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ABSTRACT

We present a novel method based on Bayesian inference t@ girysical parameters of stars
from any observed data. Here we focus on log(gy, [Fe/H], age, mass, and distance of a
star. As an input, we use spectra, photometric magnitudes]laxes, and stellar evolution
models. The method simultaneously computes full prolghudlistributions for all desired
parameters and delivers the first comprehensive and olgestior estimates. The classical
spectroscopic analysis, in the form of global spectrumtsssis, is directly integrated into the
Bayesian framework, which also allows to include chemidairelances in the scheme. We
lay out the mathematical framework and apply it to high-hetson spectra (UVES, HARPS,
NARVAL instruments), as well as low-resolution spectranfr&DSSSEGUE survey. The
method is flexible and can be applied to the analysis of sietfles, large stellar datasets,
or unresolved stellar populations. By its flexibility an@ tiimultaneous analysis of multiple
independent measurements for a star, it will be ideal toyaeadnd cross-calibrate the large
ongoing and forthcoming surveys, like Gaia-ESO, SDSS, @iathL SST.

Key words: stars: fundamental parameters — stars: distances — tedmighotometric —
techniques: spectroscopic — methods: statistical — metliada analysis

1 INTRODUCTION for data analysis and determination of stellar parame&tendard
spectroscopic inversion methods are commonly assumeddo-be
curate, however, they usually involve subjective and fyarelpro-
ducible elements, like line fitting and normalisation, ocide®ns
on spectral diagnostic features. Manual analysis of stdimited

to sample sizes of 1000 stars, unsuitable for large surveys. Ex-
isting automated methods usuallyffan from weakly constrained
systematics as well as idealised error estimates. So ffatt@mpts

to overcome these problems have concentrated on simplétedig
averaging between fierent methods (e.@@@a,b).

Observations are a central source of knowledge on almosgm@ny
tity in astrophysics. Over several centuries of intenseassh, sev-
eral principal observational techniques have been degdldpat
are now routinely used to study stars and stellar populatiothe
Milky Way and other galaxies. We have information from astro
etry, photometry, spectroscopy, but also interferometng astro-
seismology, that give complementary information on thesptaf
parameters of stars (detailed chemical composition, tieayitem-
peratures, masses and ages) and their kinematics (ratbalties,
distances, and orbital characteristics). However, inrestto e.g. The large stellar surveys change stellar astronomy int@a pr
cosmology, where sophisticated Bayesian schemes haveeseen cision science, where we cannot limit ourselves to pointiog
tablished (e.d. Drell et &l. 2000; Kitaura & Enfilin 2008}/ pa- structures in diagrams, but where knowledge of the errdriblis
rameter determinations are still widely based on best-finages tions is key to make meaningful model comparisons, e.g. tdGa
and simple averages betweeffeiient methods. tic evolution and stellar structure. The approach we needtmu
The advent of large stellar spectroscopic and photo- be flexible, objective, applicable to very large datasets| pro-
metric_surveys like SEGUBDSS [(Yanny etall 20D9), RAVE  vide an optimal combination of the fiérent bodies of observa-
(Steinmetz et all_2006), APOGEE _(Majewski et al. 2007), GCS tional data. The only mathematical apparatus known to peami
(Nordstrom et al. 2004), and the Gaia-ESO survey (Gilmos! systematic combination of fierent quantities are Bayesian frame-
2012), as well as astroseismic surveys like Kem works. The first steps in this direction were made by Pont &lEye
2011), makes it necessary to develop fully automated method (2004), [Jgrgensen & Lindeglerl (2005), Shkedy bt al.(2007),
Burnett & Binney [(2010)|_Casagrande et al. (2011), Binnesdlet
_M), Serenelli et &l. (20|13), and__Gruberbauer & Guenther

* E-mail: ralph.schoenrich@physics.ox.ac.uk (2013). However, the studies are very limited in scope amptice
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bility: they either addressed the problem of fitting a speotonly
(.2007), partly focussed on the problem of figdie

maximum likelihood solution, or leave have to rely on tngtthe

data with overly simplified parametrisations (&.g i

[2010; Casagrande etlal. 2011). In contrast, a Baye5|an scham

only fulfill its claim of unbiased information, if the full diension-

ality of the constraints in parameter space is preserved.

