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ABSTRACT

We present a unified framework to derive fundamental stpllaameters by combining all
available observational and theoretical information fostar. The algorithm relies on the
method of Bayesian inference, which for the first time disetttegrates the spectroscopic
analysis pipeline based on the global spectrum synthedislmows for comprehensive and
objective error calculations given the priors. Arbitramput datasets can be included into our
analysis and other stellar quantities, in addition to atedige, &ective temperature, surface
gravity, and metallicity, can be computed on demand. We laytloe mathematical frame-
work of the method and apply it to several observationalsid including high- and low-
resolution spectra (UVES, NARVAL, HARPS, SD&EGUE). We find that simpler approx-
imations for the spectroscopic PDF, which are inherent &t Bayesian approaches, lead
to deviations of several standard deviations and unreliablors on the same data. By its
flexibility and the simultaneous analysis of multiple indedent measurements for a star, it
will be ideal to analyse and cross-calibrate the large amgyaind forthcoming surveys, like
Gaia-ESO, SDSS, Gaia and LSST.

Key words: stars: fundamental parameters — stars: distances — temighotometric —
technigues: spectroscopic — methods: statistical — msthitzda analysis

), makes it necessary to develop fully automated method
for data analysis and determination of stellar parameStesidard
spectroscopic inversion methods are commonly assumeddo-be
curate, however, they usually involve subjective and fyarelpro-
ducible elements, like line fitting and normalisation, ocide®ns on
spectral diagnostic features. Manual analysis of staisniseld to
sample sizes of 1000 stars, unsuitable for large surveys. Existing
automated methods usuallyfger from weakly constrained system-
atics as well as idealised error estimates. So far, mosnptteto

1 INTRODUCTION

Observations are a central source of knowledge on almosgemny
tity in astrophysics. Over several centuries of intenseaesh, sev-
eral principal observational techniques have been degdldpat
are now routinely used to study stars and stellar population
the Milky Way and other galaxies. We have information from as
trometry, photometry, spectroscopy, but also interfettoynand as-
troseismology, that give complementary information on phgs-

ical parameters of stars (detailed chemical compositicavities,
temperatures, masses and ages) and their kinematicsl (reldie-
ities, distances, and orbital characteristics). Howeawerpntrast to
e.g. cosmology, where sophisticated Bayesian schemesedke w
established (e.g. Drell etlal. 2000; Kitaura & Enf3lin 2008gllar
parameter determinations are still widely based on beststit
mates and simple averages betwedfedent methods.

The advent of large stellar spectroscopic and photo-
metric surveys like SEGUBSDSS MI-Q) RAVE
(Steinmetz et all_2006), APOGEE_(Majewski et al. 2007), GCS

(Nordstrom et 8l 2004), and the Gaia-ESO surVey (Gilmogd e
M), as well as astroseismic surveys like Kepler (Chagtlal.
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overcome these problems have concentrated on simple dight
averaging between fierent methods (e.@a,b).

The large stellar surveys change stellar astronomy int@a pr
cision science, where we cannot limit ourselves to pointig
structures in diagrams, but where knowledge of the errdriblis
tions is key to make meaningful model comparisons, e.g. td&a
tic evolution and stellar structure. The approach we needtmu
be flexible, objective, applicable to very large datasets| pro-
vide an optimal combination of the féierent bodies of observa-
tional data. The only mathematical apparatus known to pgeami
systematic combination of ierent quantities are Bayesian frame-
works. The first steps in this direction were madMEye

(2004), | Jgrgensen & Lindegren (2005), _Shkedy et al._(2007),
Bailer-Jones| (2011), Burnett & Binrey (2010), Casagranddle



http://arxiv.org/abs/1311.5558v2

2 R. Schonricke M. Bergemann

(2011),[Liu et al. [(2012). Binney et'al. (2013), dnd Seremeiall

). The scope and applicability of these studies istéichi

they either addressed the problem of fitting a spectrum only
1_2007), partly focussed on the problem of find-

ing the maximum likelihood solution, or rely on simplifioatis

of the observational likelihoods (e.g. Burnett & Binhey £01

|Casagrande etlal. 2011). In part, this problem appearsdaotae

introduction of "observables”, likefiective temperature, (see e.g.
Fig. 4 in ), which have no well-defined place in
a Bayesian approach and which are in fact just parameters con
strained by another observation. In contrast, a Bayestanse can
only fulfil its claim of unbiased information, if a fair accotiof the
observations is given and the full dimensionality of thestoaints

in parameter space is preserved.

In the following we will present a new method for the de-
termination of stellar parameters that provides an opterploita-
tion of different observational information. The methdtkes a ho-
mogeneous full-scale quantitative recovery of the fullbadaility
distributions in parameter space, which are given by thdable
observations, i.e. photometry, astrometry, spectroscapy well-
established knowledge from stellar evolution theory anda@a
structure. The method is objective, computationaliyceent, can
be readily applied to data from all existing surveys and tsusb
to missing bits of data, e.g. damaged pixels in a spectrurover |
quality photometry. By embedding spectroscopic analysecty
in scheme, the Bayesian method allows for considerationllof a
pieces of relevant information at once, thus avoiding uassary
information loss.

In this first paper of the series, our main goal is to to deter-
mine dfective temperature, surface gravity, metallicity, magg a
and distances of individual stars. Thus, we limit the inpaitacto
spectroscopy, photometry, stellar evolution models andlfative
parallax measurements. However, the method can be reaxfigrg
alised to any number of parameters, such as kinematicsliar ste
tation, and include other input information, e.g. astezis®ology
and interferometric angular diameters. Furthermore, stiigight-
forward to analyse star formation history of a whole stefiap-
ulation, e.g. a young cluster or an old galaxy, using itsgrated
colours and spectra. Thus the Bayesian method has a verg broa
scope to applications both in the context of Galactic andaext
galactic research.

The paper is structured as follows. In Sections 2 and 3, we
present the details of the algorithm and its implementatilturs-
trated on two examples. In Section 4 we apply the method to a
sample of stars with very high-resolution observations fomda
sub-sample of calibration stars from the SPSISGUE catalogue.
Section 5 compares to the use of a simplified spectroscopie PD
Discussion of the algorithm and results and Conclusion$oaned
in the last two Sections.

2 METHOD OUTLINE
2.1 Bayesian scheme

So far, the majority of observational studies of stars, padtomet-
ric or spectroscopic, have focussed on providing best-iitnases
of stellar parameters. However, accurate comparisongtékical
models of e.g, galaxy evolution, require the full probaitiistri-
bution of the derived parameters given the available olbsiens.

This demands a Bayesian formalism. In this context we need
to express the probability of a set of parametérs= Xi,..., X,

given a set of observatior® = O,...,0Oy by the probability
that this observation could take place given the set of param
ters. By definition the conditional probabili§(X|O), thatX given

O, derives from the combined probabili§(X, O) as: P(X,0) =
P(X|O)P(0O). We can hence write down:

P(X)

P(X|0) = F(O)

P(OIX), 1)
where theposteriorprobability P(X|O) is the conditional probabil-

ity of the parameter set givenO. P(O|X), which we callobserved
likelihood is the probability of making the set of observatidds
given the set of parameteXsand P(X) is the prior probability we
ascribe to that set of parameteP$O) is the probability that the set

of observations was made, which we set t2004).
This simplifies our problem to

P(X|O) = P(X)P(Oq, ..., OnlX), 2)
where P(X|O) is the posterior probability distribution function
(PDF) on the chosen parameter space. In our work, obsemngatio
are conditionally independent given the parameters,fial pa-
rameters are perfectly known, the observations do not geoad-
ditional information about each other. Hence we can disejiéa
the observations by:

m

P/(X) = P(Os,....,OnlX) = | | POIX). €)

2.2 Parameter space

The parameter sef contains all parameters relevant to the prob-
lem under investigation and important to the descriptiom sfar.
This may include surface and interior structure parameesfsc-
tive temperature, surface gravity, mean density, etc) dlsaseny
other pieces of information like chemical composition, ,adis-
tance, position in the sky, etc. Since we are dealing witmglsi
object, all these parameters are related in some way. Hoyeee
can break their dependencies into main groups, using thehac
each type of observations constraints only a sub-set oé thasm-
eters, whereas it bears no information on others.

In this work, we define the 'core’ parameter spagge =
([Fe/H], Tes, log(g)) of metallicity (expressed by iron abundance),
effective temperature and surface gravity. The parametétsim-
pact all our observations and models.

Other parameters are constrained by only a subset of observa
tions: e.g. detailed abundances are of importance for sEecpic
observations, while stellar magnitudes ifffeiient colour band€
span the space of the photometric parameters. ZAgatial mass
Minit and present masil fall into the domain of stellar models.
Distances and parallaxp are determined either from direct astro-
metric observations or via the distance modulus when camgpar
stellar models with photometry.

Thus the full parameter space can be disentangled into indi-
vidual contributions:

R = R + Rsp+ Rpn + Rinod + Rothers 4

whereR; is the core parameter space the othgaR the parame-
ters of importance to dlierent types of observations or prior expec-
tations (see Sec. 3.2 t0 3.6).



2.3 Observations

In contrast to parameters, which span the n-dimensionalesph
the posterior probability distribution, the nature of alvsgions is
irrelevant. Observations can be anything, from the numbkeetec-
trons on a CCD to a needle on a scale. Each observation puts a co
straint on our parameter space, which is its correspondisgreed
likelihood P(O|X) as a function on parameter space.

