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ABSTRACT
We present a unified framework to derive fundamental stellarparameters by combining all
available observational and theoretical information for astar. The algorithm relies on the
method of Bayesian inference, which for the first time directly integrates the spectroscopic
analysis pipeline based on the global spectrum synthesis and allows for comprehensive and
objective error calculations given the priors. Arbitrary input datasets can be included into our
analysis and other stellar quantities, in addition to stellar age, effective temperature, surface
gravity, and metallicity, can be computed on demand. We lay out the mathematical frame-
work of the method and apply it to several observational datasets, including high- and low-
resolution spectra (UVES, NARVAL, HARPS, SDSS/SEGUE). We find that simpler approx-
imations for the spectroscopic PDF, which are inherent to past Bayesian approaches, lead
to deviations of several standard deviations and unreliable errors on the same data. By its
flexibility and the simultaneous analysis of multiple independent measurements for a star, it
will be ideal to analyse and cross-calibrate the large ongoing and forthcoming surveys, like
Gaia-ESO, SDSS, Gaia and LSST.

Key words: stars: fundamental parameters – stars: distances – techniques: photometric –
techniques: spectroscopic – methods: statistical – methods: data analysis

1 INTRODUCTION

Observations are a central source of knowledge on almost anyen-
tity in astrophysics. Over several centuries of intense research, sev-
eral principal observational techniques have been developed that
are now routinely used to study stars and stellar populations in
the Milky Way and other galaxies. We have information from as-
trometry, photometry, spectroscopy, but also interferometry, and as-
troseismology, that give complementary information on thephys-
ical parameters of stars (detailed chemical composition, gravities,
temperatures, masses and ages) and their kinematics (radial veloc-
ities, distances, and orbital characteristics). However,in contrast to
e.g. cosmology, where sophisticated Bayesian schemes are well–
established (e.g. Drell et al. 2000; Kitaura & Enßlin 2008),stellar
parameter determinations are still widely based on best-fitesti-
mates and simple averages between different methods.

The advent of large stellar spectroscopic and photo-
metric surveys like SEGUE/SDSS (Yanny et al. 2009), RAVE
(Steinmetz et al. 2006), APOGEE (Majewski et al. 2007), GCS
(Nordström et al. 2004), and the Gaia-ESO survey (Gilmore et al.
2012), as well as astroseismic surveys like Kepler (Chaplinet al.
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2011), makes it necessary to develop fully automated methods
for data analysis and determination of stellar parameters.Standard
spectroscopic inversion methods are commonly assumed to beac-
curate, however, they usually involve subjective and hardly repro-
ducible elements, like line fitting and normalisation, or decisions on
spectral diagnostic features. Manual analysis of stars is limited to
sample sizes of∼ 1000 stars, unsuitable for large surveys. Existing
automated methods usually suffer from weakly constrained system-
atics as well as idealised error estimates. So far, most attempts to
overcome these problems have concentrated on simple weighted
averaging between different methods (e.g. Lee et al. 2008a,b).

The large stellar surveys change stellar astronomy into a pre-
cision science, where we cannot limit ourselves to pointingout
structures in diagrams, but where knowledge of the error distribu-
tions is key to make meaningful model comparisons, e.g. of Galac-
tic evolution and stellar structure. The approach we need must
be flexible, objective, applicable to very large datasets, and pro-
vide an optimal combination of the different bodies of observa-
tional data. The only mathematical apparatus known to permit a
systematic combination of different quantities are Bayesian frame-
works. The first steps in this direction were made by Pont & Eyer
(2004), Jørgensen & Lindegren (2005), Shkedy et al. (2007),
Bailer-Jones (2011), Burnett & Binney (2010), Casagrande et al.
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(2011), Liu et al. (2012), Binney et al. (2013), and Serenelli et al.
(2013). The scope and applicability of these studies is limited:
they either addressed the problem of fitting a spectrum only
(Shkedy et al. 2007), partly focussed on the problem of find-
ing the maximum likelihood solution, or rely on simplifications
of the observational likelihoods (e.g. Burnett & Binney 2010;
Casagrande et al. 2011). In part, this problem appears rooted in the
introduction of ”observables”, like effective temperature, (see e.g.
Fig. 4 in Rix & Bovy 2013), which have no well-defined place in
a Bayesian approach and which are in fact just parameters con-
strained by another observation. In contrast, a Bayesian scheme can
only fulfil its claim of unbiased information, if a fair account of the
observations is given and the full dimensionality of the constraints
in parameter space is preserved.

In the following we will present a new method for the de-
termination of stellar parameters that provides an optimalexploita-
tion of different observational information. The method offers a ho-
mogeneous full-scale quantitative recovery of the full probability
distributions in parameter space, which are given by the available
observations, i.e. photometry, astrometry, spectroscopy, and well-
established knowledge from stellar evolution theory and Galaxy
structure. The method is objective, computationally efficient, can
be readily applied to data from all existing surveys and is robust
to missing bits of data, e.g. damaged pixels in a spectrum or low-
quality photometry. By embedding spectroscopic analysis directly
in scheme, the Bayesian method allows for consideration of all
pieces of relevant information at once, thus avoiding unnecessary
information loss.

In this first paper of the series, our main goal is to to deter-
mine effective temperature, surface gravity, metallicity, mass, age
and distances of individual stars. Thus, we limit the input data to
spectroscopy, photometry, stellar evolution models and facultative
parallax measurements. However, the method can be readily gener-
alised to any number of parameters, such as kinematics or stellar ro-
tation, and include other input information, e.g. astero-seismology
and interferometric angular diameters. Furthermore, it isstraight-
forward to analyse star formation history of a whole stellarpop-
ulation, e.g. a young cluster or an old galaxy, using its integrated
colours and spectra. Thus the Bayesian method has a very broad
scope to applications both in the context of Galactic and extra-
galactic research.

The paper is structured as follows. In Sections 2 and 3, we
present the details of the algorithm and its implementation, illus-
trated on two examples. In Section 4 we apply the method to a
sample of stars with very high-resolution observations andfor a
sub-sample of calibration stars from the SDSS/SEGUE catalogue.
Section 5 compares to the use of a simplified spectroscopic PDF.
Discussion of the algorithm and results and Conclusions arefound
in the last two Sections.

2 METHOD OUTLINE

2.1 Bayesian scheme

So far, the majority of observational studies of stars, be itphotomet-
ric or spectroscopic, have focussed on providing best-fit estimates
of stellar parameters. However, accurate comparisons to theoretical
models of e.g, galaxy evolution, require the full probability distri-
bution of the derived parameters given the available observations.

This demands a Bayesian formalism. In this context we need
to express the probability of a set of parametersX = X1, . . . ,Xn

given a set of observationsO = O1, . . . ,Om by the probability
that this observation could take place given the set of parame-
ters. By definition the conditional probabilityP(X|O), thatX given
O, derives from the combined probabilityP(X,O) as: P(X,O) =
P(X|O)P(O). We can hence write down:

P(X|O) =
P(X)
P(O)

P(O|X), (1)

where theposteriorprobabilityP(X|O) is the conditional probabil-
ity of the parameter setX givenO. P(O|X), which we callobserved
likelihood, is the probability of making the set of observationsO
given the set of parametersX andP(X) is the prior probability we
ascribe to that set of parameters.P(O) is the probability that the set
of observations was made, which we set to 1 (Pont & Eyer 2004).
This simplifies our problem to

P(X|O) = P(X)P(O1, . . . ,Om|X), (2)

where P(X|O) is the posterior probability distribution function
(PDF) on the chosen parameter space. In our work, observations
are conditionally independent given the parameters, i.e. if all pa-
rameters are perfectly known, the observations do not provide ad-
ditional information about each other. Hence we can disentangle
the observations by:

P′(X) = P(O1, . . . ,Om|X) =
m

∏

( j=1)

P(Oj |X). (3)

2.2 Parameter space

The parameter setX contains all parameters relevant to the prob-
lem under investigation and important to the description ofa star.
This may include surface and interior structure parameters(effec-
tive temperature, surface gravity, mean density, etc) as well as any
other pieces of information like chemical composition, age, dis-
tance, position in the sky, etc. Since we are dealing with a single
object, all these parameters are related in some way. However, we
can break their dependencies into main groups, using the fact that
each type of observations constraints only a sub-set of these param-
eters, whereas it bears no information on others.

In this work, we define the ’core’ parameter spaceRc ≡

([Fe/H],Teff , log(g)) of metallicity (expressed by iron abundance),
effective temperature and surface gravity. The parameters inRc im-
pact all our observations and models.

Other parameters are constrained by only a subset of observa-
tions: e.g. detailed abundances are of importance for spectroscopic
observations, while stellar magnitudes in different colour bandsC
span the space of the photometric parameters. Ageτ, initial mass
Minit and present massM fall into the domain of stellar models.
Distances and parallaxp are determined either from direct astro-
metric observations or via the distance modulus when comparing
stellar models with photometry.

Thus the full parameter space can be disentangled into indi-
vidual contributions:

R≡ Rc + Rsp+ Rph + Rmod+ Rothers, (4)

whereRc is the core parameter space the other Rj are the parame-
ters of importance to different types of observations or prior expec-
tations (see Sec. 3.2 to 3.6).
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2.3 Observations

In contrast to parameters, which span the n-dimensional space of
the posterior probability distribution, the nature of observations is
irrelevant. Observations can be anything, from the numbersof elec-
trons on a CCD to a needle on a scale. Each observation puts a con-
straint on our parameter space, which is its corresponding observed
likelihood P(O|X) as a function on parameter space.