In the following we will present a new method for the de-
termination of stellar parameters that provides an optarploita-
tion of different observational information. The methdtkes a ho-
mogeneous full-scale quantitative recovery of the fullbadaility
distributions in parameter space, which are given by thdable
observations, i.e. photometry, astrometry, spectroscapy well-
established knowledge from stellar evolution theory anda@a
structure. The method is objective, computationalfyceent, can
be readily applied to data from all existing surveys and tsusb
to missing bits of data, e.g. damaged pixels in a spectrurover |
quality photometry. By embedding spectroscopic analysecty
in scheme, the Bayesian method allows for considerationllof a
pieces of relevant information at once, thus avoiding uassary
information loss.

In this first paper of the series, our main goal is to to deter-
mine dfective temperature, surface gravity, metallicity, magg a
and distances of individual stars. Thus, we limit the inpatad
to spectroscopy, photometry, stellar evolution modelsfandlta-
tively parallax measurements. However, the method can & re
ily generalised to any number of parameters, such as kinesnat
or stellar rotation, and include other input informatiorg.estero-
seismology and interferometric angular diameters. Funtbee, it
is straightforward to analyse star formation history of aletstel-
lar population, e.g. a young cluster or an old galaxy, usiagnie-
grated colours and spectra. Thus the Bayesian method hay a ve
broad scope to applications both in the context of Galaatid a
extra-galactic research.

The paper is structured as follows. In Sec. 2 and 3, we
present the details of the algorithm and it implementati®ec. 4
presents the results for a sample of stars with very higblugen
observations and for a sub-sample of calibration stars fileen
SDS3SEGUE catalogue. We close with discussion and conclu-
sions are drawn in Sec. 5.

2 METHOD OUTLINE
2.1 Bayesian scheme

So far, the majority of observational studies of stars, padtomet-
ric or spectroscopic, have focussed on providing bestfinases
of stellar parameters. However, accurate comparisongtwétical
models of e.g, galaxy evolution, require the full probaitiistri-
bution of the derived parameters given the available obsiens.

likelihood, is the probability of making the set of obseiwas O
given the set of parameteXsandP(X) is theprior probability we
ascribe to that set of parameteP$0O) is the probability that the set

of observations was made, which we set tM@ZOM).
This simplifies our problem to

P(X|O) = P(X)P(Oy, ..., OnlX), (2

where P(X|O) is the posterior probability distribution function
(PDF) on the chosen parameter space. In our work, obsemngatio
are conditionally independent given the parameters,fial pa-
rameters are perfectly known, the observations do not geoad-
ditional information about each other. Hence we can diseyiéa
the observations by:

m

P'(X) = P(Oy,....,OnlX) = | | POIX).

(©)

2.2 Core parameter space

The parameter set contains all parameters relevant to the problem
under investigation and important to the description ofaa. Sthis
may include surface and interior structure parameteral @ohitted
flux, surface gravity, mean density, etc). Since we are dgaliith

a single object, of course, all these parameters are realasame
way. However, we can break their dependencies into mainpgtou
using the fact that each type of observations constrainysaosub-
set of these parameters, whereas it bears no informatiothenso

In this work, we define the ’'core’ parameter spdee =
([Fe/H], Tes, log(g)) of metallicity (expressed by iron abundance),
effective temperature and surface gravity. The parametésim-
pact all our observations and models.

Other parameters are constrained by only a subset of observa
tions: e.g. detailed abundances are of importance for sEacpic
observations, while stellar magnitudes iffelient colour band€
span the space of the photometric parameters. ZAgatial mass
Minit and present masi! fall into the domain of stellar models.
Distances and parallaxv are determined either from direct astro-
metric observations or via the distance modulus when camgpar
stellar models with photometry.

Thus the full parameter space can be disentangled into indi-
vidual contributions:

R= R + Rsp+ Rpn + Rinod + Rothers 4

whereR; is the core parameter space the othgaR the parame-
ters of importance to dlierent types of observations or prior expec-
tations (see Sec. 3.2 t0 3.6).

2.3 Observations

This demands a Bayesian formalism. In this context we need In contrast to parameters, which span the n-dimensionalesph

to express the probability of a set of parametérs= Xi,..., X,
given a set of observatior® = O,...,0Oy by the probability
that this observation could take place given the set of param
ters. By definition the conditional probabili§(X|O), thatX given

O, derives from the combined probabiliB(X, O) as: P(X,0) =
P(X|O)P(0O). We can hence write down:

PX)
P(0)

where theposteriorprobability P(X|O) is the conditional probabil-
ity of the parameter s& givenO. P(O|X), which we callobserved

P(X|0) = P(OIX). @

the posterior probability distribution, the nature of absgions is
irrelevant. An observation can be anything, from the nummr
electrons on a CCD to a needle on a scale, while the corresmpnd
observed likelihood is a function on parameter space.

