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ABSTRACT
The redshifted 21 cm brightness distribution from neutral hydrogen is a promising
probe into the cosmic dark ages, cosmic dawn, and re-ionization. LOFAR’s Low Band
Antennas (LBA) may be used in the frequency range 45 MHz to 85 MHz (30 >
z > 16) to measure the sky averaged redshifted 21 cm brightness temperature as
a function of frequency, or equivalently, cosmic redshift. These low frequencies are
affected by strong Galactic foreground emission that is observed through frequency
dependent ionospheric and antenna beam distortions which lead to chromatic mixing
of spatial structure into spectral structure. Using simple models, we show that (i) the
additional antenna temperature due to ionospheric refraction and absorption are at a
∼ 1% level— 2 to 3 orders of magnitude higher than the expected 21 cm signal, and
have an approximate ν−2 dependence, (ii) ionospheric refraction leads to a knee-like
modulation on the sky spectrum at ν ≈ 4×plasma frequency. Using more realistic
simulations, we show that in the measured sky spectrum, more than 50% of the 21 cm
signal variance can be lost to confusion from foregrounds and chromatic effects. We
conclude that foregrounds and chromatic mixing may not be subtracted as generic
functions of frequency as previously thought, but must rather be carefully modeled
using additional priors and interferometric measurements.

Key words: cosmology: observational, first stars – radiolines: general – atmospheric
effects – methods: observational, numerical

1 INTRODUCTION

Neutral Hydrogen (Hi) interacts with 21 cm photons
through a spin-flip transition (van de Hulst 1945). Observ-
ing the redshifted 21 cm brightness temperature1 against
a background of the cosmic microwave background is a
promising tracer of the cosmic dark ages, cosmic dawn,
and the epoch of reionization (Field 1959; Madau et al.
1997; Sunyaev & Zeldovich 1972, 1975). Detecting the
spatial fluctuations of 21 cm brightness requires many
hundreds of hours of integration with large radio synthesis
telescopes, owing to its faintness as compared to Galactic
and Extragalactic foregrounds (Jelić et al. 2008; Beardsley
et al. 2013; Parsons et al. 2012). On the other hand, the sky
averaged 21 cm brightness— also called the global signal, is

? E-mail: harish@astro.rug.nl
1 Throughout this paper, when we say 21 cm signal or 21 cm
brightness temperature we, really mean redshifted 21 cm signal

bright enough to be measured within a day’s worth of inte-
gration based on a signal to noise ratio argument (Shaver
et al. 1999). Since the received frequency of redshifted
21 cm photons corresponds to cosmic redshift, accurately
estimating the sky averaged brightness temperature as a
function of frequency will provide insights into the evolution
of Hi during the dark ages, cosmic dawn, and the epoch
of reionization (Sethi 2005; Furlanetto 2006; Pritchard &
Loeb 2010).

Thermal uncertainties are not the limiting factor in
global 21 cm experiments, and spectral contamination due
to systematic artifacts have impeded a reliable detection
thus far (Chippendale 2009; Bowman et al. 2008). In
particular, since the signal in such experiments is the vari-
ation of 21 cm brightness temperature with frequency, any
instrumental or observational systematic that affects the
measured bandpass power poses a severe limitation. These
systematics are especially limiting since the foregrounds are
∼ 5 orders of magnitude larger than the expected 21 cm
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signal. Consequently, measuring the 21 cm signal spectrum
requires precise understanding of frequency dependent ef-
fects of instrumental gain, instrumental noise contribution,
antenna beam shape, and ionospheric effects, coupled with
spatially and spectrally varying foregrounds (Galactic and
Extragalactic). The effects of these parameters are not
always mutually separable, further complicating calibration
and signal extraction efforts.

Ongoing global 21 cm experiments have primarily fo-
cused on frequencies ranging from ∼ 100 MHz to ∼ 200 MHz
(6 < z < 12)(Bowman & Rogers 2010; Chippendale 2009;
Patra et al. 2012; Subrahmanyan et al. priv. comm.) . Dark
ages and cosmic dawn experiments at lower frequencies
are being planned, or are being commissioned— Dark
Ages Radio Explorer (DARE) (Burns et al. 2011), Large-
Aperture Experiment to Detect the Dark Ages (Greenhill &
Bernardi 2012), and Broadband Instrument for the Global
HydrOgen ReionizatioN Signal (BIGHORNS) experiment
(Tingay et al. priv. comm.), among others. Global 21 cm
work especially in the lower frequency band requires a
strict assessment of systematic chromatic corruptions. The
reasons for this are threefold. (i) Firstly, the magnitude
of ionospheric effects such as refraction and absorption
increase rapidly with decreasing frequency. (ii) Secondly,
Galactic foreground brightness temperatures increase with
decreasing frequency as a power law with a relatively steep
spectral index of about −2.54. Consequently, any systematic
corruptions which are multiplicative, which many of the
ones in such experiments are, may undermine 21 cm signal
detection efforts more severely at lower frequencies. (iii)
Finally, the increased fractional bandwidth in the lower
frequency band leads to an increased variation of antenna
beams across the measurement bandwidth, giving larger
chromatic effects.

Receiver gain and noise temperature may be calibrated
by switching the receiver between the sky and known
man-made noise sources. Such techniques have been demon-
strated with moderate success in global 21 cm experiments
(Bowman & Rogers 2010; Chippendale 2009; Patra et
al. 2012). However, little attention has been paid in the
literature to chromatic (frequency dependent) antenna
beam and ionospheric effects. These effects have thus far
been assumed to be ‘spectrally smooth’ and possibly fitted
away along with the foregrounds. They have thus escaped
qualitative and quantitative treatment— one of the primary
aims of this paper.

Chromatic effects must be studied in conjunction with
algorithms that are used to separate the measured sky
spectrum into foregrounds and the 21 cm signal. Due to
the lack of sufficiently accurate foreground models at these
frequencies, such algorithms must rely on some priors on
the differential properties of foregrounds and the 21 cm
signal. These algorithms typically exploit (i) the spectral
smoothness of power-law-like foregrounds in comparison
to less smooth structure expected in the 21 cm signal,
and/or (ii) the angular structure of foregrounds as opposed
to isotropic nature of the global 21 cm signal. Spectral
smoothness of foregrounds may be exploited by casting
the measured sky spectrum in a basis where foregrounds

have a sparse representation unlike the 21 cm signal. We
may call such techniques spectral-basis methods, since they
only use spectral smoothness as a prior. One such basis set
suggested in literature, which we will call logpolyfit, uses
polynomials in logarithmic space as basis to represent the
time averaged spectrum (Bowman et al. 2008; Pritchard
& Loeb 2010; Harker et al. 2012). Exploiting priors on
the angular structure of foregrounds for global 21 cm
experiments has not received due attention in literature,
save a recent effort by Liu et al. (2013), who in light
of their simulations, recommend measurements with an
angular resolution of ∼ 5 degrees. Practical implications of
a narrow beam (highly chromatic sidelobes etc.) remain to
be evaluated. Moreover, ongoing and proposed global 21 cm
experiments have near-hemisphere fields of view and lack
any meaningful angular resolution. It is then instructive to
place limits on the extent to which beam and ionospheric
chromatic effects can confuse 21 cm signatures in the
context of spectral-basis algorithms— another primary aim
of this paper.

In this paper, we simulate the contribution of fore-
grounds (with chromatic effects) to the measured antenna
temperature and evaluate an optimal set of basis functions
for a sparse representation of foregrounds. By casting
the foregrounds and the expected 21 cm signal in this
basis, we place limits on the amount of 21 cm signal
power that will be lost to foreground confusion in any
spectral-basis technique. Since the optimal basis func-
tions are not known apriori in real measurements, we
may resort to predefined analytic basis functions such
as polynomials. In this paper, we show that polynomi-
als in logarithmic space (logpolyfit) are incapable of
even detecting the presence of a template 21 cm signal in
simulated data in the frequency range of 45 MHz to 80 MHz.