Instead of just writing down an observational likelihoolde t
common approach in astronomy is to "simplify” this by therat
duction of "observables”. While this term is not well-defithan
a Bayesian context, "observables” commonly denote bestfit
ues for some parameters (likgs), which appear to be relatively
well-constrained by (single) observations. Some studiles,(e.g.
[Burnett & Binne}/ 2010), go even further to introduce the esian
those "observables” as further variables in their forrmalisrom an
aesthetic point of view, this results in a rather clumsy aowhyli-
cated bulk of variables to achieve a simple goal: descritliegeal
observed likelihood. It has two practical consequencest,Fob-
servables” lead to an oversimplification of the observatidieli-
hood, usually with the unjustified (and damaging, see SefEiap-
proximation as a product of separate Gaussians in each paam
termed "observable”. Second, their introduction artifigiantro-
duces a "better” class of parameters, raising the wrongesigm
that their values are fixed. This is not true. For any parantage
Bayesian formalism will in general give an estimaté&etient from
the best-fit value.

While selection functions are in most cases essential fer un
derstanding observations with theoretical models, thesdwt ap-
ply to the discussed Bayesian schemes. Yet, some studiediice
a selection function in their equations (see a longer dsonsin
Sec[9.1 of the Appendix). We refrain from using such a silact
function, because only selection criteria based on thenpeter
space would fiect the Bayesian scheme, while a survey selection
must be based on random choice or previous observations.

2.4 Summary of notation

To facilitate reading the equations we quickly summarizerttain
notations: We denote the set of observationdhythe set of pa-
rameters byX, the parameter space I®/and all probability dis-
tributions byP. To cope with the dferent sources of information,
we introduce indices: "ph” for photometry, "sp” for spectompy,
"astr” for astrometry (parallaxes), in addition we use "rhdadr
knowledge from stellar models and "pr” for priors. Hence tie
servational likelihood in full parameter space from spastopic
observations readd(OsX). To facilitate the reading we contract
the notation for the conditional probabilities by decargtP with

a prime: e.gPg, = Pg(X) = P(OgplX).

Commonly used variables are aggestellar massM, solar
mass M, initial massM,;, logarithmic iron abundance [A],
general metallicity [MgH], parallax p, distances, and distance
modulusgu.

3 DETAILED ALGORITHM

In this pilot study, we restrict ourselves to the most imaottba-
sic case: the calculation of stellar parameters, when we bp&c-
troscopic, anr photometric observations. We will show how to
expand this to include parallax measurements. After valida
the method on the high-resolution spectroscopic data ofbgea
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stars, we apply it to a sample of low-resolution spectra from

SEGUESDSS|(Yanny et al. 2009; Allende Prieto et al. 2008) cali-

bration sample.

3.1 Contributorstotheposterior PDF

With the conditional independence (equatidn 3) we simptifg
calculation of our posterior:

P(X|Osp, Oph) ~ P(Osp|x) . P(Oph|X)P(OastAX) . Pmod(x) . Ppr(x)
~ P;p' P;)h : P,astr' Pmod - pr’ (5)

whereOgp, Oph, Oasr denote the photometric and spectroscopic and
astrometric observation®mq the probability derived from stellar
models andPy, the prior probability distribution function. In the
second line we abbreviate our observational likelihooelgrasent-
ing their conditional nature based on the observationsantdly a
prime. Note that any combination of observational constsatan
be dropped from these equations, as well as new observd&ans
interferometry) can be added by multiplication.

The PDFs from EqULI5 have two interesting qualities:

e some PDFs describe sharp structures in the n-dimensional pa
rameter space, thus lowering the dimensionality of the giodiby
distribution and reducing computational costs (by the iplida-
tion, the combined PDF cannot have higher dimensionaliy its
components). In other words, the space volume where theii®D
non-negligible has a lower dimensionality than the ovespHce.
For example, stellar models together with model atmossheiag
directly from the fundamental stellar paramete., 7, [Me/H])
to their observed spac&4;, log(g), C).

e some PDFs constrain only a subset jof< n parameters,
i.e. they are flat the other dimensions. Though they can be gen
eralised to the n-dimensional space of the aggregate PDdt, afho
these dimensions will be redundant, i.e. we hBg¥,, . .., X,|O) ~
P(Xy,...X;|0). It can be @icient to merge them in an early step
with another PDF that carries more dimensions. An espgaiall-
able case are parameters that are nearly conditionallypémttent
from the other parameters. E.g. the detailed abundancéssona-
jority of chemical elements hardlyffect temperature and gravity
estimates.

The meaning and structure of the single contributors to the
posteriorP will be examined below.

3.2 PriorsPy

The priors encode our previous knowledge on the distribudfdhe
examined stellar population in parameter space. The maubevlk
edgePnogWill be treated here as a separate prior, though it could be
in fact understood as an observation. Appropriate priceseasen-
tial to avoid biases in weakly constrained data (see[Eijot A
example). Further, to have set "no prior” means to have atbat
flat prior, which is not fixed under parameter transformagidtow-
ever, priors must be handled with great caution to obey Crelfisv
rule (avoid excluding any outcomes a pri|_e;_L1|982¢lm
avoid overconfidence biases and reproducibility problems.

How can one cope with uncertainties in a priori parameter
distributions? Making a prior just "shallower” or adoptiagcom-
pletely flat prior is not useful, since it actually adopts aseprob-
ability distribution claiming the same certainty on thisarmation
as the original prior. However, one typically has estimateshiow
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uncertain the distribution in a set of parameters is. Ifhimithose
uncertainties, the precise shape of a prior has importguadts on
results, there are two strategies: The uncertainty of a paa be
constrained by demanding consistency with calibratioa ddata

of higher quality, where the prior has less impact) and byasipg
internal consistency betweenfldgirent subsamples (e.g. red versus
blue stars). The remaining uncertainty in a prior can be /by
hyper-parameters: The shape of the prior can be parantetist

a probability distribution function estimated on thesegpaeters.

sented in the core parameter sp&ke= (Ter, l0g(g), [FE/H]). In
this work, we neglect other dimensions, adopting a simpétion-
ship for alpha enhancement and neglecting irjii@sent stellar ro-
tation.
The calculation of the PDF is performed by summing the

weights of available stellar model points falling into thells

of a dense grid in the target spa&. Throughout this work
we fold the models with a Gaussian kernel with widiths =
(30K, 0.04 dex0.02dex) in Tes, log(g), [Fe/H]). This error repre-

There are strong dependencies between most parameters. Asents the internal uncertainty of the stellar models in patar

the posterior PDF has loweffective dimensionality than the pa-
rameter spack, we can not set constraints on every single dimen-
sion inR without risk of over-constraining the priors. We circum-
vent this problem by limiting our féective priors to age, initial
massMnit, metallicity [Me/H], and distances; all other dimensions
are indirectly constrained by these priors and we adopt - ad
tional constraints on them.

Throughout this work we will use the following priors:

Ppr(X) := p(, M, [Fe/H], ) ~
~ P(r|[Fe/H]) - P(Miny) - P(s,1,b) - P((Me/H], [Fe/H]).

P([Me/H], [Fe/H]) is a fixed relation between metallicity (re-
quired for the isochrones) and the iron abundance, whichave h
to introduce, since we do not measure detailed abundandbisin
paper. The adopted relation is given in 9.2 of the Append
For P(M;) we employ a Salpeter IM55), with expo-
nent-2.35 and independent from metallicity and age. We account
for the metallicity-dependent age distribution by adog@rshorter
timescale in the star formation history of metal-poor stBwetails
are given in the Appendix.

Due to its importance we need to discuss the spatial prior
P(s I, b)E| In general, every sample will cover some fixed angle on
the sky (be it so-called pencil beams like in SEGUE or a coteple

(6)

sky coverage), so the actual volume is a cone that covers-an ef

fective areal(s) = k - s?, wheres s the distance. The constat
given by the sky coverage and selection probabilities redavant
in our context. However, the likelihood to end up in the saaripl
also proportional to the density of the population in theestsd
region, so that we obtain:

P9 =k [ [pso)fo @

where we integrate over the sky positian andp is the spatial
density of stars at positiow and distances. In our formulation,
this must be multiplied by another factor of distangesince a
fixed magnitude range samples a spatial depth proportianal t
(formally this derives from a parameter transformationhef prob-
ability density from magnitudes to distance). Neglect a$ tbrior

is not equivalent to a flat distance prior, but one that drapsm@y
with the third power of the distance, and hence in the absehce
parallax measurements would give a strong (and uncertaiety
pendent) bias towards lower surface gravities.

3.3 Stellar models Ppoqg

Stellar models describe affectively three-dimensional constraint
in the full parameter space. The corresponding PDF can bie-rep

1 For simplicity, and to avoid recovering the spatial depemwites our prior
invokes, we neglect metallicity dependent structure apdrsee the spatial
prior from the age-metallicity terms.

space and fills gaps caused by the discrete data represantati
addition, the &ective width is augmented by the grid spacing on
which the PDF is calculated.

We use a dense grid of stellar isochrones from the BASTI
databasel (Pietrinferni etldl. 2004, 2006, 2009), kindlyvioted
to us by S. Cassisi for the stellar parameter determinations
[Casagrande et /al. (2011). We interpolate the models in itialin
massM,; to ensure a narrow mass spacing, but do not attempt an
interpolation in ager or metallicity [Meg/H]. When summing over
the isochrones, we assign to each poiatweightW, proportional
to the parameter space volume it represents:

W = NwA[Me/H] - At - AMiqit,

®)

whereNy is the normalisationAMinit = 0.5(Miniti+1 — Miniti-1) IS
the average distance to its neighbours in initial mase/H] is

the average distance in metallicity between the isochromkits
nearest neighbours, ankr is the average distance in ageOn
the boundary of the grid we take the distance to the neiglihgur
point. Note that the approach is identical for stellar tsaicistead of
isochrones. The model probability at each pirih our parameter
space can then be represented as a weighted sum over adintelev
models points:

PmodX) = > Wig((X - Xi), ), ©)

I
where X; is the vector in parameter space given by the model
grid. Here we represent the uncertainty of the models by an n-
dimensional Gaussiag with a dispersion vectos. Specifically,
we assumer; On our core parameter space as above, and no addi-
tional uncertainties in the other dimensions.

