)

SQ2 (2.28)

+

[
b2
b21

+
bs2

b21
S2(k1,k2)

]
D(0)

NLB +D(0)
FoG

}
+ cyc.

where the D-terms are defined in [40].

2.3 Halo shot noise

We use a simple model for the halo shot noise parametrised by 1 free-parameter, Anoise that extends
the standard Poisson noise model,

Pnoise = (1−Anoise)PPoisson, (2.29)

Bnoise(k1, k2, k3) = (1−Anoise)BPoisson(k1, k2, k3). (2.30)

We fit Anoise assuming a uniform prior between -1 and +1. Beyond these limits a more complex
modelling would be needed. Note that Anoise = 0 corresponds to the pure Poisson shot noise, whereas
Anoise < 0 produces a super-Poisson shot noise, and Anoise > 0 a sub-Poisson shot noise. In principle
sub-Poisson shot noise is related to halo exclusion whereas super-Poisson shot noise to particle clus-
tering. Consequently, Anoise is probably scale-dependent. However for simplicity we assume that for
the range of scales studied here, 0.01 ≤ ki [h/Mpc] ≤ 0.25, this parameter is constant.

2.4 Parameter estimation

We are interested in estimating a set of parameters, Ψ, from the power spectrum and bispectrum.
Ψ includes cosmologically interesting parameters such as the bias parameters, the amplitude of the
matter power spectrum σ8 and the logarithmic growth factor parameter f , as well as nuisance param-
eters, such as shot noise parameters and the damping factors of the FoG terms. We do not allow the
spectral index, ns, the Hubble parameter h and the matter and baryon densities, Ωm and Ωb to vary
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from their fiducial values, thus assuming a fixed shape of the dark matter linear power spectrum. We
refer to these parameters as Ω.

In principle the optimal way to analyse a statistical quantity is to model its probability density
function and proceed to parameter fitting from there. However, the probability distribution for the
bispectrum especially in the mildly non-linear regime is not known (although some progress are being
made see e.g., [44]); even if one invokes the central limit theorem and models the distribution of
bispectrum modes as a multi-variate Gaussian, the evaluation of its covariance would be challenging
(see e.g., eq. 38-42 of [45], appendix A of [41] and discussion above). In addition we want to analyse
jointly power spectrum and bispectrum whose joint distribution is not known. Another approach is
therefore needed. In order to estimate the set of Ψ parameters, we opt for the approach proposed
in [46], which consists of introducing a suboptimal but unbiased estimator. Thus, following this
formalism, we define the χ2

diag.-function as,

χ2
diag.(Ψ) =

∑
k−bins

[
Pmeas.

(i) (k)− Pmodel(k,Ψ; Ω)
]2

σP (k)2
+

+
∑

triangles

[
Bmeas.

(i) (k1, k2, k3)−Bmodel(k1, k2, k3,Ψ; Ω)
]2

σB(k1, k2, k3)2
, (2.31)

where σP and σB are the diagonal terms of the covariance matrix for the power spectrum and bis-
pectrum respectively. Therefore, Eq. 2.31 ignores the contribution from off-diagonal terms, and takes
into account only the diagonal terms. In this paper, the terms σP and σB are computed from the
dispersion of the different realizations of dark matter or halo population. By ignoring the off diagonal
terms of the covariance matrix in the χ2

diag. definition we do not have a have maximum likelihood
estimator which is minimum variance, optimal and unbiased. This estimator is sub-optimal but unbi-
ased. We have checked (and we will show it explicitly in § 7.1) that this estimator is indeed unbiased.
Furthermore, a) the particular value of the χ2

diag. at its minimum is meaningless and should not be
used to estimate a goodness of fit and b) the errors on the parameters cannot be estimated by standard
χ2

diag. differences.
We use a Nelder-Mead based-method of minimization [47] to a set of best-fitting parameters that

minimize χ2
diag. for each realisation i, namely Ψ(i).

Therefore, the main point of this method is that 〈Ψ(i)〉 is an unbiased estimator of the true
set Ψtrue and that the dispersion of Ψ(i) is a suitable estimator of the error: Ψtrue ' 〈Ψi〉 ±√
〈Ψ2

i 〉 − 〈Ψi〉2. This procedure will be applied in § 6 and § 7, using the total amount of realizations

(60 for dark matter and 20 for haloes) in order to obtain Ψ and their errors.

3 Simulations

The simulations used in this paper consists of two different sets, one providing dark matter fields and
halo catalogues. These simulations have been used in previous works (see [1] for dark matter and [48]
for the halo catalogue).

3.1 Dark matter particles simulations

The dark matter particle set of simulations consists of N-body dark matter only simulations with
flat LCDM cosmology listed in Table 1 as “Sim DM”. The box size is Lb = 2.4 Gpc/h with periodic
boundary conditions and the number of particles is Np = 7683 with 60 independent runs. The
initial conditions were generated at z = 49 by displacing the particles according to the second-order
Lagrangian PT from their initial grid points. The initial power spectrum of the density fluctuations
was computed by CAMB [49]. Taking only the gravitational interaction into account, the simulation
was performed with GADGET-2 code [50]. There are four snapshots at redshifts z = 0, z = 0.5,
z = 1.0 and z = 1.5. In order to obtain the dark matter field from particles we apply the Cloud-in-
Cell (CiC) prescription using 5123 grid cells. Thus the size of the grid cells is 4.68 Mpc/h.
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3.2 Dark matter halo catalogue

The dark matter halo catalogue set is based on N-body dark matter particles simulations with the
cosmology listed in Table 1 as “Sim HC”. The box size is Lb = 1.5 Gpc/h. The original mass of the
dark matter particles is mp = 7.6× 1010M�/h, and the minimum halo mass has been selected to be
7.8× 1012M�/h. The halo catalogues are generated by the Friends-of-Friends algorithm by [51] with
a linking length of 0.168 times the mean inter-particle spacing. There is one snapshot at z = 0.55.
In order to extract the halo field, a CiC prescription is also used with 5123 grid cells, whose size is
2.93 Mpc/h.

