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ABSTRACT

Future large-scale structure surveys of the Universe will aim to constrain the cosmo-
logical model and the true nature of dark energy with unprecedented accuracy. In
order for these surveys to achieve their designed goals, they will require predictions
for the nonlinear matter power spectrum to sub-percent accuracy. Through the use
of a large ensemble of cosmological N -body simulations, we demonstrate that if we
do not understand the uncertainties associated with simulating structure formation,
i.e. knowledge of the ‘optimal’ simulation parameters, and simply seek to marginalize
over them, then the constraining power of such future surveys can be significantly
reduced. However, for the parameters {ns, h,Ωb,Ωm}, this effect can be largely mit-
igated by adding the information from a CMB experiment, like Planck. In contrast,
for the amplitude of fluctuations σ8 and the time-evolving equation of state of dark
energy {w0, wa}, the mitigation is mild. On marginalizing over the simulation param-
eters, we find that the dark-energy figure of merit can be degraded by ∼ 2. This is
likely an optimistic assessment, since we do not take into account other important
simulation parameters. A caveat is our assumption that the Hessian of the likelihood
function does not vary significantly when moving from our adopted to the optimal
simulation parameter set. This paper therefore provides strong motivation for rigor-
ous convergence testing of N -body codes to meet the future challenges of precision
cosmology.
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1 INTRODUCTION

Future spectro/imaging surveys of the low-redshift Universe
such as DES1, KiDS2 Euclid3 and WFIRST4 will aim to
constrain the cosmological model to unprecedented accu-
racy. This will require impressive handling of every step of
the observational pipeline in order to limit the possibility of
systematic errors that may degrade the constraints on cos-
mological parameters. Besides the observational processing,
there will also be a similarly high demand placed on our abil-
ity to generate theoretical predictions that are sufficiently
accurate not to bias inferred cosmological parameters. These

⋆ res@mpa-garching.mpg.de
1 www.darkenergysurvey.org/
2 www.astro-wise.org/projects/KIDS/
3 sci.esa.int/euclid
4 wfirst.gsfc.nasa.gov/

predictions will take the form of a set of estimators for the
primary observables that we intend to measure and their
covariance, and also most likely their cross-covariance. The
latter will be required for robustly testing for modifications
to gravity (Reyes et al. 2010).

In galaxy clustering or cosmic shear surveys of the Uni-
verse, the primary observables of interest are related to
the matter power spectrum and its evolution with redshift.
The matter power spectrum is the two-point covariance of
the matter fluctuations transformed into Fourier space. The
power spectrum provides a wealth of information on the
cosmological parameters (Dodelson 2003; Weinberg 2008).
In order to maximize the amount of information obtainable
from the power spectrum, we need to understand its de-
pendence on the cosmological parameters in the nonlinear
regime.

A number of theoretical and semi-empirical techniques
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are available for predicting the nonlinear power spectrum:
such as the halo model (Seljak 2000; Peacock & Smith
2000; Ma & Fry 2000; Smith et al. 2003); perturbation the-
ory (Bernardeau et al. 2002; Crocce & Scoccimarro 2008);
and scale transformations (Hamilton et al. 1991; Peacock &
Dodds 1996). However, it is widely acknowledged that N-
body simulations provide the most direct path towards this
answer. Cosmological N-body simulations are not without
pit-falls (Heitmann et al. 2005, 2008; Reed et al. 2012), and
in general they depend on a number of pseudo-free parame-
ters, such as: the number of particles used to represent the
phase-space; the box-size; the redshift at which the initial
conditions are given; the scale on which two-body forces are
softened, etc. If a particle-mesh (PM) approach is employed
then one additionally needs to set the scale above which
forces are solved using mesh based techniques. If a tree tech-
nique is used, then one additionally needs to adopt a choice
for the multipole order to which forces are expanded and the
type and depth of the tree to be used. If both are used, then
one also needs to set parameters that interpolate between
the tree and PM methods.

Given the complexity of the state-of-the-art N-body
codes, we are then lead to ask the following questions:

• How do we determine the values of the optimal simula-
tion parameters?

• How much would forecasted parameter constraints be
degraded if we were to marginalize over the simulation pa-
rameters?

• How does this affect the dark energy ‘figure of merit’?

In this paper we shall employ a large ensemble of N-
body simulations to directly answer these latter two ques-
tions, and leave the first for future study.

The paper can be broken down as follows: In §2 we
provide a brief overview of the necessary theoretical back-
ground, and in particular we give a brief review of the Fisher
matrix approach to forecasting cosmological constraints. In
§3 we describe the large ensemble of simulations that we em-
ploy. In §4 we present results concerning the fiducial model
power spectrum and its covariance matrix. In §5 we explore
the dependence of the matter power spectrum on cosmo-
logical and simulation parameters. In §6 we use the Fisher
matrix approach to explore how various assumptions con-
cerning our understanding of N-body simulations can im-
pact the cosmological parameter forecasts from future large-
scale-structure surveys. In §7 we focus on the question of
constraining the time evolution of dark energy and how igno-
rance of simulation parameters impacts the figure of merit.
Finally, in §8 and §9 we discuss this approach, summarize
our findings and conclude.

2 FORECASTING COSMOLOGICAL

CONSTRAINTS

2.1 The Gemeinsam likelihood function

We are interested in forecasting the ability of a future sur-
vey of the universe to constrain the cosmological parameter
space. We may assess this using the Fisher matrix approach.

Consider a particular statistic that we will estimate
from the survey data, and let us be concrete and take this to

be the matter power spectrum P (k). The power spectrum
may be defined as (Peebles 1980):

Vµ 〈δ(k1)δ(k2)〉 ≡ P (k1)δ
K
k1,−k2

, (1)

where the Fourier modes of the density field are given by

δ̃(k) =
1

Vµ

∫
d3
x exp [−ik · x] δ(x) (2)

and where the over-density field is defined as:

δ(x) ≡ ρ(x)− ρ̄

ρ̄
, (3)

with ρ and ρ̄ being the local and background density.
A given theoretical cosmological power spectrum de-

pends on the wavenumber k – here we focus on the real-space
isotropic function – and also the cosmological parameters θ.
We are also interested in the case where the theoretical pre-
dictions also depend on a set of internal simulation param-
eters ψ. Let us write the augmented vector of cosmological
and simulation parameters as φ = (θ,ψ). We denote the
measurement of P (k) at wavenumber ki by Pi and the the-
oretical (simulated) spectra by P sim(ki|φ). Notice that here
we are making the approximation that Pi does not depend
on θ; this in fact is not true and any measurement of P re-
quires the assumption of a cosmological model (we reserve
further discussion of this for future work and note that this
simply makes the analysis sub-optimal).

Let us adopt a Bayesian approach to the analysis of our
data and write the m measurements of the power spectra at
wavenumbers k → {k1, . . . , km}, as P → {P1, . . . , Pm}. The
probability that our survey yields observations P, given the
cosmological and simulation parameters φ, is L(P|φ) – the
likelihood. If the likelihood is Gaussian, then we have

L(P|φ) = 1

(2π)n/2|C|1/2 exp

[
−1

2
yi(φ)C

−1
ij (φ)yj(φ)

]
(4)

where we have made use of the Einstein summation conven-
tion. In the above equation we also defined

yi(φ) ≡ Pi − P
theory

(ki|φ) , (5)

where P
theory

(ki|φ) is the expectation for the theory power
spectrum. C(φ) is the covariance matrix, which may be de-
fined as:

Cij ≡
〈[

Pi − P
theory

(ki)
] [

Pj − P
theory

(kj)
]〉

(6)

and |C| is the determinant of the covariance matrix.
Using Bayes theorem, the likelihood is directly related

to the posterior probability, p(φ|P), through a set of priors,
p(φ), and is normalized by the evidence, p(P):

p(φ|P) =
p(φ)L(P|φ)

p(P)
=

p(φ)L(P|φ)∫
dφp(φ)L(P|φ) . (7)

If the priors are flat, then the posterior probability is simply
proportional to the likelihood. Close to its maximum, at φ0,
we may Taylor expand the logarithm of the posterior, and
for flat priors also the log likelihood (L ≡ lnL), to obtain:

ln p(φ|P) ∝ L(P|φ)

≈ L(P|φ0)−
1

2
∆φαHαβ(φ0)∆φβ + . . . , (8)

where in the above: ∆φ ≡ (φ− φ0) are deviations of the
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parameters from the fiducial values; the first derivative van-
ished at the maximum; the second derivative is identified
as

Hαβ ≡ −∇φ
α∇φ

βL (9)

and it is given the name of Hessian, or curvature matrix.
We have also used the notation: ∇φ

α ≡ ∂/∂φα. In truncating
this expression for the posterior at second order we are im-
plicitly assuming that the likelihood is also Gaussian in the
parameters. Hence, we may rewrite the above expression for
the posterior as,

p(φ|P) ≈ p(φ)

p(P)
L(φ0) exp

[
−1

2
∆φαHαβ(φ0)∆φβ

]
. (10)

Thus Hαβ informs us about errors on the parameters and
how different parameters may be correlated with respect to
each other – in the context of their effects on the data.

