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ABSTRACT

Aims. We present a theoretical study of the effects and signatures of realistic velocity field and atmospheric inhomogeneities associ-
ated with convective motions at the surface of cool late-type stars on the emergent profiles of iron spectral lines for a large range in
stellar parameters.
Methods. We compute 3D spectral line flux profiles under the assumptionof local thermodynamic equilibrium (LTE) by employing
state-of-the-art, time-dependent, 3D, radiative-hydrodynamical atmosphere models from the Stagger-grid. A set of 35 real unblended,
optical Fei and Feii lines of varying excitation potential are considered. Additionally, fictitious Fei and Feii lines (5000Å and
0,2,4eV) are used to construct general curves of growth and enable comparison of line profiles with the same line strength to illustrate
systematical trends stemming from the intrinsic structural differences among 3D model atmospheres with different stellar parameters.
Theoretical line shifts and bisectors are derived to analyze the shapes, shifts, and asymmetries imprinted in the full 3D line profiles
emerging self-consistently from the convective simulations with velocity fields and atmospheric inhomogeneities.
Results. We find systematic variations in line strength, shift, width, and bisectors, that can be related to the respective physical
conditions at the height of the line formation in the stellaratmospheric environment, in particular the amplitude of the vertical
velocity field.
Conclusions. Line shifts and asymmetries arise due to the presence of convective velocities and the granulation pattern that are
ubiquitously found in observed stellar spectra of cool stars.

Key words. convection – hydrodynamics – line: formation – line: profiles – radiative transfer – stars: atmospheres – stars: funda-
mental parameters – stars: late-type

1. Introduction

In recent years, capabilities for very high-resolution andvery
high signal-to-noise spectroscopical observations have raised the
level of accuracy in stellar abundance analyses substantially
(e.g., Asplund et al. 2005; Meléndez et al. 2009). In addition
truly large-scale, comprehensive high-resolution spectroscopic
surveys are currently conducted, and further ones are planned.
For the accurate interpretation of these sterling data, improved
theoretical atmosphere models were also needed.

Cool stars are characterized by convective envelopes that
extend to the optical surface. The concomitant velocity field
manifests itself in the stellar photosphere with a typical gran-
ulation pattern that imprints wavelength shifts and asymmetries
in the observed spectral line profiles (e.g., Dravins et al. 1981;
Nordlund et al. 2009). The strength of a spectral line depends
mainly on the number of absorbers (atomic level population),
therefore, it is very sensitive to the temperature due to exponen-
tial and power dependence of excitation and ionization equilibria
(in LTE: ∝ e−χ/kT; see Gray 2005 for more details on the the-
ory of line formation in stellar atmospheres). In addition,owing

Send offprint requests to: magic@mpa-garching.mpg.de
⋆ Full Table A.2 is available at the CDS via anony-

mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/???/A??, as well as
at www.stagger-stars.net

to the presence of convective velocities, additional non-thermal
broadening takes place in form of Doppler shifts. The wings of
spectral lines are formed in deeper layers close to the contin-
uum forming depth, while the cores are formed above in higher
layers, therefore, the line profile samples different heights with
distinctive physical conditions, in terms of velocity amplitudes,
correlation between temperature and density inhomogeneities,
asymmetries between regions with up- and downflowing mate-
rial. This lead to characteristic asymmetries in the emergent in-
tensity and flux line profiles (e.g., Asplund et al. 2000a).

Classical theoretical atmosphere models make use of several
simplifications in order to facilitate calculations with the com-
puting power at hand in the past (e.g., Gustafsson et al. 2008;
Cassisi et al. 2004). The treatment of convection is a partially
challenging part in modeling stellar atmospheres, since a com-
plete theory of convection is still absent. In one-dimensional
(1D) modeling, simplified treatments of convective energy trans-
port have been adopted, such as the mixing-length theory (MLT;
see Böhm-Vitense 1958; Henyey et al. 1965) or the full spectrum
of turbulence model (Canuto & Mazzitelli 1991) with a priori
unknown free-parameters that has to be calibrated by observa-
tions. Furthermore, for the 1D line formation calculationsthe
lack of knowledge on the convective velocity fields is partially
compensated by introducing two fudge parameters micro- and
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macroturbulence to account for convective broadening of spec-
tral lines (e.g., Gray 2005).