ΩΛ Ωm h Ωbh
2 ns σ8 z Lb[Gpc/h] Veff [Gpc/h]3

Sim DM 0.73 0.27 0.7 0.023 0.95 0.79 0 - 1.5 2.4 13.824× 60
Sim HC 0.726 0.274 0.7 0.0224 0.95 0.8 0.55 1.5 3.375× 20

Table 1. Cosmological parameter of the two sets of simulations used in this paper: dark matter only (DM) and
halo catalogs (HC). Several cosmological parameters are listed: the dark energy density, ΩΛ, matter density
Ωm, Hubble parameter h, physical baryon density Ωbh

2, primordial power-law power spectrum spectral index
ns and amplitude of the primordial power spectrum linearly extrapolated at z = 0 σ8. Also the box size of
the simulation is provided, Lb, and the effective volume per realization times the total number of realizations,
Veff .

4 Dark matter power spectrum multipoles

We start by illustrating the ability of the theoretical modelling to describe the real-space dark matter
power spectrum as well as its redshift space multipoles. We use the TNS model in combination with
the 2LRPT model (hereafter TNS-2LRPT) to describe the power spectrum multipoles.

The description of the dark matter power spectrum in redshift space requires the parameter σP0 ,
as in Eq. 2.14. Although there are some prescriptions to approximate this parameter analytically (if
it were only correcting for the FoG), in this paper we treat it as a nuisance parameter to be fit from
N-body simulations measurements of the monopole and quadrupole. We assume that this parameter
can in principle change freely with redshift but not with the scale. In Fig. 1 we show its best-fitting
values as a function of the maximum scale used, for different redshift snapshots: z = 0 (red solid
line), z = 0.5 (blue solid line), z = 1.0 (green solid line) and z = 1.5 (orange solid line). The dashed
lines show the σP0 value for the smallest scale (largest k) we trust the model, namely kc. This scale
is defined as the largest that satisfies, |Psim/Pmodel| < 1.02 for the real space power spectrum. The
value for σP0 (kmax = kc) as well as the kc scale, are shown in Table 2 for the four redshift snapshots
studied here. Note that in Fig. 1, the best-fitting σP0 value is only plotted for kmax ≤ kc.

z 0 0.5 1.0 1.5

σP0 (z) [Mpc/h] 7.8 7.0 6.2 5.6
D(z) 1.000 0.782 0.623 0.511
f(z) 0.483 0.723 0.852 0.915

kc(z) [h/Mpc] 0.11 0.16 0.22 > 0.25

Table 2. Best fitting values of σP
0 from the dark matter power spectrum monopole and quadrupole measure-

ments at different z. The growth factor parameters D and f , as well as the kc values are also reported.

From the values of Table 2, we observe that the best-fitting σP0 (z) depends on redshift: lower
redshift snapshots present a more severe damping at a given scale and therefore σP0 decreases with
z. We observe a similar behaviour for the quantity σP0 (z)D(z)f(z). However, the quantity σP0 (z)f(z)
presents a weak redshift-dependence for z = 0.5, 1.0 and 1.5, although at z = 0 has a significantly
different value.
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Figure 1. Best-fitting power spectrum FoG parameter, σ0 as a function of kmax (solid lines). The colour
notation correspond to the redshift snapshot: z = 0 (red), z = 0.5 (blue), z = 1.0 (green) and z = 1.5 (orange)
as indicated in the key. Dashed lines show the value at kc, which is given in Table 2. Note that we only plot
the best-fitting value up to kc(z) (scale at which the real space modelling fails at more than 2% level).

Fig. 2 presents the dark matter power spectrum in real space (top panels), the dark matter
redshift space monopole (middle panel) and quadrupole (bottom panels) for z = 0 (left panels) and
z = 1 (right panels). In the top sub-panels the power spectrum (normalised to a non-wiggle model)
is displayed for N-body measurements (black symbols with error-bars). Solid lines correspond to the
theoretical predictions of the TNS model (with b1 = 1 and b2 = bs2 = b3nl = 0) implemented with
2LRPT: red for the real space power spectrum, blue for the redshift space monopole and green for
the quadrupole. For the monopole and quadrupole the values of σP0 (kc) listed in Table 2 have been
used. The growth factors f and D (listed also in Table 2) have been fixed at their true values. The
errors-bars correspond to the error on the mean of 60 realizations, for a total effective volume of
Veff ' 829 [Gpc/h]3.

From Fig. 2 we see that the TNS model in combination with 2LRPT model is able to describe
the two-point N-body statistics with an accuracy of ∼ 1% for the real space power spectrum and
redshift space monopole up to kc. The quadrupole is described typically with ∼ 2% accuracy.

In conclusion, the TNS model in combination with the 2LRPT model is able to describe with per-
cent accuracy the two-points real space statistics for dark matter particles without any free parameters.
The main two-point redshift space statistics, the monopole and the quadrupole, are described with
per-cent precision as well and require one free parameter per redshift snapshot. The function of this
parameter is to reduce an excess of power at small scales, typically produced by non-linear processes
such as intra-halo velocity dispersion.