In this paper, we propose an alternative spectral-basis
method which we call svdfit, that evaluates a suitable basis
using the measured data itself. Despite hemispherical fields
of view of ongoing experiments, Earth rotation couples
angular structure of the foregrounds into the time domain,
while the global 21 cm signal being isotropic, has no tem-
poral structure. Svdfit uses the time variable component
of the measured dynamic spectra to compute an efficient
basis in which the foregrounds and chromatic effects have
a sparse representation, but not the 21 cm signal itself.
We will show that a svdfit is better than logpolyfit in
ascertaining the presence of a template 21 cm signal in our
simulated data. Nevertheless, we argue that for complete
reconstruction of the 21 cm signal spectrum, spectral
smoothness is an inadequate prior in the above frequency
range, and ultimately extracting the 21 cm signal spectrum
will require modeling of the foregrounds, antenna beam,
and ionospheric effects via a full measurement equation.

The rest of the paper is organized as follows. Details
of the simulations used herein are described in section 2. In
section 3 we describe our two-layered ionospheric model (F-
and D-layers). We derive approximate expressions for chro-
matic effects from these two layers, and also quantify the
level at which we expect these effects. In section 4 we use
the results of our simulations to compute an optimal basis
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to represent the foreground induced antenna temperature,
and quantify the extent to which foregrounds and chromatic
effects confuse the 21 cm signatures in spectral-basis meth-
ods. We then describe a novel foreground removal technique
which we call svdfit, and also evaluate the efficiency with
which logpolyfit and svdfit remove foregrounds and chro-
matic effects. Finally in section 5 we draw conclusions and
recommendations for future work.

2 SIMULATIONS

This section describes the simulations used in this paper. We
assume perfect bandpass calibration of receiver gain and re-
ceiver noise. We will discuss bandpass calibration in a forth-
coming paper. We also assume that the antenna beam does
not vary with time. This is a reasonable assumption since a
dipole beam is a function of its mechanical shape, and hence,
we do not expect noticeable variations in the antenna beam
so long as the dielectric environment of the antenna does not
change considerably. We build our simulations from smaller
modules, each incorporating a different stage of signal cor-
ruption. The end result of our simulations is a dynamic spec-
trum measuring sky brightness temperature as a function of
time and frequency.

2.1 Model parameters

The following enumeration along with Figure 1 describe the
parameters in our modular simulations.

(i) Location: We assume the observation location to
be one of the LOFAR stations (DE602) near Munich,
Germany, for which we have data in hand 2. The DE602
station is built on slightly sloping land. We assume the
latitude and longitude of observations (47◦47′9.77′′N,
9◦23′46′′E) to be that point on the locally flat ellipsoid
which ‘sees’ the same sky as DE602 at any instant of
time. Though this corresponding point and DE602 have
slightly different horizons, we discount this fact since we
are primarily concerned with the chromatic effects of the
beam and ionosphere in this paper.

(ii) Sky model : Our simulations can use either of two
sky models: (i) the 408 MHz all sky map by Haslam et
al. (1995) scaled with a global temperature spectral index
of −2.54, or (ii) the all-sky model by de Oliveira-Costa et
al. (2008) that is a linear combination of observations at
different frequencies. While the second sky-model presents
a more realistic scenario, we use the first sky model as a
reference model to study the spectral nature of chromatic
effects due to the ionosphere, LOFAR LBA dipole beam,
and the foreground itself.

(iii) Antenna beam: To study the effects of the chromatic
LOFAR LBA dipole beam while facilitating comparison
with previous work, we present simulations with two beams:
(i) a frequency independent cos2(θ) beam (θ is the zenith

2 We have concluded a pilot study with data from DE602, and

are currently acquiring science data

angle) considered by Pritchard & Loeb (2010) in their sim-
ulations, and (ii) a realistic frequency dependent LOFAR
LBA beam obtained from electromagnetic simulations3 of
the antenna geometry including the finite ground-plane (see
Figure 2). The frequency dependence of the antenna beam
results in the sky being weighed differently at different
frequencies and hence couples spatial structure on the sky
into the frequency domain.

(iv) 21 cm signal : The main feature of the global 21 cm
signal expected in the 45 MHz to 80 MHz range is a
relatively broad absorption feature (Furlanetto et al. 2006)
(Pritchard & Loeb 2008). Since we do not address a full
signal reconstruction here, we approximate this absorption
feature as a negative Gaussian centered at about 70 MHz,
with FWHM of 7 MHz. Spatial fluctuations of the signal
are expected to be on small angular-scales (< 1 degree),
and are averaged away by the broad dipole beam. Recent
work has shown that relative velocity between baryons
and dark matter may imprint fluctuations on the observed
21 cm brightness on 10 − 100 Mpc scales (McQuinn &
O’Leary 2012), that correspond to several degrees in the
sky. However, single dipoles typically have fields of view
spanning several tens of degrees, and hence, we safely ignore
any observable brightness fluctuations in the 21 cm signal.

(v) Ionospheric model : Ionospheric effects may be di-
vided into static effects and dynamic effects. Dynamic
effects include time variant phenomenon such as (i) scin-
tillation induced by turbulence in the ionospheric plasma
(Crane 1977), and (ii) refraction from large scale traveling
ionospheric disturbances (Bougeret 1981). While we expect
these effects to average away for long integration time
scales, there has not been a comprehensive study thus
far on their effects on global 21 cm experiments, and we
defer a discussion on these effects to a future paper. In
this paper, we only study static ionospheric refraction and
absorption. In section 3, we describe these static effects
in detail. In particular, we show in section 3 that a static
ionosphere causes (i) frequency dependent deviation of
incoming electromagnetic rays (chromatic refraction) which
we model by ‘stretching’ the antenna beam accordingly,
and (ii) frequency and direction dependent absorption due
to electron collision with air molecules which we model as a
multiplicative loss factor on the antenna beam. These two
effects, when applied on the fiducial antenna beam, give us
an effective antenna beam which we use to compute the
observed dynamic spectra.

(vi) Gridding and computation: The sky temperature at
a given time and frequency is computed by pixel wise mul-
tiplication of the sky model and the effective antenna beam,
followed by integration of this product over all pixels while
taking their solid angle into account. For a given epoch t,
and frequency ν, this computation may be represented as

TA(t, ν) =

∫ 2π

0

dφ

∫ π/2

0

dθ sin θ Tf (t, ν, θ, φ)B(ν, θ, φ), (1)

3 We used HFSS, a Finite Element Method (FEM) based full-

wave 3D electromagnetic simulator.
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[h]

Figure 1. Figure depicting the details of simulations presented in this paper at a frequency of 70 MHz and LST ≈ 0. Going from left

to right, the images show, (i) the Haslam 408 MHz all sky map scaled to 70 MHz with a global temperature spectral index of −2.54,
(ii) the simulated LOFAR LBA dipole beam, and (iii) the ionospheric refraction induced deviation angle for a homogeneous ionospheric

model described in section 2

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

D
ir

ec
ti

o
n
 c

o
si

n
e

Direction cosine

40 MHz

"40.img"

 0

 1

 2

 3

 4

 5

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

D
ir

ec
ti

o
n
 c

o
si

n
e

Direction cosine

55 MHz

"55.img"

 0

 1

 2

 3

 4

 5

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

D
ir

ec
ti

o
n
 c

o
si

n
e

Direction cosine

70 MHz

"70.img"

 0

 1

 2

 3

 4

 5

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

D
ir

ec
ti

o
n
 c

o
si

n
e

Direction cosine

85 MHz

"85.img"

 0

 1

 2

 3

 4

 5

Figure 2. Plots showing the variation of the simulated LOFAR LBA dipole beams with frequency. The 4 panels show the directive-gain
of the antenna at 4 different frequencies: 40 MHz (top-left), 55 MHz (top-right), 70 MHz (bottom-left), and 85 MHz (bottom-right). Also
overlaid are contours at directive-gain of 2, 2.5, 3, 3.5, and 4 (outer to inner).
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Figure 3. Plot showing a typical dynamic spectra which is the

output of our simulations. Color-bar units are in Kelvins of an-
tenna temperature. Chromatic effects, and the 21 cm are too faint

to be discerned by eye on this image. Also plotted on the left and

bottom are averages along frequency and time axes respectively.

where TA is the simulated antenna temperature, Tf is the
sky brightness temperature (sky model) which is a function
of zenith angle θ and azimuth angle φ, and B is the antenna
beam as a function of frequency and sky position. Note
that due to Earth rotation, Tf changes with time. As
mentioned before, ionospheric effects may be absorbed into
the beam term, and if the beam in equation (1) is replaced
by an effective beam B̂(ν, θ, φ), then equation (1) is the
measurement equation which describes the computations in
our simulation.

