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ABSTRACT

Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on
our earlier estimate of the Galactic contribution (Oppermann et al.|2012), we set out to estimate the extragalactic contributions. We
discuss different strategies and the problems involved. In particular, we point out that taking the difference between the observed values
and the Galactic foreground reconstruction is not a good estimate for the extragalactic contributions. We present a few possibilities
for improved estimates using the foreground map of |Oppermann et al.| (2012), allowing for imperfectly described observational noise.
In this context, we point out a degeneracy between the contributions to the observed values due to extragalactic magnetic fields
and observational noise and comment on the dangers of over-interpreting an estimate without taking into account its uncertainty
information. Finally, we develop an extended reconstruction algorithm based on the assumption that the observational uncertainties
are accurately described for a subset of the data, which can overcome this degeneracy. We present a probabilistic derivation of the
algorithm and demonstrate its performance using a simulation, yielding a high quality reconstruction of the Galactic Faraday rotation
foreground, a precise estimate of the typical extragalactic contribution, and a well-defined probabilistic description of the extragalactic
contribution for each data point. We then apply this reconstruction technique to the catalog of Faraday rotation observations for
extragalactic sources of|Oppermann et al.|(2012) after adding 302 new sources. The analysis is done for several different scenarios, for
which we consider the error bars of different subsets of the data to accurately describe the observational uncertainties. By comparing
the results, we argue that a split that singles out only data near the Galactic poles is the most robust approach. We find that the
dispersion of extragalactic contributions to observed Faraday depths is likely lower than 7 rad/m?, in agreement with earlier results,
and that the extragalactic contribution to an individual data point is poorly constrained by the data in most cases. Posterior samples
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for the extragalactic contribution to all data points and all results of our fiducial model are provided online.

Key words. Magnetic fields — Methods: data analysis — ISM: magnetic fields

1. Introduction

Polarized radiation from an astronomical source undergoes Fara-
day rotation as it travels through the magneto-ionic medium be-
tween the source and observer. For extragalactic sources, there
are contributions from the Galactic interstellar medium, from
any intergalactic magnetic fields, from intervening galaxies on
the line of sight, as well as from magnetic fields in the source
itself. In this work we attempt to estimate the contribution to the
observed Faraday rotation of such sources that is due to magnetic
fields outside of the Milky Way. This extragalactic contribution
holds the potential for extracting information about cosmic mag-
netic fields on large scales, e.g. in galaxy clusters, galaxy fila-
ments, or cosmic voids (Kolatt||1998;; |Blasi et al.||[1999; | Xu et al.
2006; Hammond et al.|2012; Bernet et al.|2012; [Neronov et al.
2013; Joshi & Chand|2013)).

* e-mail: niels@cita.utoronto.ca

For a hypothetical source of linear polarization that is point-
like in all dimensions and situated at a physical distance r from
the observer, the change in polarization angle is given by

Ay =2, (1)
where A is the wavelength of the radiation and

e} 0 1
b= et f & i B @

is the Faraday depth of the source (e.g. Burn|[1966). In the last
equation, n. is the density of thermal electrons, B, is the mag-
netic field vector projected onto the line of sight, z is the cosmo-
logical redshift, and the pre factor is a function of the electron
charge e, the electron mass m., and the speed of light c. Theo-
retically, the line of sight integral in the definition of the Faraday
depth can simply be split into an integral over the portion of the
line of sight that lies within the Milky Way and the portion that
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is outside the Milky Way. This allows one to write the total Fara-
day depth of the source as the sum of the Galactic Faraday depth
in the direction of the source and an extragalactic contribution,

¢ = ¢g + de. 3)

For most extragalactic sources, the net rotation is dominated
by the effect of the interstellar medium of the Milky Way (Leahy
1987; Schnitzeler|2010). This Galactic contribution has recently
been estimated from a collection of observations of Faraday rota-
tion of extragalactic sources (Oppermann et al.[[2012)). One way
of estimating the extragalactic contributions is to subtract the es-
timate of the Galactic contribution from the observed values.
However, we will argue that this is not a good estimate due to
the presence of uncertainties both in the observations and in the
foreground estimate.

Extracting the sub-dominant extragalactic part from the data
is more difficult than extracting the Galactic part for two rea-
sons. The first obvious reason is that, as it is smaller, it is more
heavily obscured by observational noise in the data. In fact, for
many of the data points that we use the expected extragalac-
tic contribution is comparable to the observational uncertainty.
The second reason is that the Galactic foreground contribution is
spatially smooth to some extent, which enables the usage of cor-
relation information and thus the transfer of information from
many data points to each location on the sky. The extragalac-
tic contributions, on the other hand, are expected to be mostly
uncorrelated from source to source, given the typical source sep-
aration. Therefore, information on the extragalactic contribution
to a data point is only contained in the other data points indi-
rectly via the common Galactic foreground. Furthermore, the ob-
servational uncertainties are uncorrelated from source to source
as well leading to a statistical degeneracy with the extragalactic
contributions. This means that any split between extragalactic
contributions and observational noise in the estimate can only be
made according to the expected variances of these two compo-
nents.

We will additionally argue that the statistical characterization
of the observational uncertainties given by the error bars in the
data catalogs we use may be incomplete in some cases. There-
fore, there is an additional degree of freedom in the expected
noise variance that further exacerbates the degeneracy between
observational noise and extragalactic contributions.

While we will ultimately allow the expected extragalactic
variance to be reconstructed from the data themselves, we use
an initial estimate built on the work by |Schnitzeler| (2010), who
studied the spread of the distribution of observed Faraday depths
of extragalactic sources from the catalog of Taylor et al.|(2009).
Schnitzeler| (2010) observed that this spread changes as a func-
tion of Galactic latitude even after the subtraction of a coarse
foreground model. He then extracted an upper bound on the
spread of the extragalactic contributions as the latitude indepen-
dent part of this function.

In the following Sect. 2l we give precise definitions for the
terminology that we use in the later discussion. Terms like noise
and estimate are introduced and we explain why we regard
the observational uncertainty itself as uncertain. In Sect. 3] we
present a way to estimate the extragalactic contributions using
the foreground map of [Oppermann et al.| (2012). We do this by
making some crude assumptions about the expected variances
of the extragalactic and noise contributions and we discuss in
more detail the degeneracy problem alluded to before. We also
discuss artifacts emerging in the estimate and point out possible
pitfalls when over-interpreting an estimate without taking into
account the corresponding uncertainty information. In Sect.
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we derive an extension to the algorithm of (Oppermann et al.
(2012) that can overcome the degeneracies and thus yield es-
timates both for the Galactic foreground and the extragalactic
contributions. We demonstrate the performance of the algorithm
in a simulated scenario. In Sect. [5] we apply the algorithm to
observational data and present the results. We perform different
case studies to gauge the robustness of these results. Finally, we
give a brief summary in Sect. [6]

2. Data model and terminology

The observed Faraday depth of the i-th source in a catalog, or
data point d;, is comprised of a Galactic contribution ¢, ;, an ex-
tragalactic contribution ¢. ;, and observational noise n;,

di = ¢gi + e + 1. 4

This equation holds for each data point, or equivalently, for all
data points at once when one summarizes as vectors d and n the
observational estimates and their uncertainties for each source
and writes ¢/ as vectors containing the Galactic and extragalac-
tic contributions to the Faraday rotation along all these lines of
sight, respectively.

Before discussing possible ways of estimating individual
constituents, we introduce the terminology that we will use in
our discussion, explain why we need to allow for some uncer-
tainty in the description of the observational uncertainties, and
elaborate on the structure we will assume throughout this work
for the correlations of the three constituents.

2.1. Terminology

For each source in nature, there are two individual numbers giv-
ing the Galactic and extragalactic contributions to the source’s
Faraday depth, respectively. We denote these numbers as ¢ /e.
The definition of the noise term, n, is then simply the difference
between the measured Faraday depth, d, and the sum of these
two numbers,

n=d-(gg+¢). 5)

The measurement and the noise contribution are each also given
by a single number. Note, however, that the measurement itself
is the only number that is known exactly. In fact, without further
input, the three constituents ¢, ¢., and n are completely degen-
erate and therefore completely unknown.

Using additional input, which we will discuss in the follow-
ing, it may be possible to construct reasonable ways to estimate
the three numbers adding up to the measured number. We will
use hatted variables to denote such estimated quantities, e.g. (}ASg
will be an estimate of the Galactic contribution. Distinguishing
between the true numbers realized in nature and our estimates of
these numbers is crucial.

The qualitative difference between the noise and the other
two constituents is that we usually do not aim for an estimate
of the noise itself. Noise can arise due to instrumental effects,
features of the data processing, or the presence of any other
physical effect that is not part of the sum ((Z)g + q&e), such as
ionospheric Faraday rotation. Since the exact contributions of
these effects are unknown, we describe the noise via a probabil-
ity density function (PDF), P(n;|®), which gives the probabil-
ity for the noise contribution to the i-th data point to take on a
certain valug'} given a set of assumptions that we make about

! Precisely, the PDF only becomes a probability once it is integrated
over an interval of possible values for the noise contribution.
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the processes generating the noise or an effective parameteriza-
tion of these, denoted as ®. Additionally, the definition of the
Galactic and extragalactic contributions also influence this PDF.
Specifically, the demand that we want to describe the Galactic
and extragalactic contributions to each source’s Faraday depth
by a single number each, when in reality the source might itself
be spread out over a range in Faraday depth, may force the PDF
for the remainder of the data, the noise, to take on a complicated
shape. This PDF immediately provides us with the likelihood,
i.e., the probability to measure a certain value, assuming certain
values for the Galactic and extragalactic contributions (plus the
set of assumptions ®),

Pdildg,i Pe,i» 0) = P(n; = di — Py = ¢e,ilO). (6)

This equality holds since, for fixed Galactic and extragalactic
contributions, the measurement is completely determined by its
noise contribution.

Modeling all effects that can contribute to the noise is often
not practical. Therefore, one usually finds a few effective param-
eters that approximately describe the PDF for the noise contri-
bution or the likelihood. The most common choice, arising e.g.
from the central limit theorem or a maximum entropy argument
(see e.g.[Jaynes & Bretthorst|2003)), is a Gaussian PDF with zero
mean, i.€.,

P(dilbg s bei» i) = G(di = g — Peis T7)

2
di_ 1 We,i
( ¢g2¢) o

= (27r0'2)71/2 exp|— 20

i

Here, we have introduced the notation G(x,X) for a one-
dimensional Gaussian distribution for a variable x with zero
mean and variance X and have parameterized the PDF com-
pletely with the parameter o;. We will refer to the parameter
o, the standard deviation of the likelihood, as an error bar, since
it gives the width of the PDF for the noise (or error) contribu-
tion to the measured value. In these formulas we have assumed
that while we have some idea about the expected magnitude of
the noise contribution, given by the standard deviation o, the
specific value of n; is unknown. Note that we are not considering
systematic errors that would lead to an offset in the observational
values and thus a non-zero mean of the PDF for the noise.

2.2. Imperfectly described likelihood functions

Precise knowledge of the likelihood function is crucial for the in-
ference algorithms that we will discuss later. However, the Gaus-
sian model for the likelihood, parameterized by the standard de-
viation o, may not be an accurate description of the unknown
effect influencing the observations in all cases. For cases that
cannot be described with sufficient precision by just this one pa-
rameter, the outcome of trying to describe them in this way can
be misleading. For example, the likelihood could have a sharp
peak that can be approximated as a narrow Gaussian, but signif-
icant sidelobes that are neglected in this description.

One possible cause for such a non-trivial likelihood function
could be the inherent n-m ambiguity of polarization orientation
measurements. This is a problem for Faraday depth estimates
from a linear A2-fit, but not for RM synthesis studies. We illus-
trate this in Fig. |I] Assuming polarization angle measurements
at a few frequencies and no other information still allows in prin-
ciple for infinitely many discrete possible values for the source’s
Faraday depth. Any uncertainty in the measurement of the angles

P(d |¢ (source))

15

¢(source)

Fig. 1. Illustration of a possible likelihood curve for a single Faraday
depth measurement. The dotted line shows the likelihood arising from
the n-m ambiguity of position angle measurements and the uncertainty
in these measurements. The dashed curve shows an additional constraint
on the magnitude of the source’s Faraday depth and the solid curve is
the resulting combined likelihood curve, i.e., the product of the dotted
and dashed curves. The plotted curves have been arbitrarily rescaled to
show similar amplitudes.

(say, Gaussian) will turn these discrete possibilities into a series
of equally likely peaks in the likelihood for the source’s Fara-
day depth, as shown by the dotted line in Fig.[I] Additional data,
like the degree of bandwidth depolarization (see e.g. Sunstrum
et al.|2010) can lead to an additional constraint on the magnitude
of the source’s Faraday depth, but does not hold information on
the sign of the Faraday depth. An example for such a constraint,
formalized as a likelihood curve, is shown by the dashed line
in Fig.[I] The combined likelihood, given by the product of the
likelihood for the position angle measurements and the likeli-
hood for the depolarization measurement, is shown by the solid
curve. Evidently, the result can be highly non-Gaussian. The er-
ror bar that is quoted as a measure of the observational uncer-
tainty could in this case correspond to the width of a single peak
arising from the observational uncertainty in the measurement of
the polarization angles. If this error bar is then interpreted as de-
scribing a Gaussian likelihood function, this likelihood function
includes only the main peak and neglects any secondary peaks
such as the ones visible in Fig. [I]

Usually, the error bar on an observational estimate of a
source’s Faraday depth is estimated as being inversely propor-
tional to the signal to noise ratio of the polarized intensity ob-
servation, as well as the width of the frequency coverage in A%-
space. This relation is based on linear Gaussian error propaga-
tion from the observations of the individual Stokes parameters
to a polarization angle and to the slope of a straight line fit to
the polarization angle as a function of A%, as shown by Brentjens
& de Bruyn/ (2005) in their Appendix A. The result of this for-
mula can be seen as an estimate for the width of the main peak
shown in Fig. m However, it does not allow for the presence of
n-m ambiguities and the ensuing non-Gaussianity shown by the
solid line in Fig. [I] Furthermore, the Gaussian approximation to
the observational uncertainty of a derived polarization angle is
not perfect, as pointed out by Wardle & Kronberg| (1974)), and
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the estimation of the polarimetric noise in the first place can also
be erroneous. These are effects that can lead to a general under-
estimation of the widths of the likelihood peaks, i.e., o, as was
detected by |Stil et al.|(2011)) for the RM catalog of [Taylor et al.
(2009).