5 Dark matter bispectrum modelling in redshift space

The main goal of this paper is to provide a modification of the SPT model prediction for the bispectrum
in redshift space given by Eq. 2.22 for dark matter and by Eq 2.28 for haloes. Typically the SPT
approach works well at large scales and at high redshifts, but breaks down in the mildly non-linear
regime.
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Figure 2. Power spectra in real space (top panels), monopoles (middle panels) and quadrupoles (bottom
panels), for z = 0 (left panels) and z = 1 (right panels). Black symbols are measurements from 60 N-body dark
mater simulations, whereas color lines are predictions for dark matter using the TNS model in combination
with 2LRPT model with σP

fog as a free parameter. The top-subpanels show the power spectrum normalized by
a non-wiggle linear model and the bottom sub-panels show the relative deviation of the N-body dark matter
measurements to the corresponding models. The values for σP

fog used in the models are listed in Table 2.
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We follow a similar procedure to that in [1]. It consist of modifying the SPT kernels into effective
kernels with free parameters to be fitted from N-body simulations. In this case we change the velocity
kernel G2 of Eq. 2.24 by an effective kernel of the form,

Geff
2 (ki,kj) =

5

7
a(ni, ki,a

G)a(nj , kj ,a
G) +

1

2
cos(αij)

(
ki
kj

+
kj
ki

)
b(ni, ki,a

G)b(nj , kj ,a
G) (5.1)

+
2

7
cos2(αij)c(ni, ki,a

G)c(nj , kj ,a
G),

where the functions a, b and c are the same as used in F eff
2 and can be found in [1]. We assume that

the set of parameters aG ≡ {aG1 , aG2 , . . . , aG9 }, is redshift-, scale- and shape-independent, and needs
to be fitted from the measurement of the redshift space bispectrum monopole in N-body simulations.
We consider the damping terms of Eq. 2.26 to describe the FoG features of the bispectrum. We allow
this parameter to depend on the redshift and to be independent of the σP0 of Table 2.

We consider different approaches to describe the redshift space bispectrum monopole. All of
them are based on SPT leading order correction (Eq. 2.22) with different changes in the definition of
the redshift space kernels,

1. SPT approach. We use the SPT prediction of Eq. 2.22 with the SPT kernels F2 and G2 of
Eqs. 2.20 and 2.25. We include the FoG effect through the damping functions of Eq. 2.26. This
function contains one free parameter, σB0 . We allow this parameter to freely vary with redshift,
but we consider it scale- and shape-independent. Hence, this approach has four-free parameters
for the whole redshift range. Hereafter we refer the bispectrum prediction of this model as Bspt.

2. Hybrid approach. We use the prediction of Eq. 2.22 taking the effective kernel F eff
2 from

Eq. 2.21 instead of the SPT form of F2. The aF values from [1] are used. We consider the SPT
kernel for G2. As for the SPT approach, we use Eq. 2.26 to describe the FoG effect. We refer
to the bispectrum prediction from this model as BF .

3. Effective approach. We use the Eq. 2.22 structure with the effective kernel F eff
2 of Eq. 2.21,

and the effective Geff
2 kernel from Eq. 5.1 with a set of nine free parameters, aG, to be fitted.

We add the FoG-term of Eq. 2.26 with one extra free parameter per redshift snapshot. We will
refer to this model as BFG.

We use the method described in § 2.4 for estimating aG, fixing the bias parameters, f and σ8

to their true values. There are a large number of possible triangular shapes to consider and is not
practical to consider them all. However, is not necessary to compute all possible triplets as their
bispectra are highly correlated. Therefore, here we consider only triangles with k2/k1 = 1.0, 1.5, 2.0
and 2.5. We estimate that ∼ 80% of the full information of the bispectrum is contained by these
shapes at k ∼ 0.1h/Mpc. Since we expect that the theory breaks down at different scales at different
z we set the fitting range to: ki ≤ 0.15h/Mpc for z = 0, ki ≤ 0.18h/Mpc for z = 0.5, ki ≤ 0.21h/Mpc
for z = 1.0 and ki ≤ 0.25h/Mpc for z = 1.5. We have checked iteratively that these are the maximum
scales that the Effective approach can describe with . 5% accuracy. The set of best-fitting aG

parameters are,

aG1 = 3.599 aG4 = −3.588 aG7 = 5.022

aG2 = −3.879 aG5 = 0.336 aG8 = −3.104

aG3 = 0.518 aG6 = 7.431 aG9 = −0.484 .

The fitting process also provides best-fitting values for σB0 . These values are listed in Table 3 for the
different models used. The σP0 parameters found in § 4 are also shown for reference. Note that we
expect that the σP0 and σB0 parameters change as a function of the selected tracer as well as function
of redshift. However, the aG set (as well as aF ) is assumed to be universal.

We are aware that this result may depend on the cosmology. However, as we have mentioned for
the aF fit, the dependence of the F2 and G2 kernels on cosmology is very weak, so this holds also for
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z 0 0.5 1.0 1.5

σB0 (Bspt) 43. 33.7 25.0 20.3
σB0 (BF ) 51.93 38.5 28.28 23.56
σB0 (BFG) 41.67 26.9 17.4 11.67

σP0 7.8 7.0 6.2 5.6

Table 3. Best-fitting values for σB
0 (z) (in Mpc/h) for different bispectrum models for dark matter (see text for

details). These values correspond to the different models shown in Figs. 3 - 6. In the last row for comparison
we also show the values for σP

fog from the monopole-to-quadrupole ratio.

the aF and aG parameters. Furthermore, since we have performed the fit for a wide range of redshifts,
any cosmology dependence that is equivalent to a redshift re-scaling can be described by the model.

In Figs. 3- 6 we compare the three approaches, Bspt (green lines), BF (blue lines), BFG (red
lines), with the N-body dark matter monopole bispectrum (black symbols) for z = 0, 0.5, 1.0, 1.5
respectively. The error-bars correspond to the error on the mean of 60 realizations, with a total volume
of Veff ' 829 [Gpc/h]3. In the top sub-panels the redshift-space bispectrum monopole is shown. For
visualisation reasons this quantity has been normalised by the measurement of the bispectrum in real
space. In the lower sub-panel we plot the percentile deviation between the model and the measured
bispectrum.