For the precise modeling of realistic line profiles, in-
cluding predicting their asymmetries, one has to rely on re-
alistic three-dimensional (3D) atmosphere models, in which
the convective velocity field emerges from first principles,
i.e. from the solution of the hydrodynamic equations cou-
pled with non-grey radiative transfer (e.g., Nordlund 1982;
Steffen et al. 1989; Stein & Nordlund 1998; Vögler & Schüssler
2003; Nordlund et al. 2009; Freytag et al. 2012). A major appli-
cation for 3D radiative hydrodynamic (RHD) atmosphere mod-
els is the computation of synthetic full 3D line profiles or spectra
as post-processing based on the former in order to derive accu-
rate stellar parameters and abundances (Asplund et al. 2000a,b,
2009). The 3D RHD models demonstrated their predictive capa-
bilities powerfully in comparison with observed line profiles for
several different stars. Asplund et al. (2000a) found almost per-
fect agreement between observed solar iron line profiles andthe-
oretical predictions without any trends in the derived abundances
with line strength. Furthermore, comparisons of line shifts and
asymmetries derived from high-resolution spectroscopical ob-
servations of different types of cool stars advocated addition-
ally for the realistic nature of the theoretical 3D RHD models
(e.g., Nordlund & Dravins 1990; Atroshchenko & Gadun 1994;
Allende Prieto et al. 2002; Ramírez et al. 2008, 2009, 2010;
Gray 2009).

With the present theoretical work we intend to tackle the fol-
lowing key question: how do line properties vary with stellar pa-
rameters? More specifically, we intend to analyze line shifts and
asymmetries carefully for a selection of Fei and Feii lines, in
order to better understand the variation of spectral line features
with stellar parameters. Iron lines are often considered most use-
ful for this purpose, since it is an abundant element with a very
rich spectrum of energy levels and transitions with a variety of
strengths and accurate atomic data at hand.

In Sec. 2 we explain the methods for the computations of
the 3D atmosphere models and line profiles. Subsequently, we
discuss the properties of lines in terms of shape, strength,width,
and depth (Sec. 3, 4 and 5), as well as the line asymmetries
and shifts (Sec. 6 and 7). In Sec. 8, we consider the physical
conditions prevailing at the height of line forming region and
link them with the findings on the line profiles. Finally in Sec.
9, we summarize our results.

2. 3D atmosphere models and 3D spectral lines

We have computed the Stagger-grid, a large grid of 3D RHD
atmosphere models, which has been introduced in Magic et al.
(2013a, hereafter paper I). The stellar parameters of the Stag-
ger-grid span in effective temperatureTeff = [4000,7000]K in
steps of 500K, surface gravity logg = [1.5,5.0] in steps of 0.5
dex, and metallicity [Fe/H] = [−4.0,+0.5] in steps of 0.5 and
1.0dex1. We employ a realistic equation-of-state (EOS) taken
from (Mihalas et al. 1988), and the continuum and line opac-
ity taken primarily from the MARCS package (Gustafsson et al.
2008). In the "star-in-a-box" setup, the rather small simulation
box represents the statistical properties of the stellar subsurface
and atmosphere. The numerical resolution of the Eulerian mesh
of the box isnxyz= 2403 for all Stagger-grid models. The hor-
izontal boundaries are periodic and the vertical ones are open.

1 The metallicity is defined in respect to the solar value with [Fe/H] =
log(NFe/NH)⋆ − log(NFe/NH)⊙.

Fig. 1: Normalized disk-center (µ= 1) intensity profile as a func-
tion of wavelength for a single Fei line (λ = 5705.5, χexc= 4.3)
with intermediate strength synthesized using the solar simulation
(filled circles). The bisector information is plotted in theinset on
the right-hand side of the figure. The line is decomposed intoits
contribution from upflows (blue) and downflows (red line), and
the sum of both (black solid line).

The radiative transfer equation is solved along long characteris-
tics for 8 inclined rays plus the vertical crossing for each grid-
point at the surface of the simulation domain. The effects of non-
grey radiative transfer are accounted for in the computations via
the the opacity binning method (Nordlund 1982; Skartlien 2000),
i.e. by sorting wavelengths into a number of opacity bins and
properly averaging the opacities in each bin before solvingthe
radiative transfer equation. We compute approximately twoturn-
over times, resulting in 100 - 150 equidistant snapshots. Further-
more, we obtain the mean〈3D〉 stratifications from the latter,
with the temporal and spatial averaging methods as described in
Magic et al. (2013b, hereafter paper II). For more details onthe
3D atmosphere models we refer to paper I and II.

For the calculations of the spectral absorption line profiles,
we utilize our 3D radiative transfer code Scate (Hayek et al.
2011). We consider a subset of 20 equidistant snapshots fromthe
complete 3D simulation sequence and solve the radiative transfer
along four polarµ-angles, four azimutalϕ-angles and the ver-
tical for nλ = 101 wavelength points by applying consistently
the same EOS and opacities as are used in the 3D atmosphere
computations. In order to ease the computational burden forthe
individual line formation calculations, we assume local thermo-
dynamic equilibrium (LTE), i.e.Sλ = Bλ, and neglect scattering.
Furthermore, we reduce the number of columns in each direc-
tion from 240 to 60, we have sorted that this does not alter the
line profile noticeably, since the subsample is still large enough.
The resulting intensity profiles are spatially averaged foreach
snapshot. In order to compute disk-averaged flux profiles, we
integrate the various intensity profiles at all inclined angles us-
ing a Gauss-Legendre quadrature scheme. Lastly, we averagethe
intensity and flux profiles temporally. In this work, we prefer to
discuss flux profiles over intensity profiles, since the former are
that what we observe in real stellar spectra except for the Sun,
whose surface can be spatially resolved.