Instead of just writing down an observational likelihood, the
common approach in astronomy is to ”simplify” this by the intro-
duction of ”observables”. While this term is not well-defined in
a Bayesian context, ”observables” commonly denote best-fitval-
ues for some parameters (likeTeff), which appear to be relatively
well-constrained by (single) observations. Some studies,like (e.g.
Burnett & Binney 2010), go even further to introduce the errors on
those ”observables” as further variables in their formalism. From an
aesthetic point of view, this results in a rather clumsy and compli-
cated bulk of variables to achieve a simple goal: describingthe real
observed likelihood. It has two practical consequences. First, ”ob-
servables” lead to an oversimplification of the observational likeli-
hood, usually with the unjustified (and damaging, see Section 5) ap-
proximation as a product of separate Gaussians in each parameter
termed ”observable”. Second, their introduction artificially intro-
duces a ”better” class of parameters, raising the wrong suggestion
that their values are fixed. This is not true. For any parameter the
Bayesian formalism will in general give an estimate different from
the best-fit value.

While selection functions are in most cases essential for un-
derstanding observations with theoretical models, this does not ap-
ply to the discussed Bayesian schemes. Yet, some studies introduce
a selection function in their equations (see a longer discussion in
Sec. 9.1 of the Appendix). We refrain from using such a selection
function, because only selection criteria based on the parameter
space would affect the Bayesian scheme, while a survey selection
must be based on random choice or previous observations.

2.4 Summary of notation

To facilitate reading the equations we quickly summarize the main
notations: We denote the set of observations byO, the set of pa-
rameters byX, the parameter space byR and all probability dis-
tributions byP. To cope with the different sources of information,
we introduce indices: ”ph” for photometry, ”sp” for spectroscopy,
”astr” for astrometry (parallaxes), in addition we use ”mod” for
knowledge from stellar models and ”pr” for priors. Hence theob-
servational likelihood in full parameter space from spectroscopic
observations readsP(Osp|X). To facilitate the reading we contract
the notation for the conditional probabilities by decorating P with
a prime: e.g.P′sp ≡ P′sp(X) ≡ P(Osp|X).

Commonly used variables are ageτ, stellar massM, solar
mass M⊙, initial massMinit, logarithmic iron abundance [Fe/H],
general metallicity [Me/H], parallax p, distances, and distance
modulusµ.

3 DETAILED ALGORITHM

In this pilot study, we restrict ourselves to the most important ba-
sic case: the calculation of stellar parameters, when we have spec-
troscopic, and/or photometric observations. We will show how to
expand this to include parallax measurements. After validating
the method on the high-resolution spectroscopic data of nearby

stars, we apply it to a sample of low-resolution spectra from
SEGUE/SDSS (Yanny et al. 2009; Allende Prieto et al. 2008) cali-
bration sample.

3.1 Contributors to the posterior PDF

With the conditional independence (equation 3) we simplifythe
calculation of our posterior:

P(X|Osp,Oph) ∼ P(Osp|X) · P(Oph|X)P(Oastr|X) · Pmod(X) · Ppr(X)

∼ P′sp · P
′
ph · P

′
astr · Pmod · Ppr, (5)

whereOsp,Oph,Oastr denote the photometric and spectroscopic and
astrometric observations,Pmod the probability derived from stellar
models andPpr the prior probability distribution function. In the
second line we abbreviate our observational likelihoods, represent-
ing their conditional nature based on the observations in short by a
prime. Note that any combination of observational constraints can
be dropped from these equations, as well as new observations(e.g.
interferometry) can be added by multiplication.

The PDFs from Equ. 5 have two interesting qualities:

• some PDFs describe sharp structures in the n-dimensional pa-
rameter space, thus lowering the dimensionality of the probability
distribution and reducing computational costs (by the multiplica-
tion, the combined PDF cannot have higher dimensionality than its
components). In other words, the space volume where their PDF is
non-negligible has a lower dimensionality than the overallspace.
For example, stellar models together with model atmospheres map
directly from the fundamental stellar parameters (Minit , τ, [Me/H])
to their observed space (Teff , log(g),C).
• some PDFs constrain only a subset ofj < n parameters,

i.e. they are flat the other dimensions. Though they can be gen-
eralised to the n-dimensional space of the aggregate PDF, most of
these dimensions will be redundant, i.e. we haveP(X1, . . . ,Xn|O) ∼
P(X1, . . .Xj |O). It can be efficient to merge them in an early step
with another PDF that carries more dimensions. An especially valu-
able case are parameters that are nearly conditionally independent
from the other parameters. E.g. the detailed abundances forthe ma-
jority of chemical elements hardly affect temperature and gravity
estimates.

The meaning and structure of the single contributors to the
posteriorP will be examined below.

3.2 Priors Ppr

The priors encode our previous knowledge on the distribution of the
examined stellar population in parameter space. The model knowl-
edgePmod will be treated here as a separate prior, though it could be
in fact understood as an observation. Appropriate priors are essen-
tial to avoid biases in weakly constrained data (see Fig. 11 for an
example). Further, to have set ”no prior” means to have adopted a
flat prior, which is not fixed under parameter transformations. How-
ever, priors must be handled with great caution to obey Cromwell’s
rule (avoid excluding any outcomes a priori Lindley 1982) and to
avoid overconfidence biases and reproducibility problems.

How can one cope with uncertainties in a priori parameter
distributions? Making a prior just ”shallower” or adoptinga com-
pletely flat prior is not useful, since it actually adopts a worse prob-
ability distribution claiming the same certainty on this information
as the original prior. However, one typically has estimateson how
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uncertain the distribution in a set of parameters is. If, within those
uncertainties, the precise shape of a prior has important impacts on
results, there are two strategies: The uncertainty of a prior can be
constrained by demanding consistency with calibration data (data
of higher quality, where the prior has less impact) and by imposing
internal consistency between different subsamples (e.g. red versus
blue stars). The remaining uncertainty in a prior can be covered by
hyper-parameters: The shape of the prior can be parametrised and
a probability distribution function estimated on these parameters.

There are strong dependencies between most parameters. As
the posterior PDF has lower effective dimensionality than the pa-
rameter spaceR, we can not set constraints on every single dimen-
sion inR without risk of over-constraining the priors. We circum-
vent this problem by limiting our effective priors to ageτ, initial
massMinit , metallicity [Me/H], and distances; all other dimensions
are indirectly constrained by these priors and we adopt no addi-
tional constraints on them.

Throughout this work we will use the following priors:

Ppr(X) := p(τ,M, [Fe/H], s) ∼ (6)

∼ P(τ|[Fe/H]) · P(Minit) · P(s, l,b) · P([Me/H], [Fe/H]).

P([Me/H], [Fe/H]) is a fixed relation between metallicity (re-
quired for the isochrones) and the iron abundance, which we have
to introduce, since we do not measure detailed abundances inthis
paper. The adopted relation is given in Sec. 9.2 of the Appendix.
For P(Mi) we employ a Salpeter IMF (Salpeter 1955), with expo-
nent−2.35 and independent from metallicity and age. We account
for the metallicity-dependent age distribution by adopting a shorter
timescale in the star formation history of metal-poor stars. Details
are given in the Appendix.

Due to its importance we need to discuss the spatial prior
P(s, l,b).1 In general, every sample will cover some fixed angle on
the sky (be it so-called pencil beams like in SEGUE or a complete
sky coverage), so the actual volume is a cone that covers an ef-
fective areaA(s) = k · s2, wheres is the distance. The constantk,
given by the sky coverage and selection probabilities, is irrelevant
in our context. However, the likelihood to end up in the sample is
also proportional to the density of the population in the observed
region, so that we obtain:

Ps(s) = ks2

∫ ∫

ρ(s, ω)d2ω (7)

where we integrate over the sky positionω, andρ is the spatial
density of stars at positionω and distances. In our formulation,
this must be multiplied by another factor of distances, since a
fixed magnitude range samples a spatial depth proportional to s
(formally this derives from a parameter transformation of the prob-
ability density from magnitudes to distance). Neglect of this prior
is not equivalent to a flat distance prior, but one that drops steeply
with the third power of the distance, and hence in the absenceof
parallax measurements would give a strong (and uncertaintyde-
pendent) bias towards lower surface gravities.

3.3 Stellar models Pmod

Stellar models describe an effectively three-dimensional constraint
in the full parameter space. The corresponding PDF can be repre-

1 For simplicity, and to avoid recovering the spatial dependencies our prior
invokes, we neglect metallicity dependent structure and separate the spatial
prior from the age-metallicity terms.

sented in the core parameter spaceRc = (Teff , log(g), [Fe/H]). In
this work, we neglect other dimensions, adopting a simple relation-
ship for alpha enhancement and neglecting initial/present stellar ro-
tation.

The calculation of the PDF is performed by summing the
weights of available stellar model points falling into the cells
of a dense grid in the target spaceRc. Throughout this work
we fold the models with a Gaussian kernel with widthsσc =

(30 K,0.04 dex,0.02 dex) in (Teff , log(g), [Fe/H]). This error repre-
sents the internal uncertainty of the stellar models in parameter
space and fills gaps caused by the discrete data representation. In
addition, the effective width is augmented by the grid spacing on
which the PDF is calculated.

We use a dense grid of stellar isochrones from the BASTI
database (Pietrinferni et al. 2004, 2006, 2009), kindly provided
to us by S. Cassisi for the stellar parameter determinationsin
Casagrande et al. (2011). We interpolate the models in the initial
massMinit to ensure a narrow mass spacing, but do not attempt an
interpolation in ageτ or metallicity [Me/H]. When summing over
the isochrones, we assign to each pointi a weightWi proportional
to the parameter space volume it represents:

Wi = NW∆[Me/H] · ∆τ · ∆Minit , (8)

whereNW is the normalisation,∆Minit = 0.5(Minit ,i+1 − Minit ,i−1) is
the average distance to its neighbours in initial mass,∆[Me/H] is
the average distance in metallicity between the isochrone and its
nearest neighbours, and∆τ is the average distance in ageτ. On
the boundary of the grid we take the distance to the neighbouring
point. Note that the approach is identical for stellar tracks instead of
isochrones. The model probability at each pointX in our parameter
space can then be represented as a weighted sum over all relevant
models pointsi:

Pmod(X) =
∑

i

Wi g((X − Xi), σ), (9)

where Xi is the vector in parameter space given by the model
grid. Here we represent the uncertainty of the models by an n-
dimensional Gaussiang with a dispersion vectorσ. Specifically,
we assumeσc on our core parameter space as above, and no addi-
tional uncertainties in the other dimensions.