The accuracy of the different models depends noticeably on the k-range, redshift and triangular
shapes we are considering. As a general trend, we observe that at large scales and high redshifts the
three models studied here do not show large differences and describe well the N-body measurements.
This makes sense, since in the large scale limit, F eff

2 → F2, and Geff
2 → G2. On the other hand, at low

redshift and small scales the three models present different predictions. Typically, BFG best describes
the N-body data, followed first by BF and finally by Bspt. This is the expected behaviour, given the
number of free parameters and complexity of each model.

For BFG, at z = 0 we see that the differences between the model and the N-body predictions are
≤ 10% when ki ≤ 0.15h/Mpc, and . 5% when ki ≤ 0.10h/Mpc. For z = 0.5, the agreement between
BFG and N-body simulations is ≤ 10% when ki ≤ 0.20h/Mpc and . 5% when ki ≤ 0.15h/Mpc.
For z = 1.0 we observe that for the whole range studied here, k ≤ 0.25h/Mpc, we always have an
accuracy of ≤ 10%, whereas when we restrict it to ki ≤ 0.17h/Mpc, the accuracy increases to . 5%.
Finally for z = 1.5 we observe that the accuracy is . 5% for k ≤ 0.20h/Mpc.

In Table 3 we report the best-fitting values of σB0 , for the different models used, and for the
different redshifts. We note that, for each redshift, the value of σB0 depends strongly on the model.
In particular, BFG requires a smaller σB0 for describing the bispectrum than the other two models. A
possible explanation for this behaviour, is that for Bspt and BF this parameter absorbs higher levels
of systematic imperfections of the modeling than for BFG. Based on this, we expect that when we
use BFG to model the halo bispectrum, setting DB

fog to 1, will produce a good estimate for the halo

bispectrum, since DB
fog was correcting only for the FoG and not for any other systematic effects. We

study this in detail in § 6. We also note that the ratio between σP0 and σB0 for any of the models is
not constant as a function of z.

In the next section, we apply model BFG with the fitted aG parameters to describe the monopole
bispectrum of haloes with a similar cosmology to the one used in this section.

6 Extension to biased tracers

In this section we aim to show how the BFG model can be used to describe the bispectrum of N-body
haloes. We use a slightly different cosmological model than used in the previous section to fit the
values of aG. The main purpose of this is to show that the aG found in last section do not depend
on the FoG feature, and that BFG is suitable to be applied to any dark matter tracer and therefore
suitable to be applied to galaxy surveys. We also compare BFG with the predictions of model Bspt

to see the improvement.
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Figure 3. Top sub-panels: dark matter monopole bispectrum normalised to the real space matter bispectrum
for different triangle configurations. First column, second and third column panels are triangles with k2/k1 =
1.0, 1.5 and 2 respectively. Different rows show different scales: first, second, third and forth rows correspond
to k2 = 0.05, 0.10, 0.15 and 0.20 h/Mpc as indicated. Black symbols correspond to N-body simulations
whereas colour lines to the different models based on Eq. 2.22: Bspt (green lines), BF (blue line) and BFG

(red) (see text for description). Bottom sub-panels: relative deviation of each of these models to the dark
matter measurement. All panels are at z = 0.

In order to describe the halo biasing, we use the non-local and non-linear bias model presented
in Eq. 2.6. Since we are dealing with haloes, we cannot ignore the contribution of shot noise. Due to
halo exclusion and clustering we expect some deviations from the Poisson noise prediction. In order
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Figure 4. Same notation that in Fig. 3. All panels at z = 0.5.

to account for that, we use the prescription described in § 2.3.
We start by determining the bias parameters and Anoise from the real space power spectrum and

bispectrum assuming fixed true values for f , D(z), σ8 and the shape of the linear power spectrum. In
order to do so we apply the methodology described in § 2.4, using 20 realizations of N-body haloes.
We use the model for real and redshift space power spectra described in § 2. We refer to these models
as 2LRPT for real space and TNS-2LRPT for redshift space power spectrum.

For kmax = 0.15h/Mpc, when combining the power spectrum and bispectrum, we find that
b1 = 2.05 ± 0.014, b2 = 0.31 ± 0.05, Anoise = 0.13 ± 0.06, where the error-bars correspond to the
volume of one realization, Veff = 3.375 [Gpc/h]3. We use these values as reference to test the accuracy

– 14 –



0.8

0.9

1.0

1.1

1.2

B
0 si

m
 / 

B
0 m

od
el

 2.2

 2.4

 2.6

 2.8

 3

 3.2

B
0  / 

B
re

al
 s

pa
ce

k2/k1=1 k2/k1=1.5

k
2 =

0.05 h/M
pc

k2/k1=2

0.8

0.9

1.0

1.1

1.2

B
0 si

m
 / 

B
0 m

od
el

 2.2

 2.4

 2.6

 2.8

 3

 3.2

B
0  / 

B
re

al
 s

pa
ce

k
2 =

0.10 h/M
pc

0.8

0.9

1.0

1.1

1.2

B
0 si

m
 / 

B
0 m

od
el

 2

 2.2

 2.4

 2.6

 2.8

 3

B
0  / 

B
re

al
 s

pa
ce

k
2 =

0.15 h/M
pc

0.8

0.9

1.0

1.1

1.2

0 0.05 0.10 0.15 0.20 0.25

B
0 si

m
 / 

B
0 m

od
el

k3 [h/Mpc]