Since the likelihood itself depends on the data, it is also
a random variable. Taking an ensemble average over many
realizations of the data, we arrive at the Fisher matrix:

Fαβ = 〈Hαβ〉 = −
〈

∂2 lnL

∂φα∂φβ

〉
. (11)

Considering the division into cosmological and simula-
tion parameters, this matrix may be written schematically
as:

Fφφ =

(
Fθθ Fθψ

Fψθ Fψψ

)
. (12)

where Fθθ , Fθψ and Fψψ denote the Fisher matrices of the
cosmological, cosmological-cross-simulation and simulation
parameter spaces, respectively.

From the Fisher matrix one can obtain the expected
marginalized error on parameter φi and the covariance be-
tween parameters (φi, φj):

σii >

√
[Fφφ]−1

ii ; σij >
√

[Fφφ]−1
ij . (13)

We can also obtain conditional errors for the cosmological
parameters, conditioned on the simulation parameters pos-
sessing a particular value:

σii >
√

[Fθθ ]−1
ii ; σij >

√
[Fθθ ]−1

ij . (14)

These expressions represent the minimum variance bounds
(MVB) (for a derivation see Heavens 2009).

Lastly, we note that for the specific case of a Gaussian
likelihood, it can be shown that the Fisher matrix takes on
the special form (Tegmark et al. 1997; Heavens 2009):

Fαβ =
1

2
Tr

[
C

−1
C,αC

−1
C,β

]
+

[
P

theory
,α

]T
C

−1
P

theory
,β . (15)

Our first objective may now be reformulated as the fol-
lowing questions:

• How do the MVBs obtained from Fθθ compare with
those for Fφφ? How do our parameter forecasts degrade
when we marginalize over simulation parameters?

3 THE N-BODY SIMULATIONS

In order to study the Fisher information we have generated a
large suite of N-body simulations. As Eq. (15) demonstrates,

Table 1. Cosmological parameters used for the fiducial zHORIZON

suite of simulations and the variations with respect to the cos-
mological parameters. The columns are: name of simulation se-
ries; density parameters for matter, dark energy and baryons; the
equation of state parameter for the dark energy Pw = wρw; nor-
malization and primordial spectral index of the power spectrum;
dimensionless Hubble parameter h, respectively.

Param. Ωm Ωb w0 wa σ8 n h

Fid. 0.25 0.04 -1.0 0.0 0.8 1.00 0.7

V1 0.20 0.04 -1.0 0.0 0.8 1.00 0.7
V2 0.30 0.04 -1.0 0.0 0.8 1.00 0.7

V3 0.25 0.035 -1.0 0.0 0.8 1.00 0.7
V4 0.25 0.045 -1.0 0.0 0.8 1.00 0.7

V5 0.25 0.04 -1.2 0.0 0.8 1.00 0.7
V6 0.25 0.04 -0.8 0.0 0.8 1.00 0.7

V7 0.25 0.04 -1.0 -0.1 0.8 1.00 0.7
V8 0.25 0.04 -1.0 0.1 0.8 1.00 0.7

V9 0.25 0.04 -1.0 0.0 0.7 1.00 0.7
V10 0.25 0.04 -1.0 0.0 0.9 1.00 0.7

V11 0.25 0.04 -1.0 0.0 0.8 0.95 0.7
V12 0.25 0.04 -1.0 0.0 0.8 1.05 0.7

V13 0.25 0.04 -1.0 0.0 0.8 1.00 0.65

V14 0.25 0.04 -1.0 0.0 0.8 1.00 0.75

Table 2. The Gadget-2 parameters used for all fiducial simula-
tions, and the variations with respect to the simulation parame-
ters. The columns are: name of simulation series; simulation pa-
rameter varied; fiducial value; simulated variations.

Simulation Parameters Fiducial Low High

S1/S2 ErrTolForceAcc 0.005 0.004 0.006
S3/S4 ErrTolIntAcc 0.025 0.02 0.03
S5/S6 ErrTolTheta 0.45 0.4 0.5
S7/S8 PMGRID 750 500 1000
S9/S10 MaxRMSDispFac 0.2 0.15 0.25
S11/S12 Softening 0.03 0.025 0.035
S13/S14 RCUT 4.5 4.0 5.0
S15/S16 ASMTH 1.25 1.15 1.35
S17/S18 MaxSizeTstep 0.025 0.020 0.03

one needs to compute the derivatives of the theoretical power
spectra with respect to the parameters φ and also the co-
variance matrix. In fact, one also needs the derivatives of the
covariance matrix with respect to the parameters φ. Since
estimating the covariance matrix is a sufficiently challenging
task in itself, we shall reserve the inclusion of information
from this for future study. Henceforth, we shall drop the first
term in Eq. (15) from our analysis (for further justification
of this approximation see Tegmark 1997).

In order to determine the covariance matrix we
have simulated 200 realizations of our fiducial cosmolog-
ical model. The specific cosmological parameters that we
adopted are for a flat ΛCDM model with: {σ8 = 0.8,Ωm =
0.25,Ωb = 0.04, w0 = −1.0, wa = 0.0, h = 0.7, ns = 1.0}
where: σ8 is the variance of mass fluctuations in a top-hat
sphere of radius R = 8h−1Mpc; Ωm and Ωb are the matter
and baryon density parameters; w0 and wa are the constant
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and time-evolving equation-of-state parameters for the dark
energy, i.e. PDE/ρDE ≡ w(a) = w0 + (1− a)wa; h is the di-
mensionless Hubble parameter; and n is the power-law index
of the primordial density power spectrum. Our adopted val-
ues were inspired by the results of the WMAP experiment
(Komatsu et al. 2009). Table 1 contains further details of
the cosmological parameters of the fiducial model.

All of the N-body simulations were run on the zBOX-3

and Schrödinger supercomputers at the University of
Zürich, using the publicly available Tree-PM code GADGET-2
(Springel 2005), with a slight modification that permitted
a time-evolving equation of state for dark energy, specified
by the parameters {w0, wa}. This code was used to follow
with high-force accuracy the nonlinear evolution under grav-
ity of N = 7503 equal mass particles in a comoving cube of
length L = 1500 h−1Mpc, giving a total sample volume of or-
der V ∼ 540 h−3 Gpc3. Newtonian two-body forces are soft-
ened below scales lsoft = 60 h−1kpc. We shall refer to this
suite of simulations as the zHORIZON runs (Zürich Horizon
simulations). The transfer function for the simulations was
generated using the publicly available cmbfast code (Seljak
& Zaldarriaga 1996), with high sampling of the spatial fre-
quencies on large scales. For the time evolving dark energy
models we used the code CAMB (Lewis et al. 2000) and with
the dark energy module of Hu & Sawicki (2007).

Initial conditions were lain down at redshift z = 49
using the serial version of the publicly available 2LPT code
(Crocce et al. 2006). The zBOX-3 runs took roughly ∼20Hrs
per run on 256 cores, and the Schrödinger runs took ∼6Hrs
per run on 256 cores. For all of the realizations snapshots
were output at a number of redshifts, though for this study
we focus only on the results at z = {1, 0.5, 0}. For complete-
ness, the Gadget-2 parameters that we used are presented
in Table 2.

In order to evaluate the derivatives of the power spec-
trum with respect to the cosmological parameters, we have
performed an additional 56 simulations – the cosmological
variations, labeled V1-V14. We have considered the effect
of changing a single cosmological parameter, whilst holding
the remaining parameters fixed. For each such modification
we ran 4 simulations. We used double-sided variations, e.g.
P (k|φ+∆φi) and P (k|φ−∆φi), as this enables more accu-
rate computations of the numerical derivatives, which will
be important for our Fisher-matrix estimates. Also, in or-
der to reduce the noise in these estimates, we matched the
initial Gaussian random field of each realization with the
corresponding one from the fiducial model. Full details of
these simulations are summarized in Table 1.