For this investigation we employ Fei and Feii lines, which
are the same as considered by Asplund et al. (2009). These lines
consist of carefully selected unblended lines. In Table A.1we
list the complete line list with their respective line parameters.
From the total of 35 lines, 26 are from neutral (Fei), while 9

Article number, page 2 of 11



Z. Magic et al.: The Stagger-grid – V. Fe line shapes, shifts and asymmetries

Fig. 2: Normalized flux vs. wavelength for a Fei (λ = 5705.5, χexc= 4.3; top panel) and Feii line (λ = 5414.1, χexc= 3.221; bottom
panel) with solid lines for different stellar parameters with an enlarged view of the bisector (dashed lines). In each column, only one
stellar parameter is varied, while the other two are fixed (indicated);left panel: effective temperature;middle panel: surface gravity;
right panel: metallicity. Furthermore, the respective lines computedwith the 〈3D〉 models are also shown (dotted lines). Note the
different the ordinates between the top and bottom rows.

lines are from singly ionized iron (Feii). As one can gather from
the line parameters, we cover the visible wavelength range with
λ = [4445.5,8293.5] Å, and we match the ranges in lower excita-
tion potential energy withχexc= [0.087,4.608] eV and oscillator
strength with logg f = [−5.412,−1.355]. For the solar simula-
tion, the line strengths range fromWλ = [9.2,64.3] mÅ, i.e. we
cover from weak to intermediate line strength, however theWλ
varies with stellar parameters, and we get stronger lines with a
global maximum of 165.5mÅ.

In addition, we compute fictitious Fei and Feii lines for a
single wavelength (λ= 5000Å) covering three different lower ex-
citation potential energies (χexc= 0,2,4eV) in order to facilitate
a comparison between 3D models with different stellar parame-
ters based on the same line strengths. For the so-called "curve-
of-growth" method we consider ten equidistant logg f values re-
sulting in a range of line strengths from weak to intermediate
(Wλ = 5−100mÅ for all models). We then interpolate the com-
puted line profiles to construct a series of line profiles regularly
distributed in line strength, fromWλ = 10 to 100m̊A in steps of
10mÅ. Finally, the line asymmetries (shift, width, depth and
bisector) are determined from the resulting interpolated line pro-
files. The line shift is derived after the line profile is spline-
interpolated to a finer resolution around the line core, while the
bisector is determined for 100 points with spline interpolation.

3. Line shape

Real spectral absorption lines exhibit a more complex shapethan
just a Gaussian or Lorentzian profile due to the properties ofthe
convective velocity field and inhomogeneities in the atmospheres
of cool stars. In order to elucidate the individual contribution
from the granules and the intergranular lane on the line shape
and asymmetry, we show in Fig. 1 a Fei line computed from the
solar simulation considering a single snapshot. We separated the
line profiles of the individual columns into (bright) granules and
(dark) intergranular lane (up- and downflows) based on a thresh-
old at 90% from the mean continuum intensity. As expected, up-
flows show stronger blue-shifted profiles, while downflows have
weaker, red-shifted lines (Asplund et al. 2000a). Furthermore,
one can a notice distinct difference in the line depth of the indi-
vidual components, which unveils the fact that the effect of the
downflows is restricted mainly to the upper part of the bisector,
while the lower part is predominantly contributed by the upflows
in the granules.

In Fig. 2, we illustrate for a single Fei and Feii line (top and
bottom panel respectively) overviews of profiles includingthe
bisectors, where one stellar parameter is varied, while thetwo
others are fixed, in order to illustrate the individual influence of
Teff, logg and [Fe/H] on the line shape and asymmetry.

The variations of line profiles and asymmetries with stel-
lar parameters are systematic. Namely, the line strength de-
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creases for Fei (increasing for Feii) with hotterTeff; the overall
strength of spectral lines decreases, naturally, with lower [Fe/H];
asymmetries become more pronounced at higherTeff and lower
[Fe/H] for both Fei and Feii. The opposing trends of the Fei
and Feii line strength withTeff stems from the ionization of neu-
tral iron at higher temperatures. In the case of the Fei line, line
strength varies only marginally as logg decreases, while for Feii
line, the line strength increases significantly. In fact, the Feii
line strength shows always a clear rise for lower logg, while for
Fei lines this is the case only for coolerTeff, and hotter ones
show even smaller trends with logg. This behavior is easily un-
derstood if one considers that when most of the iron is in singly
ionized form and Fei is a minority species, the line opacity is
proportional to the electron number density which in turn issen-
sitive to the surface gravity. Also, in the atmospheres of late-
type stars, the main source of continuum opacity in the optical
is H− and that also scales proportionally to the electron number
density. Since the line strength of a normalized profile is propor-
tional to the ratio of line and continuum opacity, this meansthat,
to first-order approximation the dependence on electron density
and, hence, on surface gravity cancels out in the case of Fei

lines. Concerning the line shapes, towards giants (lower logg)
the asymmetries increase considerably for both lines due tothe
larger amplitude and velocity asymmetry between up- and down-
flows (see Fig. 8a). The wider and stronger line profiles in gi-
ants exhibit a more pronounced redshift in the upper bisector
(see lines with logg= 2.0 in middle panel of Fig. 2) due to the
increasing influence of the contribution from downflows on the
red wing. For the highestTeff (6500K) or the lowest logg (2.0)
the largest span in asymmetry is achieved for both lines (seeFig.
2; also bottom panel of Fig. 4b).