A clear distinction between observations and "observ-
ables” is key to understand Bayesian schemes. Commonly (e.g
Burnett & Binneyl 2010) Bayesian schemes are introducedgusin
the highly problematic concept of "observables”, which aten
best-fit values for some parameters (likg:), which happen to
be relatively well-constrained by (single) observatiofisese "ob-
servables” approximate a true observation by a couple aftgies,




which are insfficient to describe its full information content: The
observed likelihood is almost never a delta-function, sb tme has
to include separate variables for the variance, for higheéers, for
cross-correlations betweenfdirent parameters, etc. This results in
a rather clumsy bulk of variables, which do not fully deserthe
true observed likelihood. Further, other than their nanggsests,
observable parameters are not fixed - the Bayesian formaliim
in general give an estimateffiirent from the best-fit value.

While selection functions are in most cases essential fer un
derstanding observations with theoretical models, thesdwt ap-
ply to the discussed Bayesian schemes. Yet, some studiediice
a selection function in their equations (see a longer d&ounsin
Sec[8.1 of the Appendix). We refrain from using such a silact
function, because only selection criteria based on thenpeter
space would fiect the Bayesian scheme, while a survey selection
must be based on random choice or previous observations.

24 Summary of notation

To facilitate reading the equations we quickly summarizerttain
notations: We denote the set of observationdhythe set of pa-
rameters byX, the parameter space I®/and all probability dis-
tributions byP. To cope with the dferent sources of information,
we introduce indices: "ph” for photometry, "sp” for spectoopy,
"astr” for astrometry (parallaxes), in addition we use "hdadr
knowledge from stellar models and "pr” for priors. Hence e
servational likelihood in full parameter space from spestopic
observations read;,(Osy|X). To facilitate the reading we contract
the notation for the conditional probabilities by decargtP with

a prime: e.gPg, = Py,(X) = Psp(OgplX).

Commonly used variables are agestellar massM, solar
mass M, initial massM,;, logarithmic iron abundance [A+],
general metallicity [MgH], parallax w, distances, and distance
modulusu.

3 DETAILED ALGORITHM

In this pilot study, we restrict ourselves to the most imaottba-

sic case: the calculation of stellar parameters, when we bpec-
troscopic, anr photometric observations. We will show how to
expand this to include parallax measurements. After valida
the method on the high-resolution spectroscopic data ofbgea
stars, we apply it to a sample of low-resolution spectra from
SEGUHESDSS|(Yanny et al. 2009; Allende Prieto el al. 2008) cali-

bration sample.

3.1 Contributorstothe posterior PDF

With the conditional independence (equatidn 3) we simptify
calculation of our posterior:

P(Xlosps Oph) ~ P(Osp|x) : P(Ophlx)P(OaslAX) : Pmod(x) : Ppr(xIS)
~ P;p : P;)h ' P,astr' Prmod - pr’

whereOgp, Oph, Oasr denote the photometric and spectroscopic and
astrometric observation®mng the probability derived from stellar
models andPy, the prior probability distribution function. In the
second line we abbreviate our observational likelihooelstasent-
ing their conditional nature based on the observationsantdly a
prime. Note that any combination of observational constsatan
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be dropped from these equations, as well as new observd&ans
interferometry) can be added by multiplication.
The PDFs from EqULI5 have two interesting qualities:

e some PDFs describe sharp structures in the n-dimensional pa
rameter space, thus lowering the dimensionality of the giodiby
distribution and reducing computational costs (by the iplita-
tion, the combined PDF cannot have higher dimensionalin its
components). In other words, the space volume where theii®D
non-negligible has a lower dimensionality than the ovespHce.
For example, stellar models together with model atmossheiag
directly from the fundamental stellar paramete., 7, [Me/H])
to their observed spacé& 4, log(g), C).

e some PDFs constrain only a subset jof< n parameters,
i.e. they are flat the other dimensions. Though they can be gen
eralised to the n-dimensional space of the aggregate PD$t, aho
these dimensions will be redundant, i.e. we hags, . .., X,|O) ~
P(Xy,...X;|0). It can be @icient to merge them in an early step
with another PDF that carries more dimensions. An espgaialu-
able case are parameters that are nearly conditionallypémtent
from the other parameters. E.g. the detailed abundancéssona-
jority of chemical elements hardlyffect temperature and gravity
estimates.