34 Photometric data Py,

Stellar models couple photometric colours with other pai@ns
(se6, for details on the colour caliloratiin
SDSS filters of BASTI models). Thus we best calculate theghot
metric PDF simultaneously with the stellar models. Dergtime
stellar model magnitudes at model pai@ind colour band by C; x
and the photometric observation in baadith Oy, we have:

Pi(OpnlC, s, 1) = 1—[ P(OCik, s, 1),
k

with distances and reddening. Lacking suficient data on the

true PDFs, we represent the observational likelihoods ofqrhet-

ric colours, the reddening values and the model uncerésifty a

Gaussiarg(x — u, o) = exg—(x — u)?/(20?)), which enables us to

combine them into:

P(OCix, u(8),1) = 9(Cik + u(S) + r - & — Cy, 0%,

with the distance modulug(s) = 5log(s/10pc), the reddening
strengthr multiplied with the reddening vector (for SDSS colours,

se€ Girardi et al. 2004; An etlal. 2008) in each coleyrahd with

(10)

(11)
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Figure 1. A priori densities from stellar model®f,0q4e) at metallicities [FEH] =
metallicity-dependent age prior.
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Figure 2. Prior probability densities from stellar models at any rtietty

in the (T, log(g))-plane (upper panel). We use the Salpeter IMF pria a
the metallicity-dependent age prior. The lower panel shivwametallicity
expectation value [Fe/H] > (Tgt, log(g)) at each point in thel¢g, log(g))-
plane. The structures are dominated by the metallicityeddpntTgg-shift

and evolutionary dferences on the giant branch, e.g. the absence of a hori- [g
zontal branch for metal-rich stars in exchange for the ecdduned clump.

-3
<[Fe/H]>

Of = 0204+ Tops+ 0F s the combined varianemcertainty of
models, observations and reddening. We assume a magnitdde u
certainty on stellar modelsmoq = 0.01 mag for the high-res sam-
ple, neglecting this term for the low-resolution sampletlpaomoq4
covers the same uncertainties as our error tegnon stellar pa-
rameters (see Sectifn B.3). We stress that this uncertedmiyot

7000 6500 6000 5500 5000 4500

7000 6500 6000 5500 5000 4500
TerlK

—-2,-1,0 from left to right and accounting for a Salpeter IMF priandathe

and should not comprise systematic deviations in stelladetso
as those uncertainties should be explored on a larger saugitg
hyper-parameters as discussed in Sefioh 3.2.

The other assumption is the universal reddening vectos Thi
may have to be relaxed when dealing with verffetient ISM envi-
ronments. The dust peak and the slope of the reddening spectr
can be shifted, or stars may be individually reddened, g.g. &ir-
cumstellar envelope.

We note that this method can be used to create reddening
maps. Since that is beyond the scope of this work, we resirict
sample to stars with relatively low reddening, use reddgualues
from other sources assuming a fractional reddening errt©6.

3.5 Spectroscopic data Pg,

The observational likelihoo®, in Eq. [B) incorporates all avail-
able spectral information. This comprises spectral typement
abundances, rotation, stellar activity (chromospheriéssion in
cores of strong lines, magnetidfects), inter- and circum-stellar
reddening, convection characteristics, etc. A spectrfiBr®by far
the largest information content we can obtain on a star. Mewe
this information is limited by incomplete physical knowtggdand
approximations in modelling the theoretical spectra. Adsent,
calculations of large spectral grids are only possible @idthydro-
static codes assuming local thermodynamical equilibrillfirE,
while full hydrodynamic 3D non-LTE calculations are slowdg-
coming feasiblel (Bergemann ef al. 2012; Magic ét al. 2018)- F
ther, the high dimensionality of the problem forbids conpgisep-
arate grids for all possible chemical compositions.

Here we use the MAFAGS-ODF _(Grupp 2004a,b) grid of
model atmospheres designed for late-type (spectral typge€MhG
stars, with 4400< T < 6800 K, 14 < log(g) < 4.6, -39 <
[Fe/H] < 0.9. The synthetic spectra are computed with the re-
vised version of the SIU code (Reetz mannlet 2)20
which has been extensively used during the past two decades
for hlgh precision stellar spectroscopy (see

mann hren 2008nehag et AlJllLﬁ_ellLDM)

In comparison to the other three available spectrum arsatyzies,
MOOG (Snedéh 1973), SYNTHE (Kurtitz 2005), and Turbospec-
trum 2), SIU already has an implementation of NLTE |
formation for any element with pre-computed NLTE level plapu
tions. We can thus more easily update it with more realistiscs.

For our grid of theoretical spectra, we use a spacing
(200K, 0.4dex 0.3dex) in (T, l0g(g), [Fe/H]) to make linear in-
terpolation between the points reasonable. While the grictis
4 values of micro-turbulence from 1 ta5kms?, for this pi-

of
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Figure 3. Top six graphs: A low-resolution spectrum from the
SDS3SEGUE survey (black, plate no. 2038, fiber 564) compared ¢o th
best-fitting theoretical model (red). Bottom three graygtane for a high-
resolution spectrum from UVES @fHyi.

lot study we adopt a fixed micro-turbulence of 2 krh $or gi-
ants and 1 km$ for dwarfs (log(g) > 3.5) (Bergemann et al. in
prep), and arv-enhancement of.@ dex for [FéH] < —0.6 (e.qg.

I4). Such hard cuts and changes in assumed pa-

rameters will introduce anomalies in the derived PDF, asrexe
plified by the micro-turbulence cut at log(g) 3.5 in Fig.[8. In
total, the three-dimensional ([Md], Te, log(g)) grid contains

6912 theoretical spectra and covers the full HRD, as shown in

Fig.[3. Any other model grid can be easily implemented, with

| triplet lines, and the Fe | and Fe Il lines. Precisely, theghie
of all other spectral features, is set to zero. The flat regiare
used for the iterative continuum normalization and are nasked
out. To avoid over-confident estimates, we demand thatrefitiee
temperature uncertaintyr,, > 80 K or the metallicity uncertainty
T[FgH] > 0.08 dex, and otherwise flatten the PDF by multiply-
ing the y? distribution with a fixed factor until the condition is
met. Before evaluating the test statistics, the spectrearénuum-
normalised and radial-velocity corrected by cross-catied) with
the template theoretical spectrum for each input comhinadif
stellar parameters.

To obtain the spectroscopic observational likelih&§@sp/X;)
at each point in parameter space, we resample the syntipetie s
trum to the wavelength scale and resolution of the obsemstind
evaluate the goodness-of-fit-statisticsat each pixel of the ob-
served spectrum:

n

X = Z (O - Si)? /o2,

i=1

(12)

whereS the template comparison spectru@the observed spec-
trum, o~ the weighted observational uncertainty. Noisy and un-
informative regions are given less weight using speciaksabhe
final PDF is gained by summing over all pixels within a giveg-se
ment, and over all segments.

The original resolution of the synthetic grid is 500 000. $hu
the method can be potentially applied to any observed datage
low-resolution and high-resolution spectra. For the asialgf the
SEGUE spectra, we post-convolved the spectral grids witrin
mental resolutionR = 2000. A typical fit to a SEGUE spectrum is
shown in Fig[B. In the high-resolution mode, we use the i
of the UVES-instrumentR = 50 000).

3.6 Parallaxes and other additional data

The Gaia mission will derive parallax measurements for Igear
all stars with spectroscopic information. Parallax measwnts
only affect the distances (and distance modulug), so that it is
straightforward to combine the observational likelihooohfi par-
allax measurement®,,, with the photometric and model informa-
tion.

In the following, we assume a Gaussian parallax error.
Cromwell’s rule does not apply to mathematical truths, sgane
tive parallaxes are excluded by setting the prior to 0. Tiheddg:

Pist = P(Oasilp) = NO(p)g(p — Po, o), (13)

no requirement on symmetry or shape, since our code includeswhere N is a normalisatio®) is the Heaviside-function (1 fgs > 0

a robust interpolation scheme. Alternatively, one couldfqren
calculations of line formation on the fly using a grid of model
atmospheres. This latter approach is cleaner, howeves, still
computationally too costly. We sample the wavelength wivglo
around the spectral features important for diagnostic oKMG
stars: 3850-4050 A (Ca | lines), 4350 4450A (G-band, CN sensi-
tive), 4600- 4900A (Hz), 5100~ 5300A (Mg | triplet, main gravity
diagnostics), 6400 6640A H,), 8400- 8800A (Ca Il triplet, also
used in Gaia and in RAVE stellar survey). However, not all pix
els in these intervals are used in the analysis. The highltrien
observed spectra (see Sec. 4.3.1) do not cover the regitms be
4800 and above 6800 A. We exclude from our statistics all re-
gions which contain spectral lines of chemical elementsratihan
the temperature- and pressure-sensitive wings of Balmeivg

and 0 forp < 0), g(p — po.op) is again a Gaussian distribution
around the measured parallpx(which can be negative) with stan-
dard deviationr.