The height of line formation is in general very important,
namely weaker lines show more pronounced line shifts and
asymmetries, since they tend to form in deeper layers, wherethe
maximum velocities and temperature contrasts happen (τRoss∼

1; see Sec. 8). Stronger lines have their formation height shifted
outwards where the velocity and contrast is lower and less well
anti-correlated (see Fig. 8a). Similarly, Feii lines are formed
deeper than Fei, since their number density increases in the
deeper layers.

The wings are formed in deeper layers leading to a/-shape in
the bisector arising from the granules (see Fig. 1), while the line
core originates from higher layers. Therefore, with increasing
line strength the line shift is receding after a maximum, leading
to the\-shape to the typical C-shape of the bisector (see Fig. 2).
The line profile is often dominated by the granules, since these
exhibit a brighter intensity, steeper temperature gradients and
more importantly larger area contribution (filling factor)com-
pared to the downflowing intergranular lane. However, this cor-
relation decreases quickly above the optical surface, where con-
vection ceases. Furthermore, the line shape and bisector depend
on the vertical velocity field, its amplitude, asymmetry andthe
extent of overshooting into convective stable layers. The radial
p-mode oscillations generally broaden the line profile, without
however altering the overall line strength noticeably, since the
nearly Lagrangian vertical oscillations do not influence the at-
mospheric stratification on an optical depth scale.

Additionally, we included in Fig. 2 also the symmetric line
profiles resulting from the corresponding mean〈3D〉 models, in
order to depict the influence from the inhomogeneities and in
particular the vertical velocity field resulting from convection
and granulation. The homogenous〈3D〉 models include micro-
and macroturbulence in order to yield the same line strengthand
depth respectively as the considered full 3D line, therefore, one

Fig. 3: The relative difference between full 3D and〈3D〉 line
strength,δWλ, vs.Teff averaged over all Fei and Feii lines sepa-
rately (top and bottom panel respectively).

can isolate visually the Doppler shifts arising from the realistic
3D velocity field. At coolerTeff the line shape is more sym-
metric, and the effects of velocities are rather small, while to-
wards higherTeff the differences grow more apparent. Due to
the Doppler shifts the 3D lines are more blue-shifted.

4. Line strength

We evaluate the relative differenceδWλ = W3D/W〈3D〉 − 1 be-
tween the predicted line strengths from the calculations with full
3D and with〈3D〉 models without any microturbulence. In Fig.
3, we display the average difference separated in Fei and Feii
lines with stellar parameters. We remark that the individual lines
exhibit distinctive values between different lines, however, the
average values depict qualitatively an overview of the variations.
The differenceδWλ quantifies the effects of atmospheric inho-
mogeneities as well as non-thermal Doppler broadening, since
the 〈3D〉 models include no velocity field or microturbulence.
As expected the Doppler broadening due to the convective veloc-
ities is enhancing the line strength of the full 3D lines, with the
consequence of the latter being stronger than the〈3D〉 lines. The
enhancement inWλ is increasing for hotterTeff , lower logg, and
higher [Fe/H], which corresponds to the variation of the vertical
rms-velocity (see Fig. 8b). The trends ofδWλ with stellar pa-
rameters are between Fei and Feii in general qualitatively rather
similar. Lines with higher excitation potential energy feature a
smaller range inδWλ.
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(a) (b)

Fig. 4: Left figure: Line width lw (top) and depthld (bottom panel) derived from the flux profile of the fictitious Fei line (Wλ =
80mÅ, χexc = 4.0eV) vs. effective temperatureTeff for different stellar parameters.Right figure: The mean (Fei) line shift and
maximal bisector for different stellar parameters. Note the inverted ordinate in thetop panel, which increases towards higher
blue-shifts (negative velocity).