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

B
0  / 

B
re

al
 s

pa
ce

0.05 0.10 0.15 0.20 0.25

k3 [h/Mpc]
0.05 0.10 0.15 0.20 0.25

k3 [h/Mpc]

k
2 =

0.20 h/M
pc

Figure 5. Same notation that in Fig. 3. All panels at z = 1.

of the description of the halo power spectrum and bispectrum in redshift space.
Fig. 7 presents a comparison between the measured power spectrum and the prediction of the

model for z = 0.55. The real space power spectrum is displayed in the left panel (filled black circles).
The redshift space power spectrum monopole and quadrupole are presented as empty black circles
in the left and right panels respectively. These data are compared to the model for the real space
power spectrum (blue line), monopole (red lines) and quadrupole (green lines). For the redshift space
multipoles, the solid lines correspond to the assumption of σPfog = 0, whereas the dashed lines have σPfog

as free parameter. In this case, we find that σPfog = 2.44 Mpc/h is the best-fitting value obtained from
the monopole-to-quadrupole ratio. Therefore, we see the necessity of including a FoG-like damping
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Figure 6. Same notation that in Fig. 3. All panels at z = 1.5.

term in the power spectrum even for describing the clustering of massive haloes. This feature was
reported by the authors of the model [11]. When σPfog is treated as a free parameter, the TNS-2LRPT
model is able to reproduce the halo power spectrum monopole and quadrupole with a ∼ 4% accuracy
for k . 0.22h/Mpc at z = 0.55.

Fig. 8 presents the real-space halo bispectrum (black filled circles) and the redshift-space monopole
halo bispectrum (black empty circles) for different scales and triangle shapes, as indicated in the dif-
ferent panels. We also show the prediction of the different models. The black solid line shows the real
space prediction of Eq. 2.19 with the F eff

2 kernel of Eq. 2.21. The coloured lines show the bispectrum
model predictions, Bspt (green lines) and BFG (red lines), when σBfog = 0. Note that the bias param-
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Figure 7. Top left: Halo power spectrum in real space (filled black circles) and power spectrum monopole
(empty black circles) normalized to the linear model. In blue line the model for the real space power spectrum
according to 2LRPT model (red lines). Top right: redshift space halo power spectrum quadrupole (open
circles) and TNS-2LRPT (green lines). In both cases solid line corresponds to σP

fog is set to 0 and dashed line
when σP

fog is set to 2.44 Mpc/h. In all the cases the bias parameters has been set to b1 = 2.05, b2 = 0.31 and
the noise parameter Anoise = 0.13. Bottom panels: Relative deviation between each model from top sub-panel
and the measurement from N-body simulations.

eters and Anoise take the same value as for the power spectrum shown in Fig. 7. In general we see a
moderate improvement for BFG over Bspt especially for folded triangles of the form k1 + k2 ' k3 and
|k1 − k2| ' k3. Thus the set of aG derived from dark matter is able to predict the halo bispectrum
when σPfog is set to 0. This suggests that, as the haloes do not have a FoG component, aG does not
contain any significant FoG feature.

We have seen that, for some configurations, BFG is able to describe with 5 to 10% percent error
the halo bispectrum with the bias parameters derived from real spaces quantities. However, we are
also interested into see whether the bias parameters estimated from redshift space statistics are similar
to those obtained in real space.

In Fig 9 we apply the method from § 2.4 to estimate the best-fitting values of b1, b2 and Anoise.
Each dot corresponds to the set of parameters that minimize χ2

diag. for each of 20 realizations. The
mean value and its dispersion corresponds to the estimator of the parameter set. These quantities are
estimated from real space statistics (blue points) and redshift space statistics using Bspt (green points)
and BFG (red points). Left panels display the results using bispectrum information only, whereas the
right panel combines power spectrum and bispectrum measurements. From the bispectrum only panels
we see that the BFG model (red points) agrees very well with the real space model (blue points) for
the bias parameters b1 and b2, but Bspt (green points) tends to underestimate the value of b1 and
overestimate the value for b2. Regarding the Anoise parameter, we see a small disagreement between
the real and the redshift prediction even for the model BFG. This is not necessarily a problem since
we expect an extra clustering in redshift space due to the redshift space distortions. This could mean
that the noise is more super-Poisson than it is in real space, matching the trend observed. From the
right panel of Fig. 9 we observe a similar behaviour between the two models: BFG is able to recover
a b1 consistent with the fit in real space. We see that there is a moderate discrepancy between the
real and redshift-space predictions of b2, where the prediction in redshift space tends to overestimate
b2 with respect to the real space prediction. Note that in this case, we allow σPfog as a free parameter,

although is not shown and σBfog is always set to 0.

In Table 4, we provide the estimated values of the bias parameters, as well as Anoise and σPfog

corresponding to the right panel of Fig. 9. The left column corresponds to the (mean of the) blue
distribution of points, the central column to the green, and the right column to the red in Fig. 9. The
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Figure 8. Top sub-panels: Halo bispectrum in real space (filled black circles) and bispectrum monopole
(empty black circles) normalised to the tree-level prediction. Black solid line is the prediction for real space
halo bispectrum according to the model of Eq. 2.19 with the F eff

2 kernel of Eq. 2.21. Green and red line are
the predictions for the monopole halo bispectrum according to Bspt and BFG models respectively where the
σB

fog parameter has been set to 0. Different panels show different triangular configuration as indicated at the
top. Bottom sub-panels show the relative deviation of each model respect to the measurement from N-body
haloes. The bias parameters and noise factor are the same that in Fig. 7. z = 0.55

error-bars correspond to 1σ of an effective volume of Veff = 3.375h/Mpc. This enable us to quantify
how the measurements of b1 obtained with the BFG model, compares with the real space predictions.

