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ABSTRACT

We present a new approach for modelling galaxy/halo bias that utilizes the full non-
linear information contained in the moments of the matter density field, which we
derive using a set of numerical simulations. Although our method is general, we per-
form a case study based on the local Eulerian bias scheme truncated to second-order.
Using 200 N -body simulations covering a total comoving volume of 675 h−3Gpc3, we
measure several 2- and 3-point statistics of the halo distribution to unprecedented
accuracy. We use the bias model to fit the halo-halo power spectrum, the halo-matter
cross spectrum and the corresponding three bispectra for wavenumbers in the range
0.04 . k . 0.12 hMpc−1. We find the constraints on the bias parameters obtained us-
ing the full non-linear information differ significantly from those derived using standard
perturbation theory at leading order. Hence, neglecting the full non-linear informa-
tion leads to biased results for this particular scale range. We also test the validity
of the second-order Eulerian local biasing scheme by comparing the parameter con-
straints derived from different statistics. Analysis of the halo-matter cross-correlation
coefficients defined for the 2- and 3-point statistics reveals further inconsistencies con-
tained in the second-order Eulerian bias scheme, suggesting it is too simple a model
to describe halo bias with high accuracy.

Key words: cosmology: theory, large-scale structure

1 INTRODUCTION

The clustering statistics of the galaxy distribution contain a
wealth of information about the cosmological model. How-
ever, in the absence of a robust theory for galaxy forma-
tion, extracting this information can only be achieved in
part. In practice, to do this requires us to assume a specific
phenomenological relationship between the density field of
galaxies and that of the underlying matter, more commonly
referred to as galaxy bias. Whilst still incomplete, our lead-
ing theories of galaxy formation, do provide a great deal
of insight about the distribution of galaxies. For instance
they predict that galaxies should only reside in dark-matter
haloes and be strongly associated with the distribution of
sub-structures (for a detailed review of galaxy formation see
Mo, van den Bosch & White 2010). This greatly simplifies
our ability to construct a phenomenological model for the
galaxy distribution on large scales: it should be closely re-
lated to a weighted average of the dark-matter-halo over-
densities (e.g. Smith, Scoccimarro & Sheth 2007).

⋆ E-mail: jpollack@astro.uni-bonn.de
† res@mpa-garching.mpg.de
‡ porciani@astro.uni-bonn.de

There are a number of detailed analytical approaches for
characterizing the bias of dark-matter haloes with respect
to the mass distribution (for a recent review see Porciani
2013). However, it has yet to be determined which model
provides the most accurate description of galaxy bias. In the
simplest method, the local Eulerian bias model (hereafter
LEB), one assumes that the overdensities of the biased trac-
ers can be written as some function of the matter-density
field at the same location. If both densities are smoothed
over the patch scale R, then the biased field may be writ-
ten as a Taylor-series expansion (Fry & Gaztanaga 1993). If
one considers sufficiently large patches, then high-order cor-
rections are guaranteed to be small and the series may be
truncated after a finite number of terms.

Halo-clustering predictions of the LEB ex-
pressed in terms of standard perturbation theory
(hereafter SPT, for a review see Bernardeau et al.
2002) have been examined in numerous works
(Scoccimarro et al. 2001; Smith, Scoccimarro & Sheth
2007; Guo & Jing 2009; Roth & Porciani 2011;
Manera & Gaztañaga 2011; Pollack, Smith & Porciani
2012; Chuen Chan & Scoccimarro 2012). One of the results
to emerge from these studies is that, when the model is
applied to halo counts within finite volumes of linear size
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R, the coefficients of the bias expansion show a running
with the “cell” size. However, halo-clustering statistics such
as the n-point correlation functions (or the corresponding
n-spectra) do not contain any smoothing scale and should
not depend on R. There has been much debate in the
literature on how to reconcile these seemingly contrasting
results (see Porciani 2013, for a concise summary).

This has led some to discuss an “effective” or
“renormalized” bias approach where the scale-dependence
of the bias coefficients is compensated by the con-
tribution of small-scale perturbations in the matter
density (Heavens, Matarrese & Verde 1998; McDonald
2006; Schmidt, Jeong & Desjacques 2012). Whilst such
a scheme may be plausible (Jeong & Komatsu 2008;
Smith, Hernández-Monteagudo & Seljak 2009), the devel-
opment of a unique renormalization method is still ongoing,
especially for dynamically evolved configurations in Eule-
rian space. On the other hand, it was recently proposed by
Chuen Chan & Scoccimarro (2012) that the bias parameters
obtained counting halos within cells of size R are only rele-
vant for describing perturbations of wavenumber k ≃ 0.8/R
in the halo distribution. While there is no challenge to
their argument when analyzing power-spectrum data, it does
present a complication when using higher-order statistics
such as the bispectrum. In order to interpret the galaxy bis-
pectrum one would be required to compute bias coefficients
separately for each configuration of wavevectors. This ap-
proach appears somewhat cumbersome to implement.

Currently, most observational analyses of galaxy clus-
tering assume that galaxy bias can be described by the trun-
cated LEB and that the statistical properties of the non-
linear matter density field can be modelled using SPT. To
leading order in the perturbations, this requires only one
bias parameter for 2-point statistics of the tracers and two
parameters for 3-point statistics. Present-day galaxy sur-
veys, however, do not cover enough comoving volume to ac-
curately sample the spatial scales at which tree-level results
provide an accurate description of galaxy clustering. The
presence of rare large-scale structures, for instance, signifi-
cantly alters the measurements of three-point statistics (e.g.
Nichol et al. 2006). On smaller scales, where data are more
robust, dynamical non-linearities pose a serious challenge to
the models. Adopting the simplified LEB+SPT model may
therefore generate systematic errors and thus influence the
characterisation of the bias or the estimation of the cosmo-
logical parameters.

The LEB truncated to second order is the standard
workhorse for studying three-point statistics of galaxy
clustering. Its predictions to leading perturbative order
have been used to interpret measurements from the two-
degree field galaxy redshift survey (Verde et al. 2002;
Jing & Börner 2004; Wang et al. 2004; Gaztañaga et al.
2005), the Sloan Digital Sky Survey (Kayo et al. 2004;
Hikage et al. 2005; Pan & Szapudi 2005; Kulkarni et al.
2007; Nishimichi et al. 2007; Maŕın 2011; McBride et al.
2011; McBride et al. 2011; Guo et al. 2013), and the Wig-
gleZ Dark Energy Survey (Maŕın et al. 2013). In our pre-
vious study (Pollack, Smith, & Porciani 2012), we demon-
strated that, in order to robustly model three-point statistics
with the LEB, one must necessarily have an accurate model
for the clustering statistics of the non-linear matter den-
sity on the relevant scales. This is imperative to recover the

correct values of the bias parameters in controlled numerical
experiments. Therefore, it is not surprising that past investi-
gations based on the LEB+SPT model reached inconsistent
conclusions. For example, studying the galaxy bispectrum
on scales 0.1 < k < 0.5 hMpc−1, Verde et al. (2002) con-
cluded that 2dF galaxies are unbiased tracers of the mass
distribution. On the other hand, using the complete 2dF
sample, Gaztañaga et al. (2005) found strong evidence for
non-linear biasing from the analysis of the three-point cor-
relation function with triangle configurations that probe sep-
arations between 9 and 36h−1Mpc (see also Jing & Börner
2004; Wang et al. 2004).

In this paper, we build upon our past experience and
present a general method to model the clustering of bi-
ased tracers of the mass distribution on mildly non-linear
scales k < 0.1 hMpc−1. This is key to extend studies of
galaxy clustering to smaller spatial separations where obser-
vational data are less uncertain. Our method relies on using
N-body simulations to measure the relevant statistics for the
clustering of the underlying mass distribution. Related ap-
proaches have been presented by Sigad, Branchini & Dekel
(2000) and Szapudi & Pan (2004) for galaxy counts in cells
(see also Pan & Szapudi 2005, for an application to corre-
lation functions). We apply our general framework to the
modelling of n-point clustering statistics of non-linear, Eu-
lerian, locally biased tracers. In our framework, bias param-
eters run with the patch scale R. We address the running
of the bias by treating the filter scale as a nuisance param-
eter to be marginalized over. The major advantage of our
scheme is that we exactly recover the matter poly-spectra
used in the bias model at every order. The only trunca-
tion necessary in the model is the choice as to what level
to truncate the bias expansion, and this may be selected
by the data in a Bayesian model comparison. We test our
modelling framework up to quadratic order in the local bias
expansion (as commonly done in recent observational stud-
ies), for the power- and bi-spectra of haloes and their cross-
spectra with matter measured from a large ensemble (200
realizations) of measurements from a series of large ΛCDM
N-body simulations. This ensemble of simulations resolves
the halos that should host luminous red galaxies over a total
comoving volume of 675 h−3 Gpc3, and so provides us with
a very stringent statistical test ground for our model.

The sections are organized as follows. In §2 we set our
mathematical notation and introduce the LEB. The numer-
ical simulations used in this work are briefly described in
§3 and used in §4 to measure several statistical quantities
for the matter and halo distributions. In §5 we use Bayesian
statistics to estimate the free parameters of the LEB and
describe our main results. Finally, in §6 and 7 we further
discuss our findings and present our conclusions.

2 A NEW FRAMEWORK FOR MODELLING

THE CLUSTERING OF BIASED TRACERS

2.1 General formalism

Consider some discrete tracers of the large-scale structure
(dark-matter haloes or galaxies) with mean density n̄h and
physical density ρh(x) = [1 + δh(x)] n̄h. We want to relate
this random field to the underlying distribution of matter
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with local density ρ(x) = [1+ δ(x)] ρ̄. If we assume that the
density contrast of the tracers averaged over some patch of
linear size R, δh(x|R), is locally related to the density of
matter in the same patch, then we may write

δh(x|R) = F [δ(x|R)] (1)

where F denotes a generic function R → R and the symbols

δα(x|R) ≡

∫
d3
yW (|x− y|, R) δα(y) (2)

(where α stands for haloes or matter) denote smoothed over-
density fields, W being a rotation-invariant filter function
with size R.

Since we are dealing with smooth mathematical
functions we may Taylor expand Eq. (1) to obtain
(Fry & Gaztanaga 1993):

δh(x|R) =
∞∑

n=1

bn
n!

[δn(x|R)− 〈δn(x|R)〉] , (3)

where the terms bn are the Eulerian bias coefficients of order
n, which depend on both the smoothing scale and the exact
definition of the tracers (e.g. halo mass, etc.). Note that the
subtraction of the terms 〈δn(x|R)〉 at each order ensures
that 〈δh(x|R)〉 = 0, where 〈. . . 〉 denote an ensemble average.
On Fourier transforming the above relation one finds, for
|k| 6= 0,

δ̃h(k|R) =
∞∑

n=1

bn
n!

∆(n)(k|R) (4)

where ∆(n)(k|R) ≡ δ̃n(k|R) can be written as

∆(n)(k|R) ≡ (2π)3
∫
δD(k− q1...n)

n∏

i=1

δ̃(qi|R)
d3qi

(2π)3
.

(5)
In the last expression δD(k) denotes the Dirac-delta dis-
tribution and we have made use of the compact notation
q1...n = q1 + · · ·+ qn and δ̃(q|R) ≡ δ̃(q) W̃ (qR).

We now define the power spectrum of the biased tracers
and their cross-spectrum with the matter in terms of the
correlators:

〈δ̃α(k1|R) δ̃β(k2|R)〉 ≡ (2π)3 δD(k12)Pαβ(k1) . (6)

Similarly, the corresponding bispectra can be defined as

〈δ̃α(k1|R) δ̃β(k2|R) δ̃γ(k3|R)〉 ≡

≡(2π)3 δD(k123)Bαβγ(k1,k2) (7)

where we have suppressed the dependence of the bispectrum
on the third wavevector, since the Dirac-delta distribution
imposes k3 = −k12. On inserting Eq. (4) into Eq. (6), we
find:

〈δ̃α(k1|R) δ̃β(k2|R)〉 = (8)

=
∞∑

l,m=1

Γα
l

l!