5. Line width and depth

In order to study the intrinsic variations of shape of line pro-
files with stellar parameters, we determine the line width and
depth from fictitious Fei lines with the same line strength (Wλ =
80mÅ). We define the line width,lw as the full width at half
maximum (FWHM) of the line profile, which is a measure of the
range in Doppler shifts induced by the velocity field. From Fig.
4a (top panel), one can observe that the line width increasesfor
higherTeff and [Fe/H], and lower logg, which correlates with
the variations of the vertical rms-velocity for the atmosphere
models (see Fig. 8b). The line depth is the relative flux or
intensity of the line core,ld = 1−min[Fλ/Fc], and depicts the
maximal absorption from the continuum radiation of a line. The
line depth is clearly anti-correlated with the line width for differ-
ent stellar parameters (bottom panel in Fig. 4a). However, the
line depth declines faster than the line width rises, which signi-
fies that the line profile is becoming flatter and broader, when
considering the same line strength. This broadening of the line
profile for different stellar parameters is a consequence of the
higher velocity amplitudes (convection and oscillations)leading
to larger Doppler shifts. The aspect ratio between depth and
width,adw = ld/lw, diminishes very quickly for hotterTeff, lower
logg and [Fe/H] for Fei lines. In the case of Feii lines, the
variation withTeff is slightly different, namely the aspect ratio

increases towards higherTeff until 5500K and drops above, and
the largestadw being slightly smaller. In general the aspect ratio
is increasing withWλ, reaching a maximum around 50mÅ, and
then decreasing, while for higherχexc it is smaller. The changes
of the width, depth and their aspect ratio are for〈3D〉 qualita-
tively similar, however their amplitude is rather different. This
indicates that the flattening of line profile is partly due to thermal
broadening as well.

6. Line asymmetry

The bisector of a spectral line profile is the locus of the mid-
points of the segments identified by the points at constant flux
on the line profile. A line without asymmetries (e.g. 1D or〈3D〉
line) has a straight vertical bisector, while a realistic profile of a
spectral line from a late-type stellar spectrum exhibits a bisector
with the characteristic C-shape (Dravins et al. 1981) that results
from the superposition of the contribution from the strong,blue-
shifted, dominant granules and the weak, red-shifted, intergran-
ular lanes (see Fig. 1).

In Fig. 3, we show Fei and Feii bisectors for different stellar
parameters. In general, the typical C-shape is present in most
of the bisectors, however more or less pronounced dependingon
the line strength. Weak lines feature a blue-shifted bisector with
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Fig. 5: Bisectors from fictitious Fei lines with three line strengths (20, 40 and 80m̊A; top, middle and bottom panel, respectively)
and three different excitation potential energies (0,2,4eV; solid, dotted and dashed lines respectively) for different stellar parameters.
In each column, one stellar parameter is varied, while the other two are fixed (indicated);left panel: effective temperature;middle
panel: surface gravity;right panel: metallicity.

a typical/-shape depicting only the upper part of the C-shape,
where the line core coincides with the maximal line asymmetry,
max[|v|], i.e. maximal absolute velocity shift of the entire bi-
sector. On the other hand, the regions of formation of stronger
lines cover larger ranges of optical depths and the cores of these
lines are forming in higher layers above the overshooting region,
therefore, the line centers are less blue-shifted and tend towards
zero, thereby outlining a more defined C-shape. The maximal
asymmetry of strong lines is located around the half height of
the line depth.

For higher Teff the bisectors increase significantly their
range, while the line strength becomes weaker and also more
blue-shifted, until the C-shape finally disappears (6500K). To-
wards giants (lower logg) the line asymmetries (range of bisec-
tors) become larger in general, and the C-shape is getting more
pronounced until logg = 3.0 and less so below that. Further-
more, the upper part of the bisector recedes towards lower ve-
locity shifts and are even red-shifted for the lowest surface grav-
ity (logg= 2.0), since the contribution on the red wing from the
downdraft is then dominating towards the continuum flux. With
lower metallicity the lines are weaker and the bisectors lose their
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C-shape until it vanishes eventually. Also, the range in bisector
diminishes. The variations in the line asymmetry with stellar pa-
rameters result from the differences in line strength, continuum
level, filling factor and Doppler shift. We note that considering
the variations of a single line with different stellar parameters
changes significantly its shape (see Fig. 2).

In Fig. 5 we illustrate bisectors from the fictitious Fei
line flux profiles for different stellar parameters, with the same
line strength, considering weak (20, 40mÅ) and intermediate
(80mÅ) line strength (top, middle and bottom panel, respec-
tively). The basic idea behind this comparison is to isolateand
illustrate the effect and signature on the line profile due to the
intrinsic structural differences among individual 3D atmosphere
models arising solely from the variations in the convectiveflow
properties. We vary one stellar parameter individually, while the
other two are fixed (Teff , logg and [Fe/H]). Three different ex-
citation potential energies (χexc= 0,2,4 eV) are also considered
(solid, dotted and dashed, respectively).