Usually, the antenna beam and the sky model are speci-
fied in different co-ordinate systems, and have to be brought
to a common grid to numerically compute a discretized form
of equation (1). It is easier to re-grid and interpolate a
smoothly varying antenna beam as opposed to the global sky
model that has more complex structure due to the Galactic
disk and point-like sources. We thus work in the co-ordinate
system of the sky model (RA,DEC) and interpolate the ef-
fective antenna beams at each frequency and time epoch to
the sky grid. An example sky model, antenna beam, and
ionospheric refraction induced deviation angle on the sky
grid is shown in Figure 1 for a single frequency channel at
a sidereal time of 00h00m00s. For different values of side-
real time, the effective beam will be shifted along the Right
Ascension axis. The end product of the simulations is a dy-
namic spectrum (TA(t, ν) from equation 1) in time-frequency
domain. An example dynamic spectrum is shown in Figure
3.

3 A STATIC IONOSPHERE

This section describes the static model we use for the iono-
sphere in greater detail, and the origin and nature of chro-
matic refraction and absorption. The bulk of refraction and
absorption occur at two separate layers of the ionosphere—
the F-layer and the D-layer respectively. We thus evaluate

two refractive index values for typical conditions in these
two layers, and then use the Earth-ionosphere geometry to
compute the refractive ray deviation and the absorptive loss
factor for different frequencies and directions.

3.1 Ionospheric refractive index

The ionosphere is a magnetized plasma whose complex re-
fractive index is given by the Appleton-Hartree equation4

(Shkarofsky 1961) that relates the refractive index to the
electron density, magnetic field, and the geometry of wave
propagation. We computed the change in refractive index
due to the Earths magnetic field to be less than 1 part in
104 for the F-layer and less than ∼ 2 percent for the D-
layer. We ignore this effect since it is smaller than the re-
fractive index variations induced by day to day changes in
ionospheric electron density, and we present results for a
broad range of electron densities. Additionally, the change
in refractive index due to a magnetic field is different for
left-hand and right-hand circularly polarized radiation, and
results in an effect called Faraday rotation. In this paper,
we ignore Faraday rotation by assuming the sky to be un-
polarized on scales comparable to our antenna beam. We
thus model the ionospheric refractive index using a simpli-
fied form of the Appleton-Hartree equation that does not
include the magnetic field term:

η2 = 1− (νp/ν)2

1− i(νc/ν)
, (2)

where νp is the electron plasma frequency, and νc is the
electron collision frequency. The electric field of a plane wave
traveling in a homogeneous ionospheric layer is given by

E(∆s) ∝ exp
(

i2πν∆s

c
η
)
, (3)

where c is the speed of light in free-space, and ∆s is the
distance measured along the direction of propagation in the
ionosphere.

The real part of the refractive index η is mostly
sensitive to the electron density, and causes a change
in the phase velocity (from that in free space) resulting
in refraction. The imaginary part of η (negative in our
case) is mostly sensitive to the electron collision rate that
in turn depends on the electron density, atmospheric gas
density, and temperature. The imaginary part exponentially
dampens the wave amplitude causing absorption.

Due to its low atmospheric gas density (giving a
low collision rate) and high electron density, we model
the F-layer with a real, frequency dependent refractive
index ηF , to account for ionospheric refraction. Due to its
high atmospheric gas density (giving a high collision rate)
and low electron density, we model the D-layer with an
imaginary, frequency dependent refractive index (iηD) to
account for ionospheric absorption.

4 A German physicist by the name H. K. Lassen (Lassen 1926)
proposed a theory of propagation in a magnetized plasma before

both Appleton and Hartree, but we use the name that is often
found in literature.
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Figure 4. Not-to-scale depiction of ionospheric refraction. The

curvature of the Earth results in deviation in positions of sources

in the sky. A homogeneous ionosphere thus acts as a lens

We expect most of the global 21 cm observations to
take place during night-time when ionospheric electron den-
sity is at its lowest. Additionally, this avoids the need to
model the complex and time-variant spectrum of the sun
as a foreground source. We will thus assume values for a
typical mid-latitude night-time ionosphere in the absence
of intense solar activity. We refer the reader to Thompson,
Moran, & Swenson (2004), Evans & Hagfors (1968), and
references therein from which we have drawn parameter val-
ues for typical ionospheric F- and D-layer conditions. The
following subsections compute the refractive and absorptive
effects of such an ionosphere.

3.2 F-layer refraction

Most of the ionospheric electron column density is ac-
counted for by the F-layer that extends between a height of
∼ 200 km and ∼ 400 km from the Earth’s surface. The elec-
tron density outside of this layer is known to fall off rapidly.
Though the electron density does vary within the F-layer,
to first order, we model the F-layer as a homogeneous shell
between the heights of 200 km and 400 km. We assume
a constant electron density of 5 × 1011 m−3 which gives
a typical mid-latitude electron column density of 10 TEC
units5. This value is typical of winter-time in mid-latitudes
where LOFAR is situated. TEC values are typically higher
(i) during daytime, (ii) closer to the equator, and (iii)
during summer. Additionally, ionospheric TEC is sensitive
to solar and sunspot activity. Due to the above reasons, we
will also present results for higher TEC values.

Figure 4 depicts the refractive effect of the ionospheric

5 1 TEC units equals a column density of 1016 electrons
per m2. Ionospheric TEC is routinely monitored by measur-

ing the propagation delay in GPS signals. See for instance

http://iono.jpl.nasa.gov/latest%5Frti%5Fglobal.html
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Figure 5. Calculated deviation angle for a homogeneous iono-

spheric shell extending from R = 200 km to R = 400 km with

electron density ne = 5×1011m−3. The deviation angle is a strong
function of both incidence angle and frequency. Also shown in

black ‘+‘ symbols is the percentage increase in sky area due to

extension of radio horizon due to refraction.

F-layer. Any incoming ray suffers Snell’s refraction at the
upper and lower boundaries of the F-layer. If the Earth
were flat, there would be no net deviation in the ray. Due
to the curvature of the Earth (and hence the ionosphere)
there is a net deviation δθ. This deviation is zero for
a source at zenith, and increases as we move towards
the horizon. Hence, the ionosphere acts like a spherical
‘lens’ that deviates incoming rays towards zenith. Since
the ionospheric refractive index is a strong function of
frequency, δθ is also a function of frequency. Consequently,
the ionosphere is a chromatic lens. Figure 4 also depicts
a horizon ray that marks the radio horizon, that is below
the geometric horizon. This radio horizon is different at
different frequencies. This chromatic lensing of the sky due
to ionospheric refraction is an important effect for global
21 cm experiments that use dipoles with near hemispherical
fields of view.