To estimate the derivatives of the power spectrum with
respect to the simulation parameters, we have performed
another 18 simulations – the simulation variations, labeled
S1-S18. This time we keep the cosmological parameters as
the fiducial ones and explore the effect of changing a sin-
gle simulation parameter, whilst holding the remaining ones
fixed. For each such modification we ran a single simula-
tion, but again we considered double-sided variations, with
matched initial Gaussian random fields so as to decrease
the noise when estimating derivatives. The exact list of sim-
ulation parameters that we have sampled are presented in
Table 2.

Figure 1. The ensemble-averaged dark matter power spectrum
for the 200 fiducial realizations, at redshifts z ∈ {1, 0.5, 0}, with
errors per realization. Top panel: absolute dimensionless power,
∆2 = k3P (k)/2π2. Central panel: the ratio of the mean power
spectra with respect to the linear theory. Bottom panel: ratio
of power spectra with respect to the nonlinear predictions from
the fitting formula halofit (Smith et al. 2003). In all panels the
solid and dashed lines denote the nonlinear and linear theory
predictions, respectively. Note that in the central and bottom
panels, the z = 0.5 and z = 0 results have been off-set by 0.1 and
0.2 in the vertical direction for clarity.

4 ANALYSIS I: THE FIDUCIAL MODEL

4.1 Power spectrum

As a first exploration of the simulation data we compute the
matter power spectrum at the redshifts of interest.

The power spectrum in the simulation cube for a given
Fourier mode is as described in Eq. (1). In practice, the
power is estimated by averaging over all wavemodes in thin
spherical shells in k-space – band-powers. The band-power-
averaged power spectrum can be written,

P̂ d(ki) =
Vµ
Vs,i

∫

Vs,i

d3
k
〈
δd(k)δd(−k)

〉

=
Vµ
Nki

Nki∑

j=1

〈
δd(kj)δ

d(−kj)
〉

, (16)

where the average is over the k-space shell Vs, of volume

Vs,i =

∫ ki+∆k/2

ki−∆k/2

d3
k = 4πk2

i∆k

[
1 +

1

12

(
∆k

ki

)2
]

(17)
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and where Nki = Vs,i/Vk is the total number of modes in
the shell. Vk = k3

f is the fundamental k-space cell volume
and kf = 2π/L is the fundamental wavemode.

Notice that in Eq. (16) we have used the superscript d,
this stands for discrete, since we make a Fourier decompo-
sition of the point-sampled field. For a point-sampled pro-
cess, the power spectrum is related to that of the continuous
mass density field through the relation (Peebles 1980; Smith
2009):

P d(k) = P c(k) +
1

n̄
, (18)

where P c is the power spectrum of the underlying continu-
ous field. The constant term on the right-hand side of the
equation is more commonly referred to as the ‘shot-noise
correction’ term, and is the additional variance introduced
through discreteness, where n̄ = N/Vµ. However, we do not
make such a correction, since the initial particle configura-
tion of the simulation is not strictly a point sampling of a
continuous density field. In particular, for the grid starts
that we use, applying the above correction at early times
and on large scales would lead to negative power. However,
on small scales the discreteness correction is well described
by Eq. (18). We therefore make no discreteness correction,
but use the form of Eq. (18) to judge when such effects are
significant (for more discussion see Smith et al. 2003).

In order to compute the power spectrum, we apply the
standard Fast Fourier Transform (FFT)-based approach (see
for example Smith et al. 2003; Jing 2005; Smith et al. 2008).
We use a ‘cloud-in-cell’ (CIC) mass assignment scheme for
the simulation particles, and deconvolve each Fourier mode
accordingly with the window function. The power spectrum
estimator is then given by Eq. (16). We use FFT grids with
Ngrid = 1024 cells per dimension, and this sets the mini-
mum and maximum spatial frequencies to: kmin = 2π/L =
0.0042 hMpc−1 and kNy = πNgrid/L = 2.15 hMpc−1. In
practice, the power on length scales k > kNY will get
‘aliased’ to larger spatial scales, and so we take kmax =
kNy/2. In this study we have decided to estimate the power
spectrum in 35 logarithmically spaced band powers in the
interval k ∈ [0.0042, 1.0] hMpc−1. We adopt this strategy in
order to obtain sufficiently high signal-to-noise estimates of
the covariance matrix.

Figure 1 shows the ensemble-averaged dark matter
power spectrum for the 200 realizations, at the redshifts
z ∈ {1, 0.5, 0}, denoted by the green, red and blue points,
respectively. The coloured points actually show the power
spectra obtained from a linear binning, where the bin spac-
ing is in units of the fundamental k-cell spacing, kf . The
black points denote the results for the 35 logarithmically
spaced bins, and the error bars are on the mean. In the top
panel of the figure we show the dimensionless power, which
may be defined:

∆2(k) ≡ 4π

(2π)3
k3P (k) . (19)

In the middle panel we show the ratio of the measured power
spectra with respect to the input linear theory power spec-
tra. For clarity, we offset the power spectra at z = 0 by
20% and at z = 0.5 by 10% in the vertical direction. The
black solid line shows the nonlinear power spectra predic-
tions from halofit (Smith et al. 2003). The plot demon-
strates that strong nonlinear amplification occurs on scales

Figure 2. Ratio of the measured error in the power spectrum
to the Gaussian-predicted error, i.e. Eq. 24. The measured error
is obtained from the ensemble of 200 N-body simulations. Blue,
green and red points depict the results for redshifts z ∈ {0, 0.5, 1},
respectively. The solid and open symbols show the results ob-
tained when the linear theory and measured nonlinear power
spectra are used to make the predictions from the Gaussian error
formula. For clarity, the z = 0 and z = 0.5 results have been
off-set by factors of 3 and 2 on the y-axis, respectively.

k & 0.1 hMpc−1, and that linear theory is not a good ap-
proximation on these scales. In addition, nonlinear ampli-
fication is not significantly weaker at higher redshifts. The
bottom panel shows the ratio of the measured power spec-
tra with respect to halofit. Again we have offset the power
spectra for clarity. halofit is able to describe the measured
power spectra to better than 10% on the scales investigated.
The BAO wiggles appear emphasized when one takes the ra-
tio of the nonlinear spectrum with the linear one. As was ex-
plained in (Guzik et al. 2007), this is due to the fact that the
BAO in the nonlinear spectrum are damped and smoothed
relative to linear, and so when one takes the ratio with the
linear one sees stronger acoustic oscillations.

The shot-noise correction to the power spectrum is
Pshot = 1/n̄ = 8h−3 Mpc3, which in terms of the dimen-
sionless power is ∆2

shot = 4k3/π2. At k ∼ 1hMpc−1, this is
∆2

shot ∼ 0.4. Thus for z = 1, the power has roughly a 10%
correction, which by z = 0 is reduced to 2%.

4.2 Covariance matrix

An unbiased estimator for the covariance between different
band power estimates can be obtained through:

Ĉij =
1

NE − 1

NE∑

α=1

[
P̂

(α)
i − P̂ i

] [
P̂

(α)
j − P̂ j

]
; (20)

P̂ i =
1

NE

NE∑

α=1

P̂
(α)
i , (21)

where NE is the number of realizations.
Following Scoccimarro et al. (1999) and Smith (2009),
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6 R. E. Smith et al.