The meaning and structure of the single contributors to the
posteriorP will be examined below.

3.2 PriorsPy

The priors encode our previous knowledge on the distribudfdhe
examined stellar population in parameter space. The maubellk
edgePmnogWill be treated here as a separate prior, though it could be
in fact understood as an observation. Appropriate pricgseasen-

tial to avoid biases in weakly constrained data (see[Eib.ot @
example). Further, to have set "no prior” means to have atbat
flat prior, which is not fixed under parameter transformagidtow-
ever, priors must be handled with great caution to obey Crelfisv
rule 1198P) and to avoid overconfidence biases aptbre
ducibility problems.

There are strong dependencies between most parameters. As
the posterior PDF has loweffective dimensionality than the pa-
rameter spack, we can not set constraints on every single dimen-
sion inR without risk of over-constraining the priors. We circum-
vent this problem by limiting our féective priors to age, initial
massMnit, metallicity [Me/H], and distances; all other dimensions
are indirectly constrained by these priors and we adopt mid- ad
tional constraints on them.

Throughout this work we will use the following priors:

Ppr(X) := p(, M, [Fe/H], ) ~
~ P(7l[Fe/H]) - P(Mint) - P(s, 1, b) - P([Me/H], [Fe/H]).

P([Me/H], [Fe/H]) is a fixed relation between metallicity (re-
quired for the isochrones) and the iron abundance, whichave h
to introduce, since we do not measure detailed abundandassin
paper. The adopted relation is given in 9ec] 8.2 of the Apipend
For P(M;) we employ a Salpeter IM55), with expo-
nent—2.35 and independent from metallicity and age. For simplic-
ity, we separate the distance priB(s, |, b) as a purely geometric
term defined by Galactic structure. This avoids the dangeresély
recovering the distance-metallicity dependencies insidig that
prior. However, we have to account for the metallicity-degbent
age distribution by adopting a shorter timescale in the fetana-
tion history of metal-poor stars. Details are given in thepApdix.

(6)
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3.3 Stellar models Pyoqg

Stellar models describe affectively three-dimensional constraint
in the full parameter space. The corresponding PDF can bie-rep
sented in the core parameter sp&ke= (Tet,109(Q), [FE/H]). In
this work, we neglect other dimensions, adopting a simpétion-
ship for alpha enhancement and neglecting inffii@sent stellar ro-
tation.

The calculation of the PDF is performed by summing the
weights of available stellar model points falling into thells of
a dense grid in the target spaBg folded by a Gaussian kernel
with widthso. = (30K, 0.04 dex 0.02 dex) in T, l0g(g), [Fe/H]).
The error represents the internal uncertainty of the stelladels
and fills gaps caused by the discrete data representati@ddia
tion, the dfective width is augmented by the grid spacing on which
the PDF is calculated.

We use a dense grid of stellar isochrones from the BASTI
databasel (Pietrinferni etldl. 2004, 2006, 2009), kindlyvioted
to us by S. Cassisi for the stellar parameter determinations
[Casagrande et/al. (2011). For details on the colour caiimsifor
SDSS colours, see Marconi el al. (2006). We interpolate the-m
els in the initial mas,;; to ensure a narrow mass spacing, but do
not attempt an interpolation in ageor metallicity [Me/H]. When
summing over the isochrones, we assign to each paimteightW,
proportional to the parameter space volume it represents:

W = NwA[Me/H] - At - AMini, (7)

whereNy is the normalisationAMinit = 0.5(Miniti+1 — Miniti-1) IS
the average distance to its neighbours in initial magse/H] is

the average distance in metallicity between the isochromkits
nearest neighbours, ankr is the average distance in ageOn
the boundary of the grid we take the distance to the neiglibgur
point. Note that the approach is identical for stellar tsaicistead of
isochrones. The model probability at each p&rin our parameter
space can then be represented as a weighted sum over aintelev
models points:

ProdX) = > Wi g((X — X).), ®)

where X; is the vector in parameter space given by the model
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Figure 2. Prior probability densities from stellar models at any rtietty

in the (Teg, log(g))-plane (upper panel). We use the Salpeter IMF prial a
the metallicity-dependent age prior. The lower panel shihvesmetallicity
expectation value [Fe/H] > (T, log(g)) at each point in thelg, log(g))-
plane. The structures are dominated by the metallicityeddpntT ¢-shift

and evolutionary dferences on the giant branch, e.g. the absence of a hori-
zontal branch for metal-rich stars in exchange for the ecédmed clump.

grid. Here we represent the uncertainty of the models by an n- with the distance modulug(s) = 5log(s/10 pc), the reddening

dimensional Gaussiag with a dispersion vectos. Specifically,

we assumerc O our core parameter space as above, and no addi-g, and witho2 = o2, + o2
' mo

tional uncertainties in the other dimensions.

3.4 Photometric data P,

Stellar models couple photometric colours with other patns.
Thus we best calculate the photometric PDF simultaneouily w
the stellar models. Denoting the stellar model magnitutiesodel
pointi and colour band by C; and the photometric observation
in bandk with Oy, we have:

PLor(OpriC. 5.1) = [ [ P(OUCik s 1), ©)

k
with distances and reddening. Lacking suficient data on the
true PDFs, we represent the observational likelihoods ofqrhet-
ric colours, the reddening values and the model uncerésirty a
Gaussiamg(x — u, o) = exf—(x — w)?/(202)), which enables us to
combine them into:

P(OICik, u(9),r) = 9(Cix + u(s) + 1 - & — Cy, o), (10)

strengthr multiplied with the reddening vector in each colour
%ps + Uto as the combined vari-
ancguncertainty of models, observations and reddening.

The other assumption is the universal reddening vectos Thi
may have to be relaxed when dealing with verffetient ISM envi-
ronments. The dust peak and the slope of the reddening spectr
can be shifted, or stars may be individually reddened, g.g. &ir-
cumstellar envelope.

We note that this method can be used to create reddening
maps. Since that is beyond the scope of this work, we reskrict
sample to stars with relatively low reddening, use reddgualues
from other sources assuming a fractional reddening errt06.

3.5 Spectroscopic data Py

The observational likelihooBy, in Eq. [8) in principle incorporates
all available spectral information. This comprises sp@dtype, ele-
ment abundances, rotation, stellar activity (chromosplenission
in cores of strong lines, magnetiffects), inter- and circum-stellar
reddening, convection characteristics, etc. Howeveorimétion is
limited by imperfect spectra and even more by the input msysi
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Figure 1. A priori densities from stellar model®f,0q4e) at metallicities [FEH] =
metallicity-dependent age prior.
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Figure 3. Top six graphs: A low-resolution spectrum from the
SDS3SEGUE survey (black, plate no. 2038, fiber 564) compared ¢o th
best-fitting theoretical model (red). Bottom three gragg@ne for a high-
resolution spectrum from UVES @gfHyi.

underlying the theoretical spectra. At present, calocoatiof large
grids are only possible with 1D hydrostatic codes assuming |
cal thermodynamical equilibrium (LTE), while full hydrodgmic

3D non-LTE calculations are slowly becoming feasible. Rert
the high dimensionality of the problem forbids computingaate
grids for all possible detailed abundances.

Here we use a grid designed for late-type (spectral type

FGKM) stars, with 4400< Tex < 6800 K, 14 < log(g) < 4.6,

7000 6500 6000 5500 5000 4500

7000 6500 6000 5500 5000 4500
TerlK

—-2,-1,0 from left to right and accounting for a Salpeter IMF priandathe

—-3.9 < [Fe/H] < 0.9 as given by the original MAFAGS-ODF mod-
elsf] the grid spacing is kept at 200 K,4dex and B dex inTeg,
log(g), and [F¢H] to make interpolation between the points reason-
able, requiring a total of 6912 theoretical spectra. Thegydlso
cover 4 values of micro-turbulence from 1 t&&ms?. For the
sake of simplicity, we adopt a micro-turbulence of 2 Agtfior gi-
ants and 1 for dwarfs (log(g} 3.5) (Bergemann et al. 2012), and
an a-enhancement of.@ dex for [FgH] < —0.6 (cf. |Gehren et al.
m). Note that any hard cuts on parameters will lead to anom
lies in the spectroscopic PDF. The latter two assumptioa®aed

to the size limitations of our preliminary theoretical gadd will

be obsolete in future papers, where we will fit ta@nhancement
directly.