3.4 Photometric data P′ph

Stellar models couple photometric colours with other parameters
(see Marconi et al. 2006, for details on the colour calibrations in
SDSS filters of BASTI models). Thus we best calculate the photo-
metric PDF simultaneously with the stellar models. Denoting the
stellar model magnitudes at model pointi and colour bandk by Ci,k

and the photometric observation in bandk with Ok, we have:

Pi(Oph|C, s, r) =
∏

k

P(Ok|Ci,k, s, r), (10)

with distances and reddeningr. Lacking sufficient data on the
true PDFs, we represent the observational likelihoods of photomet-
ric colours, the reddening values and the model uncertainties by a
Gaussiang(x− µ, σ) = exp(−(x− µ)2/(2σ2)), which enables us to
combine them into:

P(Ok|Ci,k, µ(s), r) = g(Ci,k + µ(s) + r · êk −Ck, σk), (11)

with the distance modulusµ(s) = 5 log(s/10 pc), the reddening
strengthr multiplied with the reddening vector (for SDSS colours,
see Girardi et al. 2004; An et al. 2008) in each colour ˆek, and with
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Figure 1. A priori densities from stellar models (Pmodel) at metallicities [Fe/H] = −2,−1, 0 from left to right and accounting for a Salpeter IMF prior, and the
metallicity-dependent age prior.
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k = σ

2
mod+ σ

2
obs+ σ

2
r·ek

as the combined variance/uncertainty of
models, observations and reddening. We assume a magnitude un-
certainty on stellar modelsσmod = 0.01 mag for the high-res sam-
ple, neglecting this term for the low-resolution sample. Partly, σmod

covers the same uncertainties as our error termσc on stellar pa-
rameters (see Section 3.3). We stress that this uncertaintycannot

and should not comprise systematic deviations in stellar models,
as those uncertainties should be explored on a larger sample, using
hyper-parameters as discussed in Section 3.2.

The other assumption is the universal reddening vector. This
may have to be relaxed when dealing with very different ISM envi-
ronments. The dust peak and the slope of the reddening spectrum
can be shifted, or stars may be individually reddened, e.g. by a cir-
cumstellar envelope.

We note that this method can be used to create reddening
maps. Since that is beyond the scope of this work, we restrictthe
sample to stars with relatively low reddening, use reddening values
from other sources assuming a fractional reddening error of10%.

3.5 Spectroscopic data P′sp

The observational likelihoodP′sp in Eq. (5) incorporates all avail-
able spectral information. This comprises spectral type, element
abundances, rotation, stellar activity (chromospheric emission in
cores of strong lines, magnetic effects), inter- and circum-stellar
reddening, convection characteristics, etc. A spectrum offers by far
the largest information content we can obtain on a star. However,
this information is limited by incomplete physical knowledge and
approximations in modelling the theoretical spectra. At present,
calculations of large spectral grids are only possible with1D hydro-
static codes assuming local thermodynamical equilibrium (LTE),
while full hydrodynamic 3D non-LTE calculations are slowlybe-
coming feasible (Bergemann et al. 2012; Magic et al. 2013). Fur-
ther, the high dimensionality of the problem forbids computing sep-
arate grids for all possible chemical compositions.

Here we use the MAFAGS-ODF (Grupp 2004a,b) grid of
model atmospheres designed for late-type (spectral type FGKM)
stars, with 4400< Teff < 6800 K, 1.4 < log(g) < 4.6, −3.9 <
[Fe/H] < 0.9. The synthetic spectra are computed with the re-
vised version of the SIU code (Reetz 1999; Bergemann et al. 2012),
which has been extensively used during the past two decades
for high-precision stellar spectroscopy (see e.g. Korn et al. 2003;
Bergemann & Gehren 2008;̈Onehag et al. 2011; Shi et al. 2014).
In comparison to the other three available spectrum analysis codes,
MOOG (Sneden 1973), SYNTHE (Kurucz 2005), and Turbospec-
trum (Plez 2012), SIU already has an implementation of NLTE line
formation for any element with pre-computed NLTE level popula-
tions. We can thus more easily update it with more realistic physics.

For our grid of theoretical spectra, we use a spacing of
(200 K,0.4 dex,0.3 dex) in (Teff , log(g), [Fe/H]) to make linear in-
terpolation between the points reasonable. While the grid covers
4 values of micro-turbulence from 1 to 2.5 km s−1, for this pi-
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Figure 3. Top six graphs: A low-resolution spectrum from the
SDSS/SEGUE survey (black, plate no. 2038, fiber 564) compared to the
best-fitting theoretical model (red). Bottom three graphs:same for a high-
resolution spectrum from UVES ofβ Hyi.

lot study we adopt a fixed micro-turbulence of 2 km s−1 for gi-
ants and 1 km s−1 for dwarfs (log(g)> 3.5) (Bergemann et al. in
prep), and anα-enhancement of 0.4 dex for [Fe/H] < −0.6 (e.g.
Gehren et al. 2004). Such hard cuts and changes in assumed pa-
rameters will introduce anomalies in the derived PDF, as exem-
plified by the micro-turbulence cut at log(g)= 3.5 in Fig. 8. In
total, the three-dimensional ([Me/H], Teff, log(g)) grid contains
6912 theoretical spectra and covers the full HRD, as shown in
Fig. 5. Any other model grid can be easily implemented, with
no requirement on symmetry or shape, since our code includes
a robust interpolation scheme. Alternatively, one could perform
calculations of line formation on the fly using a grid of model
atmospheres. This latter approach is cleaner, however, it is still
computationally too costly. We sample the wavelength windows
around the spectral features important for diagnostic of FGKM
stars: 3850−4050 Å (Ca I lines), 4350−4450Å (G-band, CN sensi-
tive), 4600−4900Å (Hβ), 5100−5300Å (Mg I triplet, main gravity
diagnostics), 6400− 6640Å (Hα), 8400− 8800Å (Ca II triplet, also
used in Gaia and in RAVE stellar survey). However, not all pix-
els in these intervals are used in the analysis. The high-resolution
observed spectra (see Sec. 4.3.1) do not cover the regions below
4800 and above 6800 Å. We exclude from our statistics all re-
gions which contain spectral lines of chemical elements other than
the temperature- and pressure-sensitive wings of Balmer and Mg

I triplet lines, and the Fe I and Fe II lines. Precisely, the weight
of all other spectral features, is set to zero. The flat regions are
used for the iterative continuum normalization and are not masked
out. To avoid over-confident estimates, we demand that either the
temperature uncertaintyσTeff > 80 K or the metallicity uncertainty
σ[Fe/H] > 0.08 dex, and otherwise flatten the PDF by multiply-

ing the χ2 distribution with a fixed factor until the condition is
met. Before evaluating the test statistics, the spectra arecontinuum-
normalised and radial-velocity corrected by cross-correlating with
the template theoretical spectrum for each input combination of
stellar parameters.

To obtain the spectroscopic observational likelihoodP(Osp|Xi)
at each point in parameter space, we resample the synthetic spec-
trum to the wavelength scale and resolution of the observations and
evaluate the goodness-of-fit-statisticsχ2 at each pixeli of the ob-
served spectrum:

χ2 =

n
∑

i=1

(Oi − Si)
2 /σ2, (12)

whereS the template comparison spectrum,O the observed spec-
trum, σ, the weighted observational uncertainty. Noisy and un-
informative regions are given less weight using special masks. The
final PDF is gained by summing over all pixels within a given seg-
ment, and over all segments.

The original resolution of the synthetic grid is 500 000. Thus,
the method can be potentially applied to any observed dataset, e.g.,
low-resolution and high-resolution spectra. For the analysis of the
SEGUE spectra, we post-convolved the spectral grids with instru-
mental resolution,R= 2000. A typical fit to a SEGUE spectrum is
shown in Fig. 3. In the high-resolution mode, we use the resolution
of the UVES-instrument (R= 50 000).

3.6 Parallaxes and other additional data

The Gaia mission will derive parallax measurements for nearly
all stars with spectroscopic information. Parallax measurements
only affect the distances (and distance modulusµ), so that it is
straightforward to combine the observational likelihood from par-
allax measurementsP′astr with the photometric and model informa-
tion.

In the following, we assume a Gaussian parallax error.
Cromwell’s rule does not apply to mathematical truths, so nega-
tive parallaxes are excluded by setting the prior to 0. This yields:

P′astr= P(Oastr|p) = NΘ(p)g(p− p0, σp), (13)

where N is a normalisation,Θ is the Heaviside-function (1 forp > 0
and 0 for p < 0), g(p − p0, σp) is again a Gaussian distribution
around the measured parallaxp0 (which can be negative) with stan-
dard deviationσ.

It is important not to clip negative values ofp0: a small neg-
ative value ofp0 has still a different information content than a
large negative value. In the case of a Gaussian error distribution,
the probability ratio between a smaller parallax and a larger par-
allax rises, the further the measurement is away from zero. Or to
use an example: the likelihood ratio between having failed by 3σ
and by 4σ is larger than the likelihood ratio between having failed
by 3σ and by 2σ. 2 Fig. 4 demonstrates how the parallax distri-

2 This would only not be true if the error distribution gives constant like-
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and raising the expected distance.

butions get more concentrated towards zero, the more negative the
measured value is.

To combineP′astr it with the photometric and model PDF, we
integrate over the possible distance moduliµ, at each stellar model
point i:

P′i,astr,ph =

∫

Pi(Oph|C, µ(s), r)P′astr(µ)Jµ/pdµ, (14)

with the JacobianJµ/p = 20 ln(10)10−0.2µ.
In this work, Pastr is considered for the stars with high-

resolution spectra only (see Sec. 4.4).