Γβ
m

m!
〈∆(l)(k1|R)∆

(m)(k2|R)〉 .

with Γh
l = bl and Γm

l = δKl1 (for haloes and matter, re-
spectively) where δKij denotes the Kronecker-delta function.
Similarly for Eq. (7) we have:

〈δ̃α(k1) δ̃β(k2) δ̃γ(k3)〉 =
∞∑

l,m,n=1

Γα
l

l!

Γβ
m

m!

Γγ
n

n!
× (9)

× 〈∆(l)(k1|R)∆
(m)(k2|R)∆

(n)(k3|R)〉 .

It is convenient to introduce the functions P(l,m) and B(l,m,n)

such that

〈∆(l)(k1|R)∆
(m)(k2|R)〉 = (2π)3 δD(k12)P(l,m)(k1) (10)

and

〈∆(l)(k1|R)∆
(m)(k2|R)∆

(n)(k3|R)〉 =

= (2π)3 δD(k123)B(l,m,n)(k1,k2) (11)

In simple words, P(l,m) denotes the cross power spec-
trum between the smoothed random fields [δ(x|R)]l −
〈[δ(x|r)]l〉 and [δ(x|R)]m −〈[δ(x|R)]m〉, while B(l,m,n) is the
corresponding bispectrum. Thus for the halo and matter
power and bispectra we have:

Pαβ(k1) =

∞∑

l,m=1

Γα
l

l!

Γβ
m

m!
P(l,m)(k1) , (12)

Bαβγ(k1,k2) =
∞∑

l,m,n=1

Γα
l

l!

Γβ
m

m!

Γγ
n

n!
B(l,m,n)(k1,k2) . (13)

The above sets of equations provide us with models for
the power spectra and the bispectra of halo counts in cells of
size R. However, what we really want to model is the halo
2- and 3-point functions, Pαβ and Bαβγ . We assume that
these quantities can be approximately recovered by “de-
smoothing” Pαβ and Bαβγ (Smith, Scoccimarro & Sheth
2007; Smith, Sheth & Scoccimarro 2008; Sefusatti 2009):

Pαβ(k1) =
Pαβ(k1)

W 2(k1R)
; (14)

Bαβγ(k1,k2,k3) =
Bαβγ(k1,k2,k3)

W (k1R)W (k2R)W (k3R)
. (15)

Note that when considering a model of halo bias beyond
linear order this operation does not fully remove the de-
pendence of the theory on R. In Section 5, we will use the
models presented in Eq. (14) and Eq. (15) to fit simulation
data. Nevertheless, our choice to “de-smooth” the theoreti-
cal model is equivalent to analyzing counts in cell data with
a smoothed model. This is due to the fact that in Fourier-
space the smoothing kernels can be treated as multiplicative
factors, which means that if we factorize the expressions by
dividing out the product of the window functions the re-
lation between the model and the data still holds. Hence,
fitting counts in cells data with a smoothed model is indif-
ferent to analyzing unsmoothed data with a “de-smoothed”
or factorized model.

The smoothing scale must therefore be considered as
a free parameter of the model, and so it must be either
determined by fitting a set of data or marginalized over.

In §A1 and §A2 we show how the terms P(l,m)

and B(l,m,n) are related to the p-point matter spectra,
where p = l + m or p = l + m + n, respectively. In
§A3 we prove that the functions P(l,m) are totally sym-
metric in l and m. For l 6= m 6= n, the functions
B(l,m,n)(k1,k2,k3) are not in general symmetric in l, m,
and n, unless the wavevectors ki are also exchanged,
i.e. whilst B(l,m,n)(k1,k2,k3) = B(m,l,n)(k2,k1,k3),
B(l,m,n)(k1,k2,k3) 6= B(m,l,n)(k1,k2,k3). Note that in this
study we choose to work with n-point spectra, P(α1...αn),
that are symmetric to an exchange of their vectorial argu-
ments, and we accomplish this through the symmetrization

c© 0000 RAS, MNRAS 000, 000–000



4 J. E. Pollack, R. E. Smith, & C. Porciani

operation:

P
(s)
(α1...αn) =

∑n
i1,...,in

|ǫi1...in | P(α1...αn)(ki1 , . . . ,kin)∑n
i1,...,in

|ǫi1...in |
,

(16)
where ǫi1...in denotes the n-dimensional generalization of the
Levi-Civita symbol and we take its absolute value.

In previous studies, the functions P(l,m) and B(l,m,n)

have been modelled through the use of a combination
of perturbation theory and semi-empirical models. In
Pollack, Smith & Porciani (2012) we recovered these func-
tions exactly from an N-body simulation and demonstrated
that they are essential to measure the bias parameters in an
unbiased way. We will revisit these issues in §4 and §5.

2.2 Case study: biasing to second order

As an example, let us evaluate the case when the bias is
taken to second order and all higher-order bias coefficients
are vanishing. This is a widespread assumption often used
to interpret observational data from massive redshift sur-
veys (see §1 for a long list of references). We will consider a
unique set of dark-matter haloes. For the case where we have
multiple halo bins (e.g. mass selected), the expressions are
more cumbersome but no more complicated. Starting with
the two-point statistics, one can formulate the halo auto-
and cross-power spectra with the total mass up to second-
order in the LEB:

Phm(k) = b1P(1,1)(k) +
b2
2
P(2,1)(k) , (17)

Phh(k) = b21P(1,1)(k) + b1b2P(2,1)(k) +
b22
4
P(2,2)(k) ,

(18)

where from §A1, we see that

P(2,1)(k) ≡

∫
d3q

(2π)3
B(q,k− q,−k) , (19)

P(2,2)(k) ≡

∫
d3q

(2π)3
d3w

(2π)3
P4(q,k− q,w,−k−w) . (20)

Note that the P(l,m) functions are (l+m−2)-dimensional in-
tegrals over the smoothed matter correlators of order n = l+
m, 〈δ̃(k1|R) . . . δ̃(kn|R)〉 = (2π)3 δD(k1...n)Pn(k1, · · · ,kn).
These include connected and disconnected terms (see §B).

For the three-point statistics, the symmetrized auto-
halo and cross-bispectra with respect to the matter, up to
second order in the bias model, may be written:

B
(s)
hmm = b1B

(s)
(1,1,1) +

b2
2
B

(s)
(2,1,1) ; (21)

B
(s)
hhm = b21B

(s)

(1,1,1)
+ b1b2B

(s)

(2,1,1)
+
b22
4
B

(s)

(2,2,1)
; (22)

B
(s)
hhh = b31B

(s)

(1,1,1)
+

3b21b2
2

B
(s)

(2,1,1)
+

3b1b
2
2

4
B

(s)

(2,2,1)
+

+
b32
8
B

(s)

(2,2,2)
, (23)

where for brevity we suppressed the dependence of the
bispectra on (k1,k2,k3). In §A2, the B

(s)
l,m,n functions are

(l +m + n − 3)-dimensional integrals of the polyspectra of

order l +m+ n. Specifically:

B
(s)

(2,1,1) ≡
1

3

∫
d3q

(2π)3
P4(q,k1 − q,k2,k3) + 2 cyc , (24)

B
(s)

(2,2,1)
≡

1

3

∫
d3q1

(2π)3
d3q2

(2π)3
P5(q1,k1 − q1,q2,k2 − q2,k3)

+2 cyc ; (25)

B
(s)
(2,2,2) ≡

∫
d3q1

(2π)3
. . .

d3q3

(2π)3

× P6(q1,k1 − q1,q2,k2 − q2,q3,k3 − q3) .

(26)

In §4 we show how one may estimate P(l,m) and B
(s)

(l,m,n)

directly from an N-body simulation.

3 N-BODY SIMULATIONS

In order to test the LEB and also to determine the co-
variance matrices of the various spectra we have simulated
200 realizations of a flat ΛCDM cosmological model. The
specific cosmological parameters that we have adopted are:
{σ8 = 0.8,Ωm = 0.25,Ωb = 0.04, h = 0.7, ns = 1.0} where:
σ8 is the variance of linear mass fluctuations in top-hat
spheres of radius R = 8h−1Mpc; Ωm and Ωb are the matter
and baryon density parameters; h is the dimensionless Hub-
ble parameter in units of 100 km s−1 Mpc−1; and n is the
power-law index of the primordial density power spectrum.
Our adopted values were inspired by the results from the
WMAP experiment (Komatsu et al. 2009).

All of the N-body simulations were run using
the publicly available Tree-PM code GADGET-2 (Springel
2005). This code was used to follow with high accu-
racy the non-linear evolution under gravity of N = 7503

equal mass particles in a periodic comoving cube of
length L = 1500 h−1Mpc, giving a total sample volume of
V = 675 h−3 Gpc3. Newtonian two-body forces were soft-
ened below scales lsoft = 60 kpch−1. The transfer function
for the simulations was generated using the publicly avail-
able cmbfast code (Seljak & Zaldarriaga 1996), with high
sampling of the spatial frequencies on large scales. Ini-
tial conditions were laid down at redshift z = 49 us-
ing the serial version of the publicly available 2LPT code
(Crocce, Pueblas & Scoccimarro 2006).

We use only the simulation outputs at redshift z = 0 for
analysis and identify dark matter haloes using the code BFoF.
This is a Friends-of-Friends algorithm (Davis et al. 1985),
where we adopted a linking length corresponding to b = 0.2
times the mean inter-particle spacing. The minimum number
of particles an object must contain to be considered a bound
halo was set to 20. This implies a minimum halo mass of
Mmin = 1.11 × 1013h−1M⊙ and a mean number density of
n̄h ≈ 3.7 × 10−4 h3 Mpc−3. Further details regarding this
set of N-body simulations can be found in Smith (2009) and
Smith et al. (2012).

4 ESTIMATING THE SPECTRA

In this section we describe how we estimate all the halo and
matter polyspectra that enter the second-order LEB from
the N-body simulations at redshift z = 0.
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A new method to measure galaxy bias 5

Figure 1. Power-spectra and bispectra measurements averaged over 200 ΛCDM N-body simulations at redshift z = 0. Left: Power
spectra as a function of wavenumber. The blue, orange, and red symbols denote Phh, Phm and Pmm, respectively. Right: Bispectra as a
function of triangle configuration. The blue, orange, green, and red symbols represent Bhhh, Bhhm, Bhmm, Bmmm, respectively. In both
panels, the errorbars show the standard error on the mean. On the other hand, the black lines denote the posterior mean for the different
statistics obtained by fitting the second-order LEB to the simulation data. The shaded grey areas (which are unnoticeably narrow for
the power spectrum) indicate the predictions for the models that are located within one rms value of the posterior distribution around
the mean (see §5.3 for more details)

4.1 The halo auto- and cross-power and bispectra

To begin, the halo and matter density fields are interpolated
onto a cubical Cartesian mesh using the cloud-in-cell (CIC)
algorithm. Throughout we use mesh sizes corresponding to
Ncell = 10243 . We then Fourier transform these grids using
the Fast Fourier Transform technique and correct each mode
for the CIC assignment. The three power spectra Pmm, Phm,
Phh, and the four bispectra, Bmmm, B

(s)
hmm, B

(s)
hhm, B

(s)
hhh, are

then estimated using the expressions:

P̂ d
αβ(k1) =

L3

N(ki)

N(ki)∑

i

δα(ki)δβ(−ki) , (27)

B̂d
αβγ(k1,k2, θ12) =

1

3

L6

Ntri

Ntri∑

ǫ(ki,kj)

δα(ki)δβ(kj)×

× δγ(−ki − kj) + 2 cyc , (28)

where N(ki) is the number of Fourier modes in a narrow
shell centred on k1, ǫ(ki,kj) represents the pair of vectors
which lie in thin shells centred on k1 and k2, whose angu-
lar separation lies in the angular bin centred on θ12, and
Ntri ≡ Ntri(ki, kj , θij) is the total number of triangles with
this configuration in Fourier space. The superscript “d” de-
notes that these are spectra of a discrete distribution of
points (i.e. haloes) and must be corrected for shot noise.
The forms of the Poissonian shot-noise corrections we adopt

were presented in Pollack, Smith & Porciani (2012):

P̂ shot
αβ (k1) =

δKαβ

n̄α
(29)

B̂shot
αβγ (k1,k2) =

1

3

δKαβ

n̄α
[Pβγ(k1) + 2 cyc]

+
1

3

δKβγ

n̄β
[Pγα(k1) + 2 cyc]

+
1

3

δKγα
n̄γ

[Pαβ(k1) + 2 cyc] +
δKαβδ

K
αγ

n̄2
α

(30)

where n̄α denotes the mean number density of either the
matter particles or the halo population.

