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ABSTRACT

We present a novel approach, based on robust principal coemp®analysis (RPCA) and
maximal information coefficient (MIC), to study the redstdependence of halo baryonic
properties. Our data is composed by a set of different phygigantities for primordial mini-
haloes: dark-matter mas8/g.,), gas massN/;.s), stellar mass, molecular fractior, (o),
metallicity (Z), star formation rateFR and temperature. We find thafy,, and M, are
dominant factors for variance at high redshift. Nonetrelesth the emergence of the first
stars and subsequent feedback mechanisgg, SFRandZ start to dominate the variance.
The RPCA gives three principal components (PCs) that araldapo explain more than 97
per cent of the data variance at any redshift, while 2 PCsllysazcount for more than 92 per
cent. Our MIC analysis suggests that all the gaseous piepégve a stronger correlation with
Mas than withMay,, while M, has a deeper correlation with,,1 than withZ or SFR This
indicates the crucial role of gas molecular content toaidtistar formation and consequent
metal pollution from population Il and population 1l/l reges in primordial galaxies. Finally,
a comparison between MIC and Spearman correlation coeifisfeows that the former is a
more reliable indicator when halo properties are weaklyalated.

Key words: cosmology: large-scale structure of Universe, early Unisigemethods: statisti-

cal, N-body simulations

1 INTRODUCTION

The standard model of cosmology predicts a hierarchal struc
ture formation driven by cold dark matter (e.@w@pm
where galaxies form from molecular gas cooling within grow-
ing dark-matter haloes. Hence, understanding the coioeldte-
tween different properties of the dark-matter haloes iseirafive

to build up a comprehensive picture of galaxy evolution. ¥an
authors have explored the correlation between dark-haipeqmir
ties, such as mass, spin and shape, both in low- (e.g
[2007:[Hahn et al. 2007; Maccio et al. 2007; Wang ét al. lzomj) a
hlgh redshift (e.gl. Jang-Condell & Herngliist 2001; deZ2oet al.

2) regimes. Estimating the strength of these coroelgitis
crltlcal to support semi-analytical and halo occupationdeis,
which assume the mass as determinant factor of the halo prope
ties (e.g.. Mo & Whits 1996; Cooray & Shéth 2002; Berlind €t al
[2003] Somerville et al. 2008). Nevertheles, alternatiyerapches,
based on principal components analysis (PCA), found that co
centration is a key parameter, contrary to what expectedréef
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(Jeeson-Daniel et Hl. 2011; Skibba & Mac¢cio 2011), andssee
the need for further investigations. PCA belongs to a fawifitech-
niques ideal to explore high-dimensional data. The mettmd c
sists in projecting the data into a low-dimensional fornair@ng
as much information as possible (elg., Jdlife 2002). HeR@A
emerges as a natural technique to investigate correlatidriean-
poral evolution of halo properties. Due to its versatilBCA has
been applied to a broad range of astronomical studies, sustel
lar, galaxy and quasar spectra (€.g.. Chenlat al| 2009; Mc&al.
[2010), galaxy propertied (Conselice 2006; ScarlatalétG07®
Hubble parameter and cosmic star formati&@#)(reconstruction
(e.g., Ishida et al. 2011; Ishida & de Souza 2011), and soparn
photometric classification (Ishida & de Soliza 2013).

Despite its generality, PCA is not the only way to han-
dle huge data sets, and the growth in complexity of scien-
tific experimental data makes the ability to extract newswor
thy and meaningful information an endeavmer se The yearn-
ing for novel methodologies of data-intensive science gise
to the so-called fourth research paradigm (¢.g.. Belllé2a09).
Data-mining methods have been used in many areas of knowl-
edge such as genetics (e.g@2004) and financial
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marketing decisions (e.g.@OOl), and their impo
tance for astronomy has been recently highlighted as wel,(e
Ball & Brunnel |2010;| Graham etal. 2013; ins ét al.
[2013;| Martinez-Gomez et dl. 2013). Likewise observatiats-
mological simulations are continuously increasing in ctaxipy,
lessening the distance between observed and synthetidedgta
Overzier et all. 2013; de Souza etflal. 2013b). None the lessyh
plication of data-mining to cosmological simulations rénsaa
terra incognita

In this work, we investigate the statistical properties of
baryons inside higlz- haloes, including detailed chemistry, gas
physics and stellar feedback. We make use of Robust PCA (RPCA
and maximal information coefficient (MIC) to study a set ofiva
ous halo parameters. While RPCA represents a generatizatio
the standard PCA, whose advantage is its resilience toeositli
and skewed data, MIC is expected to be the correlation asalys 2
of the 21st centur@-ll), in particular due to Miditgbi
in quantifying general associations between variablegrdfore,
this project represents the first application of MIC to N-aibwdro
simulations, and the first use of PCA to explore the low-mask e
of the halo mass function and the birth of the first galaxies.