Furthermore, even though the sources that are used here are
compact, it is not necessarily guaranteed that their emission as
a function of Faraday depth is perfectly described by a single
component. More complicated Faraday spectra due to, e.g., the
internal structure of the source or differential Faraday rotation
in the foreground within the telescope beam can lead to com-
plicated effects on the observational estimates of Faraday depth,
especially when a linear fit of polarization angle versus A is per-
formed (see|Farnsworth et al.[2011)). Note that the usual formula
used for the observational uncertainty described above implic-
itly assumes that the relationship between polarization angle and
squared wavelength is linear. If polarized emission happens over
an extended range of Faraday depths, the questions of what the
Faraday depth of the source is and how large the intrinsic Fara-
day rotation of the source is become somewhat ill-defined. It is
then not clear what the PDF for the noise should be if the noise
is defined as the difference between the observed Faraday depth
and two numbers characterizing the Galactic foreground contri-
bution and the extragalactic contribution.

To accomodate the possibility of having such imperfect er-
ror information (among other things), Oppermann et al|(2012)
allowed their algorithm to widen the likelihood functions of in-
dividual data points considerably. This was warranted because
even when the uncertainty information for the vast majority of
the data points is reliable, a few poorly described outliers can
greatly influence the reconstruction. This was shown by |Op-
permann et al.| (2011)) for the method employed by |Oppermann
et al.| (2012)) and is still true for the algorithm we are deriving in
Sect.[d] although to a lesser extent due to the spectral smoothness
prior that we will employ.

2.3. Probability densities and covariance matrices

A generalization of the one-dimensional Gaussian model dis-
cussed so far is a multi-dimensional Gaussian model with cor-
relations, described by

P(nIN) = G(n,N)
1 1.

= —|27rN|1/2 exp (—zn‘N 1n). ®)
Here, n is to be read as a vector containing the noise contribu-
tions to all measurements and the dagger denotes a transposed
quantity. The covariance matrix N contains the variances of the
noise contributions to the individual measurements on its diag-
onal, N;; = 0'?, and their correlations as off-diagonal entries. In
the limit of uncorrelated noise contributions, i.e., N;; = 0 for
i # j, the one-dimensional Gaussian for each measurement is
recovered.

So far, we have only discussed the likelihood. However, since
we are trying to infer the Galactic and extragalactic contributions
from the measurements and the likelihood is the PDF for the for-
mer quantity under the assumption of fixed values for the latter,
it is clearly not the PDF that we are interested in. In order to
turn the argument around, we make use of Bayes’ theorem to
construct the posterior PDF,

P(¢gv ¢6|d5 N) & P(d|¢g’ ¢ea N) P(¢g’ ¢6)’ (9)
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which is the PDF for the Galactic and extragalactic contributions
to all measurements, given the measured data and the assump-
tions about the noise covariance. The last PDF on the right hand
side is the prior PDF for the Galactic and extragalactic contri-
butions, i.e., a summary of knowledge we have about these con-
stituents before taking into account the measurement data. For
example, a prior could encode information about the expected
variability or spatial smoothness of the Galactic and extragalac-
tic contributions and thus serve to break the degeneracy between
the two.

The posterior encodes all the knowledge that is available
about the quantities of interest, both from the measurement data
and from prior assumptions. Therefore, the posterior should be
the main result of an analysis. However, it may be practical to
summarize the information. To this end, we will approximate
the posterior in our analysis as a Gaussian. This Gaussian is de-
scribed by the posterior mean
Pgre = <¢g/e>(¢g/e‘d) ’ (10)
a weighted average of all possible contributions, and the poste-
rior covariance,

Dgje = <(¢g/e - $g/e) (¢g/e - ég/e)v (11

Geseld)

encoding some information on the uncertainty of the estimate.
We use the angle bracket notation to denote integrals over all
possible configurations of the quantity given in the index,

WACI f Dx f(x) P(xX). 12)

As a prior, we will use a multi-dimensional Gaussian distri-
bution with no linear correlation between any pair of the three
constituents. Note that this does not exclude a correlation be-
tween, e.g., the noise variance and the Galactic contribution. For
the extragalactic contribution, we choose a covariance matrix
that is diagonal, i.e., the extragalactic contributions to the indi-
vidual measurements are regarded as uncorrelated. In principle,
a coherent magnetic field in the intergalactic medium within the
Local Group or on cosmological scales could cause a correlated
extragalactic Faraday rotation structure (e.g. Kolatt||{1998]; Blasi
et al.|[1999; Xu et al.|2006). However, |Akahori & Ryu| (2011)
have shown that this contribution is expected to be about 3 to 4
orders of magnitude smaller than the contributions intrinsic to
the sources and due to large scale structure filaments.

For the Galactic contribution, on the other hand, we allow for
spatial correlationsﬂ In this sense, we statistically define any cor-
related features to be “Galactic” and any uncorrelated features
to be non-Galactic. It will therefore be possible for extended
extragalactic features, e.g. from satellites of the Milky Way, to
appear in our estimate of the Galactic contribution and for un-
correlated features from within the Milky Way to appear in our
estimate of the extragalactic contribution or in the noise budget.
For the estimate of the extragalactic contributions this means that
a correlated offset is possible. This should, however, affect all
sources in a similar way, unless sources behind a structure that
causes this correlated extragalactic contribution are compared to
sources without such a structure in front of them.

2 To be precise, we assign a Gaussian prior with position independent
correlation function to a dimensionless quantity that is linearly related
to the Galactic contribution. See Sect.[dor[Oppermann et al](2012) for
details.
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The fact that we assume no correlations both for the noise
and extragalactic contributions further strengthens the degener-
acy of the decomposition of the data. While the estimate of the
Galactic contribution to a data point will be influenced by sur-
rounding data points as well, due to the assumed spatial corre-
lations, the remainder will simply be split between the estimates
for the noise and extragalactic contribution according to the ratio
of the expected variances for this particular data point. Further-
more, we will regard both expected variances to be uncertain.
Without further constraints it is then impossible to decide what
ratio should be chosen for the split. While we will also assume
the correlation structure of the Galactic contribution to be uncer-
tain, this can be extracted from the data unambiguously, except
for a possible part with no spatial correlations, which would suf-
fer from the same degeneracy with the noise and extragalactic
contributions. We will discuss this problem in more detail in the
next section.

3. Estimators

As we already pointed out, an exact and definitive separation
of d into its three constituents is not possible. However, under
reasonable assumptions, we can formulate estimates for these
quantities and draw conclusions about the statistics of the extra-
galactic contributions. In this section, we will discuss methods to
estimate the Galactic and extragalactic contributions without any
specific prior assumptions. In the next section, we will present a
full Bayesian analysis with the goal of extracting the extragalac-
tic contributions.

3.1. Wiener filter

To estimate the Galactic contribution to Faraday rotation,|(Opper-
mann et al.|(2012) used an algorithm based on the Wiener filter,
which calculates the linear estimate, (}A)g = Fd, that minimizes the
expectation value of the square-norm of the residual r = ¢, — $g.
Here, the expectation value is calculated over the joint PDF of
all constituents of the data, so that F minimizes the expression

<(¢g - Fd) (¢ - Fd)>

The Wiener filter reconstruction Fd indeed yields the optimal
estimate in this square-norm sense in cases in which all priors
are Gaussian, since it corresponds to the posterior mean of ¢, in
this case (see e.g. [Enfflin & Weig|2010). In all other cases, the
Wiener filter is still the optimal linear filter.

Solving for the filter matrix F yields (see e.g.|/Zaroubi et al.
1995)

. (13)
(‘/’g,‘/ﬁe’”)

F = (gyd") (14)

(@ pen) <d >(¢g,¢e,n> '
We use | to denote transposed vectors, so that the expression in
Eq. is a scalar and the expression in Eq. consists of
two matrices. Assuming all three constituents of the data to be
mutually linearly uncorrelated, the expectation values in the last
equation simplify to

<¢gd-r><¢g,¢e,n> = <¢g¢;><¢g> =G (1
and
<dd+>(¢g,¢e,n) - <¢g¢;>(¢g)+<¢e¢l>(¢e)+<nnT>(n) =G+E+N, (16)

where we have introduced the covariance matrices G, E, and N
of the Galactic, extragalactic, and noise contributions, respec-
tively. With these abbreviations, the Wiener filter estimate of the
Galactic contribution becomes

¢, =G(G+E+N)"d. (17)

If, on the other hand, the goal is to estimate the extragalac-
tic contribution ¢, a straightforward idea is to take the data d
and subtract the optimal estimate of the Galactic contribution.
However, this is not the optimal estimate of the extragalactic
contribution. Rather, it is the optimal estimate of the difference
between the data and the Galactic contribution, i.e., of the sum
of the extragalactic contribution and the noise,

d-¢s=(E+N)G+E+N)"'d= ¢+ . (18)

For the optimal estimate of the extragalactic contributions,
one simply has to exchange the roles of ¢, and ¢, in the Wiener
filter, leading to

p.=EG+E+N)'d. (19)

The difference with respect to Eq. (I8) is a weighting with the
ratio of the expected extragalactic variance to the expected non-
Galactic variance, i.e., the sum of the extragalactic and noise
variances,

Je=EE+N)"(d-d,).

Similarly, one could build an optimal estimator of the mea-
surement noise by exchanging the roles of ¢, and n. This would
lead to the estimate

i=NE+N"(d-d,).

(20)

2D

The main problem with all these considerations is that the
matrices G, E, and N are not necessarily known to sufficient
precision. [Oppermann et al.| (2012) have overcome this prob-
lem for their estimate of the Galactic contributions by estimat-
ing the matrices from the same data set. For this, they summa-
rized the non-Galactic contributions £ and N, i.e., they did not
attempt to differentiate between extragalactic and noise contri-
butions. Furthermore, they made some simplifying assumptions
about the structure of the matrices, namely diagonality in the
spherical harmonics basis for a transformed version| of G and
diagonality of (E + N). Since the information contained in the
data points is local to the sources’ positions on the sky, diagonal-
ity of (E + N) corresponds to a lack of spatial correlations. This
difference in correlation structure allows the reconstruction of G
and of the sum of N and E. For the latter, the diagonal of (E + N)
was assumed to consist of the sum of the observational uncer-
tainty variance, o2, and an estimate of the typical variance of

. L 2
the extragalactic contributions, o-% = (6.6 rad/mz) , taken from

Schnitzeler| (2010) and consistent with the earlier study of |Leahy
(1987), multiplied with a correction factor 7,

diag (E + N) = n (02 + ). (22)
The correction factor was introduced to account for error bars
that describe the likelihood with insufficient precision, the po-
tential of extra multiples of & in the rotation of the polarization

3 |Oppermann et al.|(2012) write G = RS R, where R is an operator that

projects an all-sky field onto the source-positions and multiplies with a
Galactic latitude-dependent profile function, and assume diagonality in
the spherical harmonics basis for S. See also Sect.[d] where we follow
the same argument.

Article number, page 5 of



A&A proofs: manuscript no. note

plane, and sources for which the extragalactic contribution is sig-
nificantly larger. Note that  and o are different for each data
point, while o is the same for all. With these assumptions, the
Galactic contribution can be reconstructed according to Eq. (T7).
This involves the determination of the correction factors 7 and
the matrix G from the same data set. We will recapitulate the
underlying assumptions and mathematics in Sect. ] where we
present a similar, but refined, algorithm to reconstruct both the
Galactic and extragalactic contributions.

For an optimal estimate of the extragalactic contribution ac-
cording to Eq. (20) the extragalactic covariance matrix E needs
to be known individually, not just the sum (E + N). A separa-
tion of E and N using the same recipe used by Oppermann et al.
(2012)) for the separation of G and (E + N) is, however, not feasi-
ble, since E and N are degenerate under the assumption that both
of them are diagonal. In other words, it is impossible to decide
on statistical grounds for individual data points, how much of
the correction factor 7 is due to extragalactic contributions and
how much of it is due to observational effects. In this section, we
present a simple analysis making use only of the available re-
sults of Oppermann et al.| (2012) and a crude assumption about
the split between E and N to demonstrate some of the statistical
features to be expected from the result. In Sect.[d] we will make
use of further physically and observationally motivated assump-
tions to partially overcome the degeneracy within a full analysis
that includes N and E individually.

Oppermann et al.| (2012) found that the correction factors 7,
tend to be larger at lower absolute Galactic latitude (see their
Fig. 7), attributing this effect at least partly to multiples of 7 in
the rotation angle measurements that were wrongly determined.
Another reason could be that the Galactic plane contains much
more structure in Galactic Faraday depth on the scale of the typ-
ical source separation than the polar regions. As a consequence,
the algorithm would wrongly attribute this structure to noise. In
any case, on physical grounds the observed latitude dependence
is not expected to be due to extragalactic contributions. A reason-
able first approximation could therefore be to assign the correc-
tion factors of Eq. (22)) solely to observational effects and write

diag (E) = o2 (23)
and
diag (N) = no? + (n — 1) 2. (24)

Since many of the correction factors derived by Oppermann et al.
(2012) are actually smaller than one, the last equation can lead
to reduced or even negative error variances. To prevent this from
happening, we replace all correction factors that are smaller than
one with one here, recalculate the map of the Galactic contribu-
tion using these correction factors, and use these estimates in the
following when we write 7 and @,.