The synthetic spectral grids were computed by the updated
version of the SIU code (Reftz 1999; Bergemann let al.l2018). T
unique parameters are [, T, l0g(g). The model atmospheres
are MAFAGS-ODF m@,b). The 3-dimensional spectra
grids cover the full HRD, as shown in F[d. 5, and sample theewav
length windows around the spectral features importantitogrebs-
tic of FGKM stars: 3850- 4050 A (Ca | lines), 4350 4450A (G-
band, CN sensitive), 466@1900A (H,), 5100-5300A (Mg | triplet,
main gravity diagnostics), 64006640A H,), 8400— 8800A (Ca
Il triplet, also used in Gaia and in RAVE stellar survey).

To obtain the spectroscopic observational likelih&§@sp/X;)
at each point in parameter space, we resample the syntpetie s
trum to the wavelength scale and resolution of the obsemstnd
evaluate the goodness-of-fit-statisticsat each pixel of the ob-
served spectrum:

n
x2=>(0 -8y /0%, (11)

i=1
whereS the template comparison spectru@the observed spec-
trum, o the weighted observational uncertainty. Noisy and un-
informative regions are given less weight using speciaksiabhe
final PDF is gained by summing over all pixels within a giveg-se
ment, and over all segments.

The original resolution of the synthetic grid is 500 000. $hu

the method can be potentially applied to any observed datage
low-resolution and high-resolution spectra. For the asialgf the

1 We note, however, that any other model grid can be easilyemphted,

with no requirement of symmetry or shape, since our codeided a robust
interpolation scheme. Alternatively, one could perforritekations of line

formation on the fly on a grid of model atmospheres. This @eapproach
is, however, still computationally too costly.
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SEGUE spectra, we post-convolved the spectral grids witrin
mental resolutionR = 2000. A typical fit to a SEGUE spectrum is
shown in Fig[B. In the high-resolution mode, we use the teim

of the UVES-instrumentR = 50 000). Before evaluating the test
statistics, the spectra are continuum-normalised andlradlocity
corrected by cross-correlating with the template thecagtpectra.

To limit the costly spectral comparisons, we first calcuddtes
combined PDF from model, photometric, astrometric andrpnio
formationPasymodphpr- Where this likelihood is larger than a thresh-
old value, we define a coarse grid of points, on which we calcu-
late the spectroscopic observational likelihdagOsy|R). With this
we approximate the joint posterior PDF (EQU. 5) on our patame
space and iterate two steps with increasingly fine spacinten
allowed parameter range as shown in Elg. 6.

From the spectral data points we interpolate to the finer grid
used in the calculations by summing up the weighted coritdbs
from all neighbouring points using a kernel that drops lmheaut
to one spectral grid spacing and as a squared exponentiahthey
this point.

3.6 Parallaxes and other additional data

The Gaia mission will derive parallax measurements for Igear
all stars with spectroscopic information. Parallax measants
only affect the distances (and distance modulug), so that it is
straightforward to combine the observational likelihooohfi par-
allax measurement,,, with the photometric and model informa-
tion.

In the following, we assume a Gaussian parallax error.
Cromwell’s rule does not apply to mathematical truths, sgane
tive parallaxes are excluded by setting the prior to 0. Tihéddg:

P/

astr —

Past{Oastlw) = NO(w)g(w — wo, 7., (12)

where N is a normalisatior® is the Heaviside-function (1 for
w > 0and 0 forw < 0), g(w — wop, o,,) is again a Gaussian dis-
tribution around the measured paraltax (which can be negative)
with standard deviationr.

It is important not to clip negative values @f: a small neg-
ative value ofwg has still a diferent information content than a
large negative value. In the case of a Gaussian error disiii
the probability ratio between a smaller parallax and a lapge-
allax rises, the further the measurement is away from zeraoO
use an example: the likelihood ratio between having failg®d
and by 4 is larger than the likelihood ratio between having failed
by 30 and by 2B Fig.[4 demonstrates how the parallax distri-
butions get more concentrated towards zero, the more neghg
measured value is.

To combineP,, it with the photometric and model PDF, we
integrate over the possible distance mogulat each stellar model
pointi:

Prasion = | Puon(OpC. (9. Pasi) 3yt (13)
with the Jacobiard,, = 20 In(10)10%%.