Figure 3. Top panel: Evolution of the power spectrum correlation matrix as a function of wavenumber, estimated from the ensemble of
200 simulations. The left, central and right panels show the results for z = {1.0, 0.5, 0.0}, respectively. Bottom panel: same as above,
only the correlation matrix has been box-car smoothed by a square top-hat filter of size 3 × 3 pixels. This clearly reduces the noise in
the correlation matrix on large scales.

a theoretical expression for the bin-averaged covariance ma-
trix of the matter power spectrum, obtained from a set of
densely-sampled tracers of the mass field, can be written:

Cij =
Tij
Vµ

+
2

Nk

[
P̂ i

]2
δKi,j , (22)

where Tij is the shell-averaged, connected part of the trispec-
trum in parallelogram configuration:

Tij ≡
∫

d3k1

Vs,i

d3k2

Vs,j
T̃ (k1,k2,−k1,−k2) , (23)

with T̃ (k1,k2,k3,k4)V
3
µ ≡ 〈δ(k1) . . . δ(k4)〉 δKk1+···+k4,0

be-
ing the matter trispectrum. Note that for a Gaussian ran-
dom field the connected part of the trispectrum vanishes,
i.e. T̃ = 0, and the covariance reduces to:

Cij =
2

Nki

[
P̂ i

]2
δKi,j . (24)

Figure 2 shows the standard deviation for the matter
power spectrum, i.e. C

1/2
ii , measured from the simulations,

scaled in units of the square root of the Gaussian expecta-
tion for the variance given in the equation above. The figure
reveals that for k < 0.1 hMpc−1 the diagonal errors are
reasonably well described by Eq. (24). However, on smaller
scales we find that the errors are significantly larger than
one would expect from simple mode counting. If one uses
Eq. (24) with P measured from the simulations (open points
in Fig. 2), then the errors appear to increase ∝ k. This would
suggest that in the deeply nonlinear regime Tii ∝ P 2

i as

k → ∞. This scaling is consistent with the predictions from
the 1-Loop perturbation theory (Scoccimarro et al. 1999).

An interesting way to present the information in the
off-diagonal elements of the covariance matrix is through
the cross-correlation matrix. This may be defined as:

rij ≡ Cij√
CiiCjj

, (25)

and it gives the strength of the covariance in a particular el-
ement relative to the square root of the product of variances
in the relevant bins. It is therefore bound to the interval
r ∈ [−1, 1].

The top panels in Figure 3 present the evolution of the
correlation matrix as a function of redshift from z = 1 to
z = 0. The increasingly redder/bluer colours demonstrate
increasing/decreasing correlation strength. The results on
large scales appear to be slightly noisy. The bottom panels
of Fig. 3 presents the same information, only here we have
performed a box-car smoothing of the correlation matrix in
order to reduce the noise. For each pixel, we take the av-
erage of all pixels that are within 1-pixel from the current
pixel centre, excluding the pixels on the diagonal and being
careful in our treatment of the edges of the matrix. We also
keep the diagonal elements fixed at r = 1 (for further dis-
cussion of this approach see Mandelbaum et al. 2012). This
noise reduction strategy constitutes a plausible alternative
to various other ad-hoc approaches presented elsewhere in
the literature (Ngan et al. 2012).

For the case of both the raw and the noise-reduced ma-
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Figure 4. Different rows of the power spectrum correlation matrix as a function of wavenumber. From left to right the columns show
results for k1 = {0.01, 0.02, 0.04, 0.12, 0.32, 0.84} hMpc−1, as a function of k2. The top, middle and bottom rows show the results for
z = {0, 0.5, 1}, respectively. The dashed and solid lines show the estimates for the raw and box-car smoothed correlation matrix.

trix, the off-diagonal correlations are in general non-zero and
positive. The correlations increase as the wavenumbers of
the two considered band powers are increased. Also, the cor-
relation increases with decreasing redshift. For our choice of
binning and simulation volume, we find that different power
spectral band powers are > 50% correlated for {ki, kj} &

0.2 hMpc−1 at z = 0, and for {ki, kj} & 0.25 hMpc−1 by
z = 1.

Figure 4 presents slices through the power spectrum
correlation matrices measured at z ∈ {0, 0.5, 1} for the 200
realizations of the fiducial model. These results point to a
reasonably good agreement between the raw and box-car-
smoothed covariance matrices.

The covariance matrix of the matter power spectrum
has recently been explored by Takahashi et al. (2009) who
ran 5000 PM simulations in boxes of size L = 1h−1Gpc
with N = 2563 particles. These simulations are not of
sufficiently-high spatial resolution to probe the covariance
of power spectrum estimates beyond scales of the order
k ∼ 0.2(0.4) hMpc−1 at ∼ 1(3)% precision. Moreover, whilst
they did employ the more accurate 2LPT initial conditions
– as does our study – they also used a rather low start red-
shift of z = 20, which may induce small scale inaccuracies
(Reed et al. 2012). On comparing their results with ours, we
note that whilst they have a factor of 25 times more simu-
lations, each of our simulations has a factor of 3 times more
volume. This makes the overall difference roughly a factor
of ∼ 3 in terms of (S/N). We should therefore be able to ob-
tain a reasonably accurate covariance matrix. This is further
mitigated by our smoothing of the correlation matrix.

We also compare our study with that of Ngan et al.
(2012), who used the code CUBEP3M to run 1000 simula-
tions of boxes with L = 600 h−1Mpc and with N = 2563

particles. We underline that for this choice of simulation
set-up, the shot-noise corrections to the power spectrum at
k = 1hMpc−1 are 6% and 30% at z = 0 and z = 1, re-
spectively. Again, whilst their study used 1000 simulations,
our simulations have roughly 15 times more volume per run.
Moreover, they have explored the covariance matrix for 54
bins, nearly a factor of 2 times more than we employ, hence
the relative statistical power of our study should be at the
very least comparable with their work. It is also worth point-
ing out that Ngan et al. (2012) found a 20% anti-correlation
of band-powers on the largest scales. We find no evidence of
such a strong anti-correlation. We also note that the power
spectra from the simulations of Ngan et al. (2012) appear
to show a worrying ∼ 5− 7% positive off-set from the linear
theory predictions for the power spectrum on scales com-
parable to the box-scale, although this issue may now be
resolved (Harnois-Deraps et al. 2012).

A more recent study by de Putter et al. (2012) has
used a suite of 1024 simulations of L = 600 h−1Mpc boxes
and 160 simulations of a L = 2400 h−1Mpc box to explore
the covariance matrix. They found that the results from the
large-box simulations were in reasonably good agreement
with the larger ensemble of smaller box simulations.

Thus our results are in broad agreement with all of these
works and non-trivial band power correlations must be ac-
counted for in cosmological analysis of large-scale structure
data.
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Figure 5. Dependence of the nonlinear matter power spectrum on the power spectrum normalization parameter σ8. In all panels the
solid blue and open green stars depict the estimates from the N-body simulations with σ8 = {0.9, 0.7}, and the solid red points denote
the results for the fiducial model σ8 = 0.8. The top panels show the absolute power spectrum; the central panels show the ratio of the
spectra with respect to the fiducial linear theory predictions; the bottom panels show the ratio of the spectra with respect to the fiducial
power spectrum. From left to right, the three columns represent results for epochs z = {0, 0.5, 1}, respectively.

Figure 6. The same as Fig. 5, only this time showing the dependence of the power spectrum on the matter density parameter Ωm. The
solid blue and open green stars depict the results for Ωm = {0.3, 0.2}, and the solid red points denote the results for the fiducial model
Ωm = 0.25.
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Figure 7. The same as Fig. 5, only this time showing the dependence of the power spectrum on the baryon density parameter Ωb. The
solid blue and open green stars depict the results for Ωb = {0.045, 0.035}, and the solid red points denote the results for the fiducial
model Ωm = 0.04.

Figure 8. The same as Fig. 5, this time showing the dependence of the power spectrum on the dark energy equation-of-state parameter
w0. The solid blue and open green stars depict the results for w0 = {−0.8,−1.2}, and the solid red points denote the results for the
fiducial model w0 = −1.0.
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Figure 9. The same as Fig. 5, this time showing the dependence of the power spectrum on the dimensionless Hubble parameter h. The
solid blue and open green stars depict the results for h = {0.75, 0.65}, and the solid red points denote the results for the fiducial model
h = 0.7.

Figure 10. The same as Fig. 5, this time showing the dependence of the power spectrum on the primordial-power-spectrum index ns.
The solid blue and open green stars depict the results for ns = {1.05, 0.95}, and the solid red points denote the results for the fiducial
model ns = 1.0.
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Figure 11. The same as Fig. 5, this time showing the dependence of the power spectrum on the dark energy equation-of-state parameter
wa. The solid blue and open green stars depict the results for wa = {0.1,−0.1}, and the solid red points denote the results for the fiducial
model wa = 0.

5 ANALYSIS II: VARIATIONS

5.1 Power spectrum dependence on cosmological

parameters

We now turn to the task of exploring the cosmological de-
pendence of the power spectrum. As mentioned in §3, we
consider the variations with respect to 7 cosmological pa-
rameters: θ = {σ8,Ωm,Ωb, w0, wa, h, ns}. For each cosmo-
logical parameter, we freeze all of the other parameters and
simulate two variations, up and down, around the fiducial-
model value. For each such variation we have performed 4
realizations.