With these assumptions and approximations, the posterior
mean estimate for the extragalactic contributions is straightfor-
wardly calculated according to Eq. (20). This estimate is shown
in the top left panel of Fig.[2]as a function of Galactic latitude for
the data from the NVSS RM catalog (Taylor et al.|2009). Here
we use only the NVSS RM catalog because of its large number
of sources and in order to be able to point out some statistical
features in the result without being influenced by a combination
of different catalogs with varying properties. In the full analy-
sis presented in Sect. ] we will use all observational catalogs
available to us.
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3.2. Features in the extragalactic estimates

The most striking feature of the extragalactic Faraday rotation
contributions calculated under these crude assumptions is the
dependence of their distribution on Galactic latitude. As a mea-
sure of the spread of extragalactic contributions, we calculate the
sample standard deviation in bins of sin() of width 0.2, where b
denotes Galactic latitude. The resulting standard deviations are
shown in Fig. [3] This plot seems to suggest that there is some-
thing unexpected happening, potentially brought about by the as-
sumption made in Eqs. (23) and (24)). This is further confirmed
by histograms of the distribution in latitude bins, plotted in the
top right panel of Fig.[2] Evidently, the shape of the distributions
is less peaked nearer to the Galactic poles than at intermediate
latitudes. The distribution becomes very flat near its center in
bins close to the Galactic poles.

It may be surprising that these distributions depend on Galac-
tic latitude so strongly, given that they are supposed to show
the extragalactic contributions. Before discussing the reasons for
this behavior, we will make a few general comments regarding
its implications.

It is important to note that the quantities plotted in the top
half of Fig. 2] are not the extragalactic contributions, but only es-
timates of these. As we pointed out earlier, given the degeneracy
of the problem and the uncertainties involved, a definitive deter-
mination of the extragalactic contributions is not possible. Any
separation of the observed Faraday rotation measurements into
Galactic, extragalactic, and noise contributions is a trade-off be-
tween the three and therefore each of the three estimates affects
the other two. Any result will have to be probabilistic in nature,
no matter how sophisticated the analysis method or how good
the data set. The statistical degeneracy is, however, less severe if
a data set is considered for which the noise covariance is known
with certainty.

To illustrate how the split of the data into the three compo-
nents is done in this case, we investigate the case of only two
Faraday rotation measurements at two different locations on the
sky. In this case the data vector is two-dimensional, d = (d|, &)t
and can easily be plotted as a vector, see Fig. [l We assume the
data according to Eq. ] to be the result of three independent
stochastic processes, namely Galactic and extragalactic Faraday
rotation at these locations plus measurement noise. We model
these to be Gaussian processes with covariances

2
G= ((16%) (f(g))z)radz/m4, (25)
E-= ((6'06)2 (606)2)rad2/m4, and (26)
N = ((6'8)2 (2_00)2)rad2/m4. (27)

The noise of the two measurements is independent and is as-
sumed in our example to have a standard deviation of 6 rad/m?
and 2rad/m? for the two different observations, respectively.
The extragalactic contributions have the same variance every-
where, with a standard deviation of 6.6rad/m?. The Galactic
components on the two measurement locations are assumed to
be correlated, leading to a non-diagonal correlation matrix G.
In Fig. [f] we show the component vectors drawn to generate the
data as well as their reconstruction from the data according to
Egs. (T7), 20), and under the assumption of known co-
variance matrices. These estimates add up to the data vector,
$o + ¢ + 7 = d = ¢y + ¢ + n, without being identical to the
original signals. Due to the different structure of the covariance
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Fig. 2. Top: Estimates for the extragalactic contributions to the Faraday depths of the 37 543 sources in the NVSS RM catalog (Taylor et al.[2009),
calculated according to Egs. 20), (23), and 24). The left panel shows the estimate for each of the data points, plotted against Galactic latitude.
The right panel shows normalized histograms of the distribution of these estimates in bins of sin(|b]). Each bin has a width of 0.1. Botfom: The
same for a random sample drawn from the posterior PDF, Eq. (29), for the extragalactic contributions around the mean plotted in the upper panels.

matrices it is possible to construct an optimal and non-trivial par-
tition of the data vector in non-parallel components.

This example shows that the reconstruction is able to capture
some aspects of the components, but not all. In particular it il-
lustrates that the reconstructed quantities have less variance than
the original ones. Note also that the estimates ¢, and 7 simply
split the difference d — (?)g according to the ratio of the variances,
(6.6)?/(6.0)> and (6.6)?/(2.0)? for each of the two data points,
respectively. This is due to both E and N being diagonal. Fur-
thermore, Fig. |4 also illustrates that using d — q3g as an estimator
for ¢. is suboptimal, since it contains some of the noise, as we
have d — ¢y = §e + .

The amount of variance missing from the estimates is
known statistically and can be characterized by covariance

-1
matrices. These are D, = (G‘1+(N+E)‘1) , Do =

-1 -1
(E'+W+Gy")  and D, = (N'+(G+E)")" for the
Galactic, extragalactic, and noise components, respectively.

Since the whole analysis presented here and by |(Oppermann
et al.| (2012)) relies on the description of the statistics in terms of
second moments or covariance matrices, it does not make any
prediction regarding the shape of the resulting sample distribu-
tions. Therefore, even if the reasons for the change in shape with
Galactic latitude are not immediately apparent, there is also no
reason to expect that the shape of the distribution of the estimate
. should not change with Galactic latitude.

Under the assumption of Gaussian priors for all three con-

stituents of the data, i.e.,
P(dg, pe,nlG, E,N) = G(¢g, G) G(¢e, E) G(n, N), (28)
the posterior for each of them individually is again Gaussian.
Specifically, the posterior for the extragalactic contributions is
given by

P@uld. G, EN) = 6. = b D = (7 + G+ M) ) 29)
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Fig. 3. Sample standard deviation of the estimated extragalactic contri-
butions plotted in the top left panel of Fig. 2] (+-symbols), as well as of
the random sample drawn from the posterior PDF for the same quantity,
plotted in the bottom left panel of Fig. 2] (x-symbols), in bins of sin(b).
Each bin has a width of 0.2.
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Fig. 4. Visualization of the data space in the case of only two Fara-
day rotation measurements. Each coordinate denotes the possible val-
ues for the two measurements d; and d, at two sky positions. The
data vector, d = (d,, d,)" is the sum of a vector of Galactic Faraday
depth, ¢, = (¢g,1,¢g$2)"’, of a vector of extragalactic Faraday depth,
¢ = (Pe1, ¢e2)!, and of a measurement noise vector, n = (ny,n,)". The
reconstructions of these three components, (Zzg, (iﬁe, and 7, are shown as
dashed arrows. Their sum is also equal to the data, however they differ
from the correct components due to the impossibility to uniquely sepa-
rate one data vector into three statistically independent components.

with the Wiener filter estimate as mean and a covariance D, de-
scribing the variance that is missing from the estimate itself (see
e.g. EnBlin et al.[2009). Near the Galactic plane, the variance of
the Galactic Faraday depth is greatly enhanced. Therefore, the
entries of G corresponding to lines of sight at low absolute lat-
itudes are comparatively large. The same is true to a different
extent for the entries of the noise covariance N. This is almost
entirely due to our usage of the noise variance correction factors,
which tended to be larger for data points near the Galactic plane
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in the study of|(Oppermann et al.|(2012). The two most likely rea-
sons for this behavior of the correction factors are the presence of
previously faulty multiples of 7 in rotation angle measurements
and the assignment of small-scale structure in the Galactic con-
tribution to the noise budget by |(Oppermann et al| (2012)). This
could happen if the amount of structure on small scales in the
Galactic contribution is much larger near the Galactic plane than
elsewhere, since an assumption of isotropic statistics modulo an
overall scaling of the values with Galactic latitude was made for
the Galactic contribution.

The higher variance of the Galactic and noise contributions
near the Galactic plane is therefore the cause for the smaller
absolute values of the estimates plotted in the top left panel of
Fig.[2]in this region. However, the covariance matrix describing
the posterior Gaussian for the extragalactic contributions conse-
quently also encodes a higher uncertainty of the estimate near
the Galactic plane. So while the estimated extragalactic contri-
butions tend to be smaller in modulus near the Galactic plane,
the uncertainty of the estimate is higher. This effect can be seen
by drawing random realizations from the posterior PDF. Each
realization represents one possible configuration that is not ruled
out by the data. By drawing the realizations from the posterior,
one more often draws configurations that are well supported by
the data than the ones that are marginally possible. While it is
true that the most probable configuration is given by the poste-
rior maximum, ¢, this does not need to be a typical configura-
tion in any sense. For example, while the configuration plotted
in the top left panel of Fig. 2] with its small absolute values near
the Galactic plane is more probable than any other specific re-
alization, there are many more realizations with typically higher
absolute values near the plane that are also not ruled out by the
posterior, Eq. (29). Due to the higher posterior uncertainty near
the Galactic plane, different realizations drawn from the poste-
rior distribution will vary wildly for data points at low absolute
Galactic latitude.

One random sample realization drawn from the posterior
PDF is shown in the bottom left panel of Fig. [2] Evidently, the
strong dependence on Galactic latitude has been reduced. This
is further confirmed by the lower right panel of Fig. 2] and by
the X-symbols in Fig.[3] which show less variation with latitude
than the +-symbols. This confirms that our analysis is based on
plausible, albeit somewhat crude, assumptions, since the appar-
ent artifact of the distribution in the top panels of Fig. 2] disap-
pears almost completely when the posterior uncertainty is added.

4. Filtering Galactic and extragalactic contributions
simultaneously

In this section we will extend the analysis of Sect.[3|to a recon-
struction of the Galactic and extragalactic contributions at the
same time. For this, we will introduce the prior variance of the
extragalactic contribution as a free parameter right from the start.
In the first subsection, we lay out the necessary assumptions. We
then present the derivation of the algorithm from probabilistic
considerations, demonstrate its performance in a simulated sce-
nario, and finally show the results for the analysis of real-world
data in Sect.

4.1. Assumptions and covariance matrices

In the previous section we have worked with linear estimates
based on the usage of covariance matrices. Here, we will go
further and explicitly assume Gaussian priors for all three con-
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stituents as we already did in Eq. (28), i.e., we make use of only
the covariance matrices to describe the prior statistics (see e.g.
Jaynes & Bretthorst|2003], for a discourse on the appropriateness
of Gaussian priors in such a case).

4.1.1. Galactic covariance

For the prior covariance of the Galactic contribution, we fol-
low the argument of |Oppermann et al.| (2012). We model the
Galactic Faraday depth as an isotropic Gaussian random field
multiplied with a latitude-dependent profile function. This pro-
file function serves to remove the largest-scale, most obvious,
anisotropy, namely the presence of the Galactic disk, from the
definition of the random field. This enables us to treat the ran-
dom field, which we will try to reconstruct, approximatively as
an isotropic Gaussian field. In short, we write

¢g(L.b) = p(b) s(1,D),

where p(b) is the Galactic profile function, s(/, b) is the dimen-
sionless isotropic random field, and / and b are Galactic longi-
tude and latitude, respectively.

Modeling the field s as an isotropic field means that its two-
point correlation function (or covariance) depends only on the
distance of the two points. Equivalently, one can write the co-
variance matrix as diagonal in the basis of spherical harmonics
components according to

(30)

o) = Seer Oy Co.

S (emy(emy = <Sfms;rm/> (€20)
Here, ¢ is the Kronecker delta symbol, the asterisk denotes com-
plex conjugation, and C, denotes the angular power spectrum on
scale Ay ~ 180°/¢.

The field s(l, b) is defined on the complete celestial sphere.
However, observational estimates of Faraday depth are only
available in the directions in which polarized sources have been
studied at several frequencies. We make use only of extragalactic
sources in order to avoid the inclusion of distance information in
our analysis. In order to formalize the relationship between the
all-sky field s and the data, we need to include both a projection
of the field onto the direction in which the observations were
made and a multiplication with the Galactic profile function, as
well as the addition of the extragalactic contribution and noise.
In total, the i-th data point can be written as

di = p(bi) s(l;, b;)) + ¢e + 1

= f dQ Ri(7) s(7) + ¢e,; + n;. (32)
SZ

We use (/, b) and 7 interchangably to denote positions on the ce-
lestial sphere with (/;, b;) being the position of the i-th data point.
In the last line we have summarized the multiplication with the
profile function and projection onto the appropriate direction in
aresponse operator R. With this we can write the covariance ma-
trix of the Galactic contribution, regarded as a quantity defined
only in the locations of observed sources, as
G =RSR'. (33)
The only thing left undetermined is the angular power spectrum.
Inferring it from the data will be part of our reconstruction algo-
rithm.

We constrain the angular power spectrum with a prior con-
sisting of two parts, following|Oppermann et al.|(2013)). The first

part is an independent inverse-Gamma prior for each component,

Pi(C) o« C; exp (—%) (34)

¢

where g, and a, are parameters that vary the constraining power
of the prior. In our application, we will use the limit of g, — 0
and @y — 1, turning the inverse-Gamma prior into a Jeffreys
prior, a probability density that is flat on a logarithmic scale.
This choice is made to get a prior that is very broad and will
not confine the reconstruction to a too narrow range. The second
part of our power spectrum prior is a term that couples different
scales and enforces spectral smoothness. This term is given by

1 P log Cr\
Psm(C) o exp (—Efd(logf) ((MO—W)

= exp (—%(log C)'T(log C)), (35)
where the second derivative and integral are to be read as short-
hands for finite-difference expressions and 7T is a matrix that per-
forms the same operations. This prior favors angular power spec-
tra that are close to power laws. Its strength is regulated by the
parameter op,. In total, the prior for the angular power spectrum
is the product of the two terms,

P(C) < Pym(C) 1_[ Pi(Co). (36)
4

We refer the reader to |(Oppermann et al.| (2013) for a detailed
discussion of this spectral prior.

4.1.2. Extragalactic and noise covariances

The extragalactic and noise contributions can both be regarded
as quantities that are defined only for the source positions; hence
the index i in Eq. (32). For the noise this choice is obvious since
there is no noise if there is no measurement. For the extragalactic
contribution the data have no constraining power at any other
locations with the prior assumptions that we are about to make
and we therefore only consider the extragalactic contributions at
the source positions for the sake of simplicity.

We consider the covariance matrices E and N both to be di-
agonal, i.e., we do not allow for correlations between extragalac-
tic or noise contributions of different data points. As mentioned
before, this assumption is only strictly valid as long as there are
no coherent components to the extragalactic contributions, e.g.
from an intervening galaxy cluster or a coherent magnetic field
in the intergalactic medium.