In this work, Rg is considered for the stars with high-
resolution spectra only (see SEc. 413.1).

2 This would only not be true if the error distribution givesnstant like-
lihood ratios for identical distances from the measuremehte, i.e. for a
declining single exponential.
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Figure 4. Conditional likelihood of the observation af = 0, —o, ... un-

der the real parallax, assuming a Gaussian error distribution with standard
deviationo,,. The distributions become significantly narrower arouredGh
for more negative parallax values, reducing the parallgpeetation value
and raising the expected distance.

3.7 Combiningthe PDFs

Equipped with these results, we can now assemble the com-
bined PDF in equatiof]5. In simple words, the strategy is sep-
arate all PDFs into PDFs on the core parameter sgdce=

(Tes» log(g), [Me/H]) and the conditional PDFs on the remaining
parameter space given that poinn Depending on our needs we
can then represent those remaining parameter estimates ag
simple moments (expectation value, variance, etc.) at paictt in

R, or as full distributions.

Formalising this is a bit tedious, since it involves a coiodil
probability derived from a conditional probability. To gitify the
notation, we use the previous abbreviation of observatidepen-
dence with a prime. The combined calculation of photomeinid
model part yields:

P;sttmod,ph,pr = P;)h'PmOd' Ppr = P;sn:modphpr(xC) P;sttmod,phpr(aph|xc)'(14)

whereX_ is the vector of parameters in our core parameter space
R anday, is the vector of remaining parameters constrained by the
photometric and astrometric observations, models anasprie.

apnh = (Mj,7,C,r,s,...). Similarly, we separate the spectroscopic
information:

P/sp = P’sp(x c) P’sp(asplx o)

whereas, denotes the all other parameters constrained by spectro-
scopic observations, like detailed abundances, or stelfation. In
this work we do not use this supplementary information, s th
we can drop the ternP,(aspXc). Most of the parameters ias,
will not coincide with the parameters &, but if they correspond,
they must be written into the core parameter space. For deamp
rotation and stellar activity available from high-qualéfyectra con-
strain stellar ages. We will discuss this in a future work.

We can now calculate the final probability distribution func
tion:

(15)

P(X|O) = P;stl:modphpr,sp(xt:)P/sp(asplxc) P;sttmod,phpr(aphlxc)v (16)
where
P;st[mod,ph,pr,sp(xc) = P/sp(XC)P/astl:modph,pr(XC)' (17)



3.8 Calculating projections, central values, and uncertainties

We can gain the conditional probability distribution in akr num-
ber of parameters by marginalising, i.e. by integratingtbatother
dimensions in the joint conditional probability distribart func-
tion. E.g., to exclude the parametgrx we write:

P(xl,...,xj,xj+2,...,xn|0)=fp(xl,...,xnp)olxj+1 (18)

P(leo) = ff P(Xl, e Xn|O)dx1 . de—lde+l . d)ﬁq (19)

From this we can obtain the moments of the probability distion
in each variable or group of variables:

(x)= [ xPexiox 20)
(x2) = f X2P(X;|0)dx; (1)
(22)

Where<Xj> denotes the expectation value of the param¥jeand
2
()= (e

3.9 Short recipe of thealgorithm

the standard deviatiomy; =

In short the steps are as follows:

e 1) Combine photometric and astrometric information togeth
with the priors and sum over all stellar model points to abitai
preliminary PDFP, in core parameter space, calculate moments
or full PDFs for the remaining dimensions.

e 2) In regions of parameter space, where the probability is
larger than a threshold vaffiecalculate a coarse grid of spectro-
scopic probabilities and approximate the PR by interpolation.

e 3) Multiply Py with Ps, to obtain an approximate posterior

PDFP. Determine a refined grid in parameter space to better sam-

ple the spectroscopic PDF and iterate steps 2) (Fig.[8).