We conclude that the BFG model, with the set of aG parameters presented in § 5, in combination
with the TNS-2LRPT model for the redshift space power spectrum, is able to consistently recover
the values of the bias parameters in real and redshift space when the power spectrum and bispectrum
statistics are analysed. In particular, we find that if Bspt model is used instead, in redshift space b1
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Figure 9. Best-fitting parameters from halo bispectrum only measurements (left panel) and from the com-
bination of the power spectrum multipoles and bispectrum (right panel). Only b1, b2, Anoise and σP

fog are
allowed to vary. Blue dots mark the best-fitting parameters from real space fits. Green and red points are
the best-fitting parameters from redshift space using Bspt (green points) and BFG (red points) for describing
the bispectrum. Note that for the fits shown in the right panel, σP

fog was allowed to vary, although it is not
shown for clarity. f and σ8 have been set to their true values.

Real Space Redshift Space Bspt Redshift Space BFG

b1 2.050± 0.014 2.011± 0.018 2.053± 0.019
b2 0.31± 0.05 0.41± 0.07 0.47± 0.06

Anoise 0.13± 0.06 −0.01± 0.07 0.17± 0.08
σPfog [Mpc/h] 0 2.31± 0.13 2.44± 0.12

Table 4. Recovered parameters, b1, b2, Anoise and σP
fog for haloes, when the power spectrum and bispectrum

are used. The different columns are measurements in real space (left column) and redshift space when Bspt

and BFG are used to describe the bispectrum (central and right column respectively). The maximum scale is
set to kmax = 0.15h/Mpc. These values are in direct connection with the right panel of Fig. 9.

is underestimated.

7 Applications to cosmology

In this section we show how the BFG model can be used to constrain f and extract the bias parameters
as well as σ8 from power spectrum and bispectrum measurements. Combining the power spectrum
multipoles and the bispectrum monopole allows us to disentangle the large scale degeneracy that
typically ties b1, σ8 and f together. In order to study these degeneracies, we start by recovering these
parameters from dark matter fields. However, we are also interested in applying this technique to
N-body haloes, which may suffer from different, and more realistic systematics errors.

7.1 Dark matter field

The different panels of Fig. 10 display the distributions of the best-fitting parameters values obtained
from the dark matter N-body simulations for z = 0.5 and kmax = 0.15h/Mpc when different statistics
are used: power spectrum monopole and quadrupole (green symbols), power spectrum and bispectrum
monopole (blue symbols) and power spectrum monopole, quadrupole and bispectrum monopole (red
symbols). As in Fig. 9, we have applied the method of § 2.4, where each point corresponds to
the set of parameters that minimizes χ2

diag. for a single realization. We consider as free parameters
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Figure 10. Best-fitting parameters for dark matter simulations in redshift space at z = 0.5 for kmax = 0.15
when different statistics are used: blue points correspond to P (0) +B(0), green points to P (0) + P (2) and red
points to P (0) +P (2) +B(0) as indicated. The dashed black lines mark the true values. The green dashed lines
mark the b1 ∝ σ−1

8 and the f ∝ σ−1
8 relations. Note that b1, b2, f , σ8, σP

0 , σB
0 are varied as free parameters,

although only b1, b2, f and σ8 are shown for clarity.

{b1, b2, σPfog, σ
B
fog, f, σ8}. Note that we assume that the shot noise is given by Poisson statistics, hence

Anoise = 0. We have checked that for dark matter particles the role that Anoise plays is negligible, since
the number density of particles is very high. For clarity, in Fig. 10 we only display the parameter-space
projection for {b1, b2, σ8, f}, which are the parameters we are interested in. The black dashed lines
show the reference (true) values of the parameters. We see that when the power spectrum monopole
and quadrupole are used, f , σ8 and b1 are only constrained in the following combinations: f ∼ σ−1

8 and
b1 ∼ σ−1

8 . These relations can be analytically extracted by a simple inspection of the large scale limits
of the model. We also notice that this is not the case for b2, because it is a second-order parameter
in the power spectrum. We also see that when the power spectrum and bispectrum monopole are
used, the parameters are again constrained in combination, but the combination is different from the
monopole-to-quadrupole case. Furthermore, we see that in this case, b2 is also constrained only in
combination with σ8 and b1. This is because in the bispectrum b2 appears to leading order. Since these
parameter combinations are different for P (0) +P (2) (green symbols) and P (0) +B(0) (blue symbols),
we break the degeneracies between b1, b2, σ8 and f when we combine them all: P (0) + P (2) + B(0).
In this case, we observe that the estimated parameters are close to their reference values (marked
as black dashed lines), although there are small deviations. We are interested in quantifying these
deviations for different redshifts, and also as a function of the maximum scale used for the analysis.

In Fig. 11 we present the estimates of b1, b2, f and σ8 as a function of kmax from 60 realizations
of dark matter N-body simulations for z = 0 (red lines), z = 0.5 (blue lines), z = 1 (green lines) and
z = 1.5 (orange lines), when the power spectrum monopole, quadrupole and bispectrum monopole
are used. The error-bars correspond to 1σ dispersion of a realization of volume V = 13.8 [Gpc/h]3.
We only display error-bars for z = 0.5 for clarity, since the relative errors are similar for the other
redshifts. The black dashed lines indicate the reference values of the parameters.