3.7 Combining the PDFs

Equipped with these results, we can now assemble the com-
bined PDF in equation 5. In simple words, the strategy is sep-
arate all PDFs into PDFs on the core parameter spaceRc =

(Teff , log(g), [Me/H]) and the conditional PDFs on the remaining
parameter space given that point inRc. Depending on our needs we
can then represent those remaining parameter estimates either as
simple moments (expectation value, variance, etc.) at eachpoint in
Rc, or as full distributions.

Formalising this is a bit tedious, since it involves a conditional
probability derived from a conditional probability. To simplify the
notation, we use the previous abbreviation of observational depen-
dence with a prime. The combined calculation of photometricand
model part yields:

P′astr,mod,ph,pr = P′astr,ph · Pmod · Ppr (15)

= P′astr,mod,ph,pr(Xc)P
′
astr,mod,ph,pr(aph|Xc),

whereXc is the vector of parameters in our core parameter space
Rc andaph is the vector of remaining parameters constrained by the
photometric and astrometric observations, models and priors, i.e.

lihood ratios for identical distances from the measurementvalue, i.e. for a
declining single exponential.

aph = (Mi , τ,C, r, s, . . .). Similarly, we separate the spectroscopic
information:

P′sp = P′sp(Xc)P
′
sp(asp|Xc), (16)

whereasp denotes all other parameters constrained by spectroscopic
observations, like detailed abundances, or stellar rotation. In this
work we do not use this supplementary information, so that wecan
drop the termP′sp(asp|Xc). Most of the parameters inasp will not co-
incide with the parameters inaph, but if they correspond, they must
be written into the core parameter space. For example, rotation and
stellar activity available from high-quality spectra constrain stellar
ages. We will discuss this in a future work.

We can now calculate the final probability distribution func-
tion:

P(X|O) = P′astr,mod,ph,pr,sp(Xc)P
′
sp(asp|Xc)P

′
astr,mod,ph,pr(aph|Xc), (17)

where

P′astr,mod,ph,pr,sp(Xc) = P′sp(Xc)P
′
astr,mod,ph,pr(Xc). (18)

3.8 Calculating projections, central values, and uncertainties

We can gain the conditional probability distribution in a lower num-
ber of parameters by marginalising, i.e. by integrating outthe other
dimensions in the joint conditional probability distribution func-
tion. E.g., to exclude the parameter xj+1, we write:

P(X1, . . . , Xj ,Xj+2, . . . ,Xn|O) =
∫

P(X1, . . . ,Xn|O)dxj+1 (19)

P(Xj |O) =
∫ ∫

P(X1, . . . ,Xn|O)dx1 . . .dxj−1dxj+1 . . .dxn (20)

From this we can obtain the moments of the probability distribution
in each variable or group of variables:

〈

Xj

〉

=

∫

xj P(Xj |O)dxj (21)

〈

X2
j

〉

=

∫

x2
j P(Xj |O)dxj (22)

(23)

where
〈

Xj

〉

denotes the expectation value of the parameterXj , and

the standard deviationσX j =

√

〈

X2
j

〉

−
〈

Xj

〉2
.

3.9 Short recipe of the algorithm

In short the steps are as follows:

• 1) Combine photometric and astrometric information together
with the priors and sum over all stellar model points to obtain a
preliminary PDFPprel in core parameter space, calculate moments
or full PDFs for the remaining dimensions.
• 2) In regions of parameter space, where the probability is

larger than a threshold value3, calculate a coarse grid of spectro-
scopic probabilities and approximate the PDFPsp by interpolation.
• 3) Multiply Pprel with Psp to obtain an approximate posterior

PDFP. Determine a refined grid in parameter space to better sam-
ple the spectroscopic PDF and iterate steps 2)+ 3) (Fig. 6).

3 The threshold should be sufficiently small to ensure coverage of the final
PDF. Here we use a generous 10−30 per bin. Compared to a number of
∼ 2 · 10−6 bins we hence neglect a negligible fraction of the probability
mass.
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Figure 5. The grid of synthetic spectra.
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The threshold value on a binned PDF was chosen ast ≪ 1/(N·
M) whereN is the number of stars andM is the effective number
of bins, because in a large sample we have to expect the presence
of rare objects, which will have low preliminary probabilities. As a
different condition one can formulate that the integral of the PDF
over parameter space must be

N ·
∫

P(X)<t
P(X)dX≪ 1. (24)

3.10 Selected examples

To illustrate the algorithm, we describe here the results for two
stars. One isβ Hyi from our high resolution data sample, for which
we have basic Johnson photometry, high resolution spectroscopy
and a Hipparcos parallax. The other star, randomly selectedfrom
the SEGUE data sample (plate number 2038 and fiber number 564),
is a turn-off subgiant. In this case we have SDSS photometry and a
low-resolution spectrum from SEGUE.

The resulting probability distribution functions in the
(Teff , logg)-plane are shown in Fig. 7 and in Fig. 8. The top left
panel shows the combined PDF from photometry, prior and stel-
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Figure 9. Projected 1DTeff distributions for the discussed SEGUE star ver-
sus the 1σ intervals from Allende Prieto et al.(2008, light blue) and from
SEGUE DR9 (orange). Note how the combined estimate differs from a
naive expectation when looking at photometric and spectroscopic informa-
tion separately.

lar evolution; the top right panel shows the spectroscopic PDF in
photometrically allowed space. These two estimates combine to
the final posterior PDF in the bottom left panel. The correspond-
ing metallicities are shown by colour coding in the bottom right
panel. The individual probability densities from photometry-stellar
evolution and spectroscopy are clearly different in shape and in lo-
cation.

The Hipparcos parallax combined with photometry and stel-
lar models puts tight constraints on the surface gravity ofβ Hyi
in Fig. 7. This leads also to a tight correlation between metallicity
and gravity as evident from the coloured dots in the bottom right
panel. A moderate step in the spectroscopic PDF at log(g)∼ 3.5
is produced by a step in micro-turbulence in our current gridof
theoretical spectra, which will disappear with the improved grids
in preparation. The calculation does not cover the full allowed re-
gion of the spectroscopic PDF (see the coarse behaviour at smaller
gravities in the top right panel), saving computation time,since
the joint PDF (lower left panel) is fully represented. The final
expectation values and uncertainties areTeff = (5837± 72) K,
log(g) = (3.981± 0.068) dex, and [Fe/H] = (−0.196± 0.074) dex
versusTeff = (5873± 38) K, log(g) = (3.98 ± 0.02) dex, and
[Fe/H] = (−0.08 ± 0.02) dex in the reference sample (described
in the next Section).

While neither the photometric part nor the spectroscopic con-
straints are very tight for the SEGUE star in Fig. 8, the com-
bined PDF is very well defined. This shows the benefits of solv-
ing the problem in the full parameter spaceRc. While points in the
log(g)− Teff plane may be allowed by both derivations, the corre-
sponding limits on the third dimension [Fe/H] are in disagreement,
ruling them out. These are the regions in the bottom right panel
of Fig. 8, where the colours are mismatched. To stress this point
we show the one-dimensional probability distributions inTeff in
Fig. 9. While our parameters are nicely between the values ofthe
SEGUE follow-up study Allende Prieto et al. (2008) and SEGUE
DR9 (see Sec. 4.1), the behaviour of our PDF is more interesting:
The combined PDF is not even remotely a simple combination of
its two contributors. Most interestingly, the expectationvalue of the
combined estimate is not situated between the estimates from each
spectroscopy (6027 K) and photometry (6021 K), but significantly
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Figure 7. The PDF’s forβHyi from the high-res sample. Top left: the combined PDF fromphotometry-prior-stellar evolution projected onto (Teff , logg)-space;
top right: the spectroscopic PDF in photometrically allowed space. These two estimates combine to the overall PDF in thebottom left panel. The bottom right:
metallicity expectation values from spectroscopy (coloured area) and the photometric-model part (coloured dots).

higher (6066 K). This complex behaviour can only be accounted
for within a full Bayesian approach.

Our final expectation values and uncertainties for this SEGUE
test star areTeff = 6066 K± 44 K, log(g) = 3.83± 0.15, [Fe/H] =
−0.47±0.07, for comparison SEGUE DR9 providesTeff = 6181 K±
19 K, log(g)= 3.90± 0.03, [Fe/H] = −0.459± 0.006. Note that we
add the reported uncertainties from the SEGUE pipeline justfor
the sake of completeness. Their formally reported errors cannot be
considered realistic. They are severely under-estimated (by about
an order of magnitude or more) as shown by the comparisons in
Lee et al. (2008a,b) as well the discussion later in this work. The
spectral fits in our six standard bands for the best spectroscopic
solution are shown in Fig. 3.

This discussion also shows that even a relatively uncertainin-
formation can give an improvement to more precise values that is
beyond a simple one-dimensional combination. More importantly,
mismatches between different sources of information help to flag
pathologies in a sample by unexpectedly small overlap of thecon-
tributing PDFs.

4 APPLICATION TO OBSERVATIONS

Our approach is most needed and also most powerful, when dif-
ferent observations are available for a star and the information
content is complementary but limited. With this in mind and to
test the stability of our method, we choose both a sample featur-
ing high-resolution spectra (R > 40000), from observations with
VLT, as well as one with low-resolution spectra (R ∼ 2000) from
SDSS/SEGUE. We start this Section with a description of the
datasets in use. Then, we first show the performance of the ap-
proach when limiting ourselves to photometric data with andwith-
out astrometry, followed by the full approach on low- and high-
resolution spectra. In the last subsection we compare derived quan-
tities, like distances and ages, and assess the resulting distribution
of stars in the temperature-gravity plane.