Since these two matrices are diagonal in the same basis, their
entries are degenerate if both matrices are unknown, as we have
discussed in Sect. [3.1] To break this degeneracy, we will make
the assumption here that some of the entries of the noise co-
variance matrix are in fact known with certainty a priori, which
will enable us to extract the variance of the extragalactic con-
tributions from the data points corresponding to these entries.
For this, we split the data set into two categories. The first cate-
gory contains all data points for which we cannot be certain that
the quoted error bar describes the likelihood function accurately
enough. We will refer to these data as Somewhat Informative
Points (SIP). For these data, we model the sum of the two co-

variance matrices as
(E +N); =i (0% + 7). (37)
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i.e., we do not attempt to differentiate between insufficient error
information and an under-estimated variance of the extragalactic
contribution. For the other category of data, for which we assume
that the noise statistics are sufficiently described by the Gaussian
error bars, we model the covariance matrices as

Njj =07 (38)
and
Ej; = neo?, (39)

i.e., we do not allow for corrections of the error bars but use these
data points to correct our initial assumption about the typical
variance of the extragalactic contributions. We will refer to these
data as Very Informative Points (VIP). Note that the error vari-
ance correction factors in Eq. are individually determined
for each data point, whereas the factor 7 in Eq. (39) is the same
for each data point in the VIP category, since we assume that
the statistics of the extragalactic contributions are homogeneous
over the whole sky.

In the following, we denote as dSP) ¢£SIP), nS™®) the vec-
tors containing the observed values, extragalactic contributions,
and noise contributions of the data points in the SIP category,
described by Eq. (37), and as dV™®, ¢\"™ nV) the same for
the VIP category of data, described by Egs. and (39). De-
ciding in which category a specific data point should be is of
course a non-trivial task. In Sect. [5|we will present several pos-
sible choices for such splits of the data.

For the free parameters 7; and 7., we choose again inverse-
Gamma priors,

Pric(1ise) o P exp (= 2L 40
lG(Uz/e)OCTI,-/e exp . (40)

Mije
We will discuss our choice of parameters r;/. and ;. in the fol-
lowing section. Naturally, we do not enforce smoothness of the
n-values in any sense.

4.2. Reconstruction strategy

Here we make use of the combined methodology of |Oppermann
et al.| (2011) and |[Oppermann et al.| (2013). In the first of these
papers a method for the reconstruction of a Gaussian signal
field, its power spectrum, and the n-factors was presented, the
so-called extended critical filter. In the second paper, the inclu-
sion of a spectral smoothness prior according to Eq. (33) was
discussed, albeit without allowing for the n-factors. Combining
these two methods is straightforward, using the ansatz of the em-
pirical Bayes method (e.g. [Robbins|[1955). We approximate the
posterior mean for the dimensionless signal field and the extra-
galactic contributions as

mzf@sf@éf@ﬁ sP(sld,C’,f;)P(C,md)
szsz)C‘fZ)ﬁ sP(sld,C‘,ﬁ)é(C‘—(f‘)é(ﬁ—ﬁ), “41)
@=f@%f@§fﬂwﬂwmfﬁwwﬂm

zjﬁwifDCJEM%Pwmuim&é—éwm—%,
(42)
where we have chosen to work with the logarithmic quantities

(43)

C=logC
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and

i1 =logn. 44)

We choose as estimators for the auxiliary quantities, (C;)¢, (77;);,
and 7. the numbers that maximize the PDFs

P((Core|d, @i = Giin e = e, (45)
P d. (Co)e = (Co)ene = ). (46)
and

P |d. Coc = Cor) “7)

respectively. This leads to estimates m for the signal field and ¢,
for the extragalactic contributions that depend on the estimates

C and 7, which are themselves again dependent on each other
and on the estimates m and ¢.. A system of equations arises that
needs to be solved self-consistently. Our estimate for the Galac-
tic contributions to the observed values will then be qAﬁg = Rm.

Putting in the priors that we described in the previous sec-
tion, we can calculate the PDFs needed for the estimates, after
making a few approximations. The detailed calculations and fil-
ter formulas are discussed in Appendix [A]

The choice of estimators made here represents a trade-off
between statistical optimality and practical ability to calculate
the relevant PDFs. Ideally, we would estimate each quantity by
marginalizing over all other unknown quantities and averaging
the resulting posterior distribution. However, these marginaliza-
tions are in general not possible analytically. Rather than resort-
ing to computationally expensive sampling techniques, we use
some unmarginalized PDFs. In the next section, we show a sim-
ulated example calculation that demonstrates the quality of the
results obtained with our approximations.

In all this, we have assumed the Galactic latitude profile to be
known. Another global iteration step will be needed to include
this as a quantity to be reconstructed. In a first step, we calculate
the profile function simply as the root mean square of all the data
values in latitude bins. In doing this, we subtract the noise vari-
ance and smooth the squares with a Gaussian kernel of 4° full
width at half maximum (FWHM). After the iteration of the filter
equations derived in the appendix has converged using this pro-
file function, we calculate an approximative map of the posterior
mean for the squared Galactic Faraday depth according to
(98) g = (P9 )y = P°i* + PPdiag(D), (48)
where p is the profile function used in the iteration of the equa-
tions listed in the appendix. We then smooth this map again with
a Gaussian kernel of 4° FWHM and average over Galactic lat-
itude bins to obtain a new profile function. This procedure is
repeated until the profile function has converged as well. As we
will see in Sect.[4.3] a few of these global iteration steps suffice
to achieve convergence.

We fix the remaining prior parameters according to the fol-
lowing scheme. For the reconstruction of the angular power
spectrum of the Galactic contributions, we use the limit g — 0
and @ — 1. This turns the inverse-gamma prior for each pa-
rameter C, into a Jeftreys prior, and makes the prior for log C,
flat. For the strength of the spectral smoothness prior, we choose
o2, = 10, entering the equations via the matrix 7. This is a
rather weak smoothness prior, allowing for a change in slope
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of V10 per e-folding in £ on a lo-level. The reconstruction of
the power spectrum will therefore be largely data-driven. For the
prior for the noise variance correction factors we choose §8; = 2,
making this inverse-gamma prior more informative than the one
used for the angular power spectrum. This is done to account
for the expectation that most of the data points in the SIP cate-
gory will have error bars that describe the likelihood sufficiently

well and therefore will not need large ;-factors. For the cutoff-
parameters r;, we adopt the values

3 0'1.2 + 7760'5
ri = zmax{l,m . (49)

The lower threshold of 3/2 is introduced to make sure that af-
ter all approximations made in the derivation, the noise variance
correction factors never decrease the uncertainty in the measure-
ment, setting 77; = 1 as a lower limit. This threshold is increased
whenever it becomes possible for the pure noise variance of a
data point,

Nii=(N+E); — Ei; = n; (0',24‘0'3,)—77@:0'5, (50)
to decrease with respect to the initial value a’?.

Finally, for the correction factor for the extragalactic vari-
ance, we again use Jeffreys prior, i.e., 8 — 1 and r. — 0. This
prior is broader than needed, since the order of magnitude of the
extragalactic variance is already known, e.g. from |Schnitzeler
(2010). However, we expect the extragalactic variance to be suf-
ficiently constrained by the data in the VIP category, so that we
do not need to constrain it with the prior. As in the case with
the spectral smoothness prior, we choose to forgo the use of a
stricter prior in favor of a more data-driven analysis.

4.3. Simulation

To investigate the properties and limitations of the algorithm we
developed in the previous section, we will apply it to a simulation
of the Faraday sky.

4.3.1. Simulation setup

We model the Galactic Faraday depth as a dimensionless,
isotropic, correlated Gaussian random field multiplied with a
latitude-dependent profile function. The profile function and an-
gular power spectrum that we use are shown in Fig. [5] and [f]
respectively, with a thick solid line. Our choice of profile func-
tion is modeled on the one found by |Oppermann et al.| (2012)
and as a power spectrum we choose a simple broken power-law,

—y/2
52 Y
C I+|— ,
gOC( +(£O)]

with breaking point £, = 5 and spectral index y = 2.5, as an arbi-
trary model that is not too far removed from what we expect. We
choose the normalization of the power spectrum in such a way
that the resulting dimensionless field has variance one. This field
and the corresponding map of the simulated Galactic Faraday
depth are shown in the top two panels of Fig.[7]

The data points we simulate are at the source locations of
the catalog used by |Oppermann et al.| (2012), which we will
again use in Sect. [5] For the extragalactic contribution to these
data points, we draw independent zero-centered Gaussian ran-
dom numbers with a dispersion of ™ = 10rad/m2. This is
higher than the fiducial value of oo = 6.6 rad/m? that we use
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Fig. 5. Galactic latitude profile used in the simulation and its reconstruc-
tion. The thick solid line is the simulated profile, the thin dotted line is
the profile initially used in the reconstruction and calculated directly
from the simulated data. Subsequent reconstructions of the profile func-
tion are shown as thin dashed lines with earlier iterations lying higher
in the plot. The final reconstruction is depicted by the thick dashed line.
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in our reconstruction. Checking whether the algorithm is able
to pick up this discrepancy is one of the main purposes of this
study.

Finally, we assume uncorrelated Gaussian noise contribu-
tions for all data points. The individual noise variances are given
by the error bars of the catalog in most cases. However, we do
split the data points into two categories, as described earlier, and
increase the error variance for a randomly chosen subset of 5%
of the data points in the SIP category by an arbitrary factor of 400
(i.e., we increase the error bar by a factor 20), without informing
the reconstruction algorithm about the magnitude and locations
of this effect. We perform the split of the data into the two cat-
egories according to the methodology used in the calculation of
the data values, putting all data points derived via a A2-fit into the
SIP category and all data points derived using the RM-synthesis
technique into the VIP category. Table 1 of Oppermann et al.
(2012) includes this information for all data points. The result-
ing distribution of data points of categories one and two, as well
as the location of the data points with increased noise variance,
is shown in Fig.[§]

4.3.2. Results

The different iterations of the Galactic latitude profile are shown
in Fig.[5] As is evident, the iteration converges quickly. We there-
fore stop our reconstruction after six iterations of the Galactic
profile function. Figure[6]shows the reconstructed angular power
spectra at the end of each iteration with a given latitude pro-
file. As can be seen, the correct power spectrum is reconstructed
rather well at the end. Note that the data contain information only
on scales that are larger than the angular separation of sources.
This separation is of course different in different regions of the
sky. Typical source separations are of the order 1°, however, the
data are still dominated by noise and extragalactic contributions
on this scale. This can explain the mismatch between the true
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Fig. 6. Angular power spectrum of the simulated dimensionless version
of the Galactic Faraday depth and its reconstructions. The thick solid
line is the simulated power spectrum, the thin dotted line shows the ini-
tial guess, the thin dashed lines are subsequent reconstrucions, and the
thick dashed line is the final reconstruction. Shown are the reconstruc-
tions at the end of each iteration with fixed Galactic latitude profile. In
the bottom panel, we show the ratio of the reconstructed power spectra
and the one used in the simulation.

and reconstructed power spectra even on scales that are a factor
of a few larger than the typical source separation.

The reconstructed map of the dimensionless isotropic Gaus-
sian random field is shown in the left column of Fig. [/} along
with a map quantifying its uncertainty per pixel, given by
diag(D). In this simulated scenario, where we know what the
map is that we are trying to reconstruct, we can quantify this
uncertainty information by checking the number of pixels for
which the true value lies within the interval given by the recon-
struction plus or minus the uncertainty, i.e., m + /diag(D). We
find in our example that this is the case for 66% of the pixels,
hinting that the Gaussian approximation to the posterior PDF
that we are calculating is likely not too far from the true poste-
rior. The right column of Fig.[7|shows the same for the physical
Faraday depth. Sixty-three percent of the pixels have an esti-
mated Galactic Faraday depth that lies within the approximate
1o interval around the simulated value. These maps demonstrate
that, with the data that we have simulated, the reconstruction and
the true map agree on large and intermediate scales. Only the
small-scale features are missing in the reconstructed map. This
effect is of course more prominent in regions of the sky where
the data density is lower.

To study the reconstructed error variance correction factors,
(11))i» we plot a histogram of these in Fig. 0] Clearly, the noise
variance was increased for a significant fraction of the data
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points in the SIP category. The mean value for 7; is 6.2 and the
median is 2.0. Also plotted in Fig. [0is a histogram only for the
data points for which the error variance was indeed increased in
the simulation. The mean and median of these r;-factors is 82.7
and 31.2, respectively. Taking the mean and median for all data
points in the SIP category for which the error variance was not
increased in the simulation, on the other hand, yields 2.3 and
2.0, respectively. So while the algorithm tends to increase all er-
ror bars slightly, there is clearly a trend for the error bars of the
right data points to be increased much more severely.

The factor 7, that corrects the assumed extragalactic variance
is reconstructed in this example to be 2.6, corresponding to a
standard deviation of

Ge = ANe 02 = 10.7 rad/m?,
(true) _

which is close to the value of o7y = 10 rad/m? that we put into
the simulation. Therefore we can conclude that with our algo-
rithm we are able to reconstruct the variance of the extragalactic
contribution with high precision. In principle, we could quantify
the uncertainty of this estimate by taking the second derivative
of the PDF given by Eq. at its maximum. However, we
expect that the error in this estimate will in reality be dominated
by the limitations of our assumptions, i.e., the fact that the ex-
tragalactic Faraday rotation is not exactly an isotropic, uncor-
related, Gaussian random field, and the ambiguity of the cate-
gorization of the data points, and not so much by the statistical
information content of the data. We therefore believe that the
quantification of the statistical uncertainty would be potentially
misleading and therefore is not worth the computational effort.
Even in this simulated scenario, the difference between the re-
constructed 10.7 rad/m? and the 10rad/m? is probably mostly
due to the approximations made in the derivation of our filter
formulas.