We observe that for the z > 0 redshift snapshots, the b1 parameter is underestimated by ∼ 0.5%.
For all redshifts , b2 is overestimated by 0.05; f is typically overestimated by 3 − 4%, whereas σ8 is
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Figure 11. Parameters as a function of kmax obtained from combining the dark matter P (0), P (2) and B(0).
Although only b1, b2, σ8 and f are shown, σP

0 and σB
0 are also varied in the fit. The colour indicate the

redshift bin used: z = 0 (red), z = 0.5 (blue), z = 1 (green) and z = 1.5 (orange). Values are the mean of
the best-fittings of the simulations and errors correspond to 1σ dispersion among simulations for an effective
volume of 13.8 [Gpc/h]3. Error-bars are only shown for z = 0.5 for clarity; the relative errors are similar for
the other redshifts. The black dashed lines are the reference values.

underestimated at some redshifts and overestimated at others, but typically by ≤ 1%.
To summarise, for dark matter particles, we are able to recover the correct bias parameters as

well as σ8 and the logarithmic growth factor with ∼ 1% accuracy, when the power spectrum monopole
and quadrupole are used in combination with the bispectrum monopole.

7.2 Dark matter haloes

In this section we aim to repeat the above analysis, but now for dark matter haloes. In this case we
fix σBfog = 0, as we do not have FoG features for haloes, and we allow Anoise to be free. Therefore,

the Ψ set of free parameters corresponds to {b1, b2, σP0 , Anoise, f, σ8}. Fig. 12 is similar to Fig. 10, but
using the halo catalogue instead of dark matter particles. In this case, the redshift is z = 0.55 and,
as before, the maximum scale used for the fit is kmax = 0.15h/Mpc.

From Fig. 12 we see that when the P (0) + P (2) and P (0) +B(0) statistics are used, degeneracies
appear among the parameters f , σ8 and b1, in a similar way to the dark matter case. Adding a third
statistic breaks the degeneracies. Fig. 12 shows that the best-fitting values for f and σ8 are slightly
biased from the reference values, which are marked by black dashed lines.

In the left panel of Fig. 13 we show the mean values of f , σ8, b1 and b2 as a function of kmax

when all P (0), P (2) and B(0) are used. The black dashed lines, show the reference values: true values
for f and σ8 and values of b1 and b2 estimated from the real space power spectrum and bispectrum
when f and σ8 were fixed (which we refer to as reference values), as in § 6. In the right panel of
Fig. 13, we have combined the variables into fσ8, b1σ8 and b2σ8, using P (0) + P (2) +B(0) (red lines)
as well as P (0) + P (2) (green lines). In both panels, the error-bars correspond to 1σ with an effective
volume of 3.375 [Gpc/h]3 and are estimated using the method described in § 2.4.

From the left panel of Fig. 13, we see that, for all kmax explored, σ8 is under-estimated by ∼ 10%,
whereas f and b1 are overestimated by ∼ 10%. Also b2 is over estimated by about ∆b2 ∼ 0.4 respect
to the real space findings. We note a significant deviation of these parameters from their reference
values compared to those obtained from dark matter particles in Figs. 10 - 11. The offsets may arise
from the halo bias model that relates the dark matter field with the halo field, as well as the mapping
between real and redshift space of biased tracers.
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Figure 12. Same as Fig. 10 but for dark matter haloes at z = 0.55.
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Figure 13. Left panel shows the best-fitting parameters for dark matter haloes as a function of kmax when
P (0), P (2) and B(0) are jointly fitted. Although only b1, b2, σ8 and f are shown, σP

0 and Anoise are also varied
in the fit. The right panel indicates the error of the combo variables fσ8, b1σ8 and b2σ8 when P (0), P (2)

and B(0) are used (red lines) and when P (0) and P (2) are used (green lines). Errors correspond to 1σ with
an effective volume of 3.375 [Gpc/h]3. Black dotted lines show the true values for σ8 and f , as well as the
real-space values for b1 and b2 when σ8 and f are set to their true values.

Table 5 (second column) shows the results corresponding to the left panel of Fig. 13 for kmax =
0.15h/Mpc. Also shown (third column) are the results from real space (where f and σ8 have been
fixed to their true values) for comparison, which are the dashed black lines in Fig. 13.

In the right panel of Fig. 13 we show the the predictions for the parameter combinations, fσ8,
b1σ8 and b2σ8 as a function of kmax estimated from P (0) + P (2) (green lines) and P (0) + P (2) + B(0)

(red lines). Since the combination P (0) +P (2) is not able to estimate efficiently b2σ8, we do not show
it in this case.

We note that neither P (0) + P (2) nor P (0) + P (2) + B(0) present any significant offset on fσ8

at any scale. On the other hand, a small systematic offset on b1σ8 is observed with respect to the
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kmax = 0.15h/Mpc P (0) + P (2) +B(0) P +B

b1 2.23± 0.10 2.050± 0.014
b2 0.68± 0.14 0.31± 0.05
σ8 0.742± 0.030 0.80
f 0.809± 0.051 0.744

Table 5. Recovered parameters, b1, b2, f and σ8 for haloes, when the power spectrum and bispectrum
are used. The different columns are measurements in real space (“P+B” column) and redshift space when
P (0), P (2) and B(0) are used. The maximum scale is set to kmax = 0.15h/Mpc. The measurements without
error-bars are set to their true values.These values corresponds to the left panel of Fig. 13.

real space predictions, of order 1σ at small kmax. Finally, b2σ8 presents a similar systematic to that
observed for b2 alone in the left panel. Therefore, we see that the systematic offsets reported for b1,
σ8 and f cancel almost perfectly when we work with fσ8 and b1σ8. In this case, we see that the
predictions from P (0) + P (2) and P (0) + P (2) +B(0) are very similar and we quantify that, by adding
the bispectrum monopole to the power spectrum monopole and quadrupole, the error on fσ8 and
b1σ8 reduces by ∼ 30− 40% at all scales.

Table 6 shows the results corresponding to the right panel of Fig. 13 when different parameters
of interest, b1σ8, b2σ8 and fσ8 are estimated from P (0) + P (2) and P (0) + P (2) + B(0) for kmax =
0.15h/Mpc. We have normalised these quantities by the true values of σ8 and f for clarity.