Figure 1 presents the various power- and bi-spectra
averaged over the 200 realizations with the correspond-
ing standard errors on the mean. All spectra were cor-
rected for shot noise using Eqs (29) and (30). The bispectra
were measured for triangle configurations with fixed lengths
k1 = 0.04 hMpc−1 and k2 = 2k1, but with varying angle
θ12. We adopt the convention θ12 = 0 for k1 and k2 parallel.
In order to use the same range of wavenumbers, the power
spectra were measured over the scale range 0.04 < k < 0.12
hMpc−1.

4.2 Estimating P(l,m) and B
(s)

(l,m,n)

The polyspectra P(l,m) and B
(s)

(l,m,n)
that enter the expres-

sions for the halo power- and bi-spectra in the LEB are af-
fected by the non-linear evolution of the matter fluctuations.
While these terms are usually approximated with perturba-
tive techniques, we measure them directly from our N-body
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6 J. E. Pollack, R. E. Smith, & C. Porciani

Figure 2. Measurements of the de-smoothed terms P(1,1), P(2,1), and P(2,2) averaged over 200 N-body simulations. We show results for
a number of smoothing scales within the range 2 6 R 6 18 h−1Mpc in comparison with our basic CIC grid (see the main text for more
details). The errorbars denote the standard error on the mean.

simulations. We do this as follows. First, we correct each
Fourier mode of the mass-density field for convolution with
the CIC grid. Then we multiply the result by a Gaussian
smoothing function W (kR) = exp

[
−(kR)2/2

]
and inverse

transform back to real space. Next, we generate the fields
δl(x|R) for the relevant values of l and re-transform them
into Fourier space. We then deconvolve these fields for the
original smoothing, which means simply multiplying each
Fourier mode by W−1(kR). Finally, the required P(l,m) and

B
(s)
(l,m,n) terms, defined in terms of ∆(l)(k|R) (see Eq. (5)),

can be estimated as follows

P̂(l,m)(k1) =
L3

N(ki)

N(ki)∑

i

∆(l)(ki|R)∆
(m)(−ki|R) , (31)

and

B̂
(s)

(l,m,n)(k1,k2, θ12) =
1

3

L6

Ntri

Ntri∑

ǫ(ki,kj)

∆(l)(ki|R)×

×∆(m)(kj |R)∆
(n)(−ki − kj |R) + 2 cyc . (32)

We note that the functions P(l,m) and B
(s)
(l,m,n) slowly

vary with R and so can be smoothly interpolated. Based
on this knowledge, we measure the spectral functions over
the range: R = [2, 18] h−1Mpc, in increments of △R = 2
h−1Mpc, but including an additional measurement at R = 7
h−1Mpc. The lower limit was adopted because we do not
wish to smooth below the Lagrangian size of haloes, which
for our sample is of the order of ∼ 3−4 h−1Mpc. The upper
bound of R = 18h−1Mpc we justify by noting that we do
not want the largest k-mode entering our computations of
the halo power- and bi-spectra to be too heavily smoothed.

Before inspecting the functions P(l,m) and B
(s)
(l,m,n), we

first report the level of non-linearity present in the smoothed
matter-density field, δ(x|R). We quantify this by measuring
the variance of the density perturbations, σ2(R) and the
fraction of cells where the density contrast exceeds unity, f ,
as a function of the filter scale (see Table 1). Our results show
that σ2(R) < 1 for R & 4h−1Mpc. We therefore expect the
quadratic bias model to be a poor description for smaller val-
ues of R. However, we note that the fraction of the cells with

Table 1. Level of non-linearity in the smoothed mass-density field
at redhift z = 0. Column 1: filter scale, R; Column 2: variance
of density fluctuations, σ2(R); Column 3: volume fraction with
|δ(R)| > 1, f .

R [ h−1Mpc] σ2(R) 100× f

2 2.44 10.0
4 0.71 8.4
6 0.38 6.0
7 0.28 4.9
8 0.22 3.8
10 0.15 2.2
12 0.10 1.1
14 0.08 0.5
16 0.06 0.2
18 0.05 0.1

δ > 1 is f . 0.1 for all of the filter scales considered. Fur-
thermore, in our previous work (Pollack, Smith & Porciani
2012), we evaluated the scatter plots of δh versus δ mea-
sured from our N-body simulations for different smoothing
radii. We found that expressing δh as a polynomial function
at second-order in δ can describe reasonably well the mean
trend of the scatter.

4.3 Results for P(l,m) and B(l,m,n)

Figures 2 and 3 show the results for the ensemble-averaged
de-smoothed power and bispectra, P(l,m) and B(l,m,n), re-
spectively. Focusing on the power spectrum, the panels show
(from left to right) the matter power spectrum P = P(1,1) =
Pmm followed by the terms P(2,1), and P(2,2).

For the bispectra, the panels show: the matter bispec-
trum B = B(1,1,1) = Bmmm (top left), B

(s)

(2,1,1)
(top right),

B
(s)
(2,2,1) (bottom left), and B

(s)
(2,2,2) (bottom right). We have

restricted the triangle configurations to those which enter
the auto- and cross- halo bispectra shown in Figure 1. Each
panel shows six sets of points with errorbars which denote
the results obtained for different smoothing scales. The red
crosses denote the resulting polyspectra when no Gaussian
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A new method to measure galaxy bias 7

Figure 3. Same as for Figure 2 but for the bispectrum terms B(1,1,1), B
(s)
(2,1,1)

, B
(s)
(2,2,1)

, and B
(s)
(2,2,2)

.

smoothing (and de-smoothing) is applied on top of the CIC
assignment.

Comparing the different panels reveals how the ampli-
tudes of the de-smoothed quantities vary. Obviously, for the
matter power and bispectra, P(1,1) and B(1,1,1), all of the
spectra overlap with the CIC result as the smoothing and
the de-smoothing procedures perfectly cancel each other out.
However, for the remaining P(l,m) and B(l,m,n) functions,
the de-smoothed quantities vary with the scale R. In par-
ticular, as R decreases, the overall amplitude of the spectra
increases due to the contributions of small-scale modes. For
the largest smoothing scales, the configuration dependence
of the spectra is also modified. In order to gain some insight
into the origin of this behaviour, let us consider, for instance,
the term

P(2,1)(k) =

∫
d3q

(2π)3
B(q,k− q,−k)W(q,k− q) (33)

where W is a generic weighting function defined as

W(k1,k2) =
W (k1R)W (k2R)

W (|k1 + k2|R)
. (34)

For Gaussian smoothing, the weighting function in Eq. (33)
can be re-expressed as W(q,k−q) = exp

[
−R2

(
q2 − kqµ

)]
,

with µ = k ·q/(kq) the cosine of the angle between k and q.
The contribution to the integral from all modes with qR ≫ 1
is exponentially suppressed (i.e. W ≪ 1).

The contribution to the integral from all modes with
qR ≫ 1 is exponentially suppressed (i.e. W ≪ 1). How-
ever, at fixed k, W assumes values larger than unity for
µ > 0 and q < kµ (independently of R) and presents an
absolute maximum for q = k/2 and µ = 1 where it takes
the value Wmax = exp[(kR)2/4]. Note that, when kR ≪ 1,
Wmax ≃ 1 + (kR)2/4 ≃ 1 so that all configurations where
W > 1 receive nearly the same weight. In this case, the
parameter R regulates how quickly the function W drops
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8 J. E. Pollack, R. E. Smith, & C. Porciani

Figure 4. Left: Measurements of the P(2,1) term from the simulations (points with errorbars) are compared with the analytical predictions
from leading-order SPT (solid lines) for different filter radii (from top to bottom: R = 2, 4, 6, 8, 10h−1Mpc). Right: Same as in the left

panel but for B
(s)
(2,1,1)

. The star-shaped points represent the contribution to B
(s)
(2,1,1)

from the disconnected parts of the fourth-order

correlators at tree level in SPT (i.e. cyclical products of the linear power spectrum).

when q moves away from the region where W > 1. In other
words, W behaves nicely as a smoothing function. This is
not true, however, when kR ≫ 1 and the value of Wmax

grows very large. In this case, P(2,1) receives dominant con-
tributions from a narrow shell of modes located at q ≃ k/2
and µ . 1. This effect is clearly seen in Figure 2 for R = 18
h−1Mpc where the over-smoothing (i.e. the fact that kR is
significantly larger than unity for k ∼ 0.1) leads to a change
in shape for P(2,1) which is particularly evident for the con-
figurations with the largest wavenumbers.

It is interesting to investigate why, for kR ≪ 1, the
configuration dependence of P(2,1) changes very little with
R and only the overall normalisation appears to depend on
the smoothing scale. If we assume that the amplitude of the
bispectrum B(k1,k2,−k1 −k2) keeps nearly constant at all
scales assuming a value ≃ B0, Equation (33) then gives

P(2,1)(k) ≃
π3/2 exp ((kR)2/4)

R3
B0 . (35)

The first term on the right-hand-side gives the q-space vol-
ume over which the bispectrum is averaged to get P(2,1). At
fixed k, this expression diverges as R−3 when R → 0 and
exponentially as R → ∞ while it shows broad minimum
around kR ∼ 2.5.

Clearly, had we not smoothed the density field, the re-
sulting P(l,m) and B(l,m,n) would be divergent in any ΛCDM
cosmology.

4.4 Modelling P(2,1) and B
(s)
(2,1,1) with SPT

In order to better understand what drives the amplitude
and functional form of the P(l,m) and B

(s)

(l,m,n) terms we have
attempted to model their signal with SPT. For simplicity,
we have focused on the lowest-order non-trivial terms P(2,1)

and B
(s)
(2,1,1).

To leading order in the perturbations, the mat-
ter bispectrum can be written as B(k1,k2,k3) =
2F2(k1,k2)P(0)(k1)P(0)(k2) + 2 cyc with F2 the second-
order SPT kernel (see Appendix B) and P(0) the linear
power spectrum. In Figure 4 (left panel) we show the results
obtained after inserting this expression into Equation (33)
in comparison with the P(2,1) measurements from the N-
body simulations. The SPT-based model displays the same
scaling behaviour with k and R as the data. However, for
R > 6h−1Mpc the SPT predictions are accurate to better
than 13 per cent, which is still not at the level of precision
required for future galaxy clustering datasets; the deviations
become larger with smaller R. It follows from the definition
of the B

(s)
(2,1,1) term that (see Appendix B for B

(s)
(2,1,1))

B
(s)
(2,1,1)(k1,k2,k3) =

2

3
[P (k2)P (k3)W(k2,k3) + 2 cyc] +

+
1

3

∫
d3q1

(2π)3
T (q1,k1 − q1,k2,k3)W(q1,k1 − q1)

+ 2 cyc , (36)

where T denotes the matter trispectrum (i.e. the connected
part of the 4-point correlator). The SPT contribution to
lowest non-vanishing order is simply:

B
(s)
(2,1,1)(k1,k2,k3) ≃

2

3

[
P(0)(k2)P(0)(k3)W(k2,k3) + 2 cyc

]
.