The outline of this paper is as follows. In Sect[dn 2, we de-
scribe the cosmological simulations. In Secfibn 3, we uhfice the
statistical methods. In Sectigh 4, we present our analysistaain
results. Finally, in Sectidn] 5, we present our conclusions.

2 SIMULATIONS

We analyzed the results of a cosmological N-body, hydropche
istry simulation [(Maio et &l. 2010, 2011; Maio & lanndzzi 291
that was run by means of a modified version of the smoothed-
particle hydrodynamics cOdRADGET2 5). The mod-
ifications include relevant chemical network to self-cetetly
follow the evolution of €, H, H", H™, He, He", He'™, Ha,
H, D, D", HD, HeH" (e.g. ]Ygghlgag dall 2003: Maio etlal. 2006,
ESE’ ) ultraviolet background radiation, metal ytdin ac-
cording to proper stellar yields (He, C, O, Si, Fe, Mg, S,)etc.
lifetimes, and stellar population for Pop Il and Pop Il/gh@es
(Tornatore et &l, 2007), radiative gas cooling from molaguieso-
nant and fine-structure transitions ( 007q ref-
erences therein) and stellar feedback (Springel & Herm@0g3).
The transition from the Pop Il to the Pop II/l regime is detéred

by the value of the gas metallicityZ) compared to the critical
value Z..i; (e.g., .Omukai 2000; Bromm etlal. 2001), assumed to
belO*“Z@E. The cosmic field is sampled at redshift 100, with
dark-matter and baryonic-matter species in the cosmabgian-
dard framework. We considered snapshots in the range: < 19,
within a cubic volume of comoving side 0.7 Mpc, adx 320°
particles per gas and dark-matter species correspondiparticle
masses ofi2 Mo h ™! and275 M h !, respectively. The identi-
fication of the simulated objects is done by applying a Frseot
Friends (FoF) technique and substructures are identifietsing a
SubFind algorith09), which discriminaesong
bound and non-bound particles. In order to avoid numeridal a
facts, we selected only those structures in which the gatenbis
resolved with at leas?00 gas particles. This usually corresponds

1 Although uncertain (Bromm & Loéb 2003; Schneider é ),

results are usually not very sensitive to the precise valdepted

(Maio et al[2010).

to selecting only objects with a total number of particlesiieast
~ 10°.

The simulation outcomes investigated here consist of seven
parameters: dark-matter mas3/{(.), gas mass Nls.s), Stel-
lar mass (/star), Star formation rate SFR, Z, gas tempera-
ture (T), and gas molecular fractiofxmo1). We refer the reader
to previous works, where more details and additional aeslys
about halo spin and shape distribution (de Souzalét al. 3013a
feedback mechanisms_(Maio ef Al. 2011; Petkova & Maio [2012;
-), primordial streaming motlo),
non-standard cosmologies (Maio et al. 2006; Maio & lannhuzzi
12011; Maiol 2011; de Souza et al. 2013c), highsminosity func-
tion (Salvaterra etall 2013; Dayal et al. 2013), early gamma
ray bursts- |(Campisi etal. 2011; de Souza et al. 20 2012;
al.[2012) supernovae-host propertie
IM dg Souza etlal, 2011b; Johnson bial. 12013 Whglgh etal.
), Lye emitters |(Jeeson-Daniel efal. 2012) and DLA-
system chemical conteﬁm 13) are presentediiznd
cussed.

3 STATISTICAL ANALYSIS

Robust Principal Components Analysis.The ultimate goal of
PCA is to reduce the dimensionality of a multivariate Hamhile
explaining the data variance with as few principal compdsmen
(PCs) as possible. PCA belongs to a class of ProjectiondR (IP)
methods, whose aim is to detect structures in multidimeraidata
by projecting them into a lower-dimensional subspace (LO&g
LDS is selected by maximizing a projection index (Pl), whBte
represents aimteresting featurén the data (trends, clusters, hyper-
surfaces, anomalies, etc.). The particular case wherenaeiG?)
is taken as a Pl leads to the classical version of [BCA

Givenn measurementsy, - - - , z,, all of them column vec-
tors of dimensior’, the first PC is obtained by finding a unit vector
a which maximizes the variance of the data projected on it:

@)

2, ¢ t
a; =argmax S”(a'z1, - ,a Tn),

[la]|=1
wheret is the transpose operation aagis the direction of the first
Pdl. Once we have computed tile— 1)th PC, the direction of the
kth component, foil < k& < T, is given by
Sz(at:cl, catny),

ax = arg max 2)

[lal|=1,alay,---,alaj_;

where the condition of each PC to be orthogonal to all previou
ones, ensures a new uncorrelated basis. In spite of theaetiat
properties, PCA has some critical drawbacks as the sahgsitiy
outliers (e.g.. Hampel et 05) and inability to dealhwitiss-
ing data (e.g O) In order to overcome thisttimn
several robust versions were created based on the PP pei(eig.,

2 A set of measurements on each of two or more variables.

3 The PCs are computed by diagonalization of the data cowariaratrix
(£2), with the resulting eigenvectors corresponding to PCsaadesulting
eigenvalues to the varianesplainedby the PCs.

The eigenvector corresponding to the largest eigenvales ghe direction
of greatest variance (PC1), the second largest eigenvales the direction
of the next highest variance (PC2), and so on. Since cow@iamtrices
are symmetric positive semidefinite, the eigenbasis ioadimal (spectral
theorem).

4 argmax f(x) is the set of values af for which the functionf(z)

x
attains its largest value.
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[Croux et all 2007). Instead of taking the variance as a P1 if{Bq

a robudll measure of variance is taken. Two common measures of representing the highest normalized mutual informatidns.orhe

robust variance are: the median absolute deviafibAR),

MAD(K1,-+ ,kn) = 1.48med|x; — meds;], 3)
J 7

and the first quartile of the pairwise differences betweémata

points Q),

Q(Kr1, s kn) =2.22{|ki —Rr;[; 1 <i<j < n}(:)/47 (4)

where{k1, - ,kn} iS a given univariate dataset and the square
root of MAD or Q gives a robust varian@e Hereafter all calcula-
tions of the PCs are performed using the grid search bassgthlgo

[ 2007) wittMAD as a variance estimator, but usi@g
has no influence on our results.

Maximal information coefficient. The maximal information-
based non-parametric exploration (MINE) statistics repn¢ a
novel family of techniques to identify and characterizeagahrela-
tionships in data set 011). MINE introdu¢€ &b

a new measure of dependence between two-variables, whgh po
sesses two desired properties for data exploration: (igigity,
the ability to capture a broad range of associations andifura
relationshida; (ii) equitability, the ability to give similar scores to
equally noisy relationships of different ty&s

MIC measures the strength of general associations, basédeon
mutual informatiofl (MI) between two random variablg$, A and

B:
(i)

wherep(a) andp(b) are the marginal probability distribution func-
tions (PDF) ofA and B, andp(a, b) is the joint PDF.

Consider D a finite set of ordered paif$a:,b:),7 = 1,...,n},
partitioned into az-by-y grid of variable size(7, such that there
arez-bins spanning andy-bins covering, respectively.

The PDF of a particular grid cell is proportional to the numbg
data points inside that cell. We can define a characterisaizixn
M (D) of a setD as

MI(A,B) = > > p(a,b)log

acAbeB

©)

max(MI)
log min{z,y}’

EN

M(D) (6)

5 Robust statistics commonly use inter-quantile range oriameabsolute
deviation instead of mean and standard deviation, in oa@&etresistant
against outliers.

6 When the Pl is the standard variance, the first PC is the edgémvof
the data covariance matrix corresponding to the largesteajue. But this
does not hold for general choices of variance and approkienatgorithms
are necessary.

7 For comparison, Pearson coefficient measures the linealation be-
tween two variables, while Spearman coefficigRt Y measures the strength
of monotonicity between paired data.

8 In benchmark tests MIC equitability behaves better thaerothethods
such as e.g., mutual information estimation, distanceetation andR,. A
lack of equitability introduces a strong bias and entiresstes of relation-
ships may be misse013).

9 Mutual information measures the general interdependeateeen two
variables, while the correlation function measures thedindependence
between them (e.d:|0).