It is difficult to derive a closed form expression for
δθ(ν, θ), and hence we compute it numerically by apply-
ing Snell’s law at the two interfaces. Nevertheless, we may
use an analytical approximation to study the dependency of
δθ(ν, θ), on θ and ν (Bailey 1948):

δθ(ν, θ) ∝ ν−2 cos(θ)
(

sin2 θ +
2hF
Re

)−1.5

, (4)

where hF is the mean height of the F-layer (300 km in our
case) and Re is the radius of the Earth which we assume
to be 6300 km. Figure 5 shows a plot of δθ as a function
of frequency for different elevation angles. These curves are
obtained from simple ray tracing and not from equation
(4). The curves approximately follow a ν−2 dependence as
expected. We also use the value of δθ for the horizon ray
(see Figure 4) to compute the percentage increase in visible
sky area as compared to the geometric horizon for each
frequency. This percentage is also plotted in Figure 5, and
is not only frequency dependent, but also of the order of a
few percent even for favorable ionospheric conditions. Since

http://iono.jpl.nasa.gov/latest
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the foregrounds are ∼ 4−5 orders of magnitude higher than
the 21 cm signal, a frequency dependent additional sky area
of a few percent adds an amount of power which is ∼ 2− 3
orders of magnitude higher than the expected 21 cm signal.
Hence, it is important to consider the chromatic effects of
ionospheric refraction6.

The refractive lensing effect of the ionosphere may be
absorbed into the antenna beam. We do this by ‘stretching’
the antenna beam by an amount δθ to form an effective beam
that now includes the effects of chromatic F-layer refraction.
If the antenna beam is represented as B(ν, θ, φ), then the
new effective antenna beam may be represented as

B̂(ν, θ, φ) = B(ν, θ − δθ, φ), (5)

which gives the instantaneous measured antenna tempera-
ture of

TA(ν) =

∫ 2π

0

dφ

∫ π/2

0

dθ sin θB(ν, θ − δθ, φ)Tf (ν, θ, φ) (6)

Note that the effective beam does not integrate to unity
like the original antenna beam. It integrates to a value
larger than unity due to the additional sky area added
by refraction of sub-horizon rays into the original antenna
beam. Since the dipole beam is ‘stretched’ by an amount
equal to δθ which is a strong function of frequency, the sky
is weighted differently at different frequencies in equation
(1). This couples spatial structure in the sky to frequency
structure in the measured antenna temperature spectrum.
It is important to note that this chromatic mixing happens
even if the original antenna beam itself is frequency inde-
pendent.

Finally, we quantify the approximate extent and nature
of chromatic refraction by considering a simple case where
(i) the sky brightness temperature is a power law with the
same spectral index α everywhere (Tf (ν, θ, φ) ∝ ν−α), and
(ii) the original antenna beam is frequency independent and
is given by B(ν, θ, φ) ≡ cos2(θ). The effective antenna beam
(due to chromatic refraction) is then given by

B̂(ν, θ) = cos2(θ − δθ), (7)

which on Taylor-expansion about θ gives

B̂ ≈ cos2(θ) + δθ(ν, θ) sin 2θ (8)

Note that the effective beam is now chromatic, while the
original antenna beam is not. Additionally, we have shown
in equation (4) that δ(ν, θ) has a form that is separable in ν
and θ, and may be expressed as δθ = ν−2g(θ), where g(θ) is
a function independent of ν. Substituting this and equation
(8) into equation (6), we find that the antenna temperature
evaluates to the form

TA(ν) = F1(ν−α + F2ν
−α−2), (9)

6 Note that the troposphere also causes refractive deviation by
an angle ∼ 0.35◦ at the horizon and rapidly decreasing as we
move towards zenith (Thompson, Moran, & Swenson 2004). How-
ever this refraction is expected to be non-chromatic (Thompson,
Moran, & Swenson 2004) and hence, we disregard it for the pur-

poses of this paper.

where F1 and F2 are independent of frequency, and depend
only on the sky brightness, antenna beam, and geometric
terms. Equation (9) shows that chromatic refraction will add
a new component to the original ν−α sky brightness tem-
perature. This new component has a spectral shape given by
ν−α−2, and as argued before, is at a few percent level. The
chromatic foregrounds can now be fit away by the basis func-
tions ν−α and να−2. However, since the sky brightness and
the LOFAR LBA beam are both more complicated, we will
resort to more realistic simulations in section 4 to accurately
evaluate the nature and extent of chromatic refraction.

3.3 D-layer absorption

The D-layer is the lowest layer of the ionosphere extending
from ∼ 60 km to ∼ 90 km from the Earth’s surface. High
electron densities in the D-layer are expected to persist only
during daytime due to solar insolation. However, residual
electron densities of the order of ∼ 108 m−3 exists even
during night-time. We will use a fiducial value for D-layer
electron density of 5×108 m−3 in our simulations. We choose
this value to obtain an absorption of 0.01 dB at 100 MHz
that agrees with values quoted in literature (Thompson,
Moran, & Swenson 2004). While this electron density is too
low to cause appreciable refraction, due to a high atmo-
spheric gas density at these heights, the electron collision
frequency is high enough to cause considerable absorption.
We use a typical value of 10 MHz for the electron colli-
sional frequency (Nicolet 1953). We model the D-layer as a
homogeneous layer between the heights of 60 km and 90 km.

If the path-length through the D-layer is ∆s, then the
multiplicative loss factor due to ionospheric absorption may
be computed as

L(ν, θ) = exp
(

2π
νηD
c

∆s
)
≈ 1 + 2π

νηD
c

∆s (10)

where ηD is the imaginary part of the D-layer refractive in-
dex, c is the speed of light in vacuum, and the approximation
holds for small values of the exponent (expected in the D-
layer). Note that since ηD is negative, L(ν, θ) < 1. We com-
pute ∆s numerically in our simulations, but to understand
its dependencies, we provide an approximate expression:

∆s ≈ ∆hD

(
1 +

hD
Re

)(
cos2(θ) +

2h

Re

)− 1
2

, (11)

where Re is the radius of the Earth, hD is the mean D-layer
height (75 km in our case), and ∆hD is the width of
the D-layer. In Figure 6 we show the computed values of
D-layer absorption, L(ν, θ), as a function of frequency for
different elevation angles. Zenith absorption increases from
∼ 0.01 dB at 100 MHz to ∼ 0.06 dB at 40 MHz. As seen
in the plot, absorption changes the incoming brightness
temperature by ∼ 1− 2 percent. Though this is small, it is
still large in comparison to the dynamic range between the
foregrounds and the expected 21 cm signal. Hence, studying
the nature of D-layer absorption is important.

The imaginary part of the refractive index from equa-
tion (2) approximately behaves as

ηD ≈ −
ν2p νc/ν

2(ν2c + ν2)
. (12)
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Figure 6. Plot showing the multiplicative loss factor as a function

of frequency due to absorption in the D-layer. We have assumed

the D-layer to be a homogeneous shell with electron density of
5x108m−3, and electron collisional frequency of 10 MHz, extend-

ing from a height of 60 km to 90 km.

This along with equation (10) gives

L(ν, θ) ≈ 1−
πν2pνc∆s(θ)

c(ν2c + ν2)
(13)

Since νc is comparable to frequency ν, L(ν, θ) does not have
a simple power-law like structure as a function of frequency
(also evident in Figure 6). As we did with refraction, we
may define an effective beam B̂ that takes into account iono-
spheric absorption. This beam will now integrate to less than
one, and is given by

B̂(ν, θ, φ) = B(ν, θ, φ)L(ν, θ). (14)

For a frequency independent cos2(θ) beam, using equation
(13), the effective beam is given by

B̂(ν, θ, φ) = cos2(θ)

(
1−

πν2pνc∆s(θ)/c

ν2c + ν2

)
. (15)

If the sky brightness temperature had a direction indepen-
dent ν−α- type power law behavior, the measured antenna
temperature in presence of absorption will be of the form

TA(ν) = D1

(
ν−α −D2

ν−α

(ν2c + ν2)

)
, (16)

where D1 and D2 are independent of frequency, and depend
only on the sky brightness distribution, D-layer plasma and
collision frequencies, and some geometric terms. This equa-
tion shows that, in case of D-layer absorption, we also have
an additional component in the antenna temperature. This
component has a spectral shape given by ν−α/(ν2c + ν2),
is negative, and as shown earlier, is at the 1 − 2% level.
Because we expect νc to be ∼ 10 MHz, discounting some
error near the lowest end of our bandwidth, we may assume
ν2 � ν2c , and the additional component may be approxi-
mated as having a spectral shape ν−α−2, as in the case of
F-layer refraction:

TA(ν) ≈ D1

(
ν−α −D2ν

−α−2
)
, ν � νc. (17)

Consequently, for the case of a sky with a global spec-
tral index measured with a frequency independent cos2(θ)
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panel shows the difference between the simulated dynamic spec-
tra obtained with and without the inclusion of ionospheric effects,

and the bottom panel shows the differential spectrum averaged in

time. Also shown for comparison is (the negative of) the expected
21 cm signal.

beam, ionospheric effects (refraction plus absorption) will
introduce an additional spectral contribution which approx-
imately has a να−2 shape. This is confirmed in Figure 7,
where we show the excess antenna temperature from our
simulations due to the inclusion of ionospheric effects. We
have plotted the absolute value of the excess, since absorp-
tion over-compensates the additional sky coverage due to re-
fraction, making the excess temperature negative. The addi-
tional antenna temperature due to F-layer refraction varies
from ∼ 20 K at 40 MHz to ∼ 1 K at 85 MHz. The ex-
cess temperature due to D-layer absorption on the other
hand varies from about ∼ −130 K at 40 MHz to ∼ −6 K
at 85 MHz. As expected, the net differential temperature
is at a ∼ 1% level. Also shown in the bottom panel is the
time averaged excess temperature along-with (the negative
of) the expected 21 cm signal. Our simulations confirm that
the chromatic effects due to a static ionosphere alone are
2 orders of magnitude larger than the expected 21 cm signal
and hence must be studied with care. In Figure 7 we have
neither included the chromatic effects of the LBA beam,
nor a more comprehensive (and more complex) sky model
by de Oliveira-Costa et al. (2008). Nevertheless, the figure
stresses the fact that chromatic contamination that comes
from just the ionosphere is larger than our signal by more
than 2 orders of magnitude. In section 4 we show results
from simulations that also include the above two effects.

3.4 Low elevation reflection

Figure 8 depicts the effects of curvature of the ionosphere
in cases when the F-layer electron density is considerably



Global 21 cm: chromatic effects 9

Z e n ith  ra y

F-layer

T θc Φc

B

O

E a rth

π/2

C

D-layer

H o r iz o n  ra y

Figure 8. Figure depicting the phenomenon of low elevation cut-

off. The horizon ray reaches the lower F-layer interface at grazing

incidence. Any incoming ray with a higher zenith angle is not
incident at the lower F-layer interface at all, and simply escapes

into space without ever reaching the telescope at point T.

larger resulting in high deviation angles. We have thus far
assumed that incoming rays that are refracted at the upper
F-layer boundary are always incident on its lower boundary.
Due to the Earth’s curvature, this need not be true in
cases when the F-layer electron density is particularly high.
Consider the blue ray in Figure 8. The ray is at grazing
incidence at the lower F-layer interface marked as point B.
Any ray that comes from space at a lower elevation angle
will not be incident at the lower F-layer interface at all and
will escape back into space without reaching the telescope
at point T. Hence, in this case, the blue ray is ‘critical’ and
represents the horizon ray. From the point of view of the
observer at T, all incoming rays have a zenith angle that is
greater than some critical zenith angle θc > 0. We will thus
call this phenomenon low elevation cutoff7

We now compute the conditions under which a low ele-
vation cut-off is relevant, and discuss its effect on the mea-
sured sky spectrum. For the case of the horizon ray, the angle
of incidence at the lower F-layer interface is equal to π/2,
and hence Snell’s law at the interface becomes (see Figure
8)

sin(φc) = ηF (18)

which upon using the sine rule in triangle OBT gives

sin θc =
Re + h

Re
sinφc =

Re + h

Re
ηF (19)

where h is the height of the lower interface of the F-layer
(200 km in our case). We may use the Appleton-Hartree
formula (equation 2) with νc = 0 in the above equation to
get

sin θc =
Re + h

Re

√
1− (νp/ν)2 (20)

7 Conversely, any ray transmitted from point T at zenith angle

> θc will suffer total internal reflection at the F-layer— an im-

portant consideration for communication links.
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Figure 9. Plot showing the elevation angle of the radio horizon

versus frequency for various electron densities in the F-layer. The
curves have a sharp knee at ≈ 4νp. For lower electron densities,

the knee is below our minimum observation frequency, but not so
for higher electron densities. Such an abrupt knee will introduce

highly undesirable modulation in the foregrounds spectra.

Setting θc = π/2 will then give us an expression for the fre-
quency below which low elevation cut-off becomes relevant.
Above this frequency, we may simply follow our earlier dis-
cussion of F-layer refraction from Section 3.2. Below this
frequency, the increasing visible sky area due to increas-
ing δθ(ν, θ) (chromatic refraction) is partly compensated by
the decreasing sky area due to low elevation cut-off. Setting
θc = π/2, gives

ν = νp
Re + h

h(2Re + h)
. (21)

For our values of h = 200 km and Re = 6300 km, this
implies ν ≈ 4νp. Typical mid-latitude night-time F-layer
plasma frequencies are below several MHz, and hence
ν ≈ 4νp typically lies outside our bandwidth. In such
cases, our discussion about the low elevation cut-off is not
relevant. However, F-layer conditions where νp exceeds
10 MHz do occur8, and unless due care is taken, some
exposure to such conditions may persist in long integrations.

To illustrate the effect of low elevation cut-off, in Fig-
ure 9, we plot the elevation angle of the horizon ray as a
function of frequency for different values of F-layer electron
density. The electron density values for the different curves
are ne = 5×1011, 1×1012, 2×1012, 3×1012, and 5×1012m−3.
These correspond to column densities of 10, 20, 40, 60, and
100 TEC units respectively. The corresponding values of 4νp
are 25, 36, 51, 62, and 80 MHz respectively. As expected, the
first two curves have their 4νp values outside of our band-
width, and hence, do not suffer from the effects of low ele-
vation cut-off within our bandwidth. The other curves, have

8 Such conditions usually occur at low (Geo-magnetic) latitudes,
and only during day-time at mid-latitudes. Global νp data may be

found at http://www.ips.gov.au/HF%5FSystems/6/5 and links

therein.

http://www.ips.gov.au/HF
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a ‘knee’ in their values of radio horizon positions versus fre-
quency within the bandwidth. This knee exists because, as
we go below the knee frequency (≈ 4νp), the increasing vis-
ible sky area due to chromatic refraction is partly compen-
sated by the decreasing visible sky area due to low elevation
cut-off. Hence, the slope of the curves below and above the
knee are markedly different. Such abrupt modulation of the
foreground spectra is undesirable, given that the foreground
subtraction algorithms rely on the smooth spectral nature of
foregrounds at all times. It is also important to note that if
such high electron density conditions persist even for a frac-
tion of the total integration time, the time-averaged spectra
will have components of foregrounds that are heavily mod-
ulated. It is thus important to monitor the ionospheric con-
ditions throughout the observation duration, and perhaps
even flag data acquired during times of high F-layer plasma
density.

4 EVALUATION OF CHROMATIC EFFECTS

In section 3, we provided insight into the nature and extent
of chromatic effects due to the ionosphere using simplistic
dipole beams and sky models. Chromatic effects in presence
of a more realistic sky model and dipole beam model
are difficult to evaluate analytically. In this Section, we
evaluate beam and ionospheric chromatic effects using the
LOFAR LBA beam and more realistic sky models from de
Oliveira-Costa et al. (2008). We will however also include
results for a frequency independent beam for comparison
with previous work, and for the benefit of experiments that
use dipoles with (approximately) frequency independent
beams (see Patra et al. (2012) for instance).

How severe chromatic effects are depends on our prior
knowledge of their nature and extent. If we have accurate
enough models of foreground brightness and chromatic
mixing, we may simply subtract the foreground contribution
to antenna temperature (taking into account all chromatic
effects) to expose the 21 cm signal. This may not be the case
in practice, and we are left to making certain simplifying
assumptions about the differential properties of foregrounds
(along with chromatic effects) and the 21 cm signal.