The intermediate strong lines feature often a more explicit
C-shape compared to the weak lines with smaller maximal bi-
sectors, otherwise, the changes with stellar parameters are qual-
itatively rather similar. For hotterTeff and lower logg, their ef-
fect on the weak and intermediate strong lines is rather similar,
namely the line depth is decreasing (for the same line strength)
and the line width is rising, which means that the line shape be-
comes increasingly flatter and broader (see also Sec. 5), while
the line shift and maximal bisector is considerably enhanced,
primarily due to concomitant higher velocity andT-contrast (see
Sec. 8). On the other hand, at lower metallicity the changes in
line shape are less pronounced, only the exhibited blue-shifts are
lower due to the smaller level in velocity andT-contrast. In the
case of the weak lines (top panel) with lowerTeff and [Fe/H],
higher logg the bisectors are increasingly uniform over the en-
tire line depth, and the C-shape is less distinct, since weaklines
are arising from a smaller extent in height. The variations of the
fictitious Feii are rather similar to those by Fei, therefore we re-
frain from showing them. The only noteworthy differences are
the slightly smaller ranges in line shift, depth and maximalbi-
sector for fictitious Feii lines, and the fact that giants feature a
stronger influence from the red-shifted downflows. Lines with
higher excitation potential energy show in general more blue-
shifted bisectors, since these lines form in deeper layers with
higher velocity and temperature contrasts.

In Fig. 4b (bottom panel) we show the maximal range of
the bisectors with stellar parameters, which are increasing for
higherTeff and [Fe/H], lower logg similar to the vertical rms-
velocity in the 3D atmosphere models (see Fig. 8a). One would
assume the line asymmetries correlate with the velocity field,
since these arise from the Doppler shifts. Therefore, we com-
pare the maximal range of the bisectors with the maximal verti-
cal rms-velocity for different stellar parameters in Fig. 6. The
line asymmetries correlate clearly with amplitude of the vertical
velocity, only there is a slight scatter due to the different heights
of line formation.

7. Line shift

In Fig. 4b (top panel), we show an overview of the mean line
shift of the Fei lines with stellar parameters. Furthermore, we
show in Fig. 7 an overview of the line shift against the line
strength for various stellar parameters, in order to depictthe in-
fluence ofTeff , logg and [Fe/H] individually (from top to bottom
respectively) for the complete Fei and Feii line set (circles and

Fig. 6: The maximal bisector vs. maximal vertical rms-velocity
for different stellar parameters. A linear fit is included (red line).

triangles respectively). The lower excitation potential energy,
χexc, and line wavelength of the lines are indicated to illustrate
trends with line parameters (blue colors and symbol size respec-
tively).

In the following we discuss the Fei lines first. Towards
hotter effective temperatures (top panel of Fig. 7) we find the
maximum shifts of Fei lines to rise considerably (from∼ 0.1 to
0.8km/s), while the maximal line strength is diminishing (from
140 to 40m̊A). At higher Teff, one finds convection to oper-
ate less efficiently and therefore with more vigorous flows, with
both higherT-contrast and rms-velocity (Fig. 8a). On the other
hand, at higherTeff , iron is more likely to be ionized and also the
(continuum) H−-opacity increases, hence, both effects are reduc-
ing the line strength. We note that weaker lines typically orig-
inate from lower depth, where the velocity andT-contrast are
larger, therefore imprinting a larger line shift. The line cores of
stronger lines form higher up in the atmosphere, therefore,their
line shifts are smaller (notice the generally smaller line shifts to-
wards stronger lines in Fig. 7). Moreover, for higherTeff the
range in line shift is decreasing. For lower surface gravity(mid-
dle panel), the line shift, its range and the slope of the linear
fits are increasing, reach a maximum at logg= 3.0 and decrease
again, while the range in line strength is almost unaffected. For
lower metallicity (bottom panel), the line shifts and line strength
are reducing, and the slope of the linear fit are becoming steeper.

We find in general that the line shifts and strengths are anti-
correlated, i.e. for weaker (stronger) lines their shifts are higher
(lower), which arises from the deeper (higher) location of line
formation, and the respectively larger (lower) velocity ampli-
tude. On the other hand, lines with lower (higher) excitation po-
tential energy,χexc, exhibit smaller (larger) line shifts. The lines
are on average blue-shifted (negative line shift; see top panel
of Fig. 4b), since the granules occupy a higher filling factors
and intensity contribution over downdrafts. The mean line shift
is increasing for higherTeff , lower logg and enhanced [Fe/H].
Only a few of the strongest lines in giants exhibit red-shifted
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Fig. 7: Line core shift vs. line strength for the Fei and Feii lines (circles and triangles, respectively) for different stellar parameter.
Also, the corresponding trends for fictitious Fei and Feii lines are shown (blue solid and dashed lines). The excitation potential
energyχexc (blue colors, where lighter refers to higherχexc) and wavelengthλ are indicated (symbol sizes, where bigger refers to
higherλ). In each row, one stellar parameter is varied, while the other two are fixed (indicated);top panel: effective temperature;
middle panel: surface gravity;bottom panel: metallicity.

line cores, since the relative contribution of the red-shifted down-
flows in these are pronounced. We find that the fictitious Fei and
Feii lines have qualitatively very similar line shifts as the mean
line shifts shown in Fig. 4b. The latter show a distinct depen-
dence on the line strength.

The Feii lines exhibit in general similar trends for line
strength and shift with stellar parameter as found for the Fei

lines. However, the ranges in line strength are distinctively
smaller and its variations are much less pronounced, in particular
the line strength is less sensitive toTeff , since it is the majority

species. Furthermore, the mean line shift and the slope of the
linear fits are in general higher compared to the Fei values.