Finally, in Fig.[TI0] we plot the resulting extragalactic contri-
butions for each data point versus Galactic latitude. Just like for
the estimators discussed in Sect. [3] some artifacts of the filtering
procedure are obviously present in the resulting estimate. In the
top panel of Fig.[T0] we plot the estimates for the data points of
the two different categories in different colors. The plot shows
that the data points in the SIP category end up with estimates
that have a clear latitude dependence and a rather sharp cut-off
around |$e| ~ 8rad/m2. The estimates for the data points of the
VIP category also show a dependence on Galactic latitude, how-
ever, their spread is generally larger and their distribution does
not exhibit a sharp cut-off.

As with the other estimators, it should be made absolutely
clear that what we plot here is only an estimate of the extra-
galactic contributions. In our analysis, this estimate is calculated
in a different way for the VIP and SIP data. Therefore, it is not
entirely surprising that the distribution of the resulting values is
also qualitatively different for the two categories. In essence, the
estimation of the extragalactic contributions is easier when the
Galactic and noise contributions are more tightly constrained.
Therefore, the algorithm will find seemingly large extragalactic
contributions more trustworthy for data points for which this is
the case. This can likely explain the tendency for larger estimates
for the data points of the VIP category, for which the noise vari-
ance cannot be increased. It can also explain the latitude depen-
dence of the estimates for the data points of the SIP category, for
which the Galactic contributions are less well constrained near
the Galactic plane. The sharp cut-off for the estimates for the
data points of the SIP category can be interpreted as a thresh-
old beyond which our assumptions make it more believable that

(52)
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Fig. 7. Simulation and reconstruction of the Galactic contribution to Faraday rotation. The left column shows the dimensionless isotropic Gaussian
random field used in our statistical model. The right column shows the resulting physical Galactic Faraday depth in units of rad/m>. The top row
shows the simulation, the middle row its reconstruction, and the bottom row the reconstruction’s uncertainty per pixel.

the noise variance should be increased than that the extragalactic
contribution is larger.

As before, we should take a look at the uncertainty of this es-
timate as well, given by the covariance matrix D, that describes
the approximate Gaussian posterior PDF, Eq. (A.6). Note that
this equation is the same as Eq. (29), which describes the poste-
rior if we fix the estimates for the prior covariance matrices G,
E, and N for the three contributions to the data. As in Sect.[3] we
draw a random sample from this distribution to demonstrate the
effect of the remaining uncertainty. This is plotted in the lower
panel of Fig. Obviously, the artifacts visible in the estimate
of the extragalactic contributions are mostly compensated by the
uncertainties of these estimates. As is true for any scientific anal-
ysis, our state of knowledge about the extragalactic contributions
to Faraday rotation after analyzing the data set cannot be de-

scribed completely by an estimate, but only by a probability dis-
tribution. The random sample drawn from this distribution shows
that this distribution does not exhibit any crude artifacts of the
analysis, only the attempted summary in a single estimate does.

One possible point of curiosity with regards to our method-
ology could be that, quite naturally, we have assumed that the
prior PDFs for the Galactic and extragalactic contributions are
centered on zero. This is motivated by the conjecture that there
is no reason to assume that a preferred direction for magnetic
fields exists, both in the Milky Way and on larger scales in the
universe. Therefore, a Faraday depth of Orad/m? is effectively
treated slightly differently from large absolute Faraday depths,
even though observationally, they are usually treated in the same
way. To investigate the effect that a mean different from zero in
the Galactic component has on our reconstruction, we studied
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Fig. 8. Locations of the simulated data points on the sky. The magenta
x-signs denote data points of the SIP category for which the noise
variance has been increased. Other data points of the SIP category are
shown as black dots, while data points of the VIP category are shown
as green symbols.
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Fig. 9. Histogram of the error variance correction factors 7; for the data
points of the SIP category in the simulation discussed in Sect. 3] The
solid line shows the histogram for all data points in this category, while
the dashed line shows the histogram only for the data points for which
the noise variance was indeed increased in the simulation. Note the log-
arithmic scale on both axes.

the same simulation with a constant offset of 5 rad/m? added to
each data point. In this case we find an extragalactic dispersion
of & = 9.7 and get essentially the same reconstruction with the
Galactic foreground offset by 5 rad/m?. This constant offset was
chosen for simplicity to represent a non-zero mean that might
marginally be hidden in the data without being apparent a priori,
although a constant Faraday depth in all directions, correspond-
ing to magnetic field lines converging near the solar system, is
of course unlikely. We note that for the data set we will use in
Sect. [3] a simple average of the observed Faraday depths gives
—1.8rad/m?. A large constant offset is therefore also unrealistic
from an observational point of view.

Another point of concern might be that a single data point
in our formalism enters both the estimation of the Galactic fore-
ground and the estimation of the extragalactic contribution. This
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Fig. 10. Extragalactic contribution to each source’s observed Faraday
depth versus Galactic latitude for the simulated scenario discussed in
Sect. B3] The upper panel shows the approximate posterior mean esti-
mate as calculated by our algorithm, the lower panel shows a random
sample drawn from the posterior PDF. Data points of the SIP category,
i.e., with noise variance correction factors, are plotted in black, data
points of the VIP category, i.e., without noise variance correction fac-
tors, are plotted in green.
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seems to be using the same data point twice, if one views the
analysis as a two-step procedure in which first the Galactic fore-
ground map is calculated and then the difference between the
data value and the Galactic foreground is post-processed. How-
ever, our algorithm performs a simultaneous reconstruction of
the Galactic foreground and the extragalactic contributions, even
though the actual implementation is iterative. It is therefore only
natural to use the entirety of the data in each step of this itera-
tion. In Appendix [B] we discuss the differences between using
each data point in the reconstruction of the Galactic foreground
and excluding the data point in whose extragalactic contribution
one is interested for a simplistic foreground reconstruction tech-
nique.

Finally, we performed another simulation along the same
lines as the one discussed in this section, but with a true vari-
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ance of the extragalactic contributions that was assumed to be
lower than the initial guess. The statements we have made about
the Galactic foreground reconstruction are equally true in this
case and the difference between the reconstructed extragalactic
variance and the one used in the simulation is roughly the same
as in the case that we discussed in this section.

5. Application to real data
5.1. Description of the data

In the following, we make use of the data catalogs assembled
by |[Oppermann et al.| (2012) and described in their Table 1. We
add the new catalog of Mao et al.| (2012), which has the same
specifications as the catalog of |Van Eck et al.|(2011), detailed in
the table, except for the number of sources and their locations.
Altogether, this data set consists of 41 632 observationally esti-
mated Faraday depths for extragalactic sources. The extragalac-
tic nature of the sources is not entirely guaranteed for the NVSS
rotation measure catalog (Taylor et al.[2009). While it is possi-
ble that a few of the data points from this catalog correspond to
pulsars in the Milky Way, we note that the overwhelming major-
ity of the sources has to be extragalactic. Pulsars, for which not
the complete line of sight to the outer edge of the Milky Way is
probed by the observations, provide one more reason to attempt
a reconstruction that is robust against an incomplete description
of the observational uncertainties.

The data set is rather inhomogeneous both spatially, with
a relatively sparse source population in the southern equatorial
hemisphere, and with a view on the observational parameters,
ranging from linear fits to polarization angle measurements in
two adjacent frequency bands to RM synthesis studies over wide
bands in A%-space.

In the following, we multiply the published error bars of|Tay-
lor et al.| (2009) by a factor 1.22, according to Sect. 4.2.1 of |Stil
et al.|(2011).

5.2. Possible splits

The algorithm presented in the previous section hinges on the
assumption that we can split the data set into a subset for which
the likelihood is fully described by the published Gaussian error
bars (VIP data) and another subset for which this is not necessar-
ily the case (SIP data). How to judge whether a data point should
be in the VIP category or the SIP category is not clear. Aspects
that are to be considered in this decision are that a continuous
frequency coverage eliminates the risk of a polarization angle
rotation by a multiple of 7 between bands and that a wider cov-
erage in A%-space leads to a higher resolution in Faraday depth
space and therefore a lower risk of misleading results occurring
from several emission components within the same beam, as de-
scribed by [Farnsworth et al.|(2011)) and Kumazaki et al.| (2014).
This demands a large fractional band-width. Furthermore, the
estimation of the variance of the extragalactic contribution relies
mostly on the data points that we assign to the VIP category. As
we pointed out earlier, this estimation is complicated by large
contributions from the Milky Way and large noise contributions.
It is therefore desirable to have at least some data points of the
VIP category away from the Galactic plane. Finally, it is good to
split the data in a conservative way. Assigning to the SIP cate-
gory a data point for which the likelihood is well described by
the given error bar will not bias the result, only increase the pos-
terior uncertainty. Assigning to the VIP category a data point for
which the likelihood is insufficiently described, however, will in

most cases lead to an overestimated variance of the extragalactic
contribution and thus influence all other results of the reconstruc-
tion.

Instead of arguing for a single definitive split, we will explore
a set of different possibilities. This will enable us to make state-
ments about the reliability of the results. The following ways of
splitting the data set will be used:

1. Five catalogs with a wide frequency coverage at particularly
low frequencies are regarded as data of the VIP category.
These are the catalogs referred to as O’Sullivan (O’Sullivan,
private communication, 2011), Heald (Heald et al. [2009),
Schnitzeler (Schnitzeler, private communication, 2011), as
well as Mao SouthCap and Mao NorthCap (Mao et al.[2010)
in Table 1 of|Oppermann et al.|(2012). All other data are con-
sidered part of the SIP category. We will refer to this split as
the ‘bandwidth’ split.

2. Only the two catalogs consisting entirely of data points near
the Galactic poles, i.e., Mao SouthCap and Mao NorthCap,
are considered as the VIP category. These combine the de-
mand for large coverage in A%-space with a low foreground
region in the sky. All other data are considered SIP category
data. We will refer to this split as the ‘polar caps’ split.

3. Only the Mao NorthCap and Mao SouthCap data are used.
These are considered data of the VIP category. All other data
are completely ignored, i.e., there is no SIP category of data.
This means that the reconstruction is completely insensitive
to anything that happens at low Galactic latitudes and there-
fore our assumption of approximate isotropy for the Galactic
foreground can be expected to be rather accurate in this case.
We will refer to this split as “polar caps only’.

4. The data of the O’Sullivan, Heald, and Schnitzeler catalogs
are regarded as being of the VIP category, all other data are
in the SIP category. This is done to see the effect that having
VIP data in regions with a large foreground may have on the
result. We will refer to this split as the ‘complement’ split, as
it regards as VIP data the points that are regarded as VIP un-
der the ‘bandwidth’ condition but not under the ‘polar caps’
condition.

5. Only data points with Galactic latitudes that satisfy |b| > 45°
are considered at all. Of these, the data that stem from any
of the O’Sullivan, Heald, Mao NorthCap, Mao SouthCap, or
Schnitzeler catalogs and additionally satisfy |[b| > 55° are
considered as comprising the VIP category. The last condi-
tion is introduced to avoid any potential boundary effects on
the reconstruction of the extragalactic variance. Otherwise,
this is essentially an extension of the ‘polar caps only’ ansatz,
which adds a few data points of the VIP category and a sig-
nificant number of data points in the SIP category. We will
refer to this split as the ‘around polar caps’ split.

6. All data points are considered part of the VIP category. The
SIP category is empty, i.e., the observational uncertainty is
regarded as precisely reliable for each and every data point.
We regard this split as a cross-check to see whether the al-
gorithm behaves in the expected way if we contaminate the
VIP data category with data points for which the uncertainty
information is incomplete. We will refer to this assumption
as ‘all VIP’.

7. Only the data from the Mao NorthCap catalog are considered
part of the VIP category. All other data points are considered
SIP category data. We will refer to this split as ‘north polar’.

8. Only the data from the Mao SouthCap catalog are considered
part of the VIP category. All other data points are considered
SIP category data. We will use this split and the one before
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as consistency checks for the results of the ‘polar caps’ split.
This split will be referred to as ‘south polar’.

9. 10000 randomly chosen data points are assigned to the VIP
data category. The rest of the data (i.e., 31632 measurements)
are used as SIP category data. We will refer to this as the
‘random’ split.

Table [T] gives an overview of the data splits we consider and
Fig.[T1|shows the locations of the VIP and SIP data points in the
first six splits. Note that the majority of the data points (37 543
points) stems from the NVSS RM catalog (Taylor et al.|[2009).
These are either regarded as part of the SIP category or neglected
completely in our splits, except for the ‘all VIP’ and ‘random’
cases.

5.3. Results and discussion

In this section, we will first discuss the results of the first six
splits in detail in Sect. and then introduce the most impor-
tant aspects of the remaining splits. We will argue for adopting
the ‘polar caps’ split as a reasonable fiducial model and use the
‘north polar’ and ‘south polar’ splits as cross-checks for the re-
liability of the results derived under this split in Sect.[5.3.2] Fi-
nally, we will present detailed results for the ‘polar caps’ split in
Sect.

5.3.1. The first six data splits

Figure[I2]shows the reconstructions of the Galactic contribution
in the first six cases. Naturally, the reconstruction in the ‘po-
lar caps only’ and ‘around polar caps’ cases suffers from the
scarcity of data. The ‘all VIP’ reconstruction shows small scale
structure, especially in the plane (note for example the Galactic
center), that is washed out in the other reconstructions, again as
expected. The three other reconstructions that make use of the
entirety of the data are rather similar. Some details, however, do
differ. Note for example the blob of positive Galactic Faraday
depth at [ = 275°, b = 10° that is present in the ‘bandwidth’ and
‘complement’ reconstructions but not in the ‘polar caps’ recon-
struction. The reasons for these differences are not immediately
apparent, and are most likely due to the interplay of all involved
quantities and possibly an instability with respect to numerical
inaccuracies.

The reconstructed angular power spectra of the dimension-
less Galactic signal fields in the first six cases are shown in
Fig. [13] Evidently, the resulting spectra are all very similar. In
the ‘polar caps only’ and ‘around polar caps’ cases, in which
a large fraction of the data were ignored, the result is closer to
a pure power law, since the spectral smoothness prior becomes
more important in these cases. A power law with a spectral index
of —2.17 is a good fit to these spectra, as was already found by
Oppermann et al.| (2012).