Figures 5–11 present the ensemble-averaged variations.
For each figure the left, middle and right panels show the
results at redshifts: z = {1, 0.5, 0}, respectively. The top sec-
tions show the absolute power; the middle, the ratio with re-
spect to the linear theory of the fiducial model; and the bot-
tom the ratio with respect to the measured nonlinear power
in the fiducial model. In all panels the red points denote the
fiducial model, the blue stars denote the upper variation, i.e.
P (ki|φ + ∆φµ), and the open green stars denote the lower
variation, i.e. P (ki|φ −∆φµ). It is worth noting that when
we compute the ratio of the variant power spectra with the
nonlinear fiducial spectrum, we compute this ratio for each
realization, before averaging. This leads to the cancellation
of some of the cosmic variance, and explains why the error
bars in the lower sections of each panel are not visible.

We next turn our attention to the computation of the
derivatives of the power spectra with respect to the cosmo-
logical parameters. In order to obtain low-noise estimates of
these, we take advantage of the matched initial conditions

between the variations and use the double-sided derivative
estimator,

̂∂P (k|φ)
∂φα

= P̂ (k|φ)
̂∂ logP (k|φ)
∂φα

, (26)

where for the first term on the right-hand-side we take all
200 of the fiducial simulations as described by Eq. (16). For
the logarithmic derivative we use the estimator:

̂∂ logP (ki|φ)
∂φµ

=
1

Nvar
ensemb

Nvar

ensemb∑

α=1

×
[
P (α)(ki|φ+∆φµ)− P (α)(ki|φ−∆φµ)

2∆φµP (α)(ki|φ)

]
(27)

where Nvar
ensemb = 4.

Figure 12 presents the evolution of the logarithmic
derivatives of the power spectrum with respect to the 7 cos-
mological parameters that we have considered. The deriva-
tives are computed as described by Eq. (27). In each panel
the linear-theory derivatives are given by the solid blue lines
and the black dashed lines show the predictions for the
derivatives using halofit (Smith et al. 2003).

The figure demonstrates that on scales k < 0.1 hMpc−1

one may capture the cosmological parameter dependence of
the matter power spectrum through the variations in the
linear power spectrum. However, on smaller scales on must
obtain the derivatives from full nonlinear modelling. With
the exception of w0 and wa at z = 0, the predictions from
halofit are in reasonably good agreement with the esti-
mates from the numerical simulations. For w0 and wa at
z = 0 halofit fails to predict the nonlinear derivatives.
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This may partially be explained by the fact that we have
normalized the initial power spectra to have the same σ8:
had we instead adopted As, the amplitude of the primordial
power spectrum, as our power spectrum normalization cri-
terion, then we expect that halofit would have made more
reasonable predictions (Jennings et al. 2010).

We also point out that as k → 1hMpc−1, the mea-
sured derivatives for {Ωm,Ωb, ns, h} appear to approach
∂ logP/∂α → 0. This suggests that there is very little
cosmological information to be gained by the inclusion of
measurements on very small scales. On the other hand, in-
cluding the information from small scales can greatly in-
crease the cosmological information about the parameters
{σ8, w0, wa}.

5.2 Power spectrum dependence on simulation

parameters

We now explore the dependence of the matter power spec-
trum on the Gadget-2 simulation parameters. As described
in §3 we have considered variations in 9 of the parameters.
As for the variations in the cosmological parameters, we take
upper and lower variations of a single simulation parameter
and freeze all others at their fiducial values.

Figure 13 presents the percentage differences between
the variational and the fiducial models. Each of the nine
panels corresponds to one parameter, with the solid and
open points depicting the upper and lower variations re-
spectively. The blue, green and red coloured symbols show
the results at epochs z = {0, 0.5, 1}, respectively. We find
that the most significant source of error is given by the
parameter PMGRID, which can yield percent-level errors on
small scales. We also find that the parameters which con-
trol the interpolation between the Tree- and the PM-force
calculations, RCUT and ASMTH, can also introduce significant,
but sub-percent errors. Again, these are most important on
small scales. ErrTolForceAcc and the Softening can also
induce ∼ 0.2% errors in the power spectrum.

It is interesting to note that for the case of the param-
eters ErrTolForceAcc, ErrTolIntAcc, ASMTH the differences
with respect to the fiducial model are almost symmetric for
the positive and negative parameters steps. This suggests
that these parameters are not at their converged values – it
is likely that decreasing ErrTolForceAcc and ErrTolIntAcc

will always lead to improved results since they control the
accuracy of the integration. On the other-hand the parame-
ters RCUT, PMGRID, and the Softening are not symmetric –
this suggests that it is not so easy to understand how these
parameters affect the accuracy of the simulations. For the
case of PMGRID we speculate that there may be issues asso-
ciated with beat coupling between the initial particle lattice
– the memory of which is not lost until late times – and
the Fourier mesh used to solve the Poisson equation. For
the fiducial case, since the number of particles and the PM-
GRID were identical this effect would be minimised. As one
moves to a different mesh then this effect occurs and induces
an error which depends only on the absolute step size. For
the case of the force softening it is well known that if one
uses a softening that is either too large or too small, then the
structure on the smallest scales can be damped. For the case
of too small softening this occurs because hard two-body en-
counters can eject particles more easily from potential wells.

In the case of Fig. 13 we see that the power increases for both
positive and negative steps. This might be explained by the
fact that if the inner-densities are decreased, then the outer
edges of clusters will have an increased power amount of
matter and hence an increased power spectrum. Indeed our
plots do indeed show a turnover at k ∼ 0.5 hMpc−1 – the
turn up at higher k may be due to the fact that the shot
noise has not been subtracted.

Another important point to note is that the figure
also shows that all of the variations are relatively time-
independent. This can be demonstrated more clearly by con-
sidering the logarithmic derivatives. Figure 14 presents the
logarithmic derivatives of the matter power spectrum with
respect to variations in the Gadget-2 simulation parameters.
We estimate the derivatives as described by Eq. (27), except
that we only use a single realization to do this. We now
make some important observations: firstly, on large scales,
with the exception of the parameter ErrTolIntAcc, all of
the derivatives are very close to zero. Moreover, they dis-
play a very weak dependence on redshift, which is a marked
difference from the cosmological parameters, which tend to
evolve with both time and scale. This is an important point,
suggesting that the information coming from the cosmology
dependence of the simulations can be disentangled from that
coming from the simulation parameters.

6 FISHER MATRIX RESULTS

Having obtained estimates for the time evolution of the fidu-
cial model power spectrum, its covariance matrix and its
derivatives with respect to the cosmological and simulation
parameters, we are now in a position to explore the true
cosmological information content of the power spectrum.

6.1 Estimator for the Fisher matrix

We compute the Fisher matrix as described by Eq. (15), and
after dropping the first term, the estimator is:

F̂αβ =
∑

i,j

̂∂ logPi
∂φα

P̂iĈ−1
ijP̂j

̂∂ logPj
∂φβ

. (28)

We shall not use the above equation directly, but an alter-
nate form. Consider the matrix C, and let us rewrite it as

Cij = σiσjrij (29)

(no summing over repeated indices), where σ2
i is the variance

associated to the ith measurement bin. The inverse of C can
be written as

C−1
ij = r−1

ij /σiσj . (30)

Using the above identity allows us to rewrite Eq. (28) as:

F̂αβ =
∑

i,j

∂̂ log yi
∂φα

ŷir̂−1
ij ŷj

∂̂ log yj
∂φβ

, (31)

where ŷi ≡ ŷ(ki|φ) ≡ P̂ (ki|φ)/σ(ki) and σ(ki) = Ĉ
1/2
ii . This

latter form is very useful, since one simply needs to invert
the correlation matrix rather than the covariance matrix.
In theory there should be no difference between the results
from these two approaches, however, on a computer there
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Figure 12. Evolution of the logarithmic derivatives of the power spectrum with respect to the cosmological parameters. In all panels:
solid red points denote the estimates from the N-body simulations; solid blue and black dashed lines denote the predictions from the linear
theory and nonlinear halofit fitting function. From top to bottom the different rows show the results for variations in the parameters:
{Ωm, σ8, ns, w0, h,Ωb}, respectively. The left, central and right columns show the results for epochs, z = {0, 0.5, 1}, respectively.
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Figure 13. Percentage difference in the simulated power spectra as a function of wavenumber. We plot
[P (k|ψfid ±∆ψ) − P (k|ψfid)] /P (k|ψfid). Blue, green and red points are for z = {0, 0.5, 1}, respectively. The open and solid
points are for the positive and negative changes in the fiducial parameters.

can be. Whilst the elements of the covariance matrix can
differ wildly, even by orders of magnitude, the elements of
the correlation matrix are constrained to range from [−1, 1].
Thus we reduce the risk of inaccurate and potentially un-
stable inverse estimates due to round-off errors. This is es-
pecially true when large dynamic ranges are considered and
when many matrix elements are employed.