(37)
In the right panel of Figure 4 we show that this approxima-
tion (star-shaped points) strongly underestimates the out-
come from the N-body simulations (solid symbols with er-
rorbars) and does not display the same scaling behaviour
with k and R as the data. A common approach performed
during observational data analysis is to substitute in place
of the linear power spectrum, P(0), shown in Eq. 37, the fully
non-linear power spectrum, P(1,1). We found that perform-
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A new method to measure galaxy bias 9

ing this substitution has little effect on the resulting ampli-
tudes, remaining roughly equivalent as the lowest nonvanish-
ing contributions. We then go one step further and compute
the next-to-leading-order corrections to B

(s)
(2,1,1) which are of

sixth-order in terms of the linear density field. This gives

B
(s)
(2,1,1) (k1,k2,k3) ≃

2

3
W(k2,k3)

[
P(0)(k2)P(0)(k3)+

+ P(0)(k2)P(1ℓ)(k3) + P(1ℓ)(k2)P(0)(k3)
]
+ 2 cyc

+
1

3

∫
d3q1

(2π)3
W(q1,k1 − q1)T(0)(q1,k1 − q1,k2,k3)

+ 2 cyc , (38)

where P(1ℓ) denotes the first loop correction to the power
spectrum (i.e. P ≃ P(0) + P(1ℓ) + . . . ) and the term T0 rep-
resents the tree-level contribution to the connected trispec-
trum. In Appendix B we provide the expressions needed for
evaluating all these quantities, which are de-smoothed ac-
cording to Eq. (15). Our final results are shown in Figure 4
(solid lines). The SPT approximation shows the correct scal-
ing with R, but for R > 2 h−1Mpc it tends to overpredict
the amplitude for collinear (i.e. θ ≃ 0 and θ ≃ π) config-
urations. For 4 < R 6 8h−1Mpc it also underpredicts the
amplitude for triangles in which k1 and k2 are nearly per-
pendicular. However, as R increases the discrepancy lessens
and at R = 10 h−1Mpc SPT performs better. This suggests
that using SPT to fit galaxy bispectra in the scale range
0.04 . k . 0.12 hMpc−1 may possibly lead to seriously bi-
ased estimates for the parameters of the LEB.

Nevertheless, whilst the analytic calculations of P(2,1)

and B
(s)
(2,1,1) are feasible, computing higher-order terms be-

comes increasingly challenging. However, estimating these
quantities from simulations is no more demanding than mea-
suring the low-order terms and so our approach offers a dis-
tinct advantage over the classical SPT calculations.

5 ESTIMATION OF HALO BIAS

5.1 Bayesian parameter estimation

The second-order LEB contains three parameters:
θ ≡ {b1, b2, R}. In this section, we use Bayesian statis-
tics to determine their values that best represent the halo
power and bispectra extracted from our simulations. For
simplicity, we assume that the cosmological parameters
are perfectly known and that the measurement errors are
Gaussian distributed, i.e.

L(x|θ) = (2π)−N/2 |C|−1/2e−
1
2
[(x−µ(θ))TC

−1(x−µ(θ))] = (39)

= (2π)−N/2 |C|−1/2e−
χ2(x,θ)

2 ,

where xT is the N-dimensional vector containing the power
spectra or bispectra for different configurations, µ(θ) is the
model prediction and C is the covariance matrix. In theory
C is a model dependent quantity, however owing to the tech-
nical challenge of estimating this matrix and its inverse, we
have decided to determine C directly from the data.

Equation (39) gives the likelihood of the data given the
model, but what we need in order to perform parameter esti-
mation is the posterior probability of the model parameters

given the data. This can be obtained using Bayes’ theorem:

P (θ|x) =
Π(θ)L(x|θ)

p(x)
, (40)

where Π(θ) is the prior probability for the model parameter
while the evidence,

p(x) ≡

∫
Π(θ)L(x|θ) d3 θ , (41)

simply acts as a normalizing factor and does not influence
the search for the best fit. In what follows we will always
assume flat priors on the parameters, but bounded over a
finite domain which is much more extended than the likeli-
hood function. Moreover, b1 and R will always be assumed
to be positive.

5.2 Covariance matrix estimation

The sample covariance matrix

Ŝ ≡
N

N − 1
〈∆x

T∆x〉N ; ∆x ≡ x− 〈x〉N , (42)

where 〈. . . 〉N denotes the arithmetic mean over N indepen-
dent measurements, provides an unbiased estimator of the
covariance matrix for the measurement errors.

However, this estimator is extremely unstable and in-
efficient. It generally provides matrices where the smallest
eigenvalue is too small and the largest one is too big. Very
large samples are thus needed to obtain accurate estimates
of the covariance.

On using our ensemble of 200 simulations for both the
power and the bispectra, we could measure the diagonal el-
ements of the covariance with an accuracy of ∼ 10 per cent.
On the other hand, the off-diagonal elements had a much
smaller absolute value and were scattering around zero with
errors of the order of ∼ 100 per cent. All this suggests that
the covariance should be close to diagonal as expected for
a Gaussian random field with infinitesimally narrow bins in
k-space.

Due to these large uncertainties in the off-diagonal el-
ements, we opted for implementing a shrinkage method to
better estimate the covariance matrices of our power and
bispectra. Shrinkage estimation is a variance reduction tech-
nique that shrinks an empirical estimation of the covariance
like Ŝ towards a theoretical model for how the covariance
should be, represented by a structured matrix T (the target
covariance). The shrinked estimator is given by the convex
linear combination

Ĉ = λT+ (1− λ)Ŝ (43)

where 0 < λ < 1 is the shrinkage intensity. This ensures
the resulting covariance matrix to be positive definite even
if Ŝ is singular (because it is determined from N < dim(x)
observations).

It has been demonstrated that shrinkage techniques
provide a regularized estimate of the covariance Ŝ which
is both more accurate and statistically efficient than either
of the individual estimators Ŝ and T, and they do so in a
systematic way (Schäefer & Strimmer 2005). Without the
need for specifying an underlying probability distribution,
Ledoit & Wolf (2003) provided a theorem that determines
the optimal value for λ through minimization of a quadratic
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10 J. E. Pollack, R. E. Smith, & C. Porciani

loss function such as the mean-square error of the covari-
ance matrix. This can be expressed in terms of the squared
Frobenius norm

L(λ) = ‖ Ĉ−Σ ‖2F

= ‖ λT+ (1− λ)Ŝ−Σ ‖F

=

p∑

i,j=1

(λtij + (1− λ)sij − σij)
2 . (44)

which gives a measure of the distance between the true pop-
ulation covariance, Σ, and the inferred one, namely, Ĉ. The
key is to select a suitable target, and we assume it to be a
diagonal matrix with unequal variances coinciding with the
sample variances:

tij =

{
sii, if i = j

0, if i 6= j
. (45)

Minimizing Eq. (44) gives the expression for the optimal
shrinkage intensity:

λ∗ =

∑
j>i Var(sij)∑

j>i[Var(sij) + σ2
ij ]

=

∑
j>i Var(sij)∑
j>i E(s

2
ij)

, (46)

where E(. . . ) denotes the expectation value of a random vari-
able. Following Schäefer & Strimmer (2005), we estimate
the sampling variance of the elements of the sample covari-
ance using

V̂ar(sij) =
N

(N − 1)3

N∑

j=1

(
∆x

T
j ∆xj − 〈∆x

T∆x〉N
)2

.

(47)
However, while these authors approximate E(s2ij) in Eq. (46)
with the square of the point estimate sij thus overestimating
λ∗, we adopt the square of the sample covariances s2ij as a
proxy for σ2

ij (e.g. Kwan 2011). In all cases, we found that

the optimal shrinkage intensity was roughly λ̂∗ ∼ 0.45 for
the power spectra covariance and λ̂∗ ∼ 0.23 for the bispectra
covariance, respectively. Note that the adopted algorithm
only performs shrinkage of the off-diagonal elements of the
covariance matrix.

5.3 Constraining the bias parameters: b1, b2 and R

We now determine the best-fit model parameters for the var-
ious power and bispectra that we have estimated from the
simulations within the scale range 0.04 < k < 0.12 hMpc−1.
We consider two second-order LEB models that differ in
the polyspectra describing the non-linear matter distribu-
tion (see below for the details). In both cases, we map the
likelihood function within a finite volume of the parameter
space that we slice into a regular Cartesian mesh.

5.3.1 SPT tree-level model

The first model uses SPT at the lowest non-vanishing order
to approximate the P(l,m) and B(l,m,n). This is what is most
commonly done in the literature. For the power spectrum,
the P(l,m) terms expressed at tree-level of SPT are:

P tree
(1,1) = P(0)(k) , (48)

P tree
(i,j) = 0 for i+ j > 2 , (49)

where P(0)(k) denotes the linear matter power spectrum.

Thus, the bias relation is linear and carries no depen-
dence on the filter scale, R, and on b2.

For the bispectrum, the evaluation of B(l,m,n) using only
tree-level contributions gives:

B
(s),tree
(1,1,1) = 2P(0)(k1)P(0)(k2)F2(k1,k2) + 2 cyc , (50)

B
(s),tree

(2,1,1)
=

2

3
P(0)(k1)P(0)(k2)W(k1,k2) + 2 cyc , (51)

B
(s),tree
(i,j,k) = 0 for i+ j + k > 4 , (52)

where F2(k1,k2) is the second-order mode-coupling kernel
function from SPT (e.g. Bernardeau et al. 2002).

5.3.2 Fully non-linear model

The second model considers the fully non-linear matter
polyspectra extracted from the simulations. Note that, while
evaluating the LEB when varying b1 and b2 at fixed R is a
trivial exercise, varying R would, in theory, require recom-
puting all the relevant P(l,m) and B(l,m,n). However, as we
mentioned earlier in our discussion of Fig. 3, these functions
change smoothly with R. We therefore use a cubic-spline
interpolation of log

[
P(l,m)

]
and log

[
B(l,m,n)

]
to model the

R-dependence of the theory. This enabled us to map the
likelihood function with arbitrary resolution.

A final comment is in order regarding the details of
how the fit is performed. There is some arbitrariness in
defining what exactly are the “observables” and what is the
“model” in the simulations. For instance, we could have fit
the outcome of each N-body simulation separately using the
polyspectra extracted from the very same realization. While
being a valid test of the LEB, this method would have not
had much in common to actual galaxy redshift surveys (or
even to the SPT model discussed above), where the under-
lying mass distribution is unknown and needs to be mod-
eled independently. In fact, the presence of the same noise
structure in the matter and halo power and bispectra would
result in overfitting. There are a couple of alternative ap-
proaches one could follow to prevent this. The first is to
generate smooth versions of the P(l,m) and B(l,m,n) terms
by averaging over the entire ensemble of simulations. One
can then use these “theoretical models” to simultaneously
fit the halo statistics extracted from all of our 200 indepen-
dent realizations. The other alternative is to subdivide the
total ensemble of simulations into two subsets, where one
subset would be used to construct the smooth P(l,m) and
B(l,m,n) terms by averaging over the total number of simu-
lations in the subsample and the other subset would serve as
the halo statistics to be analyzed. The partition of the en-
semble of realizations into two distinct subsets ensures that
the “model” and “data” are indeed independent. Further-
more, one can exchange the roles of “model” and “data” for
the two subsets and then sum the χ2s obtained from the
two sets of analysis. We carried out both approaches how-
ever we only report the results from averaging over the 200
simulations as the bias model constraints compared to the
partitioning approach are in extremely good agreement.
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Figure 5. The effective halo-bias parameters bhm = Phm/Pmm

(orange symbols) and bhh = (Phh/Pmm)1/2 (blue symbols) ex-
tracted from our simulations as a function of the wavenumber.
The black solid lines and shaded regions indicate the mean and
the rms value of the effective bias obtained by averaging the pre-
dictions of the second-order LEB over the posterior probability
of the model parameters.