It is important not to clip negative values pf: a small neg-
ative value ofpy has still a diferent information content than a
large negative value. In the case of a Gaussian error difif
the probability ratio between a smaller parallax and a lapge-
allax rises, the further the measurement is away from zeraoO
use an example: the likelihood ratio between having failg®d
and by 4r is larger than the likelihood ratio between having failed
by 30~ and by 2B Fig.[4 demonstrates how the parallax distri-

2 This would only not be true if the error distribution givesnstant like-



Figure 4. Conditional likelihood of the observation @ = 0, —cp, ... un-
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aph = (Mi,7,C,r,s,...). Similarly, we separate the spectroscopic
information:

Pép = P,SP(X C) P,Sp(asplxc)y (16)

whereas, denotes all other parameters constrained by spectroscopic
observations, like detailed abundances, or stellar mtain this
work we do not use this supplementary information, so thatave
drop the ternPg,(asplXc). Most of the parameters aa,, will not co-
incide with the parameters &y, but if they correspond, they must
be written into the core parameter space. For examplejontand
stellar activity available from high-quality spectra ctvaf stellar
ages. We will discuss this in a future work.

We can now calculate the final probability distribution func
tion:

P(X|O) = P;sn;modph,pr,sp(XC)P’sp(asp|xc) P/ast[modphpr(aph|xc)1 (17)

where

der the real parallap, assuming a Gaussian error distribution with standard  p «modoh (Xe) = P’Sp(xC)P, modoh (Xo) (18)
sttmodph,pr,sp sttmodph,pr .

deviationop. The distributions become significantly narrower arouredGh
for more negative parallax values, reducing the parallgpeetation value

and raising the expected distance.

butions get more concentrated towards zero, the more negag
measured value is.
To combineP;,
pointi:
i/.asttph = fPi(Opth,,Ll(S), r)P’astr(ﬂ)‘]u/pdﬂv (14)

with the Jacobiard,;, = 20In(10)10°2.

In this work, Rg is considered for the stars with high-

resolution spectra only (see SEc]4.4).

3.7 Combiningthe PDFs

"< it With the photometric and model PDF, we
integrate over the possible distance mogulat each stellar model

3.8 Calculating projections, central values, and uncertainties

We can gain the conditional probability distribution in akr num-
ber of parameters by marginalising, i.e. by integratingtbatother
dimensions in the joint conditional probability distribert func-
tion. E.g., to exclude the parametgrx we write:

P(xl,...,xj,xj+2,...,xn|0)=fp(xl,...,xnp)olxj+l (19)

P(leo) = ffP(Xl, e Xn|O)dx1 . de—lde+l . d)Qq (20)

From this we can obtain the moments of the probability distion
in each variable or group of variables:

(x;)= [ xPexionx 21)
(x2) = f X2P(X;|0)dx (22)
(23)

Equipped with these results, we can now assemble the com-
bined PDF in equatiof]5. In simple words, the strategy is sep- where(Xj> denotes the expectation value of the param¥feand
arate all PDFs into PDFs on the core parameter sgdce= 5 2

(Tes» log(g), [Me/H]) and the conditional PDFs on the remaining <Xi>_ <XJ> :
parameter space given that poinBn Depending on our needs we

the standard deviatiany, =

can then represent those remaining parameter estimabes ag
simple moments (expectation value, variance, etc.) at paictt in
R, or as full distributions.

Formalising this is a bit tedious, since it involves a coiodil
probability derived from a conditional probability. To gitify the
notation, we use the previous abbreviation of observatidepen-
dence with a prime. The combined calculation of photometnid
model part yields:

P;st:mod,ph,pr = P;suph' Pmod * Por (15)
= P;sl[mod,ph,pr(xc)P/astgmodph,pr(apmxc),

3.9 Short recipeof thealgorithm
In short the steps are as follows:

e 1) Combine photometric and astrometric information togeth
with the priors and sum over all stellar model points to abitai
preliminary PDFP, in core parameter space, calculate moments
or full PDFs for the remaining dimensions.

e 2) In regions of parameter space, where the probability is
larger than a threshold vafliecalculate a coarse grid of spectro-
scopic probabilities and approximate the PR by interpolation.

e 3) Multiply Py with Pg, to obtain an approximate posterior

whereX_ is the vector of parameters in our core parameter space PDFP. Determine a refined grid in parameter space to better sam-
R. anday is the vector of remaining parameters constrained by the ple the spectroscopic PDF and iterate steps 2) (Fig.[G).

photometric and astrometric observations, models anasprie.

lihood ratios for identical distances from the measuremehte, i.e. for a
declining single exponential.

3 The threshold should be iciently small to ensure coverage of the final
PDF. Here we use a generous i®per bin. Compared to a number of
~ 2-10°° bins we hence neglect a negligible fraction of the probigbili
mass.
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Figure 5. The grid of synthetic spectra.
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Figure6. The process of iterative grid refinement in our pipeline for ex-
ample SEGUE star (plate 2038, fiber 564). Most points in Thg,(og(g))-
plane have several metallicity values.

The threshold value on a binned PDF was chosen<ad/(N-
M) whereN is the number of stars ari is the dfective number
of bins, because in a large sample we have to expect the peesen
of rare objects, which will have low preliminary probab#s. As a
different condition one can formulate that the integral of thé&PD
over parameter space must be

N- f P(X)dX < 1. (24)
P(X)<t

3.10 Selected examples

To illustrate the algorithm, we describe here the resultstim
stars. One ig Hyi from our high resolution data sample, for which
we have basic Johnson photometry, high resolution specipys
and a Hipparcos parallax. The other star, randomly seldobeal

0.25 T T
ctroscopy ——
hgtometry -----

0.2} cgmbined ----- 1

0.15 + E

o)
o
o
0.1+ E
0.05 ]
5600 5800 6000 6200 6400
T

eff

Figure 9. Projected 1DT ¢ distributions for the discussed SEGUE star ver-
sus the #r intervals from Allende Prieto et al.(2008, light blue) amdrh
SEGUE DR9 (orange). Note how the combined estimafierdi from a
naive expectation when looking at photometric and speotyzis informa-
tion separately.

lar evolution; the top right panel shows the spectroscoé&
photometrically allowed space. These two estimates coenton
the final posterior PDF in the bottom left panel. The corresipo
ing metallicities are shown by colour coding in the bottoighti
panel. The individual probability densities from photorgettellar
evolution and spectroscopy are clearlyfeiient in shape and in lo-
cation.

The Hipparcos parallax combined with photometry and stel-
lar models puts tight constraints on the surface gravity éfyi
in Fig.[d. This leads also to a tight correlation between Hieits
and gravity as evident from the coloured dots in the bottaghtri
panel. A moderate step in the spectroscopic PDF at log(§)5
is produced by a step in micro-turbulence in our current gfid
theoretical spectra, which will disappear with the impbggids
in preparation. The calculation does not cover the fullvedid re-
gion of the spectroscopic PDF (see the coarse behaviouradesm
gravities in the top right panel), saving computation tiraece
the joint PDF (lower left panel) is fully represented. Theafin
expectation values and uncertainties dgg = (5837« 72)K,
log(g) = (3.981+ 0.068) dex, and [F#l] = (-0.196 + 0.074) dex
versusTer = (5873« 38)K, log(g) = (3.98 + 0.02) dex, and
[Fe/H] = (-0.08 + 0.02) dex in the reference sample (described
in the next Section).

While neither the photometric part nor the spectroscopie co
straints are very tight for the SEGUE star in Fig. 8, the com-
bined PDF is very well defined. This shows the benefits of solv-
ing the problem in the full parameter spa&e While points in the
log(g) — Ter plane may be allowed by both derivations, the corre-
sponding limits on the third dimension [ are in disagreement,
ruling them out. These are the regions in the bottom rightepan
of Fig.[8, where the colours are mismatched. To stress thig po
we show the one-dimensional probability distributionsTig in
Fig.[d. While our parameters are nicely between the valugheof

the SEGUE data sample (plate number 2038 and fiber number 564) SEGUE follow-up study_Allende Prieto etlal. (2008) and SEGUE
is a turn-df subgiant. In this case we have SDSS photometry and a DR9 (see Se¢._4l.1), the behaviour of our PDF is more inteigsti

low-resolution spectrum from SEGUE.

The resulting probability distribution functions in the
(Tewr, log g)-plane are shown in Fidl] 7 and in FI[d. 8. The top left
panel shows the combined PDF from photometry, prior and stel

The combined PDF is not even remotely a simple combination of
its two contributors. Most interestingly, the expectatafue of the
combined estimate is not situated between the estimatesdach
spectroscopy (6027 K) and photometry (6021 K), but signifiiga
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top right: the spectroscopic PDF in photometrically allovepace. These two estimates combine to the overall PDF ioatitem left panel. The bottom right:
metallicity expectation values from spectroscopy (caolarea) and the photometric-model part (coloured dots).

higher (6066 K). This complex behaviour can only be accalinte 4 APPLICATION TO OBSERVATIONS

for within a full Bayesian approach.

Our final expectation values and uncertainties for this SEGU

test star ard o = 6066 K+ 44K, log(g) = 3.83+ 0.15,[Fe/H] =
—0.47+0.07, for comparison SEGUE DR9 providég: = 6181 K+
19K, log(g) = 3.90+ 0.03 [Fe/H] = —0.459+ 0.006. Note that we
add the reported uncertainties from the SEGUE pipeline fust
the sake of completeness. Their formally reported erransatbe
considered realistic. They are severely under-estimdigalpout

.[(20088,b) as well the discussion later in this wBte
spectral fits in our six standard bands for the best spedpisc

solution are shown in Figl 3.

This discussion also shows that even a relatively unceirain
formation can give an improvement to more precise valuesisha
beyond a simple one-dimensional combination. More immadista

mismatches betweenftirent sources of information help to flag

pathologies in a sample by unexpectedly small overlap ottme

tributing PDFs.