The simplest assumption that we may make is that
the foregrounds and chromatic effects have a smooth
spectral behavior unlike the 21 cm signal. We may then
express the measured antenna temperature spectra in
some optimal basis (polynomials for instance) wherein
the foreground contaminants (but not the 21 cm signal)
are sparsely represented. We will refer to algorithms
making only this assumption as spectral-basis methods.
These methods assume no additional cognizance of the
actual antenna beam, ionospheric effects, or constraints
from other measurements such as interferometric visibilities.

For such spectral-basis methods, we will evaluate the
chromatic effects at two levels. The first level inquires how
similar the spectra of chromatic distortions are to the ex-
pected 21 cm signal. The relevance of this question comes
from the fact that chromatic effects are insidious if they con-
fuse 21 cm signatures in frequency space. To evaluate a best

case scenario for spectral-basis methods, we will use the dy-
namic spectra from our simulations (excluding the 21 cm sig-
nal contribution) to find an optimal basis to represent fore-
ground contribution to the antenna temperature spectrum.
We will then evaluate the relative efficiency with which the
foreground contribution and the 21 cm signal contribution
to antenna temperature is fit away by these optimal basis
vectors. This first level of inquiry merely evaluates the ex-
tent of foreground confusion. It does not give us a recipe to
find an optimal basis in practice. At the end of this section
we will briefly explore our second level of inquiry, that tries
to evaluate two different spectral basis: (i) logpolyfit that
uses polynomials in logarithmic space as basis function and
(ii) svdfit (described later) which is a novel way to evalu-
ate near-optimal basis functions from the dynamic spectrum
itself.

4.1 An optimal basis

We compute an optimal non-parametric basis using the
simulated antenna temperature without the inclusion
of the 21 cm signal. Note that in practice, with single
dipole experiments, we do not have access to the antenna
temperature without the inclusion of the 21 cm signal, and
hence we cannot compute an optimal basis from the data
itself.

Non-parametric basis functions derived from the
data itself have been explored in the literature, albeit in
the context of interferometric observations of the spatial
fluctuations of the 21 cm signal. Examples include the
Independent Component Analysis (ICA) (Chapman et
al. 2012), Singular Value Decomposition (SVD) (Liu &
Tegmark 2012), and smoothing techniques (Harker et
al. 2009). More recently, (Liu et al. 2013) have used the
SVD technique in the context of global 21 cm cm signal
extraction. We will use the SVD technique to analyze
chromatic effects in our simulations, due to its desirable
orthogonality property.

Our simulations provide a dynamic spectrum, Tf , which
is a matrix of dimensions nt x nν where nt and nν are the
number of time and frequency bins in the data respectively.
We have used the subscript f to note that the dynamic spec-
trum used here is due to the foregrounds, and does not in-
clude the 21 cm signal itself. We will use the subscript 21
to denote the measured spectrum due to the presence of
the 21 cm signal. To find an optimal basis where the fore-
grounds are sparsely represented, we compute the Singular
Value Decomposition (SVD) of the dynamic spectrum Tf :

Tf = UΣVT . (22)

Matrix VT = [v1, v2, ...vnµ ] is an orthonormal matrix of
size nν x nν whose rows (vi) provide an orthonormal basis
to represent the spectral variability in Tf . The vectors vi are
simply the eigen vectors of the correlation matrix Tf

HTf .
Hence, we are treating the spectra measured at different
epochs as different realizations of snapshot measurements
of sky spectrum, and through eigen decomposition, finding
a set of basis vectors that efficiently describe any linear
combination of these snapshot spectra. Since each snapshot
spectrum has contributions from a large part of the sky,
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Figure 10. Plot demonstrating the application of SVD in evaluating chromatic effects of the ionosphere. For this plot, the de Oliveira-

Costa all sky map was used with the simulated LOFAR LBA beam. The left panels show the first 5 dominant basis vectors (v1 through

v5. Right panels show the residuals of representation of (i) the time averaged foregrounds (solid red) and (ii) the expected 21 cm signal
(broken blue) with the first 1,2,3,4, and 5 basis vectors.

we expect the spectra to have some underlying ensemble
properties that are efficiently described by the basis vectors
vi.

The representation of the time averaged spectrum tf in
terms of a basis vector vi is given by

tf (vi) = vivi
T tf , (23)

and a representation of tf in terms of the first M basis vec-
tors is given by

tf (VM
T ) = VMVM

T tf , (24)

where VM
T = [v1, v2, ...vM]. Because the vectors vi

form an efficient basis to describe the foregrounds, we
expect the residual rms given by rms

(
tf (VM

T )− tf
)

to
decrease rapidly as we increase M . Due to its contrasting
spectral behavior, the time averaged 21 cm spectrum,
t21 is not expected to be efficiently represented by the
above basis computed from the covariance matrix Tf

HTf

due to the foregrounds alone. Consequently, we expect
the residuals of its representation rms(t21(VM

T ) − t21)
to fall-off less rapidly with increasing M . The last two
statements basically reiterate the sparseness assumption
mentioned before. The value of M for which the residual
rms of foregrounds is lower than that of the 21 cm signal

then gives us the minimum number of parameters required
to fit the foregrounds away. The difference in the rms of the
21 cm signal and the rms of the 21 cm residuals also gives
us the amount of power in the 21 cm signal that is fitted
away along with the foregrounds. It might also come to pass
that the rms of residual of foregrounds are always larger
than that of the 21 cm signal. In such cases, the foregrounds
and chromatic effects are expected to introduce sufficient
non-smooth structure, so as to inhibit their separation
from the 21 cm signal using only the information contained
in the dynamic spectrum. In other words, the foreground
spectral signatures will completely confuse our efforts to
detect the 21 cm signal with spectral basis methods.

Figure 10 demonstrates the computation of basis func-
tions and residuals using the SVD. For this figure, we have
used the sky model from de Oliveira-Costa et al. (2008), the
simulated LOFAR LBA beam, and 24 hour observation over
the frequency range 40 MHz to 85 MHz. We have included F-
layer chromatic refraction (ne = 5 × 1011m−3) and D-layer
chromatic absorption (ne = 5 × 108m−3, νc = 10 MHz).
The left-hand side panels show the first five basis vectors
obtained from SVD. The basis vectors are arranged from
top to bottom in decreasing order of dominance. The right
hand panel shows the residuals when the time averaged an-
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tenna temperature spectrum due to foregrounds alone (red)
and due to the expected 21 cm signal (blue) are represented
in terms of the first 1, 2, 3, 4 and 5 dominant basis vectors
(from top to bottom). The sky model from de Oliveira-Costa
et al. (2008) at our frequencies of interest is constructed
from three principal components, and as such, may be fully
expressed as a linear combination of three spectral basis
vectors. The beam and ionospheric chromatic effects how-
ever, add additional complexity to the time-averaged an-
tenna temperature spectrum and as a consequence, need at
least 5 basis vectors to be described to the required level.
This is clear from the right-hand panel plots in Figure 10
and the enumerated rms residual levels for the red and blue
curves. Clearly, only for the case of representation with 5
basis vectors does the rms residuals for foregrounds reduce
to levels significantly below those of the 21 cm signal. The
expected 21 cm signal has a residual of ∼ 13.7 mK after
fitting with 5 basis vectors. The original 21 cm signal that
was used in the simulations had an rms (mean subtracted)
of 34.85 mK. This means that if we use spectral-basis meth-
ods, then not only we need a minimum of 5 components to
fit the foregrounds, we also end up loosing at least 85% of
the variance (not rms) in the 21 cm signal to foreground
subtraction.