4.1 Datasets

For the high-resolution sample we obtained a comparison setof
stellar parameters from Jofre et al. (2013). Their effective temper-
atures were derived from the interferometric angular diameters or
calibration relations. The gravities stem from astroseismology or
Hipparcos parallaxes, and their metallicities are based onthe anal-
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Figure 8. The PDFs for one of the sample stars from the SEGUE sub-sample(see Sec. 3.10). Top left: the combined PDF from photometry-prior-stellar
evolution projected onto (Teff , logg)-space; top right: the spectroscopic PDF in photometrically allowed space. These two estimates combine to the overall
PDF in the bottom left panel. The bottom right: metallicity expectation values from spectroscopy (coloured area) and the photometric/model part (coloured
dots).

ysis of Fe II lines, which are not significantly affected by non-LTE
effects (Bergemann et al. 2012).

The high-resolution sample comprises 87 high-resolution
spectra of 40 nearby stars including the Sun, taken with the HARPS
and UVES instruments at VLT, and with NARVAL at the Pic du
Midi observatory. This dataset was kindly provided by P. Jofre. In
addition, there are Hipparcos parallaxes (van Leeuwen 2007), mak-
ing the sample closely resemble future data from Gaia astrometry
combined with Gaia-ESO spectroscopy. The sample is particularly
valuable because the spectra were taken on different instruments
and there are independent parameter determinations, including in-
terferometric angular diameters and astroseismic surfacegravities
(Jofre et al. 2013). The stars cover a very wide range in metallic-
ities, gravities and temperatures in parameter space (see acom-
plete description in Blanco-Cuaresma et al. 2014). Photometry in
theU, B,V, I , J,H,K bands, was compiled from the Hipparcos cata-
logue (Perryman et al. 1997), from 2MASS (Skrutskie et al. 2006),
and from Johnson et al. (1966).U−band photometry for HD22879
stems from Koen et al,. (2010), improvedJHK-photometry for
ξ Hya from Laney, Joner & Pietrzyński (2012). Solar photometry
was adopted from Binney & Merrifield (1998), updated with the
values of Ramı́rez et al. (2012). We increased the errors in light of
the general uncertainty of the Sun’s photometry to 0.03 mag.

Our low-resolution sample was selected from SEGUE by
Allende Prieto et al. (2008), who did an intermediate-resolution
follow-up analysis.4 It consists of 78 stars within the parame-
ter range−2.5 < [Fe/H] < 0.3, 4000 < Teff < 7000 K, and
1.5 < log(g) < 4.5. For these stars, we have low-resolution
SEGUE spectra, (R∼ 2000), photometry in the SDSSugriz bands,
Schlegel, Finkbeiner & Davis (1998) reddening estimates and po-
sitional data from SDSS DR9 (Ahn et al. 2012). One star was re-
moved from the sample, as it was flagged for strongly disagree-
ing observational information (very low quality measureQ <

−20, cf. equation 25, resulting partly from a strong cosmic inthe
spectrum). Throughout the text we refer to the parameters from
Allende Prieto et al. (2008) as ”AP08” and from SEGUE DR9 as
”DR9”.

Two important remarks should be made about these compari-

4 We hence have sets of comparison values, with a mild preference for the
SEGUE DR9, since it is very difficult to assess the accuracy and homo-
geneity of AP08: different parts of the sample were analysed with different
methods (equivalent width method for the higher-resolution stars vs spec-
trum synthesis for the lower-resolution stars). For most ofthese stars, the
spectra were degraded to R∼ 7000 from the original R∼ 15000 with un-
clear consequences.
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son sets: While they are great tools for comparisons, they are sub-
ject to uncertainties and systematics that can exceed the quoted er-
rors. Second, the quoted errors are fundamentally different from
ours. They just report internal errors from pipelines or spectro-
scopic fitting routines, which are typically far smaller than realistic
error estimates. The most extreme case is the SEGUE parameter
pipeline. This is fundamentally different from our error calcula-
tions, which attempt to calculate all uncertainties.

4.2 Photometry with and without Astrometry

Before we explore the performance of the full algorithm against
our reference samples, we test it for the simpler case, wherespec-
troscopic information is not available. For the vast majority of stars
in the Galaxy, we will have no or very limited spectral information
(e.g. 4MOST will cover only of order∼ 2% of the stars in the Gaia
catalogues). However, we find that the Bayesian method is capable
of deriving stellar parameters also when restricted to photometric
and astrometric information.

In Fig. 10, we compare temperatures, gravities and metallici-
ties derived from Johnson photometry and parallaxes only with our
high resolution reference sample (top row), and from SDSS pho-
tometry alone with values from SEGUE DR9 (bottom row).

For the high-resolution reference sample (top row) the applied
photometry is not competitive with what can be expected from
modern photometric surveys: For most stars we are restricted to
JohnsonB,V, I colours at∼ 0.03 mag precision, and, due to their
brightness, very uncertain 2MAS Sphotometry. Nevertheless, the
photometry gives a good handle on effective temperatures: while
our temperatures are mildly higher than the reference, the random
scatter is as low as∼ 110 K. The excellent agreement for log(g) is a
consequence of using Hipparcos parallaxes. We note that formost
stars even uncertain parallaxes suffice to fix log(g), as they con-
strain the stellar branch, i.e. whether a star is on the main-sequence
or e.g. on the red giant branch. Metallicities are per se veryweakly
determined with Johnson broad band filters, and particularly with-
out decentU-band measurements. The large uncertainties concen-
trate the values towards the centre of our grid. This underlines the
need for intermediate or narrow band photometric surveys tocon-
strain stellar parameters.

The precise SDSS photometry and the location of SDSS
colour bands allow for a better handle on metallicities, as well as for
good temperatures. In absence of parallax measurements, photome-
try alone offers a rough classification of stars, as seen in the bottom
row of Fig. 10 with a rms scatter against the SEGUE parameter
pipeline of around 0.5 dex. While there is significant photometric
information, it is not strong enough to be insensitive to thepriors.
This motivates a closer look at the importance of our assumptions.

In Fig. 11 we compare our photometric metallicities (y-axis)
to the metallicities from Allende Prieto et al. (2008) (x-axis; for the
standard SEGUE DR9 comparison, see Fig. 10) for the SEGUE
sample, plotting stars with clean photometry with larger discs and
stars with bad photometry with smaller triangles. Colours encode
the error estimates from the Bayesian method. Evidently, there is
enough information to constrain metallicities at least in the higher
metallicity range to an accuracy of about 0.2 dex. Contrary to com-
mon derivations like Ivezić et al. (2008), which fail at metallici-
ties > −0.5 (cf. Árnadóttir, Feltzing & Lundström 2010), our ap-
proach is valid throughout the entire metallicity range. However,
it is important to realize how important the age prior becomes in
this case. In the lower panel we show the same data with a fully
flat age prior instead of using eq. 30. This flat age prior implies a
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Figure 11. Photometric metallicities (expectation values of the posterior
distributions) in the SEGUE/SDSS sample versus the determinations from
Allende Prieto et al. (2008). Top panel includes the age prior from eq.30,
while the bottom panel does not, resulting in a bias towards younger ages.
Colours code the standard deviation of the posterior distributions, capped
at 0.8 dex. Stars with clean photometry according to the SDSS database are
depicted with discs, while stars with problematic photometry are shown as
smaller triangles.

far larger uncertainty in the gravity of a star, which severely affects
objects that cannot be clearly identified as subgiants, or main se-
quence stars. Via the degeneracy ofu−band information, their po-
tentially lower gravities allow for a wider range of (mostlylower)
metallicities, which lowers the expectation values and boosts the
error estimates. Despite this problem, the situation is farbetter than
in the traditional approach: the classical metallicity calibrations like
Ivezić et al. (2008) or An et al. (2013) rely on stars fallingnot only
on a fixed age bin, but also onto a single evolutionary sequence.
This leads to a metallicity bias and overconfidence concerning the
uncertainties. In contrast, the full Bayesian approach makes opti-
mal use of all available colour information, accounts for all sources
of uncertainty and allows to explore the effects of prior assump-
tions.
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Figure 10. Parameter estimates without using spectroscopic information. The top row shows our high resolution comparison sample, the bottom row shows
our comparison with the SEGUE stars. Temperatures are fine inboth occasions. In the absence of parallaxes, gravity information is marginal, leading to
large uncertainties. Similarly, our high resolution sample has virtually noU-band photometry, such that metallicities are weakly determined. This pushes the
expectation values strongly towards the middle.
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Figure 12. Bayesian expectation values for the SEGUE sub-sample compared to the results from the SEGUE parameter pipeline. The colour codes the quality
measureQ, as in Fig. 13.

4.3 SDSS/SEGUE: Photometry and low-resolution Spectra

Fig. 12 shows the comparison of our parameter expectation values
with the SEGUE DR9 data release. Colour codes the quality mea-
sure

Q = log10

∫

Pph,mod,pr,astr · PspdX

2
∫

P2
ph,mod,pr,astrdX +

∫

P2
spdX

, (25)

which gives a simplified indication on how well the spectroscopic
PDF agrees with the remaining information.

Our temperatures are systematically colder than SEGUE DR9
by about 135 K. This is a consequence of our spectral and photo-
metric Teff scales being 160 K and respectively 80 K colder, sug-
gesting that SEGUE DR9 overestimates stellar temperatures. Our
spectroscopic temperature scale is nearly identical with that of
(Allende Prieto et al. 2008, hereafter AP08), which is on average
∼ 170 K below SEGUE DR9 derivations. The strength of our full
approach becomes apparent in the residual scatter of the tempera-
ture values after correcting for the systematic offset: while spectro-
scopic and purely photometric temperatures give a residualrms of

∼ 138 K and∼ 174 K relative to SEGUE DR9, the full approach
excels with 87 K.