10 MIC tends to 1 for all never-constant noiseless functiogidtionships
and to O for statistically independent variables.

© 2013 RAS, MNRASO00, [1H7

MIC of a setD is then defined as
MIC(D)

max
0<zy<B(n)

@)

= M(D),, },
representing the maximum value &f subject ta) < zy < B(n),
where the functionB(n) = n"° was empirically determined by

Reshef et al. 2011,

4 RESULTS

Hereafter we discuss the relations between halo propertigsheir
relative importance. Our matrix is composed=ef 1500 haloes,
spanning the redshift range < z < 19, each containing at least
~ 10® particles. Each row of the matrix represents a halo and
each column represents one of the halo properties. RPCAeprob
the entire matrix at on. On the other hand, MIC is a pair-
variable comparison, therefore requiring N — 1)/2 operations,
with N being the number of halo properties. It is worth to highlight
here that each approach has its own advantages and disagksnt
RPCA is suitable for high-dimensional data, when a pair cannp
son becomes unfeasible, however the method only searahias fo
ear relationships. MIC, instead, finds general associgtiordata
structures, but may be impractical to deal with a large arhotin
parameters.

PCA. Figure[d shows the contribution of the first three PCsto

as a function of redshift. While 3 PCs account for more th@n
per cent ofS? at any redshift, 2 PCs explain more th@hper cent
except atz ~ 14, when the contribution drops &b per cent. The
sharp variation of the PCs around~ 14 — 16 acts as a smoking
gun for a global cosmological event. Indeed, this is a dicecise-
quence of firsBF episodes and the interplay between chemical and
mechanical feedback from the first stars, that takes plamendr

z ~ 15 — 20 (Maio et al/ 2010, 2011; Maio & lannuzzi 2011). As
molecules are produced over time, they lead to gas collapslégr
formation and metal pollution, with consequent back resctn
the thermal behavior of the surrounding gas (see e
[2011;Maio & lannuzzi_2011) This redshift range represemts a
epoch of fast and turbulent growth of the metal filling facfoom

~ 107% atz ~ 15to~ 107 '? atz ~ 14 (see Fig. 1 from
.1). At the beginning, only the gas at high déssi

is affected by metal enrichment, due $& concentration in these
regions. AsSF and metal spreading proceed, the surrounding
lower-density environments are affected as well. Superrimats
high-density gas within star-forming sites and, consetjyehot
low-density gas is ejected from star-forming regions byesopva
winds.

Figure[2 shows the relative contribution of each parameter t
PC1and PC2. At = 19, M4m andM,.s dominate PC1, followed
by a small contribution off". Nevertheless, as gas collapses into

11 The 0.6 exponent value represents a compromise since high values of

B(n) lead to non-zero scores even for random data, as each ptsnitge
own cell, while low values only probe simple patterns.

12 Before applying the RPCA, we standardize the halo progetjesub-
tracting the means and dividing by the standard deviatidrerdfore we
are formally using the correlation matrix that can be seeth@sovariance
matrix of standardized variables.
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Figure 1. Fraction of variance explained by the first 3 principal comgruts
as a function of redshift. Symbols represent the actuainesti values for
each snapshot, while the curves represent a smooth fittithg9iper cent
confidence level limited by the shadow areas.

potential wells, the relative contribution froi/,.s increases sur-
passingMam, atz =~ 15. The dominant contribution 6 andxmol

to PC1 atz &~ 14 indicates a critical epoch for the cosmic chemical
enrichment (see also discussion above), triggered by d vapia-
tion of xmo1, followed by a wide metal pollution at ~ 13. After a
decline in the chemical enrichment rate, a second peakadncurs
atz = 10. This self-regulated, oscillatory behavior is caused lgy th
simultaneous coexistence of cold pristine-gas inflows andietal
enriched outflows that create hydro instabilities and tletiupat-
terns with Reynolds numbers 10% — 10'° (see e.g. Fig. 2 from
.1). Finally at = 9, M4 and Mg.s have become
almost subdominant, since PC1 is mainly ledbwand Z, as a re-
sult of the ongoing cosmic heating fro&t and thermal feedback.
An inspection in PC2 (right panel of Figl 2) reveals thmporting
roles during the galaxy formation process. The PC1 peak iat
redshift 13 is preceded by a strong contributionS#fRand halo
masses to PC2. While the second PC1 peak,iaroundz ~ 10,

is anticipated by an increasing contribution to PC2 fronftneed
stars, which later explode as supernovae and enrich thestdelv

MIC. Figure$3B anfl4 show the correlation between the halo prop-

ertiesaz=10and 17, respectivm. The main diagonal shows the
distribution of each variadd, with the left vertical axis displaying
the number of haloes per bin.