4.2 Limits of spectral-basis methods

We now repeat the analysis of Section 4.1 for the two dipole
beams (i.e. achromatic and chromatic) and for different
F-layer electron densities. The results are shown in Figure
11. For brevity, we have not shown the basis vectors and
residual spectra, but rather shown the rms of residuals
when (i) the foreground contribution to time-averaged
antenna temperature (red) and (ii) the 21 cm contribution
to antenna temperature (blue) are fit with increasing
number of spectral basis vectors. The top panels show the
rms residuals for a frequency independent cos2(θ) beam,
for different values of F-layer electron density. The bottom
panels show the same for the fiducial LOFAR LBA beam
obtained from electromagnetic simulations. As argued
before, the abscissa for which the red curve dips below
the blue curve denotes the minimum number of spectral
basis vectors required to separate the foregrounds from the
21 cm signal. Note however that this does not necessarily
mean that the residuals are a representation of the 21 cm
signal as is evident from Figure 10. Each panel also show
the levels denoting the 100% (solid black), 50%, and 25%
(broken black) of the variance in the original 21 cm signal
spectrum (black line) to give intuition into the amount of
variance (not rms) in the 21 cm spectrum that is lost to
foreground subtraction. Figure 11 thus also quantifies the
minimum extent to which chromatic effects confuse the
21 cm signature in spectral basis methods. Non-optimal
basis functions (including analytic functions) not only
require more parameters to model the foregrounds, but
will also result in higher co-subtraction of the 21 cm signal
along with the foregrounds.

As mentioned before, in the absence of chromatic ef-
fects, the de Oliveira-Costa et al. (2008) models may be
fully described by just the first 3 spectral basis vectors. Fig-
ure 11 shows that for a frequency independent beam, if the
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Figure 12. Figure showing the rms residual of fit for the cases

of logpolyfit (blue curve: Model 1, magenta curve: Model 2),
and svdfit (red curve: Model 1, green curve: Model 2). While

logpolyfit fails to separate the two Models in all 4 panels, svdfit

succeeds in the case of a frequency independent beam.

F-layer electron density is low (< 2 × 1012m−3), then the
first 3 spectral basis vectors are still sufficient to separate
foregrounds and chromatic effects from the 21 cm signal.
In case of the LOFAR LBA beam, at least 4 spectral basis
vectors are necessary. Any generic basis functions (polyno-
mials for instance) if employed, will only require more than
the minimum number of parameters thus obtained from Fig-
ure 11. For instance, for the case of the LOFAR LBA beam
with ne = 5× 10−11m−3 (bottom-left panel), a minimum of
4 parameters, or at least a 3rd order polynomial is required.
Indeed, there is no guarantee that a polynomial basis will
represent the foregrounds sufficiently, but Figure 11 gives us
a hard lower limit on the number of independent parameters
required for foreground subtraction, and also the minimum
amount of 21 cm signal variance that will be lost to fore-
ground subtraction with a spectral-basis method.

4.3 logpolyfit and svdfit

The analysis of Section 4.2 presented an estimate of how
much foregrounds and chromatic effects confuse 21 cm signa-
tures for spectral-basis methods. In reality, for single dipole
experiments, we do not have access to the optimal basis
functions simply because, we cannot obtain a measurement
of antenna temperature that includes foreground contribu-
tion but not the global 21 cm signal contribution. If the
dipole is embedded into an array, then we will have inde-
pendent measurements of spatially varying foregrounds. For
single dipole experiments however, we have to adopt other
techniques to construct the spectral basis vectors. In this
subsection, we explore two such techniques. We will call the
first technique logpolyfit. This method has been proposed
in literature (Bowman et al. 2008; Pritchard & Loeb 2008;
Harker et al. 2012), and attempts to use polynomials in log-
arithmic space as basis vectors to represent foregrounds. In
other words, we seek to fit the time-averaged antenna tem-
perature due to the foregrounds with the function
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Figure 11. Residual rms temperature when the mean antenna spectrum due to foregrounds (red ‘+’marks) and due to the fiducial 21 cm
signal (blue ‘×’ marks) are fit with an increasing number of basis vectors. All panels contain data simulated using the de Oliveira-Costa

et al. (2008) sky models. The top panels represent data for increasing values of F-layer electron density for a frequency independent

cos2(θ) beam, and the bottom panels are for the simulated (frequency dependent) LOFAR LBA beams. The sold black line marks the
100% of the variance in the expected 21 cm signal, and the broken and dotted black lines show levels corresponding to 50% and 25% of

the original variance respectively.

M(ν, a0, a1, a2, ...) = 10a0(log ν)
0+a1(log ν)

1+a2(log ν)
2... (25)

where log denotes logarithm to base 10, and a0, a1, a2... are
parameter values to be estimated. To evaluate (in simplistic
terms) how well logpolyfit performs, we will fit the model
M to two time-averaged antenna temperature spectra which
we obtain from our simulations: (i) tA(ν)− t21(ν), and (ii)
tA(ν). Here t21 is the antenna temperature due to the fidu-
cial 21 cm signal, and tA is the total antenna temperature
due to both foregrounds and the 21 cm signal. Hence the
two models may be represented as

tA − t21 =M(ν, a0, a1...) : Model 1 (26)

and

tA =M(ν, a0, a1, ...) : Model 2 (27)

Assuming that M(ν, a0, a1...) fits out the foregrounds but
not the 21 cm signal, Model 1 must perform significantly
better compared to Model 2 in terms of goodness of fit.
This is because, Model 1 acknowledges the presence of the
21 cm signal contribution in tA, whereas Model 2 does not.
Note that we are not trying to fit for or solve for the 21 cm
signal spectrum. We are assuming its form and are merely
trying to ascertain its presence in the simulated antenna
temperature spectrum. In reality, we have to estimate the
shape of the 21 cm spectrum. But the above goodness of
fit test provides a necessary condition for any spectral-basis
algorithm to work in the first place. We evaluate the
goodness of fit by computing the rms of the residuals of fit.

The second technique which we will call svdfit is a
novel technique which we propose herein. svdfit derives
basis vectors to describe the antenna temperature spectrum
using the data itself (output of the simulation in our
case). Since as argued before, the data contain the 21 cm

signal, evaluating the basis vectors from the data itself
will give us a set of basis vectors that will remove the
foregrounds and the 21 cm signal with equal efficiency,
thereby impeding their separation. We instead subtract the
time averaged spectrum from the dynamic spectra prior to
SVD evaluation. Since the antenna temperature due to a
global 21 cm signal is unchanging with time, the new mean
subtracted dynamic spectra has no contribution from the
21 cm signal, and we may compute a set of optimal basis
vectors that will not efficiently describe the 21 cm signal. We
may then use these basis vectors to fit Model 1 and Model 2.

Subtracting the time-averaged antenna temperature
from the dynamic spectra also removes any contribution
from the global component of the foregrounds. In essence,
we are extracting a set of basis from the spatially structured
foregrounds, and using them to fit the away the global
foreground component. Since the basis vectors are evaluated
from only a fraction of the sky brightness temperature, they
will be sub-optimal. However, our antenna beam averages
over large parts of the sky, and since the sky brightness
temperature spectrum is more or less stationary on such
large scales, we expect these basis vectors to well represent
the foreground antenna temperature contribution from the
entire sky.

Figure 12 shows the rms residuals for Model 1 and
Model 2 for logpolyfit and svdfit. On the x-axis is the
number of basis vectors used in case of svdfit, or the order
of the polynomial used in case of logpolyfit. Model 1 and
Model 2 rms for svdfit are plotted in red and green respec-
tively, whereas, Model 1 and Model 2 rms for logpolyfit are
plotted in blue and magenta respectively. The different pan-
els in the Figure are for different F-layer electron densities,
and the two different beams mentioned before. A successful
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algorithm must show a clear difference in the goodness of fit
(represented by rms residuals here) for the two models. Note
that in addition, the difference in rms between the Models
must be larger than the uncertainties due to noise, which are
not considered here. In any case, logpolyfit (blue and ma-
genta curves) is not able to separate the two Models for any
of the cases, and is hence an inadequate basis. svdfit on the
other hand is able to ascertain the presence of the 21 cm sig-
nal for the case of an ideal frequency independent beam. It
however fails for the case of the fiducial LOFAR LBA beam.
This is perhaps because of the highly chromatic nature of
the LOFAR LBA beam which mixes spatial structure of the
foregrounds into spectral structure in the antenna temper-
ature spectrum. Consequently, basis vectors evaluated from
the spatially structured foregrounds are rendered inefficient
in fitting the spectrum due to the global foreground compo-
nent. Hence, svdfit may be an interesting technique only
for experiments in our frequency range that use a (more or
less) frequency independent antenna.