6.2 Information content of the power spectrum

For our cosmological forecast we adopt a survey consisting
of three independent volumes, each of which has the same
volume Vµ = 3.25 h−3 Gpc3, but mapping the three epochs
z = {0, 0.5, 1}. Whilst this does not directly match a par-
ticular survey, it covers the scale and evolution that should
be obtainable with BOSS or DES.

Figure 15 shows the fractional errors in the matter
power spectrum for the variations in the 7 cosmological pa-
rameters, at epochs z = {0, 0.5, 1}, and as a function of the
maximum wavenumber that enters the calculation, i.e. kmax.
Note that since the fiducial value of wa = 0, for this case we
simply plot ∆wa. In the figure, the unmarginalized errors
on the parameters are given by the dotted black lines, i.e.
∆pα = 1/

√
Fαα. This 1-σ error is valid only if all the other

parameters are known.
If we are required to estimate all parameters from the

data then the best we can ever do is to saturate the MVB, as
described in §2. If we assume that the simulation parameters
are known, then the errors are given by Eq. (13), i.e. ∆pα =√

[Fθθ ]−1
αα, and we obtain the solid red lines in Fig. 15. Notice

that the cosmological information is significantly reduced.
Once k ∼ 0.4 hMpc−1 is reached, adding smaller scales does
not reduce the errors on most of the parameters. This is with
the exception of w0, wa and σ8, for which adding small-scale
structures does help.

On the other hand, if we are to marginalize over the
simulation parameters, owing to the fact that we are igno-
rant as to the optimal ones, then the errors are given by

Eq. (14), i.e. ∆pα =
√

[Fφφ]−1
αα. These are represented in

the figure by the blue dashed lines.

Figure 16 shows the 2D likelihood surfaces for various
parameter combinations after marginalizing over all other
parameters. In all of the panels we take kmax = 1 hMpc−1

and consider only the 2-σ errors, denoted by ∆χ2 = 6.17.
Again the red solid lines present the results for the case
where the simulation parameters are fixed and the blue
dashed lines the case where we marginalize over the simula-
tion parameters. Clearly, there would be a significant degra-
dation in the constraining power of any future galaxy clus-
tering survey, should we not be able to identify the ‘optimal’
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Figure 14. Logarithmic derivatives of the power spectra with respect to the simulation parameters as a function of wavenumber. Blue,
green and red points are for z = {0, 0.5, 1}, respectively.

simulation parameters. Note also that there appears to be a
strong degeneracy between {w0, wa} and {h,Ωb}.

6.3 Combining information from large-scale

structures with the CMB

We now turn to the question of whether adding external
data sets may help alleviate the degradation of the cosmo-
logical constraints. Here we only consider the impact on the
errors of adding the information from a CMB experiment
such as Planck (The Planck Collaboration 2006). Note that
even without Planck data we have already restricted our
exploration of the cosmological parameter space to include
only flat models. As described in Appendix A, we first com-
pute the CMB Fisher matrix in a set of parameters that are
suitable for the CMB, and then rotate this matrix to our
favoured parameter set for describing large-scale structure
(see also Hilbert et al. 2012). We treat the CMB and Large-
scale structure information as independent and hence the
Fisher matrices may be added:

FTot
αβ = FCMB

αβ +FLSS
αβ . (32)

Figure 17 shows again the errors for the 7 cosmologi-
cal parameters that we have considered. The differences be-
tween the errors obtained from marginalizing over the cos-
mological parameters (red lines) and the cosmological-plus-
simulation parameters (blue lines) are significantly reduced.

Thus, inclusion of the CMB information significantly im-
proves our ability to constrain the cosmological model.

Figure 18 shows how the 95%-confidence-level error el-
lipses changed when we add the CMB information. We see
again that the constraining power of the combined experi-
ments significantly improves our ability to constrain cosmol-
ogy, and also marginalize over the simulation parameters.

7 CONSTRAINING DARK ENERGY

We now turn to the question of how well we may constrain
the time evolution of the dark energy equation of state, i.e.
{w0, wa}.

Figure 19 shows the 95%-confidence-level likelihood
contours for {w0, wa}, where we use all information from
LSS up to k = 1hMpc−1. The figure reveals that the best
constraints will come from the combination of CMB and
LSS information. However, if we do not understand how to
optimize our N-body codes to provide ’optimal’ cosmolog-
ical power spectra, then marginalizing over the simulation
parameters will be costly for Dark Energy science.

Currently, the standard way to describe the ability of
an experiment to constrain w(a) is through the figure of
merit (hereafter FOM) (Albrecht et al. 2006). This has been
defined as the inverse area enclosed by the 2-σ error ellipsoid
of the parameters {w0, wa}. In terms of the Fisher matrix,
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Figure 15. Forecasted fractional 1-σ errors on the cosmological parameters as a function of the maximum wavenumber considered. In
all panels, the dashed black lines denote the unmarginalized errors; solid red lines denote the errors marginalized over all remaining
cosmological parameters; the blue dashed lines denote the errors after marginalizing over all other cosmological parameters and all

simulation parameters. The top left through to top right panels present the results for α = {σ8, w0,Ωb} and the bottom left to bottom
right panels present the results for α = {Ωm, ns, h, wa}. Note that for wa we simply plot ∆wa.

Figure 16. Forecasted likelihood contours for the 15 possible parameter combinations. In all of the panels the solid red ellipses denote
the 1-σ likelihood surface one expects from our fiducial survey marginalized over all other cosmological parameters. The blue dashed
ellipses denote the same, but this time marginalizing over all other cosmological and simulation parameters.
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Figure 17. The same as Fig. 15, only this time we have added the information from a CMB experiment like the Planck satellite. Note
that we have also employed a strong prior on the flatness of the Universe.

Figure 18. The same as Fig. 16, only this time we have added the information from a CMB experiment like the Planck satellite. Note

that we have also employed a strong prior on the flatness of the Universe.
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Figure 19. Comparison of the 95%-confidence-level contours in
the likelihood surface of {w0, wa} after marginalization. The red
dashed line corresponds to the power spectrum information alone,
and the green dot-dash line is the same but after marginalizing
over the simulation parameters. The black solid line is the com-
bination of the power spectrum information with a Planck-like
prior, and the blue dotted line is the same but after marginaliz-
ing over the simulation parameters.

Figure 20. Comparison of the dark energy figures of merit. The
solid red block represents the case of the power spectrum infor-
mation alone and the green block denotes the same only after
marginalization over the simulation parameters. The solid blue
block depicts the case of the power spectrum information com-
bined with a Planck-like CMB experiment and the magenta block
denotes the same, after marginalization over the simulation pa-
rameters.

this may be written:

FOM =
1

π
√

6.17Det[Cov(w0, wa)]
, (33)

where the parameter covariance matrix Cov(w0, wa) is the
2 × 2 matrix formed from the submatrix of the {w0, wa}
elements of the inverse of the 7 × 7 Fisher matrix (e.g. see
Wang 2008).

Figure 20 compares the various dark energy figures of
merit. From the figure we clearly see that if one marginal-
izes over the simulation parameters, then there is roughly a
factor of 2 penalty in our ability constrain the parameters
{w0, wa}.

8 DISCUSSION: VALIDITY OF THE FISHER

MATRIX APPROACH

We now discuss and emphasize some important caveats to
our results.