Our approach is most needed and also most powerful, when dif-
ferent observations are available for a star and the infboma
content is complementary but limited. With this in mind awd t
test the stability of our method, we choose both a sampleifeat
ing high-resolution spectraR(> 40000), from observations with
VLT, as well as one with low-resolution spectfa ¢ 2000) from
SDS3SEGUE. We start this Section with a description of the
datasets in use. Then, we first show the performance of the ap-
proach when limiting ourselves to photometric data with asitti-

out astrometry, followed by the full approach on low- andhaig

an order of magnitude or more) as shown by the comparisons in resolution spectra. In the last subsection we compareeteguan-
tities, like distances and ages, and assess the resulstrghdtion

of stars in the temperature-gravity plane.

4.1 Datasets

For the high-resolution sample we obtained a comparisomfset
stellar parameters frol Jofre et al. (2013). Thélieetive temper-
atures were derived from the interferometric angular dienseor
calibration relations. The gravities stem from astroseisgy or
Hipparcos parallaxes, and their metallicities are basethemnal-
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evolution projected ontoTgg, logg)-space; top right: the spectroscopic PDF in photometyicalowed space. These two estimates combine to the overall
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dots).

ysis of Fe Il lines, which are not significantlyfacted by non-LTE
effects (Bergemann etlal. 2012).

The high-resolution sample comprises 87 high-resolution
spectra of 40 nearby stars including the Sun, taken with thePS
and UVES instruments at VLT, and with NARVAL at the Pic du
Midi observatory. This dataset was kindly provided by Pr&olin
addition, there are Hipparcos paraII)ZGGHk-
ing the sample closely resemble future data from Gaia astirgm
combined with Gaia-ESO spectroscopy. The sample is péatlgu
valuable because the spectra were taken fiieréint instruments
and there are independent parameter determinationsdinglin-
terferometric angular diameters and astroseismic sugeméties
3). The stars cover a very wide range in hietal
ities, gravities and temperatures in parameter space (s®ena
plete description in_Blanco-Cuaresma et al. 2014). Photignie
theU,B,V, 1, J H, K bands, was compiled from the Hipparcos cata-
logue [Perryman et Al. 1997), from 2MASS (Skrutskie ét D)0
and from Johnson et al, (196@)~band photometry for HD22879
stems from_Koen et 2l -10) improveHK-photometry for
& Hya from|Laney, Joner & Pietrzynski (2012). Solar photayet

was adopted from Binney & Merrifield (1998), updated with the
values of Ramirez et al. (2012). We increased the erroigli bf
the general uncertainty of the Sun’s photometry.@80nag.

Our low-resolution sample was selected from SEGUE by
Allende Prieto et &l.| (2008), who did an intermediate-resoh
follow-up analysisE It consists of 78 stars within the parame-
ter range-25 < [FeH] < 0.3, 4000 < T < 7000 K, and
15 < log(g) < 4.5. For these stars, we have low-resolution
SEGUE spectraR 2000), photometry in the SDS#yriz bands,

i$ (1998) reddening estimates @o
sitional data from SDSS DRm-lZ). One star was re-
moved from the sample, as it was flagged for strongly disagree
ing observational information (very low quality measuge <
-20, cf. equatiol 25, resulting partly from a strong cosmithie
spectrum). Throughout the text we refer to the parameters fr
|Allende Prieto et a1 (2008) as "AP08” and from SEGUE DR9 as
"DR9".

Two important remarks should be made about these compari-

4 We hence have sets of comparison values, with a mild preferfar the
SEGUE DRY9, since it is very ficult to assess the accuracy and homo-
geneity of APO8: dierent parts of the sample were analysed witfedent
methods (equivalent width method for the higher-resotusitars vs spec-
trum synthesis for the lower-resolution stars). For moghete stars, the
spectra were degraded to~R7000 from the original R- 15000 with un-
clear consequences.



son sets: While they are great tools for comparisons, theato-
ject to uncertainties and systematics that can exceed titedjer-
rors. Second, the quoted errors are fundamentatferdint from
ours. They just report internal errors from pipelines orcépe
scopic fitting routines, which are typically far smallerthaalistic

error estimates. The most extreme case is the SEGUE paramete

pipeline. This is fundamentally fierent from our error calcula-
tions, which attempt to calculate all uncertainties.

4.2 Photometry with and without Astrometry

Before we explore the performance of the full algorithm agsi
our reference samples, we test it for the simpler case, wdpre-
troscopic information is not available. For the vast mayjooi stars
in the Galaxy, we will have no or very limited spectral infation
(e.g. 4AMOST will cover only of order 2% of the stars in the Gaia
catalogues). However, we find that the Bayesian method edap
of deriving stellar parameters also when restricted to @hetric
and astrometric information.

In Fig.[10, we compare temperatures, gravities and metallic
ties derived from Johnson photometry and parallaxes ortly euir
high resolution reference sample (top row), and from SDS& ph
tometry alone with values from SEGUE DR9 (bottom row).

For the high-resolution reference sample (top row) theiagpl
photometry is not competitive with what can be expected from
modern photometric surveys: For most stars we are restricte
JohnsonB, V, | colours at~ 0.03 mag precision, and, due to their
brightness, very uncertailMPAS Sphotometry. Nevertheless, the
photometry gives a good handle offeetive temperatures: while
our temperatures are mildly higher than the reference,ahdam
scatter is as low as 110 K. The excellent agreement for log(g) is a
consequence of using Hipparcos parallaxes. We note thatdst
stars even uncertain parallaxedime to fix log(g), as they con-
strain the stellar branch, i.e. whether a star is on the re@guence
or e.g. on the red giant branch. Metallicities are per se wagkly
determined with Johnson broad band filters, and partigulaith-
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Figure 11. Photometric metallicities (expectation values of the st
distributions) in the SEGUISDSS sample versus the determinations from
Allende Prieto et al. (2008). Top panel includes the ager gram ed.30,
while the bottom panel does not, resulting in a bias towamismyger ages.

out decentJ-band measurements. The large uncertainties concen- Colours code the standard deviation of the posterior Histions, capped

trate the values towards the centre of our grid. This undeslthe
need for intermediate or narrow band photometric surveyoin
strain stellar parameters.

The precise SDSS photometry and the location of SDSS

colour bands allow for a better handle on metallicities, ab as for
good temperatures. In absence of parallax measurementenpér

try alone dfers a rough classification of stars, as seen in the bottom
row of Fig.[Z0 with a rms scatter against the SEGUE parameter

pipeline of around & dex. While there is significant photometric
information, it is not strong enough to be insensitive to phiers.
This motivates a closer look at the importance of our assiomgt

In Fig.[I1 we compare our photometric metallicities (y-xis

to the metallicities from Allende Prieto etlal. (2008) (xisaor the

at 08 dex. Stars with clean photometry according to the SDS$dataare
depicted with discs, while stars with problematic photayetre shown as
smaller triangles.

far larger uncertainty in the gravity of a star, which selyeedfects
objects that cannot be clearly identified as subgiants, on &

standard SEGUE DR9 comparison, see Eig. 10) for the SEGUE quence stars. Via the degeneracyueband information, their po-

sample, plotting stars with clean photometry with largescdiand
stars with bad photometry with smaller triangles. Coloursagle
the error estimates from the Bayesian method. Evidentéretiis
enough information to constrain metallicities at leasthia higher
metallicity range to an accuracy of abou® @ex. Contrary to com-
mon derivations like Ivezic et all (2008), which fail at rakiti-
ties> —0.5 (cf.|Arnadottir, Feltzing & Lundstrom 2010), our ap-
proach is valid throughout the entire metallicity range wdwer,

it is important to realize how important the age prior becsrire

tentially lower gravities allow for a wider range of (mosttywer)
metallicities, which lowers the expectation values andst®ohe
error estimates. Despite this problem, the situation ibédter than

in the traditional approach: the classical metallicityilmations like
livezic et al.|(2008) dr An et al. (2013) rely on stars fallimgt only

on a fixed age bin, but also onto a single evolutionary seaienc
This leads to a metallicity bias and overconfidence conogrtiie
uncertainties. In contrast, the full Bayesian approachesaipti-
mal use of all available colour information, accounts fésalrces

this case. In the lower panel we show the same data with a fully of uncertainty and allows to explore th&exts of prior assump-

flat age prior instead of using dg.130. This flat age prior iegph

tions.
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Figure 12. Bayesian expectation values for the SEGUE sub-sample aeahpathe results from the SEGUE parameter pipeline. Thauc@odes the quality
measureQ, as in Fig[IB.

4.3 SDSS/SEGUE: Photometry and low-resolution Spectra ~ 138K and~ 174K relative to SEGUE DR9, the full approach

. . . excels with 87 K.
Fig.[12 shows the comparison of our parameter expectatioesa

with the SEGUE DR9 data release. Colour codes the quality mea The Bayesian gravities are systematically higher for sttepe
main sequence stars (log(g)4 in both determinations), reflecting

sure
f P  PodX the systematic gravity underestimates of SEGUE DR9 in drige

Q = logy, phmodprastr * 'sp , (25) (also confirmed by SEGUE not matching expectations for thia ma
2f PrZJh,mod,pr,astrdX +f PZdX sequence). The purely spectroscopic gravities of our ndetite

which gives a simplified indication on how well the spectayic significantly lower than DR9 and AP08 by 0.45 dex in the inter-
PDF agrees with the remaining information. medlate a_nd Io_v\_/er gravity range (using Iogég)‘lf.(_) in AP08). This

Our temperatures are systematically colder than SEGUE DRg IS clearly identified as a bias, since the Bayesian approgports
by about 135 K. This is a consequence of our spectral and photo 00 YoUng ages, especially for several metal-poor stasugi the
metric Te; scales being 160K and respectively 80K colder, sug- Bayesian approach cannot completely eradicate a systebiasiin

gesting that SEGUE DR9 overestimates stellar temperatQnes one of i'.[s inputs, it strongly.r.educes this problem by systiically
spectroscopic temperature scale is nearly identical witit of increasing the surface gravities by an average2s fiex compared

dAIIende Prieto et al. 2008, hereafter APO08), which is onrage to the purely spectroscopic value.