Figure [[4] shows the variance profiles for the Galactic con-
tribution introduced in Eq. (30) that result from the six different
data splits. Obviously, in the ‘polar caps’ and ‘around polar caps’
cases, the profile function is only reconstructed well near the
poles, as all the low latitude data are ignored. Among the other
reconstructions, the profile functions do not differ greatly, with
the main differences appearing near the Galactic plane. The ‘all
VIP’ ansatz leads to a higher variance near the Galactic plane,
whereas a smaller fraction of VIP data leads to a more heav-
ily smoothed Galactic reconstruction and therefore less variance
and a slightly lower profile function, as exemplified by the “polar
caps’ and ‘complement’ splits.
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The reconstructed values of the extragalactic dispersion, o,
are presented in Table [I] Note that the ‘polar caps’, ‘polar caps
only’, and ‘around polar caps’ numbers are rather similar. For all
of these reconstructions, the VIP category of data is dominated
by the Mao NorthCap and Mao SouthCap catalogs. The number
yielded by the ‘bandwidth’ reconstruction is not very different
either. In this case the Mao SouthCap and Mao NorthCap cata-
logs still comprise more than 70% of the VIP data category. The
‘complement’ number differs significantly, indicating that the as-
sumptions made for the VIP category of data points are probably
not met by all of the data points in the O’Sullivan, Heald, and
Schnitzeler catalogs. Another factor here may be the fact that in
the ‘complement’ split, the data of the VIP category are rather
few and far in between (a total of 281 data points, mostly in
the southern equatorial hemisphere, some in the northern hemi-
sphere). Obviously, the ‘all VIP’ scenario yields a number that
is even more in disagreement.

Figure [T5]shows a comparison of the estimates for the extra-
galactic contributions under the six different assumptions. Black
points are for data points that are in the VIP category under both
assumptions that are being compared in each individual panel.
As can be seen in the figure, the estimates for the extragalactic
contributions are basically the same for data points that are in
the VIP category for both compared scenarios if the estimate of
O 1s similar in the two scenarios. A significantly larger estimate
of o, however, leads to increased estimates of ¢, as well, as can
be seen most clearly in the top row of the figure. The black dots
in these panels still follow a linear relationship, but the slope
deviates from one.

Red points in Fig.[I5]are data points that are in the SIP cate-
gory under both of the two assumptions that are being compared.
These red dots show essentially the same effect as the black dots,
namely that the estimates are the same if the estimate of o is the
same and a higher estimate of o results in a higher estimate of
¢.. The latter effect is visible whenever the ‘complement’ es-
timate is part of the comparison. Overall, the red dots have a
smaller dispersion than the black ones. This is expected, as part
of the discrepancy between data and Galactic reconstruction can
be explained by increased error bars in case of data in the SIP
category.

Finally, the green points in Fig. [I5|show data points that are
in the SIP category under one of the assumptions that are be-
ing compared and in the VIP category under the other. These
points in the figure show that allowing the noise variance to
be corrected upward for a data point will keep the estimate of
its extragalactic contribution small. Note the bifurcation in the
green points in the comparisons between the ‘polar caps’ and
‘complement’ estimates and between the ‘around polar caps’ and
‘complement’ estimates. This is due to data points that are in
the SIP category under the ‘complement’ split on the one hand
and data points being in the SIP category under the ‘polar caps’
and ‘around polar caps’ splits on the other hand. Overall, all the
trends exhibited by the estimates shown in Fig. [I5] follow the
expectation.

The effect of interpreting the error bars as a complete de-
scription of the likelihood functions can be seen clearly in the
first row of panels in Fig. [I5] For many data points the observed
Faraday depth cannot be explained by the Galactic foreground
reconstruction and the published noise variance alone. The algo-
rithm will therefore increase the dispersion o, of the extragalac-
tic contributions until it agrees with the dispersion of the remain-
ing differences. This leads to the high reconstructed value of o
and the large estimates for the values of ¢ seen in Fig.[T5]in the
‘all VIP’ case. If, on the other hand, only a subset of the error
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Table 1. Overview of the different data splits considered for the analysis of the observational data. The first column gives the name by which the
split is referred to, the second one describes the criterion by which data are assigned to the VIP category, the third column lists the data catalogs
whose data points are assigned to the VIP category, the fourth column gives the criterion for a data point to be part of the SIP category. The
resulting estimate for the dispersion of the extragalactic contributions is given in the second to last column and the last column lists the figures that

show results obtained under the data split in question.

. condition for VIP condition for SIP .
data split data VIP catalogs data &./(rad/m?)  Figs.
O’Sullivan?, Heald?,
. C . . Schnitzeler¢, ..
bandwidth high bandwidth Mao SouthCap?, remaining data 7.7 -
Mao NorthCap?
. , high bandwidth Mao SouthCap?, - -
polar caps & low foreground Mao NorthCap? remaining data 6.4 [C1-[C3
. s high bandwidth Mao SouthCapd ,
polar caps only & low foreground Mao NorthCap? 7.1 -
high bandwidth o1 b
¢ , O’Sullivan®,  Heald”, ..
complement & not low fore- Schnitzeler® remaining data 16.0 -
ground
Mao SouthCap?,
. , high bandwidth Mao NorthCap?, part o
around polar caps’ ¢y 550 of OSullivan®, Heald?, [P1>%3 7.0 [11]- [t
Schnitzeler®
“all VIP’ all data all - 38.8 -
‘random’ Il)gl?l?so random. data from all catalogs remaining data 30.4 -
high bandwidth
‘north polar’ & near Galactic Mao NorthCap? remaining data 6.4 -
north pole
high bandwidth
‘south polar’ & near Galactic Mao SouthCap? remaining data 6.0 -
south pole

Notes. @ O’Sullivan, private communication (2011) ® |Heald et al.|(2009) > Schnitzeler, private communication (2011) ” Mao et al.| (2010)

bars are assumed to accurately describing the likelihood func-
tions, the estimate of o, will be dominated by this subset of the
data points (i.e., the VIP data). Further, if this assumption is in-
deed true for the chosen subset, the estimate of o, will naturally
be lower. Consequently, the algorithm will explain large differ-
ences between observed Faraday depths for the SIP data and the
Galactic foreground reconstruction as largely due to a likelihood
function that is wider than described by the error bar, i.e., an er-
ror variance correction factor 7; that is significantly larger than
one. This keeps the estimated extragalactic contributions rela-
tively small, as plotted on the horizontal axes of the first row of
panels in Fig. T3]

Figure [T6| compares the error variance correction factors, 7;,
for data that are in the SIP category under two sets of assump-
tions. This comparison can only be done for the four splits of
the six under consideration that do have data of the SIP cate-
gory, namely the ‘bandwidth’, ‘polar caps’, ‘complement’, and
‘around polar caps’ splits. This shows that the 7; factors are
almost unaffected by the differences between the ‘bandwidth’,
‘polar caps’, and ‘around polar caps’ assumptions. The ‘com-
plement’ split, however, leads to systematically larger correction
factors. This is most likely due to a contamination of the VIP
data category by data for which the likelihood is not well de-
scribed by the observational error bars. Such a data point in the
VIP category will lead to an increase of the estimated variance of
the extragalactic contribution. However, the data points that were
appropriately placed into the VIP category will prevent this esti-
mate from growing enough to completely explain the faulty data

point. As a result, the faulty data point will still have a strong
influence on the reconstruction of the Galactic foreground in its
vicinity, thus necessitating increased noise variances for other
data points to be consistent with this reconstruction. To check
whether this is indeed a generic effect of a contaminated VIP
data category, we now study the ‘random’ split, for which we
randomly assign 10000 of the 41 632 data points to the VIP cat-
egory and run our reconstruction algorithm under these assump-
tions. We find as expected a high estimate for the extragalactic
dispersion of o, = 30.4 rad/m?. Furthermore, we find the same
trend for increased error variance factors as for the ‘complement’
split. We therefore conclude that these enlarged error variances
are indeed a sign for a contamination of the VIP data category
with data that should have been put into the SIP category.

5.3.2. Cross-checks for the ‘polar caps’ split

From the splits that we have studied so far, we regard as most re-
liable the ones that use only the Mao SouthCap and Mao North-
Cap data as data of the VIP category, i.e., the ‘polar caps’ and
the ‘polar caps only’ splits. To check whether this is indeed the
case or whether the values for - calculated under the splits that
are dominated by these data sets are only similar by chance, we
consider two further subsets of the data for the VIP category.
We perform reconstructions using the entirety of the data with
only the data from the Mao NorthCap catalog and only the data
from the Mao SouthCap catalog assigned to the VIP data cate-
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Fig. 11. Locations of the data points in the sky for the different data splits. The black dots show the locations of data that are considered part of the
SIP category, while VIP data points are marked in green. The labels refer to the first six data splits described in Sect. [5.2]and in Table[I}

gory, the ‘north polar’ and ‘south polar’ splits mentioned before.
The resulting values for the estimated extragalactic dispersion
are &, = 6.4rad/m? and 6. = 6.0rad/m?, respectively, close
to the value found in the ‘polar caps’ split. We therefore con-
clude that the value for the extragalactic dispersion in reality is
likely to lie somewhere in the interval between 6.0 rad/m? and
7.1rad/m?, as spanned by the results of the different splits using
the Mao NorthCap and Mao SouthCap data as the only ones for
which the likelihood is assumed to be precisely described by the
published Gaussian error bars. It should also be noted that the ex-
tragalactic dispersion estimated in this way will at least partially
include any contribution from the Milky Way that is uncorre-
lated on the scales probed by current observations, i.e., typically
around 1°. Therefore, the purely extragalactic dispersion may be
even lower.
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5.3.3. Results for the ‘polar caps’ split

We therefore adopt the ‘polar caps’ split as our fiducial model.
The left panels of Fig.[T7 show the estimated extragalactic con-
tribution for this reconstruction as a function of latitude, as well
as a random sample drawn from the posterior PDF for this quan-
tity. The right panels of Fig. [T7] show histograms of the distri-
butions of the values plotted in the left panels in bins of sin(|D]).
Note that again the distribution of the posterior mean estimates
shows a latitude dependence, as was the case for the results in our
simulated scenario shown in Fig. [I0] This is due to the latitude
dependence of the Galactic contribution and the estimated noise
variances, as discussed in Sect. @ However, as pointed out be-
fore, this is only an estimate for the extragalactic contributions
and as such should always be regarded together with its uncer-
tainty. To demonstrate this, we draw a random sample from the
posterior PDF for the extragalactic contributions and show it in
the lower panels of Fig.[T7] The sample includes the spread that
is due to the remaining uncertainty of the estimate. This is larger
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Fig. 12. Reconstructions of the Galactic foreground in the first six scenarios. The labels refer to the first six data splits described in Sect. and
Table The units are rad/m>. Note the different color scale in the “polar caps only’ and ‘around polar caps’ splits.

near the Galactic plane and mostly lets the latitude dependence
vanish in the lower two panels of the figure. Note, however, that
there is still a slight difference between the distributions for the
VIP and SIP categories. We have created a Websiteﬂ where we
provide such posterior samples for use in studies of extragalac-
tic Faraday rotation along with the other results of the ‘polar
caps’ reconstruction. Note that the samples are again not drawn
from the full posterior PDF, but from the approximate one we
use in our derivations. This approximate posterior is effectively
the posterior for the extragalactic contributions after fixing their

4 Seehttp://www.mpa-garching.mpg.de/ift/faraday/

variance, the error variance correction factors, the angular power
spectrum of the Galactic contribution, and the Galactic latitude
profile, i.e., the uncertainty due to the uncertainty of these recon-
structed quantities is not represented by the samples. See Ap-
pendix [C] for details on the provided files and the usage of the
samples, as well as a discussion of numerical artifacts present in
the samples.

We repeat the analysis of Fig. [3] for these new results in
Fig. [T8] Plotted are the sample standard deviations in bins of
sin(b) with and without taking into account the posterior uncer-
tainty. We see that even after including the posterior uncertainty,
a slight latitude dependence remains (X-symbols), albeit much
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Fig. 13. Reconstructed angular power spectra of the dimensionless
Galactic signal field. The lower panel shows the ratio of the recon-
structed spectra and a power law fit, C; = 1.53 7217,

less pronounced than in the pure posterior mean estimates (+-
symbols). The remaining latitude dependence is presumably due
to the approximations made in our calculation, such as the as-
sumption of approximate isotropy for the Gaussian random field
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Fig. 14. Reconstructed Galactic latitude profiles, p(b), describing the

relationship between the dimensionless Galactic signal field s and the
physical Galactic Faraday depth ¢, for the six different data splits.
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related to the Galactic Faraday depth by the latitude dependent
profile function. Note also that the latitude dependence of the
sample standard deviation for the posterior mean estimate (+
symbols) is a bit more pronounced than in Fig. |3 However, it
must be noted that the outermost bins are now influenced by the
VIP data points for which the spread of the posterior mean esti-
mates is much larger.

Finally, we show in Fig.[I9|the results for the Galactic recon-
struction using the ‘polar caps’ data split, i.e., the reconstructed
dimensionless signal field and physical Galactic Faraday depth,
as well as their pixel-wise uncertainties, given by the square-root
of the diagonal of the posterior covariance in position space rep-
resentation. Figure |19]also shows a comparison to the results of
Oppermann et al.| (2012)). As can be seen, differences are most
pronounced near the Galactic plane, in the region of scarce data
in the southern equatorial hemisphere, and near the poles. These
differences are due to the differences of the reconstruction algo-
rithms. The biggest difference is of course our special treatment
of a subset of the data that will influence the Galactic reconstruc-
tion as well. Additionally, the spectral smoothness prior that we
used here prevents the angular power spectrum from dropping
off steeply at the smallest scales, as was found by |Oppermann
et al.|(2012)), and thus will lead to more small-scale fluctuations
in the Galactic map. Finally, we no longer allow the error vari-
ance correction factors to become smaller than one. This will
in general have a suppressing effect on the small scale structure
and seems to dominate over the opposing effect, as we see more
small scale structure in the third row of the figure than in the first.
While the bottom panels in Fig.[[9]highlight the differences with
respect to the old reconstruction, it should be noted that over-
all the differences are small. The estimate of the Galactic Fara-
day depth in the ‘polar caps’ scenario lies within the uncertainty
range published by |Oppermann et al.|(2012)) for 95% of the pix-
els.