5.4 Goodness of fit

In this Section we use the classic χ2 goodness-of-fit test to
quantify how well the second-order LEB fit our simulated
data. We minimise the χ2 function over the parameter space
using the simplex method. The best-fit models determined
this way basically coincide with those that minimise the χ2

function in the dense grid used for our Bayesian analysis.
Since for all power and bispectra we have always used 20
bins in k or θ and the covariance matrices are full rank, the
number of degrees of freedom totalled ν = 200·20−3 = 3997
for each fit.

5.4.1 Power spectra

The tree-level SPT models for the halo power spectra pro-
vide very poor fits to our data. The minimum χ2 value is
much larger than the number of degrees of freedom, reaching
χ2
min ≃ 7465 for Phm and χ2

min ≃ 139, 821 for Phh. These re-
sults may serve as indicators that halo biasing is non-linear
and/or a result of the breakdown of linear SPT. To check
the latter, we refit both spectra using Equation (48) but af-
ter replacing P tree

(1,1) with the fully non-linear matter power

spectrum P(1,1). In this case, we acquire χ2
min ≃ 3903 for

Phm and χ2
min ≃ 4442 for Phh. This significant improvement

to the tree-level results demonstrates the need to model
non-linearities in the matter distribution very accurately.
Using the fully non-linear model with the additional free-
parameters b2 and R only slightly improves the goodness
of fit for Phm, giving χ2

min ≃ 3901. On the other hand,
the improvement is marked for Phh for which we obtain
χ2
min ≃ 3915.

It is interesting to see how the χ2
min value changes when

R is kept fixed. In this case, we find that all the fits to
Phm are equally good. However, for Phh, the values of χ2

min

undergo a sharp decrease (from 3944 . χ2
min . 3921) for

2 < R . 3.66 h−1Mpc, then decrease slowly to the abso-
lute minimum value at R ∼ 13.2 h−1Mpc and finally begin
to slowly rise again to our cutoff scale of R = 18 h−1Mpc.
Hence, it appears that there is a range of preferred smooth-
ing scales that best fit the simulation data for Phh.

5.4.2 Bispectra

Turning now to the bispectra, we find that the fully
non-linear model provides slightly better fits to the nu-
merical data (χ2

min ≃ 3906, 3908 and 3913 for Bhmm,
Bhhm, and Bhhh, respectively) than the tree-level model
(χ2

min ≃ 3923, 3922 and 3925) which, however, already sup-
plies χ2

min/ν . 1.
In all cases, if we keep R fixed and only consider 2-

parameter models, we find that the χ2
min value does not

change much for 2 < R < 13 h−1Mpc while it rapidly grows
adopting larger smoothing scales. In terms of goodness of
fit, the non-linear model for Bhmm outperforms the tree-
level SPT model for all values of R. On the other hand,
when Bhhm and Bhhh are considered, the non-linear model
gives a better fit only for R . 15 h−1Mpc.

5.4.3 Posterior mean

In order to give a visual impression of the best-fit models,
in Figure 1 we show the posterior mean (black line) and the
posterior rms error (shaded gray region) for the halo power
and bispectra resulting from our fits with the fully non-linear
model in comparison with the simulation data. In all cases,
the models agree with the simulations remarkably well. Note
that the rms error on the best-fit models for Phh and Phm is
hardly visible on the scale of the plots.

5.5 Bias from the power spectrum

5.5.1 Effective bias

Due to its highly compressed ordinate, Figure 1 gives the
false impression that Phm and Phh are nicely described by
rescaling the matter power spectrum with constant multi-
plicative factors ∼ 1.5 and 1.52, respectively. In order to ex-
amine the bias relation more closely as a function of scale,
we introduce two effective bias coefficients by taking differ-
ent ratios of the halo power spectra after1 averaging them
over the 200 N-body simulations: bhm = 〈Phm〉/〈Pmm〉 and
bhh = (〈Phh〉/〈Pmm〉)1/2. We present our results in Fig-
ure 5. The solid points with errorbars represent the effective
biases estimated using the shot-noise corrected quantities
of both the auto- and cross halo power spectra. We com-
pute the 1σ uncertainties via error propagation account-
ing for the covariance between the different observables.
It can be seen that bhh and bhm do not perfectly match
each other. On large-scales (k < 0.06 hMpc−1), bhh keeps

1 Very similar results are obtained if one averages the ratios in-
stead of taking the ratio of the averages.
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Figure 6. Joint marginal probability distribution for the parameter pairs b1–b2, b1–R and b2–R (from left to right) obtained using the
fully non-linear model for Phh (black) and Phm (green). Contours correspond to the 68.3 and 95.4 per cent credible intervals.

roughly constant while it shows a significant scale depen-
dence for k > 0.06 hMpc−1, whereas bhm shows the oppo-
site trend although its scale dependence is weaker for the
large scales. At k ≃ 0.04 hMpc−1, bhm and bhh assume very
similar values. However, bhm > bhh for all wavenumbers. Our
high-quality data also provide some hints for the presence
of weak oscillatory features in the effective bias parameters
on the scales of baryonic acoustic oscillations.

Figure 5 also tests how the fully non-linear second-order
LEB model is able to reproduce the scale-dependence of bhm
and bhh in fine details. The black curves represent the pos-
terior mean of the effective bias coefficients and the shaded
grey regions denote the corresponding rms value of their
posterior distribution. Although the models are not able to
reproduce all the features which are present in the numerical
data, they are in reasonable agreement with the simulations,
especially for k > 0.08 hMpc−1. Nevertheless, we see that
for both bhm and bhh the power spectum models actually are
less accurate at small k (i.e. on the large scales) in the prox-
imity of the point where the trend from constant-to-scale
dependence (and vice versa) occurs. On these scales, the
models systematically overpredict the effective biases and
the largest discrepancy is of the order of ∼ 0.3 per cent.

5.5.2 Marginal credible regions

Now we compare the level of the consistency between the
model-parameter constraints deriving from the fits to the
halo power spectra, Phh and Phm. Figure 6 shows (from left
to right) the marginal posterior distributions for the pa-
rameter pairs b1–b2, b1–R and b2–R of our fully non-linear
model. The black and green contours denote the 68.3% and
95.4% credible regions for the parameters of the LEB ob-
tained from analyzing Phh and Phm, respectively. The first
apparent observation is that the contours of Phm and Phh

span different regions of the parameter space: while the Phm

data prefer b1 . 1.5 and b2 & 0, Phh favours b1 & 1.5 com-
bined with −0.15 . b2 . −0.2. In other words, the second-
order LEB model provides a succesful fit to Phh or Phm but
requires two incompatible parameter sets. Improper mod-
elling of the shot noise in Phh might be the primary cause of
the inconsistency (e.g. Hamaus et al. 2010). Note, however,

that the best-fit values for b1 and b2 that we derive from
Phh are in good agreement with the predictions of theories
that follow the collapse of dark-matter halos (e.g. Equation
(14) and (15) in Scoccimarro et al. 2001). It is also worth
mentioning that, for Gaussian fluctuations in the matter
density, the cross-spectrum of locally-biased tracers is al-
ways exactly proportional to Pmm even though this is not
apparent from the mathematical formulation of the LEB
(Frusciante & Sheth 2012). The fact that our measurement
of Phm needs b2 ≃ 0 might simply suggest that a similar
relation holds true also in the presence of non-Gaussian per-
turbations (at least approximately, since bhm keeps nearly
constant with k as shown in Fig. 5).

5.6 Bias from the bispectrum

5.6.1 Effective bias

To investigate the bias relation as a function of
scale using the halo bispectra, we define a set of
coefficients by taking the following ratios: bhmm =
〈Bhmm〉200/〈Bmmm〉200, bhhm = (〈Bhhm〉200/〈Bmmm〉200)

1/2,
bhhh = (〈Bhhh〉200/〈Bmmm〉200)

1/3. The results are shown in
Figure 7: all the effective bias coefficients present a char-
acteristic configuration dependence and are in agreement
within their 1σ uncertainties (although bhhh tends to as-
sume slightly higher values for all triangle configurations).
The posterior means of the effective bias coefficients from
the fully non-linear models also closely match the data as
expected from the χ2 test presented in §5.4.2. All this sug-
gests the second-order LEB provides a suitable description
of the bias relation at the three-point level.

5.6.2 Marginal credible regions

We now evaluate the consistency of the model-parameter
constraints for the halo bispectra. Figure 8 shows the
marginal posterior distribution for the parameter pairs b1–
b2, b1–R and b2–R, respectively. Each panel refers to a par-
ticular bispectrum, as indicated from the label in the bottom
left corner. The black contours denote the 68.3% and 95.4%
credible regions for the parameters of the fully non-linear
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Figure 7. As in Figure 5 but for the effective bias parameters bhmm = Bhmm/Bmmm, bhhm = (Bhhm/Bmmm)1/2 and bhhh =
(Bhhh/Bmmm)1/3.

model. The red contours, instead, indicate the correspond-
ing regions for the SPT tree-level model described in §5.3.1.

The first thing that may be noticed is that the estimates
for b1 and b2 from the tree-level and fully non-linear models
are in disagreement: the tree-level constraints show a sys-
tematic shift, preferring lower b1 and slightly more negative
b2 values. This implies that inferences made about the non-
linearity of galaxy bias using the galaxy bispectrum and
tree-level perturbation theory will be significantly biased.
Note that this statement also applies to rather large scales
k1 . 0.12 hMpc−1. If one uses triangle configurations on
smaller scales (e.g. Verde et al. 2002) then the discrepancy
becomes larger. Therefore, our program to use N-body simu-
lations for determining the matter terms in the bias relation
is key to correctly estimate the bias (and thus the cosmo-
logical parameters) from forthcoming observational data.

The second important point to notice is that fits to
Bhhh, Bhhm and Bhmm with the fully non-linear model give
consistent constraints for b1, b2 and R. The precision with
which we are able to determine the bias parameters increases
as we go from Bhmm to Bhhh. This finding is consistent with
our earlier results (Pollack, Smith & Porciani 2012).

Note that the best-fit values for b1 appear relatively in-
sensitive to variations in R. One has to consider rather large
smoothing scales in order to see any changes in the best-fit
models. However, the best-fit solutions for b2 are strongly
degenerate with R: as R decreases, b2 becomes less negative
and tends towards zero. This owes to the fact that, on chang-
ing R in the interval R ∈ [2, 13] h−1Mpc, one can always find
different combinations of b1 and b2 that fit the data with the
same accuracy as previously described in 5.4. We can more
directly understand the origin of the b2–R degeneracy as fol-
lows. Let us consider the bias model for Bhmm since this only
contains the terms B

(s)

(1,1,1) and B
(s)

(2,1,1). As shown in the top

panels of Fig. 4, the de-smoothing of B
(s)
(1,1,1) results in the

Table 2. Posterior mean and rms error of the bias parameters
b1, b2 and R obtained fitting various halo statistics with the full
non-linear bias model.

Statistic b1 ± σb1 b2 ± σb2 R± σR

(h−1Mpc)

Phh 1.53 ± 0.02 -0.18 ± 0.02 12.0 ± 3.1
Phm 1.48 ± 0.02 0.02 ± 0.01 10.6 ± 4.1
Bhhh 1.49 ± 0.03 -0.18 ± 0.07 7.2 ± 2.6
Bhhm 1.51 ± 0.03 -0.26 ± 0.10 7.8 ± 2.8
Bhmm 1.52 ± 0.05 -0.31 ± 0.14 9.1 ± 3.1

matter bispectrum. However, the de-smoothing of B
(s)
(2,1,1)

results in a function that carries a dependence on R. If we
take the ratio of B

(s)

(2,1,1) defined for Ra with the same func-
tion but defined for Rb, then we will find something close to
a constant for R = [4, 10] h−1Mpc. Thus we can identify the
degenerate combination:

ba2 =
B

(s)

(2,1,1)
(k1,k2, Rb)

B
(s)
(2,1,1)(k1,k2, Ra)

bb2 ≈ A(Ra, Rb) b
b
2 (53)

where A(Ra, Rb) is a function that is independent of the
triangle configuration. Hence, the value of b2 is correlated
with the size of the smoothing scale, R.