~ 170K below SEGUE DR9 derivations. The strength of our full The Bayesian metallicity determinations for [A¢ between
approach becomes apparent in the residual scatter of thgetam -2 and~ -0.6dex are robust. However, metal-rich stars have a
ture values after correcting for the systematiset: while spectro- recognizable metallicity dierence between our photometric and

scopic and purely photometric temperatures give a resioslof our spectroscopic determinations, with the latter beingiespat-



Comparisons to reference sample

parameter Ap a Aptastros T astros
Ter/ K (65+19) 141 (69 13) 66
log(g)/dex  (0.024+0.017) Q13 (0031 + 0.009) Q046
[FeH]/dex  (0.099+0.026) Q19 (-0.049+0.014) Q07

Table 1. Differences in the mean expectation values of our sample minus
the reference sampleu and rms scatter af for the entire reference sam-
ple (left two columns) and the subsample with astroseismeierchinations.
While the astroseismic subset has competitive accuracypeeaision, the
remainder of the reference sample strongly scatters dgainsalues.

ically lower. For the open clustevi67 ([FeH] ~ 0.0 or ~ 0.05
IMagic et al.| 2010{ Grattbh _2000) our spectroscopy alonesgive
[Fe/H] - 0.17 versus a photometric estimate -of 0.05. As in
the case of the gravities, the Bayesian method partly niéggtnis
problem: photometric metallicities in this range push tbmbined
estimates towards higher values; however, due to the gitrim-
certainty of 02 dex, the corrections are minor. This also shows the
importance of fair error assessment: overconfident, i@ stoall,
error estimates from spectroscopy prevent a strongera@mneof
the value by the photometric information, which has infiing-
certainties of 0.25 dex in this range. Tests show stability of our re-
sults down to a signal to noise ratio-©f30 and checks on the con-
tinuum placement yielded no conclusive evidence. It is Vi&sly
that a finer resolution of the grid of synthetic spectra, Xtersion

to a larger wavelength cover&and allowing fora-enhancement
will solve the problem. This work is in progress and will bespr
sented in a future paper dealing specifically with the anglgé
SEGUE spectra.

The most important result is, that even with systematicdsias
present in the inputs, the Bayesian method itself remaibastp
i.e. other parameters are not strongffeated, and the solutions are
pushed towards a significantly less biased result.

4.4 Photometry, Parallaxes and high-resolution Spectra

Figure[I3 compares the reference parameters (x-axis) texhe
pectation values from our full Bayesian analysis (y-axisjain
colours encode the value of the quality measQrfom equation
[25. We also give statistics in Tatile 1.

Currently, our spectral grids do not cover stars witly <
4400K, log(g)< 1.4 and assume a slow stellar rotation of 1 krh s
which is typical for most G and K sta004). Hence
for the spectroscopic comparison sample we have to exclade s
with Te¢ > 4500 K and drop the fast rotating staydBootis and
u Leonis, which haversini ~ 15kms?! and~ 5kms™. We also
remove¢ Hya due to contradictory results fromfidirent astroseis-
mic derivations 6). This leaves 20 starth \&B
spectra. The two metallicity outliers at high metallicity Fig.[T3
areeVir andB Gem. Both have very high macro-turbulence val-
ues ¢ 5kms?|Hekker & Melendez 2007), which contradict the
current assumptions of our spectral pipeline.

From Tablé&lL, itis apparent that if we confine the sample to the
subset with astroseismic determinations, the random mesties
in all quantities is reduced, by more than half. This impirez only
the astroseismic subset can match or exceed our precishole w
the Bayesian method is clearly superior to the traditiomallysis

5 Currently we @ectively use less than 1% of the SEGUE spectral range.
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Figure 14. Ages and metallicities for the high-resolution referenample
with Bayesian stellar parameters. Colours encode the teryse estimate.
For better visibility we merged theftiérent values of each star according to

Table2.

on comparable data. Some of the reference gravities weheeder
from Hipparcos parallaxes, which should make them simdarur
results. In this case, our fully Bayesian determinationgrawity
appear more reliable than the less sophisticated refetsemause
they also take into account physical information from cotoand
spectra. Interferometri€e;, although they are usually taken to be
mildly model-dependent, still require an estimate of linaokening
and bolometric fluxes. The former are determined with 1D LTE
model atmospheres, while Chiavassa et al. (2010) show¢@Eha
hydrodynamical models predictftérent centre-to-limb variation,
which may cause systematic biases in angular diameterassm
Bolometric fluxes are estimated by interpolating betweeseoled
photometric magnitudes with the help of theoretical spediving
rise to another systematic uncertainty.

It is instructive to compare the full method results to thecsp
troscopic results. In the bottom row of Hig]13 we show exatian
values and parameter uncertainty from purely spectrosdofor-
mation (green error bars) and when using spectroscopy phis t
model prior (coloured points with blue error bars). Spestopic
surface gravities alone are generally too low byl {0+ 0.06) dex
with a residual scatter of abou#0dex compared to the full solution
(se3, for discussion of similar spectroscopateuesti-
mates). Using spectra in combination with stellar evolutiwodels
in the Bayesian framework, but excluding the parallax anotgh
metric information, improves the residual scatte~t®.3 dex and
fully removes the systematidiget. Hence, while spectroscopic in-
formation alone cannot compete with astrometric inforomatiit
gives stfficient information on surface gravity to allow for decent
values derived by the Bayesian framework.

In Table[2 we provide the stellar parameters and ages from the
full Bayesian method. When more than one spectrum is présent
a star, we provide the weighted average of the expectatiheya
and errors (we have to assume that the errors between tHe sing
determinations are highly dependent) for single spectiae/no
spectral information is available, we fill in the resultsfr¢the com-
bination of photometry and parallax measurements.

45 Temperature-gravity Plane, Ages and Distances

Inspection of sample distributions in parameter space, ilikthe
temperature-gravity planes shown in Hig] 16, providesschimut
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Figure 13. Expectation values from our Bayesian parameter deterioimsaversus the reference values for stars with high-résalispectra. In the top row
we show the full Bayesian determinations using all ava@labformation, i.e. parallaxes, photometry, spectroscapy stellar model compared to reference
values from Heiter et al. (in prep.), which are derived froneiferometry, asteroseismology and parallaxes. Theinatbw depicts the parameter expectation
values from spectroscopy alone (green error bars) and fpatti®scopy+ the model prior (but no photometry or astrometry).
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Figure 15. Distance error estimates for the Bayesian method in the
temperature-gravity plane. Evidently, distance erroi eassification un-
certainties are not a clear function of magnitude. Whileutjeidentified
main sequence staréfer the best accuracy, even stars with high gravity es-
timates can have low confidence in their actual classifinatiod distance
estimates.

the reliability of each parameter determination. In thisufegwe
show the HR diagrams in th& &, log(g))-plane with expectation
values from the Bayesian method (top row), versus the nefere
parameters (bottom), for both the SEGUE sample (left haael) si
and the high-resolution reference sample (right). To itatd the
interpretation, we plot isochrones at 10 and 13 Gyr at thigerdnt
metallicities (2, —1, 0), matching the colour scale of the stars.
The key diferences between our results and those determined
by conventional methods are obvious. Despite the mildlsdaia
spectroscopic gravity estimates, our results show a gleane-
rior performance in this plot. The Bayesian results coverrttain

sequence, while SEGUE DR9 does not attain main sequence val-
ues. Even more striking is the appearance of unphysica: 8ath
SEGUE DR9 and the reference sample from Heiter et al. hakg sta
in highly unphysical positions, with the error estimates egen
close to the fiset from the nearest evolutionary sequence. E.g. both
SEGUE DR9 and the high-resolution reference sample plaee th
stars around [Fe&l] ~ -1 far right of the turn-& or respectively
right of the main-sequence. The plot suggests that thetyreffi

sets between the high-resolution reference values andaesian
method track back to a neglected metalliciffeet in the reference
sample. In principle the Bayesian method could yield starse-
tween the sequences, since we here give expectation val st

of this tendency can be seen, but by construction our errdts w
correspond to theftset, because the actual likelihood at the un-
physical points is near zero.

The resulting age-metallicity relation for the high-ragan
sample is displayed in Fi. 114. To make the plot easier to,read
we merged the entries forfiierent spectra as in Tallg 2. The pic-
ture very much resembles the results of Casagrande et 41120
The younger expectation values for one of the very metal-ptaos
corresponds to a larger error estimate, forcing the expientaalue
away from the hard boundary given by the age of the universe. F
ther there is no striking trend in metallicity at younger aige

The importance of a reliable assessment of all stellar param
eters in one single approach is demonstrated in[Eiy. 15. iere
plot the same stars from SEGUE as in the top left panel offg. 1
but now colour coded with the estimated fractional distagrzer.