The Bayesian gravities are systematically higher for suspected
main sequence stars (log(g)> 4 in both determinations), reflecting
the systematic gravity underestimates of SEGUE DR9 in this range
(also confirmed by SEGUE not matching expectations for the main
sequence). The purely spectroscopic gravities of our method are
significantly lower than DR9 and AP08 by∼ 0.45 dex in the inter-
mediate and lower gravity range (using log(g)< 4.0 in AP08). This
is clearly identified as a bias, since the Bayesian approach reports
too young ages, especially for several metal-poor stars. Though the
Bayesian approach cannot completely eradicate a systematic bias in
one of its inputs, it strongly reduces this problem by systematically
increasing the surface gravities by an average of 0.25 dex compared
to the purely spectroscopic value.

The Bayesian metallicity determinations for [Fe/H] between
−2 and∼ −0.6 dex are robust. However, metal-rich stars have a
recognizable metallicity difference between our photometric and
our spectroscopic determinations, with the latter being systemat-
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Comparisons to reference sample
parameter ∆µ σ ∆µastros. σastros.

Teff/K (65± 19) 141 (69± 13) 66
log(g)/dex (−0.024± 0.017) 0.13 (0.031± 0.009) 0.046
[Fe/H]/ dex (−0.099± 0.026) 0.19 (−0.049± 0.014) 0.07

Table 1. Differences in the mean expectation values of our sample minus
the reference sample∆µ and rms scatter ofσ for the entire reference sam-
ple (left two columns) and the subsample with astroseismic determinations.
While the astroseismic subset has competitive accuracy andprecision, the
remainder of the reference sample strongly scatters against our values.

ically lower. For the open clusterM67 ([Fe/H] ∼ 0.0 or ∼ 0.05
Magic et al. 2010; Gratton 2000) our spectroscopy alone gives
[Fe/H] − 0.17 versus a photometric estimate of∼ 0.05. As in
the case of the gravities, the Bayesian method partly mitigates this
problem: photometric metallicities in this range push the combined
estimates towards higher values; however, due to the intrinsic un-
certainty of 0.2 dex, the corrections are minor. This also shows the
importance of fair error assessment: overconfident, i.e. too small,
error estimates from spectroscopy prevent a stronger correction of
the value by the photometric information, which has intrinsic un-
certainties of∼ 0.25 dex in this range. Tests show stability of our re-
sults down to a signal to noise ratio of∼ 30 and checks on the con-
tinuum placement yielded no conclusive evidence. It is verylikely
that a finer resolution of the grid of synthetic spectra, its extension
to a larger wavelength coverage5, and allowing forα-enhancement
will solve the problem. This work is in progress and will be pre-
sented in a future paper dealing specifically with the analysis of
SEGUE spectra.

The most important result is, that even with systematic biases
present in the inputs, the Bayesian method itself remains robust,
i.e. other parameters are not strongly affected, and the solutions are
pushed towards a significantly less biased result.

4.4 Photometry, Parallaxes and high-resolution Spectra

Figure 13 compares the reference parameters (x-axis) to theex-
pectation values from our full Bayesian analysis (y-axis).Again
colours encode the value of the quality measureQ from equation
25. We also give statistics in Table 1.

Currently, our spectral grids do not cover stars withTeff <

4400 K, log(g)< 1.4 and assume a slow stellar rotation of 1 km s−1,
which is typical for most G and K stars (Fuhrmann 2004). Hence,
for the spectroscopic comparison sample we have to exclude stars
with Teff > 4500 K and drop the fast rotating starsη Bootis and
µ Leonis, which havevsini ∼ 15 km s−1 and∼ 5 km s−1. We also
removeξ Hya due to contradictory results from different astroseis-
mic derivations (Stello et al. 2006). This leaves 20 stars with 53
spectra. The two metallicity outliers at high metallicity in Fig. 13
are ǫVir andβ Gem. Both have very high macro-turbulence val-
ues (∼ 5 km s−1 Hekker & Meléndez 2007), which contradict the
current assumptions of our spectral pipeline.

From Table 1, it is apparent that if we confine the sample to the
subset with astroseismic determinations, the random mean scatter
in all quantities is reduced, by more than half. This impliesthat only
the astroseismic subset can match or exceed our precision, while
the Bayesian method is clearly superior to the traditional analysis

5 Currently we effectively use less than 1% of the SEGUE spectral range.
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Figure 14. Ages and metallicities for the high-resolution reference sample
with Bayesian stellar parameters. Colours encode the temperature estimate.
For better visibility we merged the different values of each star according to
Table 2.

on comparable data. Some of the reference gravities were derived
from Hipparcos parallaxes, which should make them similar to our
results. In this case, our fully Bayesian determinations ingravity
appear more reliable than the less sophisticated referencebecause
they also take into account physical information from colours and
spectra. InterferometricTeff, although they are usually taken to be
mildly model-dependent, still require an estimate of limb darkening
and bolometric fluxes. The former are determined with 1D LTE
model atmospheres, while Chiavassa et al. (2010) showed that 3D
hydrodynamical models predict different centre-to-limb variation,
which may cause systematic biases in angular diameter estimates.
Bolometric fluxes are estimated by interpolating between observed
photometric magnitudes with the help of theoretical spectra, giving
rise to another systematic uncertainty.

It is instructive to compare the full method results to the spec-
troscopic results. In the bottom row of Fig. 13 we show expectation
values and parameter uncertainty from purely spectroscopic infor-
mation (green error bars) and when using spectroscopy plus the
model prior (coloured points with blue error bars). Spectroscopic
surface gravities alone are generally too low by (0.17± 0.06) dex
with a residual scatter of about 0.4 dex compared to the full solution
(see Ruchti 2013, for discussion of similar spectroscopic underesti-
mates). Using spectra in combination with stellar evolution models
in the Bayesian framework, but excluding the parallax and photo-
metric information, improves the residual scatter to∼ 0.3 dex and
fully removes the systematic offset. Hence, while spectroscopic in-
formation alone cannot compete with astrometric information, it
gives sufficient information on surface gravity to allow for decent
values derived by the Bayesian framework.

In Table 2 we provide the stellar parameters and ages from the
full Bayesian method. When more than one spectrum is presentfor
a star, we provide the weighted average of the expectation values
and errors (we have to assume that the errors between the single
determinations are highly dependent) for single spectra. Where no
spectral information is available, we fill in the results from the com-
bination of photometry and parallax measurements.

4.5 Temperature-gravity Plane, Ages and Distances

Inspection of sample distributions in parameter space, like in the
temperature-gravity planes shown in Fig. 16, provides clues about
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Figure 13. Expectation values from our Bayesian parameter determinations versus the reference values for stars with high-resolution spectra. In the top row
we show the full Bayesian determinations using all available information, i.e. parallaxes, photometry, spectroscopyand stellar model compared to reference
values from Heiter et al. (in prep.), which are derived from interferometry, asteroseismology and parallaxes. The bottom row depicts the parameter expectation
values from spectroscopy alone (green error bars) and from spectroscopy+ the model prior (but no photometry or astrometry).
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Figure 15. Distance error estimates for the Bayesian method in the
temperature-gravity plane. Evidently, distance errors and classification un-
certainties are not a clear function of magnitude. While clearly identified
main sequence stars offer the best accuracy, even stars with high gravity es-
timates can have low confidence in their actual classification and distance
estimates.

the reliability of each parameter determination. In this figure we
show the HR diagrams in the (Teff , log(g))-plane with expectation
values from the Bayesian method (top row), versus the reference
parameters (bottom), for both the SEGUE sample (left hand side)
and the high-resolution reference sample (right). To facilitate the
interpretation, we plot isochrones at 10 and 13 Gyr at three different
metallicities (−2,−1,0), matching the colour scale of the stars.

The key differences between our results and those determined
by conventional methods are obvious. Despite the mildly biased
spectroscopic gravity estimates, our results show a clearly supe-
rior performance in this plot. The Bayesian results cover the main

sequence, while SEGUE DR9 does not attain main sequence val-
ues. Even more striking is the appearance of unphysical stars: Both
SEGUE DR9 and the reference sample from Heiter et al. have stars
in highly unphysical positions, with the error estimates not even
close to the offset from the nearest evolutionary sequence. E.g. both
SEGUE DR9 and the high-resolution reference sample place three
stars around [Fe/H] ∼ −1 far right of the turn-off or respectively
right of the main-sequence. The plot suggests that the gravity off-
sets between the high-resolution reference values and the Bayesian
method track back to a neglected metallicity effect in the reference
sample. In principle the Bayesian method could yield stars in be-
tween the sequences, since we here give expectation values.A hint
of this tendency can be seen, but by construction our errors will
correspond to the offset, because the actual likelihood at the un-
physical points is near zero.

The resulting age-metallicity relation for the high-resolution
sample is displayed in Fig. 14. To make the plot easier to read,
we merged the entries for different spectra as in Table 2. The pic-
ture very much resembles the results of Casagrande et al. (2011).
The younger expectation values for one of the very metal-poor stars
corresponds to a larger error estimate, forcing the expectation value
away from the hard boundary given by the age of the universe. Fur-
ther there is no striking trend in metallicity at younger ages.

The importance of a reliable assessment of all stellar param-
eters in one single approach is demonstrated in Fig. 15. Herewe
plot the same stars from SEGUE as in the top left panel of Fig. 16,
but now colour coded with the estimated fractional distanceerror.
It is apparent that even some very high gravity estimates areno
guarantee for a good main sequence classification, vice versa stars
with lower gravity can have high distance confidence. As expected,
these stars are usually cleanly identified subgiants, giants, or even
better, red-clump stars. While the distance and its uncertainty are in
principle enough to support estimates of mean motion and velocity
dispersions in a population, we point out that an investigation of
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velocity distributions themselves requires accurate estimates of the
exact shape of the probability distribution in distance space, which
the Bayesian method can deliver.