5.7 Comparing all constraints

In Figure 9 we present the marginal posterior probabilities
for the single bias parameters extracted from the various
probes that we have considered. The left, central and mid-
dle columns show the results for b1, b2 and R, respectively.
From top to bottom, the rows correspond to Phh, Phm, Bhhh,
Bhhm, Bhmm, respectively. The black curves represent the re-
sults from the fully non-linear modelling, and the red curves
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Figure 8. Joint marginal probability distribution for the parameter pairs b1–b2 (top), b1–R (middle) and b2–R (bottom) obtained fitting
the data for Bhhh (left), Bhhm (center) and Bhmm (right). Contours correspond to the 68.3 and 95.4 per cent credible intervals and refer
to the full non-linear model (black) and to the approximation based on tree-level SPT (red).

show the results from the tree-level perturbation theory for
the bispectra. The corresponding mean and rms values of
the marginal probabilities for the full non-linear model are
reported in Table 2.

Considering the values for b1 from the bispectra, we
see that, as noted earlier, the parameter constraints for the
non-linear model are consistent with one another and are
significantly different from the best-fit b1 obtained from the
tree-level expressions. On comparing the bispectra results
with the power-spectra results we find reasonable consis-

tency for the non-linear modelling, whereas for the tree-
level bispectrum model, the results disagree at high signif-
icance (see also Pollack, Smith & Porciani 2012). However,
the marginal distributions for b1 from Phh and Phm overlap
very little. In fact, they exhibit opposite skewness although
they are both narrow and located around b1 ≃ 1.5. The
marginal distribution for b1 computed from Phm agrees re-
markably well with the effective bias bhm = 1.503 ± 0.002.
This is because the data require b2 ≃ 0 in this case. On
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Figure 9. Marginal probability distributions for the single bias parameters b1 (left), b2 (center) and R (right) obtained fitting various
halo statistics (from top to bottom: Phh, Phm, Bhhh, Bhhm, Bhmm). Results obtained with the full non-linear model (black) are compared
with those derived using tree-level SPT (red).

the other hand, b1 > bhh = 1.49 ± 0.002 in the marginal
distribution extracted from Phh which requires b2 < 0.

Examining the results of the fully non-linear model for
b2, from the bispectra we find that the marginal posterior
distributions are fairly broad and are peaked towards neg-
ative values (b2 ≃ −0.2 for Bhhh, b2 ≃ −0.3 for Bhhm and
Bhmm). Overall, the various bispectra give consistent con-
straints. Note that the sharp cutoff in the marginal distri-
butions at b2 ≃ 0 is due to the fact that our prior for R
does not consider values R < 2h−1Mpc. Considering the re-
sults obtained using the tree-level SPT model, we see that
the distributions for b1 and b2 shift towards different values
(approximately the posterior mean of the bias parameters
moves by ∆b1 ≃ ∆b2 ≃ −0.15). On comparing with the re-
sults obtained from the halo power spectra, we see that the
marginal distribution for b2 extracted from Phh and Phm are

narrowly peaked around b2 ∼ −0.18 and b2 ∼ 0.02, respec-
tively.

We now turn to the question of whether there is a pre-
ferred smoothing scale for the haloes we have considered. On
inspecting the bispectra, we see that the marginal distribu-
tions for R are reasonably consistent and display a broad
peak between 5 and 12 h−1Mpc. The power spectra, in-
stead, tend to prefer slighty larger values of R: 10 < R <
15 h−1Mpc for Phh and R > 5h−1Mpc for Phm, consistent
with the behaviour of the goodness of fit reported in §5.4.
In all cases, these optimal smoothing scales correspond to a
few Lagrangian radii of the halos. They are also comparable
to (but a bit smaller than) the scales that we sample with
the measurements of the power spectra and bispectra. Note
that a sphere of radius ∼ 10 h−1Mpc contains ∼ 1.5 halos on
average so that counts in cells of this extension are subject

c© 0000 RAS, MNRAS 000, 000–000



16 J. E. Pollack, R. E. Smith, & C. Porciani

to sizable random fluctuations that create stochasticity in
the bias relation.

5.8 Cross-correlation coefficients

There are three possible explanations as to why Phm, Phh

and the bispectra show disagreement for the full non-linear
model. One, we may require higher-order terms in the bias
expansion, e.g. b3 etc; two, the LEB may be wrong; three,
there may be uncorrelated stochasticity in the relation be-
tween halo overdensity and mass overdensity. We shall now
explore this latter possibility.

A number of studies have demonstrated, using N-
body simulations, that the relation between δh(x|R) against
δ(x|R) contains scatter, and that this scatter depends
on the scale which one uses to compute the density
field (e.g. Dekel & Lahav 1999; Seljak & Warren 2004;
Smith, Scoccimarro & Sheth 2007; Manera & Gaztañaga
2011; Roth & Porciani 2011; Pollack, Smith & Porciani
2012; Chuen Chan & Scoccimarro 2012).

Another way to explore the stochasticity is through the
cross-correlation coefficient between Fourier modes. For two-
point statistics this can be defined (Dekel & Lahav 1999):

r ≡
P̂hm√
P̂hhP̂mm

=
bhm
bhh

. (54)

If δh is a deterministic linear function of δ, then r = ±1.
However, if there is uncorrelated random noise present, i.e.
δh(x) = bδ(x) + ǫ(x), then the halo power spectrum would
be Phh(k) = b2Pmm(k)+Pǫ(k), where Pǫ denotes the power
spectrum of the noise distribution. This leads to:

r =

(
1 +

Pǫ

Pmm

)−1/2

< 1 . (55)

We note that non-linearity in the bias relationship will also
introduce deviations of r away from unity: consider the
quadratic relation δh(x) = b1δ(x) + b2 δ

2(x)/2, then one
finds that the cross-correlation can be written:

r =

[
1 +

c2
2

P(2,1)

P(1,1)

] [
1 + c2

P(2,1)

P(1,1)

+
c22
4

P(2,2)

P(1,1)

]−1/2

(56)

≈ 1−
c22
8

P(2,2)

P(1,1)

. (57)

where c2 ≡ b2/b1 and where the second equality follows for
the case where P(2,1) ≪ P(1,1) and P(2,2) ≪ P(1,1).

In this case, we see that the cross-correlation function
can be either greater or less than unity depending on the
sign and magnitude of c2.

Figure 10 shows the cross-correlation coefficient esti-
mated from our ensemble of N-body simulations along with
the standard errors on the mean. The open symbols show
the result before we correct Phh for shot noise, the solid sym-
bols show the result after the usual inverse number-density
correction. We see that before correcting for the shot noise
the function is less than 1 and decreases with scale. After
the correction, r is brought within a few percent from unity
and is always larger than one. Note that the difference from
unity is very significant given the numbers of realizations
and the comoving volume covered by our simulations.

In order to derive r from the fully non-linear model,

we jointly fit the numerical data for Phm and Phh. We ac-
knowledge that utilizing 200 simulations prevents us from
accurately estimating a 40 × 40 covariance matrix, in par-
ticular the cross covariances between the different spectra.
Therefore, we performed the joint fit in the following man-
ner. In order to ensure that the different spectra can be
treated as independent of each other, we generated two en-
sembles consisting of 100 simulations each to estimate a par-
ticular spectra. We then computed a 20x20 block covariance
matrix, selecting every other bin from our auto- and cross-
power spectrum estimates. The off-diagonal blocks of the
covariance matrix were set equal to zero when analyzing the
auto-halo and cross halo-matter power spectrum. The re-
sulting best-fit model (b1 ≃ 1.5, b2 ≃ −0.09, R ≃ 18) does
not match to the data (χ2

min ≃ 2242/1997 with a contribu-
tion of 1170 coming from Phm) meaning that it is impos-
sible to simultaneously fit Phh and Phm with the second-
order LEB. Consequently, we find that the posterior mean
of the cross-correlation coefficent, obtained by multiplying
the likelihoods of the single fits to Phh and Phm, is always
smaller than unity and does not provide a good description
to the data (see the black line and the shaded region in Fig-
ure 10). To investigate this further, we recompute r using
the posterior means of Phh and Phm shown in the left panel
of Figure 1. Inserting them in Equation (54), we find excel-
lent agreement with the data (see the blue line in Figure 1).
As shown previously, the best-fit models for Phh and Phm

prefer different values for b1 and b2 when analyzed indepen-
dently. The joint analysis of Phm and Phh, in this manner,
shows more clearly the inconsistency obtained when using
the second-order LEB as a model for halo biasing.

One can also define cross-correlation coefficients for
higher-order statistics. The second equality in Eq. (54) gives
us a clear path to make this generalization. From the 3-point
effective bias coefficients we may form two independent ra-
tios:

r1 ≡
bhmm

bhhh
=

Bhmm

B
2/3
mmmB

1/3
hhh

(58)

r2 ≡
bhhm
bhhh

=
B

1/2
hhm

B
1/6
mmmB

1/3
hhh

, (59)

where the dependence on the triangle configuration is under-
stood. Note, that a third (dependent) ratio may be also com-
puted: r3 = bhmm/bhhm = r1/r2. For a deterministic linear
bias model with bias coefficient b, r1 = 1 and r2 = sgn(b).
Once again, additional stochasticity or non-linear biasing
will alter the cross-correlation coefficients.

In the right panel of Figure 10 we present the cross-
correlation coefficients r1 and r2 extracted from the simula-
tions as a function of the triangle configuration. Both func-
tions are always a few per cent below unity even after shot-
noise subtraction. In the same figure, we also plot the poste-
rior mean and variance for the r coefficients obtained from
joint fits to two bispectra (black line and shaded region) per-
formed in the same manner as for the power spectrum. These
results are very close to unity and do not adequately describe
the simulated data. In fact, the joint fits prefer less negative
values for b2 than the single fits (for example, the best simul-
taneous fit to Bhhh and Bhhm gives b1 ≃ 1.50, b2 ≃ −0.15
and R ≃ 5.5 with χ2

min/ν ≃ 1954/1997). On the other hand,
if we compute r1 and r2 from the individual posterior means
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Figure 10. Left: Linear cross-correlation coefficient between the fluctuations in the halo and matter density, r = bhm/bhh, for different
wavenumbers. Closed and open symbols show the results obtained from the simulations when Phh is and is not corrected for shot noise,
respectively. The black solid line and the shaded region around it indicate the mean and the rms value of the correlation coefficient
obtained by averaging the predictions of the second-order LEB over the posterior probability of the model parameters derived from a
joint fit to Phh and Phm. The solid curve, instead, shows the values of r that are computed using the means for Phh and Phm over the
posterior distributions for the individual fits to Phh and Phm, respectively. Right: As in the left panel but for the 3-point coefficients r1
and r2 defined in Equations (58) and (59). In this case, the shaded region is obtained averaging the model over the posterior distribution
for the parameters derived from a joint fit to the relevant bispectra, while the solid curve uses the different means from the fits to the
individual bispectra.

for Bhhh, Bhhm and Bhmm, we get results that are in good
agreement with the data. This is somewhat puzzling as the
fits to the various bispectra appear to give consistent bias
parameters. However, in order to test how congruous the
different fits really are, we derive models for one bispectrum
type (say Bhhh) averaging over the joint posterior distribu-
tion for the bias parameters derived by fitting one of the
other bispectra (Bhmm or Bhhm). An example is shown in
Figure 11: the fit based on Bhmm matches well the data
for Bhhh for collinear triangles but systematically underes-
timates the halo bispectrum in all the other configurations.
It is exactly in this more precise comparison that we see the
failure of the non-linear local bias model when analyzing the
bispectra data.