Firstly, let us reexamine the main premise of the paper
– that for a given simulation code there are parameters that
if not optimally chosen should be marginalized over. One
might argue that simulations do not have ‘free’ parameters,
but parameters that simply control the accuracy of the nu-
merical integration. In principle this is true, however, for a
given N-body algorithm it is not clear that a given code can
practically satisfy this ideal statement. Consider for exam-
ple the code Gadget-2, one might argue that simultaneously
increasing RCUT and decreasing ErrTolTheta would lead to
increasingly accurate answers – since in adopting this limit
one is simply going back to computing forces with direct
summation – no tree – no PM grid. However, since the tree-
force is a monopole expansion and since the Ewald summa-
tion has not been implemented for the periodic boundary
conditions, the code would become less accurate in the ex-
treme limit of RCUT= L and ErrTolTheta=0. Even if this was
implemented, then solving the forces through direct summa-
tion is not without error, since pair counts for large numbers
of particles will eventually suffer from round-off errors, and
Gadget-2 stores particle positions as 4-byte floating point
numbers. Moreover, the order in which one takes the force
sum – nearest neighbours first or distant particles first – will
change the exact value of the force. We should also add that
we want accurate answers from our numerical code subject
to time, memory, cpu and disk usage constraints. The so-
lution of using direct-particle summation would obviously
fail the time constraint. Thus the optimization of the code
parameters for Gadget-2 remains a non-trivial task.

Let us emphasize that we do not expect to have to
marginalize over all simulation parameters when making cos-
mological inferences with real survey data – more simply
put, we wish to know what would be the price one would
have to pay if one failed to do the hard work to establish
the ‘optimal’ set of parameters for a given algorithm – sub-
ject to the constraints mentioned above. The Fisher matrix
approach offers a possible route for quickly establishing an
answer to this question. It also enables us to assess at what
point one can stop worrying about systematic errors in the
power spectrum due to uncertainties in certain simulation
parameters. For instance if the degradation in the figure-of-
merit comes from a single parameter, then one can quickly
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identify that parameter and study its behaviour and so re-
move it from the marginalization step.

Another question mark concerns the use of a Gaussian
posterior. It is clear that the the form of the likelihood func-
tion for obtaining a given set of measurements of the power
spectrum is well described by a Gaussian. If we take the stan-
dard assumption of Gaussian initial conditions, i.e. Fourier
modes are Gaussianly distributed, then the distribution of
power in a given mode is exponentially distributed. If one
considers the power spectrum estimator distribution, which
includes the sum of modes in a given k-space shell, this is
χ2-distributed (Takahashi et al. 2009). In the limit of large
numbers of modes per k-space shell, the χ2-distribution be-
comes Gaussian. Thus it is understood that the likelihood
function should be a multivariate Gaussian. However, where
there is room for debate is in how one makes constraints on
the cosmological parameters, at this point one needs to get
an expression for the posterior probability function. Using
Bayes’ theorem this is done by multiplying the likelihood by
the parameter priors. Two options are possible: uninforma-
tive flat priors or if one has detailed knowledge of the system
then one can write down informed priors. Since we wanted to
be conservative we adopted uninformative priors. It is here
where further discussion could be had, since one might argue
that the parameter priors are better known. This is probably
the case, however, it is worth being pessimistic at first. The
functional form of the informative priors is not clear. In some
cases the form of the priors is irrelevant, since as we have
shown with sufficiently good data sets one can constrain cer-
tain parameters very well and so break degeneracies, e.g. ns
is very well determined when galaxy clustering is combined
with the CMB data. On the other-hand the choice of priors
will most likely matter for inferences concerning the dark
energy parameters.

9 CONCLUSIONS

In this paper we have used a large ensemble of N-body sim-
ulations to explore the cosmological information content of
the matter power spectrum. We have also explored how the
cosmological information is degraded when we are uncertain
as to what the ‘optimal’ N-body simulation parameters are.

In §2 we introduced the ‘Gemeinsam’ likelihood func-
tion, which takes into account the dependence of the the-
oretical model on the cosmological and N-body simulation
parameters. We reviewed the Fisher matrix formalism for
forecasting constraints obtainable from measurements of the
matter power spectrum. The constraints required us to esti-
mate the fiducial model power spectrum, its covariance ma-
trix and the first order derivatives of the matter power spec-
trum with respect to the cosmological and simulation pa-
rameters. Our fiducial survey consisted of three independent
volumes, each of which had a volume Vµ = 3.25 h−3 Gpc3

but spanning the redshifts z = 0, 0.5 and 1.
In §3 we described the large ensemble of simulations

that we have performed in order to compute the Fisher ma-
trix. We ran 200 simulations to generate the covariance ma-
trix, we ran 56 simulations to explore the variations of the
power spectrum with respect to the cosmological parame-
ters; and 18 simulations to explore its dependence on the
simulation parameters.

In §4 we presented the results for the fiducial model.
We demonstrated that, for k < 0.1 hMpc−1 the errors in
the power spectrum were reasonably well described by the
Gaussian prediction. However, on smaller scales the errors
were found to be significantly larger, and were consistent
with the presence of a connected trispectrum that scaled as
Tii ∝ P 2

i . We explored the off-diagonal covariance of the
power spectrum and found that different band powers were
> 50% correlated for {ki, kj} > 0.1 hMpc−1 at z = 0, and
for {ki, kj} > 0.2 hMpc−1 by z = 1. We conclude that non-
trivial band power correlations must be accounted for in the
cosmological analysis of large-scale structure data.

In §5 we computed the logarithmic derivatives of the
power spectrum with respect to 7 of the cosmological pa-
rameters: θ = {σ8,Ωm,Ωb, w0, wa, h, ns}. We found that for
k < 0.1hMpc−1 the cosmological dependence could be rea-
sonably well-captured through the variations in the linear
theory spectra. On smaller scales, the measurements showed
strong departures from the linear predictions. Interestingly,
we found that for the parameters {Ωm,Ωb, ns, h}, and at
late times, ∂ logP/∂α → 0, as k → 1hMpc−1. This sug-
gested that there may be very little additional cosmological
information to be gained on these parameters by the inclu-
sion of measurements on very small scales. However, we also
showed that for {σ8, w0, wa} the inclusion of small scales
significantly increases the cosmological information about
these parameters.

We then explored the dependence of the matter power
spectrum on 9 of the simulation parameters used for the
Gadget-2 code. We found that variations in the choice of
PMGRID, RCUT, ASMTH, ErrTolForceAcc and Softening could
in combination lead to percent-level variations in the power
spectrum on small scales.

In §6 we used the simulations to explore the cosmo-
logical information content of the matter power spectrum.
We found that, under the assumptions of flat cosmological
models, our fiducial survey could constrain {σ8,Ωm, ns} at
the percent level or better, {Ωb, h, w0} at the few-percent
level and wa at the 20% level. However, if we fold into our
likelihood analysis uncertainties in the simulation parame-
ters then all of these constraints are degraded by roughly a
factor of 2. We then showed that adding external data sets,
such as a Planck-like CMB survey, can help to mitigate the
effects of marginalization over the simulation parameters.
In particular, the parameters {ns, h,Ωb,Ω} are almost un-
affected by the marginalization procedure.

In §7 we focused on the dark energy equation of state
parameters {w0, wa}. We have shown that marginalizing
over the simulation parameters significantly degrades our
ability to constrain the Dark Energy from the power spec-
trum. Adding the CMB information does help somewhat.
However, we have computed the dark energy figure of merit
and found that there is a factor of ∼ 2 degradation when
the simulation parameters are marginalized over.

In this paper we have worked with the simulation code
Gadget-2 and a sub-set of parameters that are specific to
it. As discussed in Reed et al. (2012), accurate simulating
of cosmic structure formation involves more than the code
parameters. We have neglected to explore the dependence of
the information on the number of simulation particles, the
box-size, the initial start redshift. Thus, taken at face value
this appears to be an optimistic assessment of the problem.
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On the other hand, in principle, a number of the is-
sues raised in this paper might be mitigated by larger sim-
ulations: e.g., if one increased the number of particles N
without limit, then the scale at which the force softening
modifies the results could be pushed to higher wavenumber,
since ksoft ≡ 2π/lsoft ∝ N1/3. Hence, one could in principle
find an N sufficiently large that ksoft will be larger than the
targeted wavemodes of the designed survey. However, finite
resources may make this computationally challenging.

Regarding the generality of our conclusions, one might
be concerned that the point in the simulation parameter
space that we adopted as our fiducial point may bias our
results and one might ask: how would the results change if
we adopted another set of fiducial simulation parameters –
ones closer to the optimal set? If the likelihood function does
not vary rapidly over the simulation parameter space, then
our estimates for the Hessian and and hence the Fisher ma-
trix will be robust. This, however, is an important question
which will deserve further attention in the future. We antici-
pate that answering it fully will also require one to solve the
more subtle problem of finding the optimal set of simulation
parameters.