5 COMPARISON TO SIMPLIFIED APPROACH

In this Section we attempt to compare our implementation of
spectroscopic information to an approximation by one-dimensional

Gaussian uncertainties. While this is certainly not the only point by
which our algorithm differs from other studies in the literature, the
simplification of the spectroscopic information is common to the
works we are aware of.

We perform this experiment on the SEGUE sample. To de-
grade our spectroscopic results, we calculate the uncertaintiesσ
and mean/expectation values (µTeff , µlog(g), µ[Fe/H]) of each quan-
tity separately and then change the spectroscopic PDF to a product
of one-dimensional Gaussians in each parameter:

Psp(X|Osp) = N · exp















−
∑

i

(Xi − µi)2

2σ2
i















, (26)

wherei =
{

Teff , log(g), [Fe/H]
}

andN is the normalisation.
As we see from the spectroscopic PDFs in the top right panels

of Fig. 8 and Fig. 7 the spectroscopic information can by no means
be described as a product of Gaussian errors inTeff , log(g), and
[Fe/H] separately: the PDF is not even remotely aligned with the
coordinate axes and, for most stars we examined, shows a highly
irregular shape.

The top panel in Fig. 17 shows the relative shifts between our
full approach and the more conventional approximation inTeff and
log(g) for each star, normalised by the errors derived in ournormal
method, i.e.

ǫTeff = (〈Teff〉 − 〈Teff〉classic)/σTeff . (27)

Intuitively one might expect very small changes, because apart
from approximating the spectroscopic PDF, we left all information
untouched. The contrary is true, since the shape of the spectro-
scopic PDF gets distorted and now intersects the other constraints
in parameter space at different locations (this problem is aggravated
with higher dimensionality of parameter space and a more irregu-
lar PDF). Consequently the expectation values of the parameters
scatter by more than 1σ. The failure of the ”classic” approach can
be seen in Fig. 18, where we plot the photometric, spectroscopic
and photometric probability distributions for our full approach on
the left versus the degraded approach on the right hand side.Look-
ing at the invoked difference in the spectroscopic PDF, which, more
importantly does not carry any metallicity dependence, helps to un-
derstand the stark differences in the resulting parameters.

The bottom panel in Fig. 17 shows the errors in surface gravi-
ties from each approach. If the classic approximation produced ro-
bust error estimates, the values should scatter tightly around the
1 : 1 line, instead there is only very weak correlation. The be-
haviour is a bit more benign in temperatures than in gravities and
metallicities. While the diverse systematics indicate that our results
are not perfect anyway, the big deviations both in the estimated
values and their quoted uncertainties show that the traditional ap-
proach to the spectroscopic PDF does not provide a suitable ap-
proximation. Thus, use of the full information is mandatory.

6 DISCUSSION AND FUTURE DEVELOPMENTS

The method presented in this work is essential for accurate deter-
mination of astrophysical parameters of stars. Though the demon-
strated scheme is essential to obtain accurate and objective error
determinations6he computational cost is affordable. The algorithm
is parallelized and without efforts to make it more efficient took
about 20 CPU-minutes per star way to extract information from the

6 T
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Figure 16. Expectation values from our Bayesian pipeline (top), versus SEGUE DR9 (bottom left) and the high-resolution referencesample from Heiter et al.
(in prep., bottom right). Metallicities from each derivation are coded in colours, which are also used for the 10 Gyr (dashed) and 13 Gyr (solid) isochrones for
metallicity [M/H] = −2,−1, 0. Note the disappearance of stars in unphysical positions (right of the turn-off, we mark with grey circles three stars in each the
DR9 and high resolution reference samples that are severalσ in the forbidden region) in the Bayesian method, which are present both in the low and the high
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current and upcoming Galactic surveys, several shortcomings need
and will be addressed.

• We are working on extending the grids of stellar spectrum
models, i.e. wider wavelength coverage (UV to IR) and finer grid
resolution, inclusion ofα-enhancement and rotation as extra di-
mensions in the grids.
• Especially on the low-resolution side, the continuum finding

algorithms need to be improved.
• Parameters, like micro-turbulence, which in fact parametrise

the deficits of the current 1D-models in physical realism, must be
better constrained or best be made obsolete by the use of more
physical models. In the short and intermediate range we willfind
smoother corrections on a denser grid that allow for more precise
evaluation. In the far future, this problem should be solvedby better
physics, i.e. 3D-NLTE calculations for stars, which are at present
still too costly.
• It is also interesting to include age- and mass- sensitive diag-

nostics (such as, Ca UV lines), that would in principle allowus to
choose spectroscopic models which are more appropriate in agiven
domain of the HRD. At present, the analysis of OBA stars relies on
NLTE model atmospheres, whereas LTE models are standard for
FGK stars.
• The stellar evolution models still apply rather simplistic(fre-

quently grey) atmosphere models. Consequent systematics can be
explored via residuals from this Bayesian method e.g. in magnitude
space, as well as aberrations of physical parameters. A long-term
goal would be to gear the stellar evolution codes with the same
atmosphere models used for the spectroscopic modelling to avoid
biases by partly contradictory models.
• The photometric information in our scheme is affected by red-

dening. Colour distortions and mismatches between the photomet-
ric and other information can be directly used to determine red-
dening, in addition spectral information can be extracted at high
resolution e.g. from interstellar Na D lines. Since we simultane-
ously derive probability distribution functions for stellar distances,
the method can be adapted for reddening reconstructions (like the
ones by Schlafly, Green & Finkbeiner 2013).

7 CONCLUSIONS

In this paper we present the first generalised Bayesian approach for
stellar parameter determination.

The essence of the Bayesian method is a combination of sev-
eral probability distribution functions in the multi-dimensional pa-
rameter space, which can be expanded arbitrarily dependingon
a) the available observational information for a star, and b) the



Bayesian spectroscopy 17

desired physical quantities. The presented framework simultane-
ously evaluates the spectroscopic informations (gained from com-
parisons to theoretical spectra) and all other sources of information.
This allows to calculate the full probability distributions in param-
eter space and helps to cut computational costs by pre-constraining
the parameter space that has to be searched with the spectroscopic
method.

In this work we showed how to combine low or high-
resolution spectroscopy, photometry, parallax measurements and
reddening estimates to estimate central physical parameters
Teff , log(g), [Me/H] of a star, as well as its mass, age, distance, or
detailed chemical composition. The exploitation of theoretical con-
straints like stellar models, as well as strong mutual dependence
or independence of different parameters reduce the complexity and
effective dimensionality of the problem and make the computation
possible. The scheme can be easily expanded to other sourcesof
information, in particular to astroseismic e.g. from CoRoTor Ke-
pler.

The presented method has unique advantages compared to
other available approaches:

• It makes an optimal and unbiased use of all observational data
and theoretical information for a star, thus providing the parameter
estimates that satisfy all observational constraints;
• The method is robust with respect to missing data, such as low

quality or missing spectral or photometric information.
• The method is vital to gain a grip on derived quantities. E.g.

to determine the distance of a star, it is not sufficient to know its
best-fit values for surface gravity, temperature, metallicity and their
errors; a fair assessment is only possible if we know the fullcom-
bined PDF in all parameters. We showed that indeed the Bayesian
estimates in particular for uncertainties differ from simple expecta-
tions.
• Data from different surveys can be analysed with exactly the

same scheme: stellar models are available in most photometric sys-
tems and the synthetic spectra grids can be folded with any instru-
ment response function. This avoids systematic offsets caused by
applying different analysis methods to different surveys and the
Bayesian method can serve as a benchmark for cross-calibration
between surveys.

We compared our approach to the results of a traditional
Bayesian analysis on the SEGUE sample. We use the same pho-
tometric input, priors and even spectroscopic analysis, but approx-
imate the spectroscopic PDF by a Gaussian distribution, as usually
done in the literature. We find substantial shifts in all parameters,
frequently by several standard deviations. This demonstrates that
neglect of the full PDFs leads to wrong parameter estimates and
unreliable estimates of their errors. Use of our or an equivalent
method, which is able to map out the true shape of the full spec-
troscopic (or any other) PDF, is hence mandatory for any analysis
of stellar parameters.

The method requires unbiased assessments from all its sources
of information. However, we know that systematic biases (e.g. the-
oretical atmosphere flaws, stellar evolution uncertainties like con-
vection, nuclear reaction rates, etc.) currently affect these sources.
This vulnerability can bias the entire derived parameter set. To test
the performance of our method we compared both to reference
samples for low-resolution and for high-resolution spectra. In all
cases where we encounter problems, e.g. lower spectroscopic grav-
ities, the Bayesian method remains robust and pushes all values to-
wards the benchmark. Comparisons with each astroseismically and
traditionally derived parameters shows that the Bayesian method

provides excellent results on the astroseismic sample and clearly
superior performance compared to the traditionally derived refer-
ence. We provide parameter estimations for these stars in Table 2.

Similarly the photometric information is affected by red-
dening. However, this impact can be directly used to deter-
mine reddening especially in a larger sample. By the simul-
taneous determination of distance distributions, the method of-
fers an excellent basis for reddening measurements similarto
Schlafly, Green & Finkbeiner (2013).