The lower triangular part of the panel shows scatter plots fo
each variable combination superimposed by density costdinis
should facilitate a visual interpretation of the corregiog MIC
and SpearmanH) coefficients quoted in the upper triangular part
of the panel. At high redshift, due to the poor statisticsstnari-
ables are uncorrelated, receiving a low score by Bdttand MIC.

As expectedVz.s, Mam andT are strongly correlated, receiving
higher scores. Closely behind appeass,, which is directly de-
pendent on the local gas density andhowing a moderate corre-
lation with the 3 former quantities. An unexpected diffarerbe-
tween the two approaches appears when compafint/st.. and
the SFR While R, suggests a perfect correlation betweérand

13 We do not display results for > 17, since here there are too many
zeros in the matrix and the variance measurements arealsieeli

14 The variables are standardized by subtracting the meadijrdivby the
standard deviation and transforminglog(1 + x) for better visualization.
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Figure 2. Variable contribution for PC1 and PC2 as a function of reftlshi

Msiar, MIC found no significant association at= 17. This high-
lights the robustness of MIC with skewed and sparse datai@n t
redshift rangez 2 17, there are very few haloes with non-null
Z and Mg, values). Therefore, the higR, value for these two
guantities is misleading, as confirmed by a visual inspaaifche
corresponding distributions in the lower triangular partHigure

[B. During the course of cosmic evolution though, the coti@ts

between the properties of the haloes tighten and Bathnd MIC
converge for most of them at = 10 (with R, slightly overesti-
mating the strength of correlation compared to MIC), as show

Figure4.

5 CONCLUSIONS

We investigate the redshift evolution of the gas propertiepri-
mordial galaxies using robust PCA and MIC statistics.

This is the first attempt to probe the baryon properties olyear
mini-haloes and the effects of feedback processes by mdams o
statistically solid approach. We explore the correlatibdifierent
baryonic properties as expected from numerical N-bodyrdoyt
namical, chemistry simulations including gas moleculat aiomic
cooling,SF, stellar evolution, metal spreading and feedback effects.
We find that two PCs are usually capable to explain more than 92
per cent of the data variance in the entire redshift range.wWide
range of redshifts analyzed hee € z < 19) allowed us to study
the temporal evolution of the relative contribution of e&hto the
total variance. FirsBF episodes and feedback mechanisms cause a
drop of PC1 at ~ 14, when a sharp variation in the PCs behavior
marks the onset of cosmic metal enrichment.zAt- 14 the halo
properties are basically dictated by the halo mass.

(© 2013 RAS, MNRASO00, [1H7
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Figure 3. Correlations between different halo properties at retldfif The MIC and Spearman rank correlation coefficient acsvshin the top half matrix.
Values below 0.3 (weak correlation) are printed in blackween 0.3-0.7 (moderate correlation) are printed blueJemm@lues> 0.7 (strong correlation)
are printed in red. The panels on the diagonal show histag@nthe parameter values. The bottom half matrix shows desqgaibt for each pair-variable
combination. While the coefficients are estimated in thgioal parameters, the figures show the standardized vesiatzinsformed bjog(1 + z) for better

visualization.

Overall R, agrees reasonably with MIC, but MIC seems to
be more robust to study highly sparse data regimes (likerét ea
epochs). All gas properties, asidé,.s, Mam andT’, are weakly
correlated at high redshift. Nevertheless, due to the pragrbe-
tween chemical and mechanical feedback from the ongoitigiste
formation and the consequent back reaction on the thernhaivbe
ior of the surrounding medium, baryonic quantities stagiresent
a moderate to high level of correlation as redshift decredagar-
ticular, xmo1 Shows the highest level of correlation witl,.s, fol-
lowed by T, SFR M. and Z respectively. In general, structure
formation processes depend not only on the dark-mattergraje
erties, but also on the local thermodynamical state of tkewghich

© 2013 RAS, MNRASO00, [1H7

is, in turn, affected by coolingsFand feedback. Moreover, a com-
bined inspection in the first and second PCs reveals somesgtte
ing facts. The PC1 peak i at redshift 13 is preceded by a strong
contribution ofSFRand halo masses to PC2. While the second PC1
peak inZ, aroundz ~ 10, is anticipated by an increasing contribu-
tion to PC2 by the formed stars, which later explode as suapem
and enrich the Universe. Therefore stressing the impoetahstel-

lar evolution modeling in leading baryon properties in pidial
haloes.

This work represents a leap forward in the statistical asiglyf N-
body/hydro simulations, performed by means of RPCA and MIC
in a cosmological context. We therefore stress that the fisig- o
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Figure 4. Same as in Fid.]3, but at redshift 17.
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