This work has also focused on the problem of simulating
the dark matter only power spectrum. Future work will also
have to extend this analysis to include the impact of bary-
onic physics effects on the clustering due to: our approximate
handling of the evolution of the coupled baryon-CDM fluid
after recombination (Somogyi & Smith 2010); uncertainties
in the small-scale feedback processes of galaxy formation
(van Daalen et al. 2011; Semboloni et al. 2011). In addi-
tion, when exploring alternative cosmological models, new
uncertainties will need to be folded into the estimates for
example if we also wish to constrain the dark matter model
(Viel et al. 2012; Schneider et al. 2012; Bird et al. 2012).
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APPENDIX A: PLANCK FISHER MATRIX

A1 Computing the CMB matrix

In computing the Planck Fisher matrix we follow the
methodology described in Eisenstein et al. (1999) and for
the specific implementation we follow Takada & Jain (2009).
We thus assume that the CMB temperature and polarization
spectra constrain 9 parameters, and for our calculations we
set their fiducial values to be those from the recent WMAP7
analysis (Komatsu et al. 2011). The fiducial parameters are:
dark energy EOS parameters w0 = −1.0 and wa = 0.0;
the density parameter for dark energy ΩDE = 0.7274; the
CDM and baryon density parameters scaled by the square
of the dimensionless Hubble parameter wc = Ωch

2 = 0.1125
and wb = Ωbh

2 = 0.0226 (h = H0/[100kms−1Mpc−1]);
and the primordial spectral index of scalar perturbations
ns = 0.963; the primordial amplitude of scalar perturba-
tions As = 2.173 × 10−9; the running of the spectral index
α = 0.0; and the optical depth to the last scattering surface
τ = 0.087. Hence we may write our vector of parameters:

p
T = (w0, wa,ΩDE, wc, wb, τ, ns, As, α)

T . (A1)

The CMB Fisher matrix can be written as (Eisenstein
et al. 1999):

Fpαpβ =
∑

ℓ

∑

X,Y

∂Cℓ,X
∂pα

Cov−1 [Cℓ,X , Cℓ,Y ]
∂Cℓ,Y
∂pβ

, (A2)

where {X,Y } ∈ {TT, EE, TE}, where Cℓ,TT is the tem-
perature power spectrum, Cℓ,EE is the E-mode polarization

power spectrum, Cℓ,TE is the temperature-E-mode polar-
ization cross-power spectrum. We have been conservative
and assumed that there will be no significant information
from the Cℓ,BB, the B-mode polarization power spectrum.
We compute all CMB spectra using CAMB (Lewis et al. 2000)
and use the additional module for time evolving dark energy
models (Hu & Sawicki 2007). We include information from
all multipoles in the range (2 < ℓ < 1500).

The covariance matrices for these observables are:

Cov [Cℓ,TT, Cℓ,TT] =
1

fsky

2

2ℓ+ 1
[Cℓ,TT +Nℓ,TT]

2 ; (A3)

Cov [Cℓ,TT, Cℓ,EE] =
1

fsky

2

2ℓ+ 1
C2
ℓ,TE ; (A4)

Cov [Cℓ,TT, Cℓ,TE] =
1

fsky

2

2ℓ+ 1
Cℓ,TE [Cℓ,TT +Nℓ,TT] ;

(A5)

Cov [Cℓ,EE, Cℓ,EE] =
1

fsky

2

2ℓ+ 1
[Cℓ,EE +Nℓ,EE]

2 ; (A6)

Cov [Cℓ,EE, Cℓ,TE] =
1

fsky

2

2ℓ+ 1
Cℓ,TE [Cℓ,EE +Nℓ,EE] ;

(A7)

Cov [Cℓ,TE, Cℓ,TE] =
1

fsky

1

2ℓ+ 1

[
C2
ℓ,TE+

(Cℓ,EE +Nℓ,TT)(Cℓ,EE +Nℓ,EE)] .
(A8)

In the above fsky is the fraction of sky that is surveyed and
usable for science, and we take fsky = 0.8. The terms Nℓ,TT

and Nℓ,EE denote the beam-noise in the temperature and
polarization detectors, respectively. These can be expressed
as:

Nℓ,TT =
[
wTTW

2
Beam(ℓ)

]−1
(A9)

Nℓ,EE =
[
wEEW

2
Beam(ℓ)

]−1
, (A10)

where wTT = [∆TθBeam]−1 and wEE = [∆EθBeam]−1. The
beam window function has the form:

W 2
Beam(ℓ) = exp

[
−ℓ(ℓ+ 1)σ2

Beam

]
; σBeam ≡ θBeam√

8 log 2
.

(A11)
For the Planck experiment we assume that we have a single
frequency band for science (143 GHz), and for this chan-
nel the following parameters apply (The Planck Collabo-
ration 2006): angular resolution of the beam θBeam = 7.1′

[FWHM]; the beam intensity is ∆T = 2.2 (TCMB/1K) [µK],
∆E = 4.2 (TCMB/1K) [µK]. We take the temperature of the
CMB to be T = 2.726K.

A2 Transforming from CMB to large-scale

structure parameters

In the formation of the large-scale structure we have con-
sidered how the matter power spectrum depends on the 7
cosmological parameters: θ = {σ8,Ωm,Ωb, w0, wa, h, ns} pa-
rameters. Let us rewrite our original 9-D CMB parameter
set in terms of a new 9-D large-scale structure parameter
set. Let us therefore consider the transformation:

p = (w0, wa,ΩDE, wc, wb, τ, ns, As, α)
T (A12)

q = (w0, wa,Ωm, h,Ωb, τ, ns, σ8, α)
T . (A13)
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Five of the parameters are unchanged from the original set.
The remaining four are related to the original parameters in
the following way:

Ωm = 1− ΩDE ; (A14)

Ωb =
wb

wb + wc
(1− ΩDE) ; (A15)

h =

√
wb +wc

1−ΩDE
; (A16)

σ8 =

[∫
d3k

(2π)3
P (k|p)W (kR)2

]1/2

, (A17)

where P (k|p) is the matter power spectrum, which depends
on parameters pα, and where the real space, spherical top-
hat filter function has the form Wk(y) = 3[sin y−y cos y]/y3,
with y ≡ kR and R = 8h−1Mpc.

It can be shown that a Fisher matrix in one set of suit-
able variables may be represented in another basis space
through the transformation:

F ′

γδ(q) =
∑

γ,α

ΛαγFαβ(p)Λβδ (A18)

where Λαγ ≡ ∂pα/∂qγ is the matrix formed from the partial
derivatives of the old parameters with respect to the new
ones. From Eqns (A14)–(A17) we have qa = Ga(p), how-
ever in order to perform the partial derivatives we actually
require the inverse of these relations, i.e. pa = G−1

a (q). In
some cases these inverse relations may easily be determined,
e.g. Eq. (A14). However, in other cases no analytic inverse
exists, e.g. Eq. (A17). A simple way around this problem is
through recalling the following:

∑

α

∂pµ
∂qα

∂qα
∂pν

=
∑

α

ΛµαΛ
−1
αν = δKµν (A19)

Hence, if we first compute ∂qα/∂pν ≡ Λ−1
α,ν , then we may

obtain Λ, from the fact that: Λ → [Λ−1]−1.
Let us therefore form the matrix Λ−1. For the case of

those parameters that are unchanged Λ−1
αβ = δKαβ. However,

for the remaining ones, we have:

∂Ωm

∂ΩDE
= −1 ; (A20)

∂Ωb
∂ΩDE

=
−wb

wc + wb
; (A21)

∂Ωb
∂wc

=
−wb

[wc + wb]2
(1− ΩDE) ; (A22)

∂Ωb
∂wb

=
wc

[wc + wb]2
(1− ΩDE) ; (A23)

∂h

∂ΩDE
=

1

2

√
wc +wb

(1− ΩDE)3
; (A24)

∂h

∂wc
=

1

2
[(1− ΩDE)(wb +w + c)]−1/2 ; (A25)

∂σ8

∂pα
=

1

2σ8

∂σ2
8

∂pα
=

1

2σ8

∫
d3k

(2π)3
∂P (k|p)
∂pα

W (kR)2 .

(A26)

Note that in order to compute the derivatives ∂σ8/∂pα we
use the package CAMB. Besides the generation of various
CMB power spectra, this package can output the present
day linear theory matter power spectra P (k|p). The deriva-
tives are then determined numerically using the standard
estimator for two sided derivatives. The numerical inverse

of the matrix Λ−1 can easily be computed using the SVD
algorithm (Press et al. 1992).
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