8. Conditions at the height of line formation

In the following we want to discuss the different physical con-
ditions based on the properties of the velocity and temperature
prevailing in the 3D RHD model atmospheres, which are in the
end responsible for the various line asymmetries we seen above.
In Fig. 8a, we show the vertical rms-velocity,vz,rms, the asym-
metry between up- and downflow rms-velocity,δvup,dn, tempera-
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(a) (b)

Fig. 8: Left figure: The vertical rms-velocity and its asymmetry (top);T-constrast and its asymmetry (middle); correlation function
C
[

vz,T
]

and filling factor (bottom panel) shown against the optical depth for models with logg = 4.5 and solar metallicity. The
differentTeff ’s are color-coded (red/orange colors).Right figure: Maximal vertical rms-velocity and maximal temperature contrast
vs. Teff (top and bottom panel respectively) for different stellar parameters.

ture contrast,δTrms, the temperature difference between up- and
downflows,δTup,dn, the correlation function of the temperature
and vertical velocity,C

[

vz,T
]

, and the filling factor of the up-
flows fup.

In the superadiabatic region (SAR) just below the optical
surface (logτRoss> 0) the vertical rms-velocities and tempera-
ture contrasts are reaching their maxima, since at the thin pho-
tospheric transition region the radiative losses from the upflows
generate large entropy fluctuations, that drive stellar surface con-
vection (see paper I and Nordlund et al. 2009, for more de-
tails). Further above the top of the convection zone,vz,rms and
δTrms decline with height. Also, the asymmetries between the
up- and downflows in velocity and temperature drop fast with
height, while in convection zone, in particular the SAR,δvup,dn
andδTup,dn are rather large. Furthermore, below the optical sur-
face, one finds a tight anti-correlation between the vertical rms-
velocity and temperature due to convective transport of energy,
while above the correlation is distinctively smaller (seeC

[

vz,T
]

in Fig. 8a). The extent of overshooting can be determined with
the zero crossing of the correlation function,C

[

vz,T
]

, and for
higherTeff ’s with concomitant higher velocity the overshooting
is clearly shifting towards higher layers. On the other hand, the
convective properties obviously change with stellar parameters.
In order to illustrate this, we show the maxima ofvz,rms andδTrms
in Fig. 8b for different stellar parameters. Both quantities clearly

increase for hotterTeff , lower logg, and higher metallicity (see
Paper I for a detailed discussion).

Therefore, one finds in general that lines forming in deeper
layers carry larger signatures from the velocity field and tem-
perature contrast, i.e. resulting in larger line broadening and
Doppler shifts, and in higher layers the opposite is the case. And
also the variations of the line shifts and asymmetries with stellar
parameters, which we discussed above, are in agreement with
the properties in the 3D RHD models.

9. Conclusions and summary

We have explored the properties of synthetic spectral linesfrom
neutral and singly ionized iron in late-type stars with the aid of
3D hydrodynamical model atmospheres. We have studied the
variations with stellar parameters of aspects such as the strength,
width, and depth of spectral lines, as well as line asymmetries
and wavelength shifts. We have related such variations and the
morphology of the asymmetries to the structural and thermal
properties of the 3D models, with particular focus on veloc-
ity and temperature inhomogeneities and their correlationwith
depth in the stellar atmosphere.

In Table A.2 we list our results (line strength, shift, width,
depth and bisectors). A possible application of the theoretical
predictions of the line asymmetries can be the derivation ofra-
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dial velocity and gravitational red-shift from high resolution ob-
servations by comparison with 3D line bisectors.
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Appendix A: Tables

In Table A.1, we present the Fei and Feii line parameters that
are used for the line formation calculations, in the presentwork.
While in Table A.2 we show a subset from the main results we
presented in our work retrieved for the solar simulation. The
complete list is online available on CDS.

Table A.1: The he Fei and Feii line parameters with reference
number, ionization degree, wavelengthλ, lower excitation po-
tentialχexc, oscillator strength logg f , weighting factorgu, radi-
ation damping logγrad, lower levell l , upper levellu.