It is apparent that even some very high gravity estimatesnare
guarantee for a good main sequence classification, vice gtass
with lower gravity can have high distance confidence. As etquk
these stars are usually cleanly identified subgiants, gi@nteven
better, red-clump stars. While the distance and its unicgytare in
principle enough to support estimates of mean motion arwtitgl
dispersions in a population, we point out that an investgaof
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Figure 17. Top panel: Relative deviation of the expectation valuebéde-
graded approach from the expectation values in our stamdetidod. Green
lines show the 12 and % ellipsoids. Centre and bottom panels: Surface
gravity and temperature uncertainties for the same stdaheidegraded ap-
proach (y-axis) versus our standard method (x-axis).

velocity distributions themselves requires accuraterests of the
exact shape of the probability distribution in distancecgpavhich
the Bayesian method can deliver.

5 COMPARISON TO SIMPLIFIED APPROACH

In this Section we attempt to compare our implementation of
spectroscopic information to an approximation by one-disnenal
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Gaussian uncertainties. While this is certainly not they @aiint by
which our algorithm diers from other studies in the literature, the
simplification of the spectroscopic information is commorthie
works we are aware of.

We perform this experiment on the SEGUE sample. To de-
grade our spectroscopic results, we calculate the unogesir
and meafexpectation valuesut,, , tiog(g) #[Fe/H]) of each quan-
tity separately and then change the spectroscopic PDF todaigtr
of one-dimensional Gaussians in each parameter:

)2
PoH(XIOxp) = N - exp(— > %}

(26)

wherei = {Te, 109(g), [Fe/H]} andN is the normalisation.

As we see from the spectroscopic PDFs in the top right panels
of Fig.[8 and Fig[J the spectroscopic information can by namse
be described as a product of Gaussian errorgin log(g), and
[Fe/H] separately: the PDF is not even remotely aligned with the
coordinate axes and, for most stars we examined, shows & high
irregular shape.

The top panel in Fig.17 shows the relative shifts between our
full approach and the more conventional approximatiofdpand
log(g) for each star, normalised by the errors derived innmumal
method, i.e.

ETer = ({(Ter) = <Teﬁ'>classic)/0'Te{r~

Intuitively one might expect very small changes, becausetap
from approximating the spectroscopic PDF, we left all infation
untouched. The contrary is true, since the shape of the repect
scopic PDF gets distorted and now intersects the other redmist
in parameter space atffrent locations (this problem is aggravated
with higher dimensionality of parameter space and a moegjurr
lar PDF). Consequently the expectation values of the pamme
scatter by more thansl The failure of the "classic” approach can
be seen in Fig_18, where we plot the photometric, spectpisco
and photometric probability distributions for our full appch on
the left versus the degraded approach on the right handLsidé-
ing at the invoked dference in the spectroscopic PDF, which, more
importantly does not carry any metallicity dependencepsid un-
derstand the stark fiierences in the resulting parameters.

The bottom panel in Fi._17 shows the errors in surface gravi-
ties from each approach. If the classic approximation preduo-
bust error estimates, the values should scatter tightlyratdahe
1 : 1 line, instead there is only very weak correlation. The be
haviour is a bit more benign in temperatures than in graviied
metallicities. While the diverse systematics indicate tha results
are not perfect anyway, the big deviations both in the egétha
values and their quoted uncertainties show that the toaditiap-
proach to the spectroscopic PDF does not provide a suitgble a
proximation. Thus, use of the full information is mandatory

@7)

6 DISCUSSION AND FUTURE DEVELOPMENTS

The method presented in this work is essential for accuretierd
mination of astrophysical parameters of stars. Though émeath-
strated scheme is essential to obtain accurate and olgjestior
determinatiorfihe computational cost idfardable. The algorithm
is parallelized and withoutfiorts to make it more fcient took
about 20 CPU-minutes per star way to extract informatiomftoe

eT
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Figure 16. Expectation values from our Bayesian pipeline (top), veiSEGUE DR9 (bottom left) and the high-resolution referesample from Heiter et al.

(in prep., bottom right). Metallicities from each deriatiare coded in colours, which are also used for the 10 Gyh@thsand 13 Gyr (solid) isochrones for
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current and upcoming Galactic surveys, several shortogsnieed
and will be addressed.

e We are working on extending the grids of stellar spectrum
models, i.e. wider wavelength coverage (UV to IR) and finéd gr
resolution, inclusion ofr-enhancement and rotation as extra di-
mensions in the grids.

e Especially on the low-resolution side, the continuum figdin
algorithms need to be improved.

e Parameters, like micro-turbulence, which in fact paraisetr
the deficits of the current 1D-models in physical realismsthe

quently grey) atmosphere models. Consequent systemaiticbe
explored via residuals from this Bayesian method e.g. inmitade
space, as well as aberrations of physical parameters. Atkmng
goal would be to gear the stellar evolution codes with theesam
atmosphere models used for the spectroscopic modellingaid a
biases by partly contradictory models.

e The photometric information in our scheme fteated by red-
dening. Colour distortions and mismatches between theopiett
ric and other information can be directly used to determi r
dening, in addition spectral information can be extractetigh
resolution e.g. from interstellar Na D lines. Since we siaug-

better constrained or best be made obsolete by the use of moreously derive probability distribution functions for stlldistances,

physical models. In the short and intermediate range wefindl

smoother corrections on a denser grid that allow for moreipee
evaluation. In the far future, this problem should be solygdetter
physics, i.e. 3D-NLTE calculations for stars, which are i@sent
still too costly.

e |tis also interesting to include age- and mass- sensitiag-di
nostics (such as, Ca UV lines), that would in principle allasvto
choose spectroscopic models which are more appropriatgiviea
domain of the HRD. At present, the analysis of OBA stars sabie

the method can be adapted for reddening reconstructidasttie

ones by Schlafly, Green & Finkbeifer 2013).

7 CONCLUSIONS

In this paper we present the first generalised Bayesian apprfor
stellar parameter determination.
The essence of the Bayesian method is a combination of sev-

NLTE model atmospheres, whereas LTE models are standard foreral probability distribution functions in the multi-dimsional pa-

FGK stars.
e The stellar evolution models still apply rather simpligfice-

rameter space, which can be expanded arbitrarily deperating
a) the available observational information for a star, ahdhie



desired physical quantities. The presented framework |mer
ously evaluates the spectroscopic informations (gainea from-
parisons to theoretical spectra) and all other sourcedafiration.
This allows to calculate the full probability distributi®in param-
eter space and helps to cut computational costs by preragrag
the parameter space that has to be searched with the spegims
method.

In this work we showed how to combine low or high-
resolution spectroscopy, photometry, parallax measumesnand
reddening estimates to estimate central physical parasete
Tes, l0g(g), [Me/H] of a star, as well as its mass, age, distance, or
detailed chemical composition. The exploitation of théioed con-
straints like stellar models, as well as strong mutual ddpece
or independence of flerent parameters reduce the complexity and
effective dimensionality of the problem and make the compauati
possible. The scheme can be easily expanded to other safrces
information, in particular to astroseismic e.g. from CoRnTKe-
pler.
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provides excellent results on the astroseismic sample keadlye
superior performance compared to the traditionally delrirefer-
ence. We provide parameter estimations for these starsie[Za

Similarly the photometric information isfi@cted by red-
dening. However, this impact can be directly used to deter-
mine reddening especially in a larger sample. By the simul-
taneous determination of distance distributions, the puetbf-
fers an excellent basis for reddening measurements sirtalar
Schlafly. Green & Finkbeiner (2013).

Up to the last decade, sample sizes of Galactic surveys-deter
mined the scope of model comparisons: at sample sizes1800
stars, Poisson noise was usually of the same importancest&ssy
atic uncertainties and knowledge of the detailed erroritistions.

In the future we can advance from a more qualitative undedstg
of best-fit parameters for our Galaxies to full quantitatwelysis.
The implies, however, that progress in evaluating the upicgrnd
present large stellar surveys for the Milky Way criticallgpgnds
on our ability to cope both with the systematic biases andermor

The presented method has unique advantages compared tgortantly derive precise and accurate error distributiansl hence

other available approaches:

o It makes an optimal and unbiased use of all observational dat
and theoretical information for a star, thus providing theameter
estimates that satisfy all observational constraints;

e The method is robust with respect to missing data, such as low
quality or missing spectral or photometric information.

e The method is vital to gain a grip on derived quantities. E.g.
to determine the distance of a star, it is noffisient to know its
best-fit values for surface gravity, temperature, meigflend their
errors; a fair assessment is only possible if we know theciuth-
bined PDF in all parameters. We showed that indeed the Bayesi
estimates in particular for uncertaintie$tdr from simple expecta-
tions.

e Data from diferent surveys can be analysed with exactly the
same scheme: stellar models are available in most photicregs-
tems and the synthetic spectra grids can be folded with astyuin
ment response function. This avoids systemaffsats caused by
applying diferent analysis methods tofldirent surveys and the
Bayesian method can serve as a benchmark for cross-caibrat
between surveys.

We compared our approach to the results of a traditional

Bayesian analysis on the SEGUE sample. We use the same pho

tometric input, priors and even spectroscopic analysisapprox-
imate the spectroscopic PDF by a Gaussian distributionsaally
done in the literature. We find substantial shifts in all paggers,
frequently by several standard deviations. This demotestrdnat
neglect of the full PDFs leads to wrong parameter estimates a
unreliable estimates of their errors. Use of our or an edgmia
method, which is able to map out the true shape of the full-spec
troscopic (or any other) PDF, is hence mandatory for anyyaisl

of stellar parameters.