We believe that the new assumptions that we made in this
work are well motivated and therefore regard the reconstruction
presented here as an improvement over the reconstruction of|(Op-
permann et al.| (2012). The results of [Oppermann et al.| (2012)
should only be used in cases in which one explicitly does not
want to be influenced by one of the assumptions we made here,
like the spectral smoothness prior, the assumption that error vari-
ances should not be lower than quoted in the observational cata-
logs, or the explicit split of the data into the two categories.

6. Summary

We have studied the contributions to the observed Faraday ro-
tation of extragalactic sources that are due to the Galactic inter-
stellar medium, due to extragalactic magnetic fields, and due to
observational noise. Extracting any of these three contributions
is non-trivial, as they are superimposed on every line of sight.
Another complication is that the observational error bars do not
in every case describe the data likelihood accurately. This makes
even a probabilistic analysis of the fractions of the data values
due to the three different constituents challenging.

If the observations were noise-less, the extragalactic contri-
butions could be estimated by simply subtracting an estimate of
the Galactic foreground from the data values. However, in real-
ity the observations are noisy and an estimate of the extragalac-
tic contributions calculated in this way will contain this noise
as well. Simply subtracting a Galactic foreground from the data
is therefore not a good way of estimating extragalactic contri-
butions. Furthermore, any estimate of the Galactic foreground
will itself be uncertain and this uncertainty, when not taken prop-
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erly into account, will introduce artifacts in the extragalactic es-
timate.

In our considerations, we strictly made the distinction be-
tween a physical quantity and an estimate of this quantity. The
latter aims to equal the former, but, even if calculated correctly,
there is always uncertainty involved and artifacts in the estimate
may result. Taking into account the uncertainty of the estimate,
however, should remove the artifacts. An example of such an ar-
tifact is the latitude dependence that we observed in the estimates
of the extragalactic contributions to the observed Faraday rota-
tion values that we calculated. This latitude dependence vanishes
once the uncertainty is taken into account.

To treat the complete problem of estimating the amount of
both Galactic and extragalactic Faraday rotation from observa-
tions, we extended the algorithm of [Oppermann et al. (2012]).
This extended algorithm is based on a split of the data into a
subset for which the observational error bars describe the data
likelihood sufficiently and another subset for which this is not the
case. It includes the estimation of the angular power spectrum of
the Galactic foreground, assumed to be statistically isotropic up
to a single latitude-dependent modulation, the estimation of this
latitude-dependent function, the estimation of corrected noise
variances for the subset of the data for which this is deemed
necessary, and the estimation of the variance of the extragalac-
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Fig. 16. Comparison of the error variance correction factors for the data of the SIP category under the four splits of the six under consideration

that have data points of the SIP category.

tic contributions. We showed in a simulated scenario that all of
these quantities are accurately reconstructed by our algorithm if
our statistical model, including the split of the data, is correct.
For the application to observational data, we have considered
several different ways to split the data into the two categories. We
find that the most robust outcomes are achieved with splits that
only regard a small fraction of the data (we use 1.75% of the
data points) situated near the Galactic poles as not afflicted by
potential problems in the description of the data likelihood. In
these cases we find extragalactic dispersions between 6.0 rad/m?
and 7.1 rad/m?. These numbers agree remarkably with the ones
derived by [Schnitzeler| (2010) by splitting the dispersion of ob-
served Faraday rotation values into a latitude-dependent part and
a constant offset, deemed to be extragalactic in origin. Strictly
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speaking, both analyses only produce upper limits on the disper-
sion of the extragalactic contributions, but for slightly different
reasons. While the estimate of [Schnitzeler (2010) may be in-
creased due to a latitude-independent Galactic contribution, our
estimate may be increased due to a Galactic contribution that is
spatially uncorrelated on the scales probed by the observations.
We provide the derived estimates for all the involved quan-
tities online at http://www.mpa-garching.mpg.de/ift/
faraday/. The foreground products can be seen as updated ver-
sions of the results of |(Oppermann et al.| (2012) that should be
used preferentially, except in special cases where one of the as-
sumptions we made in this paper is at question. We also pro-
vide 1 000 samples of extragalactic contributions to the observed
Faraday rotation, drawn from the posterior PDF for this quan-
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tity. This will enable future studies of extragalactic Faraday ro-
tation to take into account the full probability distribution for
these values, by performing any analysis on the set of samples
rather than only on the posterior mean estimate. It should be
noted that, within the framework of our assumptions, the extra-
galactic contributions are not very well constrained by the data.
This is to some extent due to allowing the observational error
bars of sources to get increased during the reconstruction, which
increases the uncertainty of all reconstructed quantities. Also,
sources for which such an increase of the error bar can happen
in our reconstruction, will not have large estimates of the extra-
galactic contribution.

All of our considerations point toward the importance of
understanding the uncertainties of observational Faraday rota-
tion measurements. For future surveys, this means that not only
should the largest possible interval in A2-space be covered, but,
as already pointed out by [Farnsworth et al.| (2011) and [Farnes

et al.| (2014)), all the available information should be used in the
data reduction, including the behavior of polarization fraction
with frequency, as this can help avoid some of the rather poorly
understood effects in RM synthesis studies that can lead to faulty
estimates.
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Fig. 19. Estimates of the Galactic contribution under the ‘polar caps’ data split and comparison to the results of Oppermann et al.|(2012). The left
column illustrates the dimensionless Galactic signal field s, the right column the physical Galactic Faraday depth ¢, in units of rad/m*. The top
row shows the posterior mean estimates derived with the ‘polar caps’ split, the second row shows the pixel-wise uncertainty of this estimate, the
third row shows the result of[Oppermann et al (2012), and the bottom row shows the result of subtracting the third row from the top row.
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Appendix A: Derivation of the filter formulas

Here we discuss the filter formulas we use, their derivation, and the necessary approximations, following the strategy outlined in
Sect. Throughout, we assume that the covariance matrices have the structure described in Sect.
Appendix A.1: Estimating the Galactic contribution

In order to estimate the Galactic contribution to Faraday rotation, we first have to estimate the dimensionless signal field s = %, for
which we calculate the mean over the PDF

P(s|d. o = o @i = Gonie =) (A1)

Using the zero-mean Gaussian priors for this signal field, the extragalactic contributions, as well as the noise contribution with
covariances S, E, and N, respectively, this PDF is again a Gaussian with covariance

D=(S"+R N+E)'R)" (A2)
and mean
m=DR"(N+E)d. (A.3)

This m therefore becomes our estimate for the dimensionless signal field and the diagonal of the matrix D a measure for its pixel-
wise uncertainty. The corresponding estimate for the Galactic contribution is obtained simply by multiplying with the Galactic
latitude profile,

$g = pm, (A4)

and its uncertainty accordingly as

diag(Dy,) = p*diag(D). (A.5)
Of course, the operators D and (N + E) depend on our estimates of the unknown quantities (C¢)¢, (17;);, and 7. and necessitate

that we estimate these in separate steps.

Appendix A.2: Estimating the extragalactic contribution

For the extragalactic contribution, we repeat the analysis done for the Galactic contribution and simply swap the roles of the Galactic
and extragalactic contributions. We therefore find again a Gaussian posterior

P(ge|d. Cor = Con G = Gw e = i) = 6( 8. - b/ D), (A6)

where the covariance is given by

—1 -1
D, = (E—l +(RSR +N) ) (A7)
and the mean and our estimate by

b= D (RSR'+N) ' d= E(E+Ny" (d- ). (A.8)

Appendix A.3: Estimating the angular power spectrum of the dimensionless auxiliary field

To estimate the angular power spectrum, we maximize the PDF
P( (éf)(’id, @i = ()i me = fle), (A.9)

where a tilde denotes a logarithmic quantity, i.e., C; = log(Cy). This PDF is calculated straightforwardly by multiplying the
Gaussian likelihood function

P(d 5. Coe. ()i = (e = fle) = G(d — Rs, E + N) (A.10)

with the Gaussian signal prior and the prior for the angular power spectrum, given by Eqs. (34)-(36), and marginalizing over s. The
result is

~ N _a | R B
P((Cox|d, @i = @i e = fie) o< IS 1DI' (]_[ c, e 3?] exp {_Ecwc +5d" (E+N)"' RDR'(E + N)”! d}, (A1)
14
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where we have dropped all factors that are independent of the angular power spectrum. Equating the derivative of this function with
respect to Cy; with zero leads to the equation for our estimate of the angular power spectrum,

qe + %tr((mm* + D) S([))

C = —.
/2 +ar—1+ (Tc)f

(A.12)

Here, S (¢) denotes an operator that projects a field on the sphere onto its £-th multipole and p, = 2¢ + 1 is the number of degrees of
freedom of the ¢-th multipole.

Appendix A.4: Estimating the noise variance correction factors

Similar to the estimation of the angular power spectrum, we multiply the likelihood

P(d|s. @i, (Coe = Corme =) = G = Rs,N + E) (A13)

with the signal prior and the prior for the noise variance correction factors, given by Eq. (@0), and marginalize over s, resulting in

P( @il d, Coye = (Coresne = 1ie) < (E + N)[~2 |D|!/2 (]_[ n”* exp (—;—)]

1

1. 1
X exp {Ed' (E+N)"'RDRT(E+N)'d- EdT (E+N)™! d}. (A.14)

We have again dropped all factors that are independent of ;. After differentiating with respect to #; and equating to zero we find our
estimate

i+ 3(@=-Rm} +(RDR') )
5 o | (A.15)

Appendix A.5: Estimating the extragalactic variance correction factor

The calculation for the extragalactic variance correction factor is slightly more involved than the ones for the other estimators. We
begin again by multiplying the likelihood

P(d[s. @1 = G o = Corn (A16)

with the priors for the signal s and for the variance correction factors, Eq. (@0). However, now we marginalize first over the error
variance correction factors (7;);. This leads to

1/2-pB;
- 2 -12] _ r 1(d- Rs)i2
d.(Co) = <cf)z) oc( [] (reo?+o) Jnﬁ” exp (-_e) ( [ (r,- S
je(VIP) e ) \ic(stpy ot oe

SD(S, log (17¢)

X exp {—% (d—Rs)' (E+N)yp, (d - Rs)} G(s,5), (A.17)

where the first product is to be taken over all data points in the VIP category and the second product over all data points in the SIP
category. (E + N)vip) denotes the combination of the diagonal operator (E + N) and the projection onto the data points of the VIP
category. Here and in the following, we use the superscript —1 to denote the inverse for regular operators and the pseudo-inverse for
singular operators, such as (E + N)vip).

Marginalizing this PDF over the dimensionless signal field s amounts to calculating the Gaussian integral

1/2-B;
1 (d - Rs)?

fZ)S l_[ it 55— G(s — mvipy, Dvipy), (A.18)

. 2 0%+ 0

ie(SIP) i e
where we have defined

. 1

Dip) = (S*‘ +RY(E + N)yp) R) (A.19)
and
mipy = DvipR' (E + N )(\}Ip) d. (A.20)
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These would be the posterior covariance and mean for the dimensionless signal field if only the data points of the VIP category
existed. Calculating this integral analytically for a positive value of ; is not possible. We therefore Taylor-expand the product in

d—Rs)? . . .
((azﬂi)f ) up to first order around its expectation value, given by
iT0e J;
2
(d - Rs)? (d = Rmyp)); + (RD(VIP)RT)”,
P = T : (A21)
;T 0e G(s—mp),Dvip)) i T O

After the integration, the first order expansion term vanishes by definition and we are left with the zero-order term. Altogether, the
PDF we are maximizing becomes

2 o L2
N o 12 “12) g1 _re 1 (d - Rm(wp))i + (RD(VIP)R )ii
Pliog o) [d, € = Coe ) e Pon| 2| T (mo +03) " e | T |4 5 AREY
4 ) 2 o’ + 0
JE(VIP) ie(SIP) i e
1 _ 1 _ _
X exp {—Ecﬂ (E + N)yp d + EdT (E + N)yipy RDvipRT (E + N)ypp) d}. (A.22)
The value of 7. that maximizes this function fulfills
. A+B
fle = —5— (A.23)
where
2 2 (d - RI’)’l(V[p))z + (RD(VH:)R}L B
A=ro+ el N - iy : (A.24)

2, )2
jevIP) (neae + O'j)

-2 ¥ -2
B Z 7’]20’2 (ﬁl - %) 2 (d - Rn’Z(VIp))i (RD(VIP)RT (E+ N)(VIP) (d - Rm(VIp)))i - (RD(VIP)R (E + N)(VIP) RD(VIP)RT)ii A 25)
i&(STP) 2 ri(02 + 02) + 1 (d - Rmovp); + 3 (RDvipRY),

and

1 2

C=fe-145| Y e 1. (A.26)
2\ ;e Mee + T

Appendix A.6: Implementation

We start our reconstruction with a starting guess for the latitude-dependent profile function and the angular power spectrum. The
initial profile is calculated directly from the data as described in Sect.[d.2] For the angular power spectrum, we choose as a starting
guess a simple power law,

Cp =153, (A.27)

based on the results of Oppermann et al.|(2012). We then iterate the following steps until convergence:

Calculate a new estimate of the Galactic Faraday depth according to Eq. (A23).

As an auxiliary field, calculate the estimate of the Galactic Faraday depth using only the data points of the VIP category, mvip),
according to Eq. (A.20).

Use these current estimates to update the estimates for the error variance correction factors (1;); and the correction factor for the
extragalactic variance 7, according to Egs. (A.13) and (A.23).

Use these to update the estimate of the angular power spectrum according to Eq. (A.12).

After this iteration has converged, we calculate a new profile function as described in Sect. [#.2] and repeat the whole procedure
until the profile function has converged as well. At any point, the estimate for the extragalactic contributions can be calculated via
Eq. (A3).