# id λ χexc logg f gu logγrad l l lu
1 1 4445.4717 0.087 -5.412 1 4.22 s p
2 1 5247.0503 0.087 -4.961 1 3.63 s p
3 1 5491.8315 4.186 -2.188 2 8.09 d p
4 1 5600.2242 4.260 -1.420 2 8.01 p s
5 1 5661.3457 4.284 -1.756 2 8.00 p s
6 1 5696.0896 4.548 -1.720 2 8.33 p d
7 1 5705.4648 4.301 -1.355 2 8.38 p s
8 1 5778.4531 2.588 -3.440 2 8.21 s p
9 1 5784.6582 3.396 -2.532 3 8.05 p s
10 1 5855.0767 4.608 -1.478 2 8.33 p d
11 1 5956.6943 0.859 -4.552 1 4.00 s p
12 1 6151.6182 2.176 -3.282 1 8.29 s p
13 1 6240.6460 2.223 -3.287 3 6.81 s p
14 1 6311.5003 2.831 -3.141 2 8.20 s p
15 1 6498.9390 0.958 -4.695 1 4.36 s p
16 1 6518.3671 2.831 -2.448 2 8.21 s p
17 1 6574.2285 0.990 -5.010 1 4.22 s p
18 1 6609.1104 2.559 -2.682 1 7.99 s p
19 1 6699.1416 4.593 -2.101 2 8.09 s p
20 1 6739.5220 1.557 -4.794 3 7.24 s p
21 1 6793.2593 4.076 -2.326 2 7.56 d p
22 1 6837.0059 4.593 -1.687 2 7.85 s p
23 1 6854.8228 4.593 -1.926 2 7.81 s p
24 1 7401.6851 4.186 -1.500 2 8.01 d p
25 1 7912.8670 0.859 -4.848 1 3.68 s p
26 1 8293.5146 3.301 -2.203 2 8.20 s p
27 2 4620.5129 2.828 -3.210 31 8.56 s p
28 2 5264.8042 3.230 -3.130 31 8.56 s p
29 2 5414.0717 3.221 -3.580 31 8.56 s p
30 2 6432.6757 2.891 -3.570 31 8.49 s p
31 2 6516.0767 2.891 -3.310 31 8.49 s p
32 2 7222.3923 3.889 -3.260 31 8.56 s p
33 2 7224.4790 3.889 -3.200 31 8.56 s p
34 2 7515.8309 3.903 -3.390 31 8.56 s p
35 2 7711.7205 3.903 -2.500 31 8.56 s p

Article number, page 10 of 11



Z. Magic et al.: The Stagger-grid – V. Fe line shapes, shifts and asymmetries

Table A.2: Table with main results from synthetic spectral flux
profiles: line strength, width, depth, shift, minimum and maxi-
mum of bisector for the solar simulation. The line number in the
first column is the same as used in Table A.1.

# Wλ ls lw ld min max
1 43.948 -0.374 4.850 0.561 -0.373 -0.248
2 67.517 -0.192 5.381 0.664 -0.276 -0.195
3 13.965 -0.501 4.867 0.145 -0.500 -0.288
4 41.099 -0.420 5.213 0.382 -0.432 -0.241
5 25.989 -0.475 5.040 0.246 -0.473 -0.247
6 18.203 -0.476 5.037 0.172 -0.490 -0.254
7 43.520 -0.420 5.312 0.385 -0.421 -0.242
8 24.787 -0.432 4.757 0.248 -0.431 -0.254
9 30.014 -0.440 4.965 0.282 -0.434 -0.237
10 25.239 -0.483 5.108 0.227 -0.473 -0.249
11 54.501 -0.272 4.997 0.505 -0.303 -0.202
12 51.801 -0.310 5.085 0.453 -0.332 -0.203
13 49.442 -0.315 5.027 0.432 -0.337 -0.204
14 28.465 -0.422 4.802 0.258 -0.412 -0.235
15 45.180 -0.318 4.802 0.399 -0.321 -0.214
16 59.973 -0.286 5.283 0.476 -0.308 -0.191
17 29.505 -0.375 4.595 0.267 -0.371 -0.224
18 63.179 -0.224 5.325 0.487 -0.295 -0.190
19 8.560 -0.481 4.802 0.073 -0.481 -0.237
20 16.198 -0.392 4.541 0.145 -0.403 -0.236
21 14.832 -0.442 4.880 0.122 -0.443 -0.243
22 18.876 -0.473 4.880 0.155 -0.463 -0.226
23 12.255 -0.476 4.807 0.102 -0.474 -0.229
24 44.531 -0.357 5.134 0.317 -0.360 -0.203
25 48.607 -0.280 4.773 0.353 -0.291 -0.187
26 58.154 -0.297 5.216 0.360 -0.306 -0.193
27 56.562 -0.352 5.702 0.584 -0.425 -0.279
28 45.612 -0.372 5.453 0.433 -0.414 -0.259
29 28.478 -0.495 5.210 0.278 -0.487 -0.264
30 42.298 -0.314 5.268 0.341 -0.344 -0.209
31 53.208 -0.247 5.458 0.410 -0.306 -0.205
32 19.331 -0.456 5.141 0.143 -0.470 -0.226
33 21.188 -0.448 5.141 0.156 -0.457 -0.226
34 15.578 -0.488 5.105 0.112 -0.483 -0.224
35 48.518 -0.238 5.437 0.312 -0.304 -0.204

Article number, page 11 of 11


	1 Introduction
	2 3D atmosphere models and 3D spectral lines
	3 Line shape
	4 Line strength
	5 Line width and depth
	6 Line asymmetry
	7 Line shift
	8 Conditions at the height of line formation
	9 Conclusions and summary
	A Tables