Up to the last decade, sample sizes of Galactic surveys deter-
mined the scope of model comparisons: at sample sizes of∼ 1000
stars, Poisson noise was usually of the same importance as system-
atic uncertainties and knowledge of the detailed error distributions.
In the future we can advance from a more qualitative understanding
of best-fit parameters for our Galaxies to full quantitativeanalysis.
The implies, however, that progress in evaluating the upcoming and
present large stellar surveys for the Milky Way critically depends
on our ability to cope both with the systematic biases and more im-
portantly derive precise and accurate error distributions, and hence
on the development and success of methods like the presented.
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9 APPENDIX

9.1 Selection function

Previous approaches (e.g., Burnett & Binney (2010)) introduced a
selection function. With our choice of symbols, this would read:

P(X|S,O) = P(O|X)P(X)
P(S|O,X)
P(S,O)

(28)

whereS denotes the selection function. Burnett & Binney (2010)
then split the selection function into two parts: the one that depends
on the parametersX and the other one, that does not and is thus of
no importance. However, there appears to be no reason to introduce
the other term: selections of a sample are nearly almost madeon ob-
servations and not on stellar parameters that are not known apriori.
The one example of such a selection function acting on parameter
space we could find in the literature, is actually based on a mis-
understanding by Burnett & Binney (2010): Knowing the available
parallax measurement and its error for a star, they try to mimic a
typical kinematic quality cut in a sample by zeroing all probability
that produces too low parallaxes in proportion to the measured par-
allax error. However, it is not clear why one should not use the full
parallax information here: applying the selection function implies
that one has the knowledge necessary to compute the full likeli-
hood, the selection function instead gives an undesirable one-sided
constraint against far-away stars, and when pretending notto have
the parallax information for testing purposes, the selection function
will arbitrarily cut away the tail of effective distance overestimates,
leading to wrong confidence and biased error estimates.

9.2 Details on priors

For the metallicity-iron abundance prior we assume a fixed alpha
enhancement. It is known that also alpha enhanced stellar models
are very well approximated by scaled solar abundance models(cf.

http://arxiv.org/abs/1309.1099
http://arxiv.org/abs/0706.3850
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Figure 18. Probability distributions for the SEGUE star on plate 2041,fibre 8 from photometry and stellar models (left column), andfrom spectroscopy
only (centre column), once in our full approach (top) and in the Gaussian approximation (bottom) are combined into the final PDF (right). Note that the
approximated result on the right hand side is a simple multiplication of the spectroscopic and model/photometric PDFs, while the left hand side is not, because
it is a projection of a combination in a higher dimensional space.

Chieffi et al. 1991; Salaris & Weiss 1998). We use this fact by set-
ting the relation:

[Me/H] =



















[Fe/H] + 0.1 if [Fe/H] < −1.0
[Fe/H] − 0.2([Fe/H] + 0.5) if −1.0 6 [Fe/H] < −0.5

[Fe/H] if [Fe/H] > −0.5
(29)

The combined prior probability density of age and metallicity
is used as::

P(τ, [Me/H]) = N·P([Me/H])·























0 if τ > 14 Gyr
1 if 11 Gyr6 τ 6 14 Gyr

exp
(

τ−11 Gyr
στ

)

if τ < 11 Gyr
(30)

where

στ =



























1.5 Gyr if [Me/H] < −0.9
(

1.5+ 7.5 · 0.9+[Me/H]
0.4

)

Gyr if −0.9 6 [Me/H] 6 −0.5

9 Gyr else.

(31)

For the sake of simplicity we give each population the
same upper limit of 14 Gyr and allow for a constant density in
age down to 11 Gyr. Cosmological studies as well as observa-
tions in the Milky Way disc (Madau, Pozzetti & Dickinson 1998;
Aumer & Binney 2009; Schönrich & Binney 2009) measure a sig-
nificant decline of star formation rates with time even for Galactic
disc stars. Observations and these theoretical models alsoderive
a significantly older age for more metal-poor populations, which
motivates the decreasing time constant towards lower metallicities.
The high altitude of the SDSS/SEGUE sample additionally favours
older ages (cf. Just & Jahrreiss 2007), but in order not to conflict
with Cromwell’s rule on the other hand, we lean towards a rela-
tively moderate decline with time.

SEGUE measures mostly stars in the high disc, so we describe
the spatial distribution for our stars by a primitive thick disc plus
halo model, i.e.:

ρ(R, z) = e−z/z0e−(R−R0)/Rd + 0.03 ·

(

r
R0

)−2.5

(32)

whereR is the cylindrical galactocentric radial coordinate,r the
galactocentric distance,z the altitude above the plane,zd = 0.9 kpc
the assumed scale height of the Galactic disc,Rd = 2.5 kpc the scale
length of the Galactic disc,R0 = 8.27 kpc the assumed galactocen-
tric distance of the Sun from McMillan (2011); Schönrich (2012).
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name HIP spectra [Fe/H] σ[Fe/H] Teff σTeff log(g) σlog(g) τ στ remark

HD 107238 60172 0 -0.14 0.26 4473 81 2.04 0.20 6.3 3.3 phot.
HD 122563 68594 4 -2.650 0.076 4809 47 1.54 0.13 9.7 2.9 comb.,bad photometric T
HD 140283 76976 4 -2.73 0.11 5608 40 3.539 0.056 13.49 0.47 comb.
HD 173819 92202 0 -0.42 0.64 4240 95 1.05 0.25 2.9 4.0 phot
HD 190056 98842 0 -0.11 0.29 4449 94 2.07 0.17 5.8 4.0 phot
HD 220009 115227 0 -0.43 0.28 4369 85 1.67 0.19 6.2 3.9 phot
HD 22879 17147 3 -0.592 0.024* 6006 19* 4.316 0.044* 12.1 1.2*comb.1

HD 84937 48152 1 -2.11 0.14 6242 70 3.931 0.082 13.57 0.41 comb.2

ksi Hya 56343 1 -0.458 0.032* 4933 35 2.476 0.080 3.9 1.6 comb., metallicity fit questionable
Procyon 37279 4 -0.161 0.078 6515 79 3.993 0.073 2.44 0.53 comb.
alpha Cen A 71683 2 0.275 0.063 5939 79 4.380 0.066 3.7 2.5 comb.
alpha Cen B 71681 1 0.175 0.072 5364 58 4.482 0.041 6.6 4.4 comb.
Psi Phe 8837 0 0.14 0.36 3586 31* 0.65 0.22 4.9 4.5 phot.3

Sun 0 4 -0.013 0.046 5842 49 4.464 0.063 4.3 2.9 comb.
18 Sco 79672 2 -0.050 0.059 5849 54 4.492 0.064 4.3 3.2 comb.
61 Cyg A 104214 0 -0.45 0.43 4563 83 4.717 0.060 6.8 4.0 phot.
alpha Tau 21421 0 0.09 0.22 3889 57 1.21 0.14 5.9 3.8 phot.
Arcturus 69673 0 -0.27 0.31 4399 91 1.82 0.19 4.2 1.9 phot.
alpha Cet 14135 0 -0.53 0.26 3723 41 0.50 0.16 5.5 3.7 phot.
tau Cet 8102 1 -0.520 0.047 5515 32 4.612 0.053 7.8 3.9 comb.
beta Ara 85258 0 -0.07 0.36 4118 83 1.02 0.20 3.3 1.3 phot.
mu Ara 86796 1 0.379 0.073 5950 97 4.334 0.077 3.9 2.3 comb.
Pollux 37826 1 -0.376 0.043 4846 53 2.66 0.12 4.3 2.1 comb., high macroturbulence
eps For 14086 2 -0.479 0.049 5218 68 3.614 0.072 7.2 2.0 comb.
eps Vir 63608 2 -0.457 0.050 5024 58 2.62 0.12 1.11 0.75 comb.,high macroturbulence
beta Vir 57757 1 -0.037 0.080 6225 93 4.163 0.077 3.8 1.1 comb.
eta Boo 67927 0 0.12 0.37 6332 162 3.868 0.093 2.8 1.7 phot., fast rotator
delta Eri 17378 2 0.047 0.050 5139 59 3.791 0.071 6.99 0.88 comb.4

eps Eri 16537 3 -0.202 0.050 5184 27 4.562 0.049 6.5 3.8 comb.
gam Sge 98337 0 -0.13 0.25 3942 83 1.15 0.19 5.6 3.9 phot.
gmb 1830 57939 1 -1.56 0.11 5304 36 4.649 0.060 7.8 4.1 comb.
mu Cas 5336 1 -0.598 0.010* 5584 39 4.601 0.053 5.6 3.6 comb.1

mu Leo 48455 0 0.24 0.22 4607 74 2.43 0.11 4.7 3.7 phot., lowTeff and rotating
beta Hyi 2021 3 -0.189 0.081 5848 79 3.997 0.074 6.89 0,58 comb.

Table 2. Parameter expectation values and errors for metallicity [Fe/H] in dex, temperatureTeff in K, surface gravity log(g) in dex, and ageτ in Gyr, all values
rounded to two significant digits in the formal error. The second column provides the Hipparcos catalogue number for eachstar, the third column the number
of spectra involved. Stars outside the spectral grid or withbad spectra have 0 used spectra and are denoted withphot. in the last column, as their parameters
stem from photometry, stellar models and parallax measurements, while ”comb.” in the last column denotes a full Bayesian approach. Detailed remarks on
single stars:1internal rim solution by [α/Fe] step at−0.6 dex, metallicity and errors biased.2UVES and HARPS spectra dropped.3Outside model grid (rim
solution).4NARVAL bad spectral fit. disregarded, though Bayesian values in line with other estimates.


	1 Introduction
	2 Method outline
	2.1 Bayesian scheme
	2.2 Parameter space
	2.3 Observations
	2.4 Summary of notation

	3 Detailed algorithm
	3.1 Contributors to the posterior PDF
	3.2 Priors Ppr
	3.3 Stellar models Pmod
	3.4 Photometric data P'ph
	3.5 Spectroscopic data P'sp
	3.6 Parallaxes and other additional data
	3.7 Combining the PDFs
	3.8 Calculating projections, central values, and uncertainties
	3.9 Short recipe of the algorithm
	3.10 Selected examples

	4 Application to observations
	4.1 Datasets
	4.2 Photometry with and without Astrometry
	4.3 SDSS/SEGUE: Photometry and low-resolution Spectra
	4.4 Photometry, Parallaxes and high-resolution Spectra
	4.5 Temperature-gravity Plane, Ages and Distances

	5 Comparison to Simplified Approach
	6 Discussion and future developments
	7 Conclusions
	8 Acknowledgements
	9 Appendix
	9.1 Selection function
	9.2 Details on priors