The method requires unbiased assessments from all itsesourc
of information. However, we know that systematic biaseg. (fe-
oretical atmosphere flaws, stellar evolution uncertagniilee con-
vection, nuclear reaction rates, etc.) currentiiget these sources.
This vulnerability can bias the entire derived parameter&etest
the performance of our method we compared both to reference
samples for low-resolution and for high-resolution spectn all
cases where we encounter problems, e.g. lower spectrospapi-
ities, the Bayesian method remains robust and pushes a#s#b-
wards the benchmark. Comparisons with each astroseidynézal
traditionally derived parameters shows that the Bayesiathou

on the development and success of methods like the presented
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9 APPENDIX

9.1 Selection function

Previous approaches (e.g.. Burnett & Binney (2010)) intoed a

selection function. With our choice of symbols, this wouded:

P(SIO, X)
P(S,0)

whereS denotes the selection functian. Burnett & Binney (2010)
then split the selection function into two parts: the oné tlegpends
on the parameterX and the other one, that does not and is thus of
no importance. However, there appears to be no reason oolige
the other term: selections of a sample are nearly almost sradb-
servations and not on stellar parameters that are not kngsior
The one example of such a selection function acting on paeme
space we could find in the literature, is actually based ons mi
understanding by Burnett & Binrlely (2010): Knowing the aatlé
parallax measurement and its error for a star, they try toicam
typical kinematic quality cut in a sample by zeroing all pabbity
that produces too low parallaxes in proportion to the messpar-
allax error. However, it is not clear why one should not ugefthl
parallax information here: applying the selection functimplies
that one has the knowledge necessary to compute the fuli-like

P(X|S,0) = P(OIX)P(X) (28)

Onehag A., Korn A., Gustafsson B., Stempels E., VandenBerg hood, the selection function instead gives an undesiraisesided

D.A., 2011, A&A, 528, A85

Perryman M., 1997, A&A, 323, 49

Pietrinferni A., Cassisi S., Salaris M., Castelli F., 2084, 612,
168

Pietrinferni A., Cassisi S., Salaris M., Castelli F., 2086,), 642,
797

Pietrinferni A., Cassisi S., Salaris M., Percival S., FeguJ.W.,
2009, ApJ, 697, 275

Plez B., 2012, ascl:1205.004

Pont F., Eyer L., 2004, MNRAS, 351, 487

Ramirez I. et al., 2012, ApJ, 752, 5

constraint against far-away stars, and when pretendingpritave
the parallax information for testing purposes, the sebadtiinction
will arbitrarily cut away the tail of &ective distance overestimates,
leading to wrong confidence and biased error estimates.

9.2 Detailson priors

For the metallicity-iron abundance prior we assume a fixptal
enhancement. It is known that also alpha enhanced stelldelsio
are very well approximated by scaled solar abundance mdcfels
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Figure 18. Probability distributions for the SEGUE star on plate 20fifire 8 from photometry and stellar models (left column), & spectroscopy
only (centre column), once in our full approach (top) andha Gaussian approximation (bottom) are combined into the RDF (right). Note that the
approximated result on the right hand side is a simple nigiéiion of the spectroscopic and mogitlotometric PDFs, while the left hand side is not, because

it is a projection of a combination in a higher dimensiona s

[Chieffi et alll 1991} Salaris & Weiss 1998). We use this fact by set-

ting the relation:

[Fe/H] + 0.1 if  [Fe/H] <-1.0
[MaH]={FaH]—02QFaH]+05)ﬁ—Lo<[FaH]<—05Q9)
[Fe/H] if [Fe/H] > -

The combined prior probability density of age and metadifici
is used as::

0 if 7> 14 Gyr
P(r, [Me/H]) = N-P([Me/H))- 1 if 11 Gyr < 7 < 14 Gyr(30)
exp(Z22)if 7 <11Gyr
where
1.5Gyr if [Me/H] < -0.9
o = (1.5+ 75. ﬂ['},’[f—/'*l) Gyr if -0.9<[Me/H] < ~0.5(31)
9Gyr else.

For the sake of simplicity we give each population the
same upper limit of 14 Gyr and allow for a constant density in
age down to 11 Gyr. Cosmological studies as well as observa-

tions in the Milky Way disc|(Madau, Pozzetti & Dickinson 1998
Aumer & BinneYy! 2009; Schonrich & Binnay 2009) measure a sig-

nificant decline of star formation rates with time even foldgtc
disc stars. Observations and these theoretical modelsdaisee

a significantly older age for more metal-poor populationkjch
motivates the decreasing time constant towards lower fiodiak.
The high altitude of the SDSSEGUE sample additionally favours
older ages (cf._Just & Jahrreiss 2007), but in order not tdlicon
with Cromwell’s rule on the other hand, we lean towards a-rela
tively moderate decline with time.

SEGUE measures mostly stars in the high disc, so we describe
the spatial distribution for our stars by a primitive thicisd plus
halo model, i.e.:
r ) 25
Ro

whereR is the cylindrical galactocentric radial coordinatethe
galactocentric distance the altitude above the plang, = 0.9 kpc
the assumed scale height of the Galactic d&gcs 2.5 kpc the scale
length of the Galactic diséy, = 8.27 kpc the assumed galactocen-

tric distance of the Sun from McMillan (2011); Schonficiol2).

p(R 2) = e70gRRIRa 4 003. ( (32)
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name HIP spectra  [Fe/H] T[Fe/H] Ter 0T 100(9)  Tlog(g) T o remark

HD 107238 60172 0 -0.14 0.26 4473 81 2.04 0.20 6.3 3.3  phot.

HD 122563 68594 4 -2.650 0.076 4809 a7 1.54 0.13 9.7 2.9  cdrab.photometric T
HD 140283 76976 4 -2.73 0.11 5608 40 3.539 0.056 13.49 0.47 bcom

HD 173819 92202 0 -0.42 0.64 4240 95 1.05 0.25 2.9 4.0 phot

HD 190056 98842 0 -0.11 0.29 4449 94 2.07 0.17 5.8 4.0 phot

HD 220009 115227 0 -0.43 0.28 4369 85 1.67 0.19 6.2 3.9 phot

HD 22879 17147 3 -0.592 0.024* 6006 19* 4.316 0.044* 121  1.2tomb!

HD 84937 48152 1 -2.11 0.14 6242 70 3.931 0082 1357 041 fomb

ksi Hya 56343 1 -0.458 0.032* 4933 35 2.476 0.080 3.9 1.6  comeétallicity fit questionable
Procyon 37279 4 -0.161 0.078 6515 79 3.993 0.073 2.44  0.53 bhcom

alphaCen A 71683 2 0.275 0.063 5939 79 4.380 0.066 3.7 2,5 .comb

alpha Cen B 71681 1 0.175 0.072 5364 58 4.482 0.041 6.6 4.4  .comb

Psi Phe 8837 0 0.14 0.36 3586  31* 0.65 0.22 4.9 45  phot.

Sun 0 4 -0.013 0.046 5842 49 4.464  0.063 4.3 2.9  comb.

18 Sco 79672 2 -0.050 0.059 5849 54 4.492  0.064 4.3 3.2 comb.

61 Cyg A 104214 0 -0.45 0.43 4563 83 4.717  0.060 6.8 4.0 phot.

alpha Tau 21421 0 0.09 0.22 3889 57 121 0.14 5.9 3.8  phot.

Arcturus 69673 0 -0.27 0.31 4399 91 1.82 0.19 4.2 1.9 phot.

alpha Cet 14135 0 -0.53 0.26 3723 41 0.50 0.16 5.5 3.7  phot.

tau Cet 8102 1 -0.520 0.047 5515 32 4.612 0.053 7.8 3.9 combh.

beta Ara 85258 0 -0.07 0.36 4118 83 1.02 0.20 3.3 1.3 phot.

mu Ara 86796 1 0.379 0.073 5950 97 4334  0.077 3.9 2.3 comb.

Pollux 37826 1 -0.376 0.043 4846 53 2.66 0.12 4.3 2.1 comgh macroturbulence
eps For 14086 2 -0.479 0.049 5218 68 3.614  0.072 7.2 2.0 comb.

eps Vir 63608 2 -0.457 0.050 5024 58 2.62 0.12 1.11  0.75 cdwgh,macroturbulence
beta Vir 57757 1 -0.037 0.080 6225 93 4.163  0.077 3.8 1.1 comb.

eta Boo 67927 0 0.12 0.37 6332 162  3.868  0.093 2.8 1.7  phstrdeator

delta Eri 17378 2 0.047 0.050 5139 59 3.791 0.071 6.99 0.88 bfom

eps Eri 16537 3 -0.202 0.050 5184 27 4.562 0.049 6.5 3.8 comb.

gam Sge 98337 0 -0.13 0.25 3942 83 1.15 0.19 5.6 3.9 phot.

gmb 1830 57939 1 -1.56 0.11 5304 36 4.649 0.060 7.8 4.1  comb.

mu Cas 5336 1 -0.598 0.010* 5584 39 4.601 0.053 5.6 3.6 domb.

mu Leo 48455 0 0.24 0.22 4607 74 2.43 0.11 4.7 3.7 phot. Tigmand rotating
beta Hyi 2021 3 -0.189 0.081 5848 79 3.997 0.074 6.89 0,58 comb

Table 2. Parameter expectation values and errors for metallicéHHn dex, temperatur@; in K, surface gravity log(g) in dex, and agén Gyr, all values
rounded to two significant digits in the formal error. The@®t column provides the Hipparcos catalogue number for sgehthe third column the number
of spectra involved. Stars outside the spectral grid or wittl spectra have 0 used spectra and are denotecphithin the last column, as their parameters
stem from photometry, stellar models and parallax measem&nwhile “comb.” in the last column denotes a full Bayrsi@proach. Detailed remarks on
single starslinternal rim solution by §/Fe] step at-0.6 dex, metallicity and errors biasetlJVES and HARPS spectra droppeé®utside model grid (rim
solution).*NARVAL bad spectral fit. disregarded, though Bayesian \&indine with other estimates.
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