6 DISCUSSION

Our high-precision measurements of the halo-halo and halo-
matter spectra and bispectra enabled us to carry out a series
of consistency tests of the second-order LEB. As seen in Fig-
ure 9 and in Table 2, the marginal posterior distributions
for b1 and b2 determined from Phh, Bhhh, Bhhm and Bhmm

are all consistent with one another and, yet, are inconsis-
tent with the constraints derived from the halo-matter cross
spectrum. The primary reason is that Phm requires a posi-
tive b2 that is close to 0, whereas the fits to the other spectra
prefer a negative value for b2. In terms of statistical signifi-
cance, the stronger discrepancy is with Phh as the posterior
distributions for b2 extracted from all bispectra are rather

Figure 11. The halo bispectrum, Bhhh, measured from the simu-
lations (solid symbols) is compared with the fully non-linear LEB
adopting the parameters that best fit Bhmm. The line and shaded
region show the mean and rms value of the LEB model for Bhhh

averaged over the posterior distribution for b1, b2 and R coming
from a fit to Bhmm. This shows that the parameter sets that
nicely fit Bhmm (see Figure 1) are not able to reproduce all the

features seen in Bhhh.
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broad. The incompatibility between the bias parameters ob-
tained from Phh and Phm might indicate a breakdown in the
modelling due to either incorrect shot-noise subtraction or
incorrect parameterization of halo biasing. To better under-
stand this issue, it is interesting to focus for a moment onto
the shot-noise free spectra Phm and Bhmm. Comparing their
mathematical expressions given in Equations (17) and (21),
we see that they have the same parametric form in terms
of b1 and b2, it is only the non-linear matter terms which
are different. Since we directly measure these terms from
the simulations and shot-noise does not play any role here,
the fact that the model-parameter constraints from Phm and
Bhmm are incompatible suggests that the LEB truncated to
second-order is incorrect or, at the very least, incomplete.
The simplest improvement would be to consider higher-order
terms in the bias expansion given in Equation (3). However,
there are good reasons to believe that more sophisticated
corrections are needed. Recent numerical work has provided
strong evidence that dark-matter halos form out of linear
density peaks (Ludlow & Porciani 2011). This suggests that
the halo bias with respect to the matter fluctuations may ac-
tually be best understood as originating in Lagrangian space
(Catelan et al. 1998; Catelan, Porciani & Kamionkowski
2000). However, even the simplest local Lagrangian
biasing scheme generates a non-linear, non-local and
stochastic scheme in Eulerian space (Catelan et al. 1998;
Catelan, Porciani & Kamionkowski 2000; Matsubara 2011)
which can be parameterized in terms of the invari-
ants of the deformation tensor (Catelan et al. 1998;
Chan, Scoccimarro & Sheth 2012; Baldauf et al. 2012). Sev-
eral terms should then be added to the bias expansion of
the LEB and this might help bring the model-parameter
constraints extracted from the different halo statistics in to
better agreement. We will revisit this issue in our future
work.

7 CONCLUSIONS

The use of galaxy clustering to extract information on the
cosmological parameters is currently limited to very large
scales where both galaxy biasing and the process of struc-
ture formation are expected to be linear and thus simple
to model. Although more precise data are already available
on smaller scales, they are not usually considered to avoid
daunting complications in the modeling that might intro-
duce systematic effects in the results. Pursuing the goal of
extending clustering studies to smaller scales, we propose to
use N-body simulations to measure the relevant statistics for
the matter distribution that enter any biasing scheme.

While our framework is explicitly general, as an ex-
ample, we apply it to the Eulerian local bias model trun-
cated to quadratic order. This scheme represents the min-
imal theoretical model for studying three-point statistics
of the galaxy distribution on large spatial separations. Its
predictions are easily computed to leading order in SPT
and are commonly used to interpret observational results
(Verde et al. 2002; Jing & Börner 2004; Wang et al. 2004;
Kayo et al. 2004; Gaztañaga et al. 2005; Hikage et al. 2005;
Pan & Szapudi 2005; Kulkarni et al. 2007; Nishimichi et al.
2007; Maŕın 2011; McBride et al. 2011; McBride et al. 2011;
Guo et al. 2013; Maŕın et al. 2013).

We use a set of 200 N-body simulations to study the
clustering properties of dark-matter halos and their relation
to the underlying matter distribution with unprecedented
accuracy. Our halo catalogs cover a total comoving volume
of 675 h−3 Gpc3, much larger than the effective volume of the
SDSS LRG sample (0.26 h−3 Gpc3), the BOSS BAO sam-
ple (2.4 h−3 Gpc3) and the planned spectroscopic survey of
the Euclid satellite (19.7 h−3 Gpc3). We consider halos with
mass M > 1.11 × 1013h−1M⊙ corresponding to a number
density of 3.7× 10−4 h−3 Mpc3 so that the effective volume
(i.e. the actual volume weighted by the factor n̄ Phh) roughly
coincides with the total volume for the wavenumbers ana-
lyzed here (0.04 . k . 0.12 hMpc−1) that match the ob-
servable scales of current and future surveys. All this allows
us to measure the halo power spectrum to sub-percent ac-
curacy (better than 0.3 per cent at k ≃ 0.04 hMpc−1) and
the halo bispectrum to a few per cent accuracy.

We make a twofold use of our simulations: to measure
the moments of the non-linear matter distribution on sev-
eral scales (and compare them against SPT predictions) and
to test how well the LEB truncated to quadratic order fits
several statistics of the halo distribution. In particular, we
consider the halo power spectrum, Phh, the halo-mass cross-
spectrum, Phm, as well as all the possible bispectra Bhhh,
Bhhm and Bhmm. Our main results can be summarized as
follows:

(i) In a ΛCDM model at z = 0, tree-level SPT does
not accurately model non-linearities in the momenta of
the matter distribution on spatial scales of the order of
10− 30 h−1Mpc.

(ii) The simple second-order LEB fits very well all halo
spectra and bispectra when either N-body simulations or
tree-level SPT are used in the modelling of the clustering
amplitudes for the matter distribution. However, the bias
parameters derived from the models based on SPT are heav-
ily biased with respect to the case when non-linearities are
accurately modelled. This might explain why studies that in-
terpreted different statistics of the galaxy distirbution based
on SPT reached inconsistent conclusions regarding the non-
linear bias of optically selected galaxies (e.g. Verde et al.
2002; Gaztañaga et al. 2005).

(iii) The LEB models applied to counts in cells requires
an optimal smoothing scale of several h−1Mpc to match
the halo statistics from the simulations. For our halos, this
corresponds to a few Lagrangian radii but is also of the same
order of the spatial scales under analysis.

(iv) Comparing the parameter constraints for the fully
non-linear LEB obtained from the different spectra, we find
some inconsistencies. In particular, the non-linear bias pa-
rameter extracted from the cross-spectrum Phm is incompat-
ible with the results from all the other statistics. The main
difference is that Phm strongly favours a positive value for
b2 that is very close to zero, whereas the posterior distribu-
tions derived from all other spectra prefer a negative b2 in
the range −0.3 . b2 . −0.2. General agreement, instead, is
found for the linear bias parameter, b1.

(v) Non-trivial shot-noise corrections in Phh might be in-
voked to reconcile the bias-parameters extracted from Phm

and Phh. However this cannot explain the differences be-
tween the constraints from the shot-noise free statistics Phm

and Bhmm. This suggests that further complexity should be
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added to second-order LEB in order to match all halo statis-
tics.

(vi) Analysis of the cross-correlation coefficients defined
for the two-point and three-point statistics reveal further
subtle inconsistencies contained in the LEB truncated to
second order, suggesting it is too simple a model to describe
halo bias with high accuracy.

A final remark is in order. Our numerical study is based
on simulations with a fixed background cosmology and fo-
cuses on retrieving the bias parameters when the cosmologi-
cal parameters are perfectly known. However, this is not the
case for actual galaxy surveys where bias and cosmology
are generally estimated simultaneously. To transform our
method into a resourceful tool for data analysis, we will need
to explore how the shapes and amplitudes of the moments of
the non-linear matter density field depend on the unknown
cosmological parameters without having to run an exorbi-
tant amount of N-body simulations (e.g. Angulo & White
2010) – a topic we shall explore in future work.
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APPENDIX A: SPECTRAL RELATIONSHIPS

A1 Relationship between P(l,m) and the n-point multispectra

We now derive the relation between the functions P(l,m) and the multi-point matter spectra.
To begin, the functions P(l,m) are defined:

〈
∆(l)(k1|R)∆

(m)(k2|R)
〉

≡ (2π)3δD(k1 + k2)P(l,m)(k1) (A1)

=

∫ l∏

i=1

{
d3qi

(2π)3

} m∏

j=1

{
d3pj

(2π)3

}
(2π)3δD(k1 − q1...l)(2π)

3δD(k2 − p1...m)×

×
〈
δ̃(q1|R) . . . δ̃(ql|R)δ̃(p1|R) . . . δ̃(pm|R)

〉
(A2)

The ensemble average of the l +m density fields may be evaluated to give:
〈
δ̃(q1|R) . . . δ̃(ql|R)δ̃(p1|R) . . . δ̃(pm|R)

〉
≡ (2π)3δD(q1...l + p1...m)P(l+m)(q1, . . . ,ql,p1, . . . ,pm) . (A3)

On inserting the above definition into Eq. (A2) we find

〈
∆(l)(k1|R)∆

(m)(k2|R)
〉

≡

∫ l∏

i=1

{
d3qi

(2π)3

} m∏

j=1

{
d3pj

(2π)3

}
(2π)3δD(k1 − q1...l)(2π)

3δD(k2 − p1...m)×

× (2π)3δD(q1...l + p1...m)P(l+m)(q1, . . . ,ql,p1, . . . ,pm) (A4)

Integrating over the first two Dirac delta functions in yields:

〈
∆(l)(k1|R)∆

(m)(k2|R)
〉

≡ (2π)3δD(k1 + k2)

∫ l−1∏

i=1

{
d3qi

(2π)3

}m−1∏

j=1

{
d3pj

(2π)3

}
×

×P(l+m)(q1, . . . ,ql−1,k1 − q1...(l−1),p1, . . . ,pm−1,k2 − p1...(m−1)) (A5)

Hence,

P(l,m)(k1) =

∫ l−1∏

i=1

{
d3qi

(2π)3

}m−1∏

j=1

{
d3pj

(2π)3

}
P(l+m)(q1, . . . ,ql−1,k1 − q1...(l−1),p1, . . . ,pm−1,k2 − p1...(m−1)) (A6)

Lastly, we may change integration variables in the following way: q̃2 → q2 − q1, q̃3 → q3 − q̃2, . . . , upon which the above
expression may be written as:

P(l,m)(k1) =

∫ l−1∏

i=1

{
d3qi

(2π)3

}m−1∏

j=1

{
d3pj

(2π)3

}
P(l+m)(q1,q2 − q1, . . . ,k1 − ql−1,p1,p2 − p1, . . . ,k2 − pm−1) (A7)

Terms up to and including the quadspectrum may be written:

P(1,1)(k1) = P(2)(k1,k2) = P(k1) (A8)

P(2,1)(k1) =

∫
d3q1

(2π)3
P(3)(q1,k1 − q1,k2) =

∫
d3q1

(2π)3
B(q1,k1 − q1,k2) (A9)

P(3,1)(k1) =

∫
d3q1

(2π)3
d3q2

(2π)3
P(4)(q1,q2 − q1,k1 − q2,k2) (A10)

P(2,2)(k1) =

∫
d3q1

(2π)3
d3p1

(2π)3
P(4)(q1,k1 − q1,p1,k2 − p1) (A11)

P(4,1)(k1) =

∫
d3q1

(2π)3
d3q2

(2π)3
d3q3

(2π)3
P(5)(q1,q2 − q1,q3 − q2,k1 − q3,k2) (A12)

P(3,2)(k1) =

∫
d3q1

(2π)3
d3q2

(2π)3
d3p1

(2π)3
P(5)(q1,q2 − q1,k1 − q2,p1,k2 − p1) (A13)

A2 Relationship between B(l,m,n) and the n-point multispectra

In a similar fashion, we may now derive the relation between the functions B(l,m,n) and the multi-point matter spectra.
To begin, the functions B(l,m,n) are defined:

〈
∆(l)(k1|R)∆

(m)(k2|R)∆
(n)(k3|R)

〉
≡

∫ l∏

i=1

{
d3qi

(2π)3

} m∏

j=1

{
d3pj

(2π)3

} n∏

k=1

{
d3sk

(2π)3

}
(2π)3δD(k1 − q1...l)(2π)

3 ×

×δD(k2 − p1...m)(2π)3δD(k3 − s1...n)
〈
δ̃(q1|R) . . . δ̃(ql|R)δ̃(p1|R) . . . δ̃(pm|R)δ̃(s1|R) . . . δ̃(sn|R)

〉
(A14)
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The ensemble average of the l +m+ n density fields may be evaluated to give:
〈
δ̃(q1|R) . . . δ̃(ql|R)δ̃(p1|R) . . . δ̃(pm|R)δ̃(s1|R) . . . δ̃(sn|R)

〉
≡ (2π)3δD(q1...l + p1...m + s1...n)×

×P(l+m+n)(q1, . . . ,ql,p1, . . . ,pm, s1, . . . , sn) . (A15)

On inserting the above definition into Eq. (A14) we find

〈
∆(l)(k1|R)∆

(m)(k2|R)∆
(n)(k3|R)

〉
≡

∫ l∏

i=1

{
d3qi

(2π)3

} m∏

j=1

{
d3pj

(2π)3

} n∏

k=1

{
d3sk

(2π)3

}
(2π)12δD(k1 − q1...l)δ

D(k2 − p1...m)×

×δD(k3 − s1...n)δ
D(q1...l + p1...m + s1...n)P(l+m+n)(q1, . . . ,ql,p1, . . . ,pm, s1, . . . , sn) (A16)

On integrating over the first three Dirac delta functions gives:

〈
∆(l)(k1|R)∆

(m)(k2|R)∆
(n)(k3|R)

〉
≡ (2π)3δD(k1 + k2 + k3)

∫ l∏

i=1

{
d3qi

(2π)3

} m∏

j=1

{
d3pj

(2π)3

} n∏

k=1

{
d3sk

(2π)3

}
×

×P(l+m+n)(q1, . . . ,k1 − q1...l−1,p1, . . . ,k2 − p1...m−1, s1, . . . ,k3 − s1...n−1) (A17)

As for the power spectrum, we may change integration variables in the following way, q̃2 → q2 −q1, q̃3 → q3 − q̃2, . . . . After
which we find,

B(l,m,n)(k1,k2,k3) =

∫ l−1∏

i=1

{
d3qi

(2π)3

}m−1∏

j=1

{
d3pj

(2π)3

} n−1∏

k=1

{
d3sk

(2π)3

}

×P(l+m+n)(q1,q2 − q1, . . . ,k1 − ql−1,p1,p2 − p1, . . . ,k2 − pm−1, s1, s2 − s1, . . . ,k3 − sn−1) .(A18)

A3 Proof of the symmetry of P(l,m)

We now prove that the spectra P(l,m) are symmetric in their indices m and l:

P(l,m) = P(m,l). (A19)

Consider Eq. (A7), on relabelling the variables pi = ql+i−1, and writing P(l+m) = P(m+l), we find,

P(l,m)(k1) =

∫ {
d3q1

(2π)3

}
. . .

{
d3ql+m−2

(2π)3

}
P(m+l)(q1, . . . ,k1 − ql−1,ql, . . . ,k2 − ql+m−2) (A20)

On changing the integration variables to pi = −qi, we find

P(l,m)(k1) =

∫
d3p1

(2π)3
. . .

d3pl+m−2

(2π)3
P(m+l)(−p1, . . . ,k1 + pl−1,−pl, . . . ,k2 + pl+m−2) . (A21)

Parity invariance of the n-point correlation functions means that Pn(p1, . . . ,pn) = Pn(−p1, . . . ,−pn) (for a proof see
Smith, Sheth & Scoccimarro 2008). Under parity invariance, we find

P(l,m)(k1) =

∫ {
d3p1

(2π)3

}
. . .

{
d3pl+m−2

(2π)3

}
P(m+l)(p1, . . . ,−k1 − pl−1,pl, . . . ,−k2 − pl+m−2) . (A22)

We may switch k1 = −k2 and k2 = −k1,

P(l,m)(k1) =

∫ {
d3p1

(2π)3

}
. . .

{
d3pl+m−2

(2π)3

}
P(m+l)(p1, . . . ,k2 − pl−1,pl, . . . ,k1 − pl+m−2) . (A23)

Next we may rearrange the arguments of the n-point spectra, since it is totally symmetric under exchange symmetry:
Pn(p1, . . . ,pn) = Pn(pi, . . . ,p1, . . . ,pn), whereupon

P(l,m)(k1) =

∫ {
d3p1

(2π)3

}
. . .

{
d3pl+m−2

(2π)3

}
P(m+l)(pl, . . . ,k1 − pl+m−2,p1, . . . ,k2 − pl−1) . (A24)

Finally on changing variables pl+i−1 = qi, we obtain

P(l,m)(k1) =

∫ m−1∏

i=1

{
d3qi

(2π)3

} l−1∏

j=1

{
d3pj

(2π)3

}
P(m+l)(q1, . . . ,k1 − qm−1,p1, . . . ,k2 − pl−1) = P(m,l)(k1) , (A25)

and this completes the proof of Eq. (A19).
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APPENDIX B: MODELLING B
(S)
(2,1,1) WITH PERTURBATION THEORY

In order to better understand what drives the amplitude and functional form of the B
(s)

(l,m,n)
we have attempted to model the

signal with standard perturbation theory techniques. Rather than modelling all of the spectra, we have focused on the lowest
order non-trivial term B(2,1,1).

To begin, consider again Eq. (24), this came from:

〈
∆(2)(k1|R)∆

(1)(k2|R)∆
(1)(k3|R)

〉
=

∫
d3q1

(2π)3
d3q2

(2π)3
(2π)3δD(k1 − q1 − q2)

〈
δ̃(q1|R)δ̃(q2|R)δ̃(k2|R)δ̃(k3|R)

〉
(B1)

The above ensemble averaged product can be broken into connected and disconnected terms. Hence:
〈
δ̃(q1|R) . . . δ̃(q4|R)

〉
=

〈
δ̃(q1|R) . . . δ̃(q4|R)

〉
c
+

〈
δ̃(q1|R)δ̃(q2|R)

〉〈
δ̃(q3|R)δ̃(q4|R)

〉

+
〈
δ̃(q1|R)δ̃(q3|R)

〉〈
δ̃(q2|R)δ̃(q4|R)

〉
+

〈
δ̃(q1|R)δ̃(q4|R)

〉〈
δ̃(q2|R)δ̃(q3|R)

〉
(B2)

If we consider the disconnected terms, these may be written in terms of power spectra (c.f. Eq. (6)). We note that the first
disconnected term is vanishing unless k1 is the null vector. The remaining terms are:
〈
δ̃(q1|R) . . . δ̃(q4|R)

〉
= (2π)3δD(q1...4)T (q1,q2,q3,q4)

+(2π)3P(q1)P (q2)
[
δD(q1 + q3)δ

D(q2 + q4) + δD(q1 + q4)δ
D(q2 + q3)

]
(B3)

On inserting the above expression into Eq. (B1) and computing the integral over q2, we find:

B
(s)
(2,1,1) =

2

3
[P(k2)P(k3) + 2 cyc] +

1

3

∫
d3q1

(2π)3
[T (q1,k1 − q1,k2,k3) + 2 cyc] , (B4)

where we have factored out the Dirac delta. The power spectrum and trispectrum may be evaluated using standard Eulerian
perturbation theory (for a review see Bernardeau et al. 2002). The important results that we will need are that

At one loop level we have

B
(s)
(2,1,1) =

2

3

[
P(0)(k2)P(0)(k3) + 2 cyc

]
+

2

3

[
P(0)(k2)P(1ℓ)(k3) + P(1ℓ)(k2)P(0)(k3) + 2 cyc

]

+
1

3

∫
d3q1

(2π)3
[T (q1,k1 − q1,k2,k3) + 2 cyc] . (B5)

The function P(0) denotes the smoothed linear matter power spectrum and P(1ℓ) denotes the ‘1-loop’ correction. The
1-Loop term may be written as the

P1ℓ(k) = P22(k) + P13(k) (B6)

where the loop integrals are . . .

P13(k) =
P11(k)k

3

252(2π)2

∫
∞

0

dx x2P11(xk)

{
−42x2 + 100−

158

x2
+

12

x4
+

3

x
(1− x2)3(7x2 + 2) log

[
x+ 1

|x− 1|

]}
; (B7)

P22(k) = 2

∫
∞

0

dq

(2π)2
q2P11(q)

∫ 1

−1

dµP11(kψ(x, µ))

{
5

7
+

1

2

µ− x

ψ(x,µ)

[
x

ψ(x, µ)
+
ψ(x,µ)

x

]
+

2

7

[
µ− x

ψ(x,µ)

]2
}2

, (B8)

where x = q/k and where ψ2(x,µ) = 1 + x2 − 2xµ.
The connected tree-level contribution to the trispectrum is given by:

T (q1,q2,q3,q4) = 4T2211(q1,q2,q3,q4) + 6T3111(q1,q2,q3,q4) (B9)

where the two types of term are:

T2211(q1,q2,q3,q4) = P1P2

[
P13F2(q1,−q13)F2(q2,q13) + P14F2(q1,−q14)F2(q2,q14)

]

+P1P3

[
P12F2(q1,−q12)F2(q3,q12) + P14F2(q1,−q14)F2(q3,q14)

]

+P1P4

[
P12F2(q1,−q12)F2(q4,q12) + P13F2(q1,−q13)F2(q4,q13)

]

+P2P3

[
P21F2(q2,−q21)F2(q3,q21) + P24F2(q2,−q24)F2(q3,q24)

]

+P2P4

[
P21F2(q2,−q21)F2(q4,q21) + P23F2(q2,−q23)F2(q4,q23)

]

+P3P4

[
P31F2(q3,−q31)F2(q4,q31) + P32F2(q3,−q32)F2(q4,q32)

]
, (B10)

and

T3111(q1,q2,q3,q4) = F3(q1,q2,q3)P1P2P3+F3(q2,q3,q4)P2P3P4+F3(q3,q4,q1)P3P4P1+F3(q4,q1,q2)P4P1P2 , (B11)

c© 0000 RAS, MNRAS 000, 000–000



A new method to measure galaxy bias 23

where Pi ≡ Plin(qi), Pij ≡ Plin(|qi + qj |) and qij ≡ qi + qj . The calculation of the second-order coupling functions is
straightforward. The result is

F
(s)
2 (q1,q2) =

5

14
[α(q1,q2) + α(q2,q1)] +

2

7
β(q1,q2) ; (B12)

G
(s)
2 (q1,q2) =

3

14
[α(q1,q2) + α(q2,q1)] +

4

7
β(q1,q2) ; (B13)

F
(s)
3 (q1,q2,q3) =

7

54

[
α(q1,q23)F

(s)
2 (q2,q3) + α(q2,q13)F

(s)
2 (q1,q3) + α(q3,q12)F

(s)
2 (q1,q2)

]

+
4

54

[
β(q1,q23)G

(s)
2 (q2,q3) + β(q2,q13)G

(s)
2 (q1,q3) + β(q3,q12)G

(s)
2 (q1,q2)

]

+
7

54

[
α(q12,q3)G

(s)
2 (q1,q2) + α(q13,q2)G

(s)
2 (q1,q3) + α(q23,q1)G

(s)
2 (q2,q3)

]
. (B14)

where we introduced the two fundamental mode coupling functions

α(q1,q2) =
(q1 + q2) · q1

q2
1

; β(q1,q2) =
|q1 + q2|

2(q1 · q2)

2q2
1q

2
2

. (B15)

We then proceeded with integrating as in equation (24) taking care to cut the integral off at scales that exceed twice the filter
radius.
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