P (0) + P (2) +B(0) P (0) + P (2) P +B

b1σ8/[σ8]true 2.064± 0.019 2.068± 0.027 2.050± 0.014
b2σ8/[σ8]true 0.62± 0.11 0.66± 0.43 0.31± 0.05
fσ8/[fσ8]true 1.007± 0.040 1.000± 0.055 1

Table 6. Recovered parameters, b1σ8, b2σ and fσ8 for haloes, when different statistics are used: first column
P (0) + P (2) +B(0), second column P (0) + P (2) and third column P +B (real space quantities with f and σ8

set to true values). The maximum scale is set to kmax = 0.15h/Mpc. The numbers without error-bars are set
to their true values. Numbers in this table correspond to the right panel of Fig. 13.

8 Conclusions

The main goal of this paper is to provide an empirical formula for the redshift space bispectrum
monopole for the dark matter field and for biased tracers such as galaxies or haloes. The statistical
power of present and forthcoming surveys imply that the accuracy of existing analytic descriptions
is not sufficient considering the statistical power of current surveys. The bispectrum statistic offers
additional complementary information to that contained in the power spectrum multipoles, which, in
principle, helps reduce error-bars and break degeneracies among cosmological parameters.

Here (§ 5) we have extended the real space dark matter bispectrum formula presented in [1]
to account for the redshift-space distortions at the level of the bispectrum monopole. We refer
to this new formula as BFG. We have proceeded by modifying the standard perturbation theory
velocity kernel G2 to an effective kernel Geff

2 with nine free parameters, aG. We have constrained the
values of these parameters using measurements of the redshift space bispectrum monopole from dark
matter N-body simulations (for a total effective volume of ∼ 829[Gpc/h]3) at four different redshift,
z = 0 , 0.5 , 1.0 , 1.5. With this, BFG is able to describe the dark matter bispectrum monopole in
redshift space with a precision of . 5% for k ≤ 0.10h/Mpc at z = 0; for k ≤ 0.15h/Mpc at z = 0.5;
for k ≤ 0.17h/Mpc at z = 1.0 and for k ≤ 0.20h/Mpc at z = 1.5.

We have proceeded to combine the predictions of BFG, with the non-local and non-linear bias
model [12], in order to provide a theoretical description of the bispectrum in redshift space for dark
matter haloes (§ 6). We find that BFG provides a better description of the halo bispectrum in redshift
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space than the standard perturbation theory leading order prediction. In this case BFG predicts with a
. 5% accuracy the halo bispectrum in redshift space for k . 0.15h/Mpc at z = 0.55. For comparison,
the SPT approach would perform similarly only up to k . 0.06: in other words, the extension reduces
the statistical error-bars as much as it would increasing the survey volume by a factor of four.

To demonstrate the power of adding the bispectrum information to the power spectrum, we have
combined the bispectrum model BFG with the power spectrum monopole and quadrupole model of
[11] and [36]. First we have extracted the bias parameters b1 and b2 from simulations when other
cosmological parameters such as f and σ8 were fixed to their true values. We have found that BFG

is able to predict the same large scale bias parameter, b1 in real and redshift space, whereas standard
perturbation theory approach for the redshift space kernel underestimates b1 in redshift space with
respect to real space by 2% (this is large enough to be statistically significant given the size of the
simulations). We have further explored the performance of the modelling proposed here in extracting
f , σ8 as well as the bias parameters b1 and b2 from the power spectrum monopole, P (0), quadrupole,
P (2) and the bispectrum monopole, B(0) (§ 7). Our main findings are as follows:

1. For the dark matter field no systematics offsets larger than 1% are found for b1, b2 and f when
P (0), P (2) and B(0) are used.

2. For the dark matter halo catalogue, when the parameters {b1, b2, f, σ8} are estimated from
P (0) +P (2), no systematic offsets appear for fσ8 and a ∼ 1% systematic error is found for b1σ8

with respect to the real space prediction. If we add B(0) to these two statistics, the errors on
fσ8 and b1σ8 combinations are reduced by about ∼ 30 − 40%, regardless of the value of kmax

and no additional systematic errors are evident. Adding B(0) allow us to measure also b2σ8. In
this case we do find a systematic error of ∼ 50% compared to the real space prediction.

3. Combining P (0), P (2) and B(0) allows us also to estimate the variables b1, f and σ8 separately.
In this case we find that b1 and f are underestimated by ∼ 10% and σ8 is overestimated by
a similar amount for 0.10 ≤ kmax [h/Mpc] ≤ 0.20. Note that for the dark matter case these
systematics were smaller than 1%.

4. It is likely that the systematics found for f , b1 and σ8 are due to a limitation of the halo
bias modelling when describing the power spectrum and bispectrum in redshift space. These
systematics can be tamed if we work with the combinations fσ8 and b1σ8.

The bispectrum fitting formula presented in this paper may be useful for and directly applicable
to any galaxy survey when redshift space distortions in the bispectrum must be accounted for.

While there is no evidence for important systematic effects in the combination fσ8, the combi-
nation of power spectrum monopole and quadrupole and the bispectrum monopole allow us to break
the degeneracy between f and σ8 but systematic shifts of ∼ 10% appear, which are of the order of
the statistical errors for current state-of-the-art surveys. Using instead the power spectrum and bis-
pectrum monopoles, a different combination of f -σ8 is measured. This new combination also presents
systematic shifts, but smaller, less than 10%.

Clearly more work, especially in understanding the interplay between biasing and redshift-space
distortions and their combined effects on clustering, is needed in order to reduce these systematic
shifts and bring them below the statistical errors.
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