Due to the high dimensionality of the involved vector spaces (41 330 data points in the simulation, 41 632 observational data
points, 196 608 pixels in our maps), we avoid treating the involved operators as explicit matrices. Operator inversions are performed
with a conjugate gradient routine and whenever diagonal elements are needed explicitly, these are estimated via the technique of
operator probing as implemented in the NIFTy package (Selig et al.|[2013)). These methods yield only approximate solutions that
can lead to artifacts in the results, such as the increased posterior variance discussed in Appendix [C.2.T}
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Appendix B: Effects of excluding data points from
the estimation of the Galactic foreground

Here, we discuss the effects that the usage of a data point in
simultaneously estimating its Galactic foreground contribution
and its extragalactic contribution has vis-a-vis excluding a data
point from the foreground estimation when estimating its extra-
galactic contribution. To focus on the difference in perspective
that could lead to either of these two procedures, we discuss a
simplistic foreground reconstruction algorithm that merely con-
sists of averaging observed data from different sources.
Assume that we have N + 1 data points of the form
di = ¢g + ¢e.i- B.1)
Here, the Galactic contribution to the data point, ¢, is assumed
to be a fixed constant (one may think of data points that are very
close together) and the extragalactic contribution ¢, ; is different
for each data point. We are assuming noiseless observations.
Assume further that the extragalactic contributions to the dif-
ferent data points are uncorrelated, i.e.,
8ij o, (B.2)

(¢ei tes), =

where 0'2 is the extragalactic variance, also assumed to be the
same for each source.

Now assume that we are interested specifically in the extra-
galactic contribution to the 0-th data point, ¢.o. There are two
ways of simply averaging the data to build an estimator for this
quantity; one can either subtract an average of all data points,

¢(A) do — _Zd”

we will call this estimator A, or one can exclude the O-th data
point,

¢(B) dy— — Zd”

we will call this estimator B.

Now one may ask, which is better. The answer depends on
what exactly is meant with ‘better’. One way to judge the quality
of an estimator is to look at the expectation value for its squared
error,

<($e,o - ¢e,o)2> ;

(¢e)

(B.3)

(B.4)

(B.5)

where we take the expectation value with respect to all ¢.; con-
tributions (remember that we have simplified things by fixing the
Galactic contribution and neglecting noise).

Plugging in the formulas for the estimators and using the fact
that the expectation value for ¢.; is zero (independent of i), as
well as the second moment, given by Eq. (B.2), we can straight-
forwardly calculate

2
<(¢(A) ¢e’0)2>(e) - Na;f 1 (B-6)
and
2
<(¢(B) ¢e,0)2>(e) = % (B.7)

Estimating extragalactic Faraday rotation

Thus, one would conclude that estimator A is superior. This ar-
gument follows the Bayesian logic of calculating expectation
values over all unknown quantities that are involved.

However, one might be inclined to take the expectation value
only with respect to ¢; for i = 1,...,N and regard ¢ as a
fixed value. This would allude to the frequentist way of doing
statistics, of regarding whichever quantity one is interested in as
fixed and only averaging over other quantities, regarded as noise.
In this case the expectation value of ¢ is of course no longer
zero and the expected squared errors become

N |
(@3 -0), = aemtramte ®9
and

2
<(¢(B) ¢e,0)2>(¢-: )=%“’. (B.9)

Thus, one would conclude that estimator B can be superior for
small N. The term depending on ¢, o makes estimator A slightly
unintuitive. However, the idea to treat ¢ different from the
other extragalactic contributions when calculating expectation
values may seem unintuitive as well.

Another interesting point is to look at the expectation values
of the estimates themselves. If the expectation value is taken by
averaging over all extragalactic contributions, it is zero for both
estimators,

(¢<A>>(¢ =0, (B.10)

(B) —
(3e0) s, = O (B.11)
as one might expect. When calculating the expectation value

only with respect to the extragalactic contributions to data points
1 to N, the result changes to

N
(A) _
<¢eo >(¢c‘i:1 ..... Y N+ 1¢e0’ (B.12)
(B) _
<¢ >(¢e,i:1,.,v,N) = beo, (B.13)

which is another intuitive reason for estimator B.

In conclusion, excluding the O-th data point from the sub-
tracted average only seems superior because one implicitly re-
places the average over the other data points with an ensemble
average without taking the next step of extending the ensemble
average also to the extragalactic contribution of the data point
in question. If one does this, including the 0-th data point in the
subtracted average slightly improves the resulting estimator.

Appendix C: Online access and usage of the results

At http://www.mpa-garching.mpg.de/ift/faraday/| we
provide the results of our study in the ‘polar caps’ data split de-
scribed in Sect.[5] All results are provided in binary format both
as hdf5 files and fits files.
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Appendix C.1: Foreground products

We provide one file containing the results of the reconstruction
for the Galactic foreground. It contains the angular power spec-
trum as plotted in Fig.[T3] the Galactic variance profile as plotted
in Fig. [E maps of the reconstructed auzdliary field, m, and of the
reconstructed Galactic Faraday depth, ¢, as well as of the pixel-
wise uncertainties of these maps as plotted in the top two rows
of Fig.[I9] The last five quantities are stored as HEALPix maps in
RING ordering scheme at a resolution of Ngge = 128. The vari-
ance profile is stored as a map for easier use. The angular power
spectrum is a simple list of 384 numbers corresponding to the
values of C, for £ =0,...,383.

Appendix C.2: Samples for the extragalactic contributions

For the extragalactic contributions, we provide 1000 samples
drawn from the Gaussian approximation to their posterior prob-
ability distribution, given by Eq. (29). For testing purposes, we
also provide a smaller file containing only the first 100 samples.
Each data set in the hd5f files and each table column in the fits
files contains 41 632 entries, corresponding to the 41 632 data
points used in Sect.[3]

Table [C.2] shows the first few rows of the file containing the
samples. The first seven columns in the table, corresponding to
a group of data sets within the hd£5 file and a binary table ex-
tension in the fits file, give information about the sources. The
first column gives the Faraday rotation catalog from which the
data point is taken. Here, the notation of Table 1 of |Oppermann
et al.| (2012) is used, except for the newly added data from Mao
et al.| (2012), for which the identifier ‘Mao 2012’ is used. The
second and third columns give the Galactic longitude and lati-
tude of the sources, respectively. Note that the large number of
decimal places in this column is due to a coordinate conversion
from the original catalogs. The fourth and fifth columns give the
observed value of Faraday rotation and its error bar, for sources
for which this information is published. The error bars of the
NVSS rotation measure catalog have been multiplied by a factor
1.22 as discussed in Sect. 5.1l The sixth and seventh columns
provide the estimated Galactic contribution and its uncertainty
at the source’s location.

Further 1000 columns are stored in a second group of data
sets in the hdf5 file and a second and third binary table exten-
sion in the fits file. These contain the samples drawn from the
posterior probability distribution for the extragalactic contribu-
tions. Each row in this table corresponds to one data point and
each column to a possible configuration of the extragalactic con-
tributions.

The second-to-last and last columns in the table, correspond-
ing to a final binary table extension in the fits file and a final
group of data sets in the hdf5 file, give a summary of the pos-
terior PDF by providing the mean and standard deviation of the
sample values.

Appendix C.2.1: How to use the posterior samples

A range of values that is less likely appears less often in the sam-
ples and vice versa. Thus, the frequency with which the sample
values lie within a certain interval gives the posterior probability
for the true extragalactic contribution to lie within that interval.

When calculating a quantity as a function of the extragalactic
Faraday contribution for one or several sources,

f(@e1s e2s -
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Fig. C.1. Standard deviation of the posterior for the extragalactic contri-
bution to each data point versus sin(b). Plotted is the estimate calculated
from the samples as the square root of Eq. (C.6). The horizontal dashed
line shows the prior standard deviation of o, = 6.4 rad/m?.
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Fig. C.2. Histogram of the ratios of the posterior variance for the extra-
galactic contribution to each data point, as calculated from the samples

via Eq. (C.6), to the prior variance. Note the logarithmic scales on both
axes.

this function should be evaluated for each of the samples. This
will yield 1 000 different answers,

£ = £(8.05, 08 6) K =0....,999, (C.2)
where ¢§? is the value for the extragalactic contribution to the
i-th source according to the k-th sample. In the limit of infinitely
many samples, the distribution of these answers gives the pos-
terior distribution for the quantity of interest f, given the data
and assumptions that we have used and the approximations that
we have made. In practice, a finite number of samples has to be
used. The more samples are used, the more accurate the resulting
distribution.
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Finally the probability density for f approximated thusly can
again be summarized, e.g., by calculating its mean

1 999
- k
Do~ To50 ;ﬂ ) (C.3)
and its (co)variance
;
<(f = Pg) (f = o) >(f|d)
| | | i
o w_ L || e _ L (x)
- 1000;[f 1000 l;)f ][f 1000 kZ:;)f ] :
(C.4)

These formulas are equally true for scalar functions f and vector-
valued functions f.

Thus, we can for example calculate the posterior mean for
the extragalactic contribution to the i-th data point as

|
- (k)
<¢e’i>(¢c.i|d) ~ 1000 Z Pe,i
k=0

and the posterior variance for the i-th data point as

5 | | 2
~ (G *)
<(¢e,i - <¢e,i>(¢e'i|d)) >(¢c.i|d) ~ 1000 kz(; [(pe,i 1000 ;)¢e’i ] .

(C.6)

In the last two columns of the provided files, we give this mean
and the standard deviation, i.e., the square root of the last expres-
sion.

The posterior mean is also plotted in the top panel of Fig.
and we show the posterior standard deviations in Fig. [C.T} Here,
a word of warning is warranted. The approximate posterior we
use in the calculation of the posterior mean estimate and in the
drawing of the samples corresponds to a Gaussian posterior af-
ter fixing the prior covariances for the Galactic and extragalactic
contributions and for the noise, i.e., to Eq. @I) Consequently,
the uncertainty due to the uncertain reconstruction of the angular
power spectrum (Cy),, the error variance correction factors (1,);,
and the correction factor for the extragalactic variance 7, is no
longer represented by this PDF. One logical consequence is that
the posterior standard deviations for the extragalactic contribu-
tions, which give a measure of our uncertainty after considering
the data, should in every case be smaller than the correspond-
ing prior standard deviation, which we have reconstructed to be
0. = 6.4rad/m? in the ‘polar caps’ split that is used here. From
Fig. [C.I]it is clear that this is not the case for a few data points
at low and intermediate Galactic latitude. This effect must be
the result of numerical inaccuracies, likely brought about by the
usage of approximate iterative schemes for matrix inversion in
the sampling procedure. We provide the posterior standard de-
viations so that it becomes easy to remove the sources that are
afflicted by this problem in any further analysis.

Apart from this issue, the posterior standard deviations plot-
ted in Fig. [C.I] behave as expected, being in general slightly
lower than the prior standard deviation, and more so nearer to
the poles, where the sensitivity to the extragalactic contributions
is largest.

In Fig. we plot a histogram of the ratio of the posterior
variance as estimated from the samples and the prior variance,

(<<¢e,i - <¢e,i>(¢e\[d))2>(¢e'ild)) /o2,

(C5)

(C7

Table C.1. Specifications of the four sources for which sample values
are plotted in Fig.[C.3]

panel source catalog e b/°

top A Taylor -3.5608535  -5.6028647
top B Taylor -3.5593824  -5.5575824
bottom C O’Sullivan  -45.865494  -27.910206
bottom D O’Sullivan  -45.973431  -28.065784

This ratio can be roughly interpreted as a measure for the con-
straining power of the data, since it compares the uncertainty
after considering the data to the uncertainty before. Note, how-
ever, that in our reconstruction, the prior variance was itself re-
constructed from the data, so we have actually extracted more
information from the data. A smaller ratio in Fig. [C.2] means
more constraining power, with a ratio of 1 meaning no new con-
straint at all. This figure contains two interesting aspects. First,
it is evident that the overwhelming majority of points does not
exhibit a mathematically impossible ratio larger than one (note
the two orders of magnitude between the height of the peak at a
ratio of 1 and the next bin to the right) and is therefore probably
not gravely affected by numerical inaccuracies. Second, the ra-
tio is still quite close to 1 for most of the sources, meaning that
the data do not constrain the extragalactic contribution to any
individual source much.

Appendix C.2.2: Correlations

It should also be noted that correlations are present in the pos-
terior distribution for the extragalactic contributions. To illus-
trate this, we plot sample values for two pairs of sources that are
nearby one another in Fig. [C.3] The sources are described in Ta-
ble[C.T] Although both panels of the figure show a pair of sources
that is very close, only one of them shows significant correla-
tions. In conclusion, for some sources the posterior uncertainty
of the extragalactic contributions is strongly correlated, for oth-
ers not. This complicated correlation structure is automatically
included when an analysis is performed using the samples as de-
scribed in this appendix but is lost completely if only posterior
mean and variance for each source individually are considered.

Appendix C.2.3: Change of prior

The samples discussed here describe the posterior PDF for the
extragalactic contributions, which depends on the prior we have
used for these, i.e., the uncorrelated Gaussian distribution with a
standard deviation of o, = 6.4 rad/m?. We will denote this prior
as P(¢eloe = 6.4rad/m?) in the following. However, the samples
can even be used to calculate expectation values of a function f
with respect to a posterior distribution P(¢.|d, X) that is based on
a new prior P(de|X). This can be seen from a simple application
of Bayes’ theorem.
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Fig. C.3. Posterior sample values for the extragalactic contributions for
the four sources listed in Table[C.1] All axes are in rad/m?.

We can write the expectation value with respect to the new
posterior as

fD¢ef(¢e)P(¢e|daX)
o f Do f(pe) P(d|pe) P(elX)

= f Do f(¢e) Pldlpe) P(¢eloe = 6.4 rad/m?)

P(PelX)
P(pe|oe = 6.4rad/m?)

= f Doe f($e) P(Peld, Te = 6.41ad/m?)

P(delX)
P(pe|loe = 6.4rad/m?)’
(C.8)

so as an expectation value of the function f(¢.) %

with respect to the original posterior. In practice this means that
one has to calculate a weighted average of the function f evalu-
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ated on the samples,

999

1
[ Do r0opiax =5y o, (€9)

W=
where the weights are given by the prior ratios

Po"|X
Wb = - (¢ '1X) . (C.10)
P(pe |oe = 6.4rad/m”)
and
999
(C.11)

)
k=0
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