4.4 Way forward

The simulations presented in this paper make simplistic
assumptions about a more complicated reality. In particu-
lar, the real sky brightness may have much more complex
spectrum than the one we have assumed in our simulation.
Similar is the case for the ionospheric effects which in reality
are dynamic and originate from an ionosphere structure
that is more complicated than our simple layered model.
The results presented herein are therefore expected to be
lower limits to the chromatic mixing due to the foregrounds,
beam, and the ionosphere. Consequently, spectral-basis
methods may not be the proper way forward for foreground
subtraction in our frequency range, despite being attractive
due to the simplicity of their only assumption— that the
foregrounds have a smooth spectrum compared to the
21 cm signal. The way forward warrants for techniques that
use stronger priors on the properties of foregrounds and
chromatic effects. Liu et al. (2013) have reached a similar
conclusion in their analysis, and have suggested that spatial
structure in the foreground be exploited to separate them
from the 21 cm signal that has no spatial features. This
however requires higher spatial resolution unafforded by
single dipole experiments. Antennas or arrays that have
higher resolution also have highly chromatic beams with
chromatic sidelobes that will cause a high level of chromatic
mixing on many spectral scales. Algorithms that overcome
this limitation have not been demonstrated till date.

Experiments with wide field-of-view dipoles may still
benefit considerably from using stronger priors. This is es-
pecially true since we have explicit prior knowledge of (i)
the sky brightness temperature from various surveys, (ii)
fairly accurate antenna beam models from simulations and
measurements, and (iii) knowledge of ionospheric conditions
from GPS satellite based measurements or dipole-dipole
cross-correlations. The LOFAR LBA dipoles are part of an
array and inter-dipole visibilities may provide strong priors
on all three of the above parameters. We thus propose to im-
prove on spectral-basis methods in our future work, wherein
we plan to model the data using a full measurement equation
similar to equation (1).

5 CONCLUSIONS AND FUTURE WORK

Single antenna wide field of view experiments that mea-
sure the sky spectrum to high degree of accuracy are
interesting probes of the cosmic dark ages, cosmic dawn,
and the epoch of reionization. Such measurements not
only require unprecedented accuracy in receiver gain and
noise temperature calibration, but also require accurate
modeling and removal of contamination along the frequency
axis. Ionospheric refraction and absorption are highly
frequency dependent and are thus a potential limitation
in such experiments. Additionally, a frequency dependent
antenna beam mixes spatial structure of foregrounds into
spectral structure providing an additional source of signal
contamination. In this paper, we have studied the nature
and magnitude of the above spectral contaminants in the
frequency range of 40 MHz to 100 MHz that is particularly
interesting for cosmic dawn studies.

We have arrived at the following results/conclusions:

(i) A simple ionospheric model that accounts for static
chromatic effects consists of two homogeneous layers: the
F-layer that accounts for chromatic refraction, and the
D-layer that accounts for chromatic absorption. In case of
a sky with a global spectral index −α, and a frequency
invariant beam, chromatic refraction due to typical F-layer
electron densities (ne = 5x1011m−3) adds a component
to the measured antenna dynamic spectrum that has a
spectral index of −α − 2, and is about ∼ 20 K at 45 MHz
and ∼ 1 K at 85 MHz. Likewise, typical D-layer absorption
for an electron density of ne = 5 × 108m−3, and collisional
rate of ∼ 10 MHz, adds a (negative) component to the
dynamic spectrum at the ∼ 1 − 2% level with spectral
shape given by ν−α/(ν2c + ν2). Typical values for additional
signal due to D-layer absorption range from ∼ −130 K at
40 MHz to −6 K at 85 MHz. We have also shown that high
F-layer electron densities lead to low elevation cut-off of
incoming rays, and that this leads to a knee-like feature
in elevation angle of the horizon ray versus frequency. We
have identified the knee to be at ∼ 4 times the plasma
frequency. We have shown that if the F-layer electron
densities approach or exceed ne = 2 × 1012m−3 during
the measurement duration, low elevation cut-off leads to
undesirable modulation of the measured spectrum within
the bandwidth of interest (40-85 MHz). We thus recommend
monitoring of ionospheric TEC throughout observations
with an intention of flagging data during periods with high
TEC values.

(ii) To evaluate chromatic effects from more realistic
sky and beam models, we have set-up simulations that
accept a variety of sky, beam, and ionospheric parameters
and produce dynamic spectra of the measured antenna
temperature. We have evaluated chromatic effects for the de
Oliveira-Costa et al. (2008) sky models, for ideal frequency
independent, and simulated LOFAR LBA beams. Using
the results of these simulations we have placed limits on
the efficiency of spectral basis methods— algorithms that
separate foregrounds from the 21 cm signal based on the
spectral smoothness of foreground and chromatic effects as
compared with the 21 cm signal. In doing so we have shown
that even under ideal ionospheric conditions a minimum of
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4 parameters are required to sufficiently describe chromatic
effects of the LOFAR LBA beam and the ionosphere, and
that a minimum of ∼ 50% of the variance in the 21 cm
signal is typically lost due to confusion with foreground and
chromatic effects, rendering such a method ineffective.

(iii) We have also evaluated the efficiency of two prac-
tical algorithms: (i) logpolyfit that uses polynomial in
logarithmic space as basis functions, and (ii) svdfit— a
novel algorithm proposed herein that uses the dynamic
part of the antenna temperature spectrum to compute a
near-optimal set of basis vectors that may then be used to
separate foreground from the time averaged (static part)
antenna temperature spectrum. We show that logpolyfit

fails as a spectral basis method in our frequency range of
interest, but svdfit has potential to succeed in case of a
near frequency independent beam. We however conclude
that svdfit fails as a spectral basis method in case of
the highly chromatic LOFAR LBA. Moreover, dynamic
ionospheric effects will only decrease the efficiency of any
spectral basis method.

(iv) We conclude that spectral basis methods, though
attractive due to their simplicity, do not use many of the
strong priors (that almost always exist) from independent
measurements of the sky brightness temperature, iono-
spheric conditions, and the dipole beam, all three of which
have a large impact on the dynamic spectrum. As part of
future work, we plan to improve upon spectral basis meth-
ods for single dipole experiments by modeling the observed
data using a full measurement equation. We have recently
concluded a pilot project with data from the DE602 LOFAR
station (near Garching, Germany), and plan to present
results from a measurement equation based modeling of this
pilot data in a forthcoming paper. Additionally, embedding
the dipole into an array gives dipole-dipole visibilities that
provide strong constraints on not only receiver bandpass
calibration, but also on all the above factors. Array based
measurements/constraints may be an effective way forward
for global 21 cm experiments. Consequently, as part of fu-
ture work, we also plan to develop a framework that exploits
priors derived from dipole-dipole visibilities, to address the
challenges posed by large foregrounds and chromatic mixing.

(v) While we only address single dipole measurements in
this paper, our analysis of chromatic lensing in the iono-
sphere (see sections 3.2 and 3.4) may have implication for
interferometric 21 cm experiments. This is especially impor-
tant for observations at epochs when the Galactic plane is at
low elevations where refraction is at its strongest. Refraction
may cause bright radio sources to cross the spectrally vary-
ing radio-horizon within the observation bandwidth giving
insidious frequency structure in the visibilities. As part of
future work, we plan to evaluate these effects on techniques
presented by Parsons et al. (2012) and Vedantham et al.
(2012) that propose to filter out discrete foreground sources
in the frequency domain.
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