The threshold value on a binned PDF was chosen<ad/(N-
M) whereN is the number of stars arid is the dfective number
of bins, because in a large sample we have to expect the peesen
of rare objects, which will have low preliminary probab#s. As a
different condition one can formulate that the integral of thé&PD
over parameter space must be

N - f P(X)dX < 1. (23)
P(X)<t

3.10 Selected examples

To illustrate the algorithm, we describe here the resultstiim
stars. One ig Hyi from our high resolution data sample, for which
we have basic Johnson photometry, high resolution specipys
and a Hipparcos parallax. The other star, randomly seldobed
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Figure 5. The grid of synthetic spectra.
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Figure6. The process of iterative grid refinement in our pipeline far ex-
ample SEGUE star (plate 2038, fiber 564). Most points in Thg,(0g(9))-
plane have several metallicity values.

panel shows the combined PDF from photometry, prior and stel
lar evolution; the top right panel shows the spectrosco€
photometrically allowed space. These two estimates coenton
the final posterior PDF in the bottom left panel. The correspo
ing metallicities are shown by colour coding in the bottoighti
panel. The individual probability densities from photorgettellar
evolution and spectroscopy are clearlffelient in shape and in lo-
cation.

The Hipparcos parallax combined with photometry and stel-
lar models puts tight constraints on the surface gravity éfyi
in Fig.[d. This leads also to a tight correlation between Hieitst
and gravity as evident from the coloured dots in the bottaghtri
panel. A moderate step in the spectroscopic PDF at log(§)5

the SEGUE data sample (plate number 2038 and fiber number 564) IS produced by a step in micro-turbulence in our current gfid
is a turn-af subgiant. In this case we have SDSS photometry and a theoretical spectra, which will disappeara with the imjgabgrids

low-resolution spectrum from SEGUE.
The resulting probability distribution functions in the
(Tewr, logg)-plane are shown in Fi@l] 7 and in FId. 8. The top left

3 The threshold should be iciently small to ensure coverage of the final
PDF. Here we use a generous 3®per bin.

in preparation. The calculation does not cover the fullvedid re-
gion of the spectroscopic PDF (see the coarse behaviouraesm
gravities in the top right panel), saving computation tiraece
the joint PDF (lower left panel) is fully represented. Theafin
expectation values and uncertainties dgg = (5837 72)K,
log(g) = (3.981+ 0.068) dex, and [F#l] = (-0.196 + 0.074) dex
versusTer = (5873« 38)K, log(g) = (3.98 + 0.02) dex, and
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Figure7. The PDF's fois Hyi from the high-res sample. Top left: the combined PDF framotometry-prior-stellar evolution projected onfid, logg)-space;
top right: the spectroscopic PDF in photometrically allovepace. These two estimates combine to the overall PDF ioatitem left panel. The bottom right:
metallicity expectation values from spectroscopy (cadolarea) and the photometric-model part (colored dots).

[Fe/H] = (-0.08 + 0.02) dex in the reference sample (described

in the next Section). 0.25 0scopy "
While neither the photometric part nor the spectroscopic co tometry -----
straints are very tight for the SEGUE star in Hig. 8, the com- 02} mbined ----- .

bined PDF is very well defined. This shows the benefits of solv-
ing the problem in the full parameter spa&e While points in the

log(g) — Ter plane may be allowed by both derivations, the cor- o 0.15 )
responding limits on the third dimension [F are in disagree- o
ment, ruling them out. These are the regions in the bottoint rig = 01} -

panel of Fig[B, where the colours are mis-matched. To sthéss
point we show the one-dimensional probability distribofion Teg

in Fig.[d. While our parameters are nicely between the vadfitse 0.05 7
SEGUE follow-up study Allende Prieto et al. (2008) and SEGUE

DR9 (see Se¢.4.1), the behaviour of our PDF is more inteigsti 0 £ .

The combined PDF is not even remotely a simple combination of 5600 5800 6000 6200 6400
its two contributors. Most interestingly, the expectatiatue of the Tert

combined estimate is not situated between the estimatesdach
spectroscopy (6027 K) and photometry (6027 K), but signifiya Figure 9. Projected 1DT ¢ distributions for the discussed SEGUE star ver-
higher (6072 K). This complex behaviour can or’1ly be accalinte SYS the & intervals from Allende Prieto et al.(2008, light blue) amdnf
. . . SEGUE DR9 (orange). Note how the combined estimafierdi from a
for within a full Bayesian approach. - ) ) . o
. ; o . naive expectation when looking at photometric and specops informa-
Our final expectation values and uncertainties for this SEGU (o, separately.
test star ard o = 6072 K+ 44K log(g) = 3.86 + 0.14,[Fe/H] =
—0.47+0.07, for comparison SEGUE DR9 providég: = 6181 K+
19K, log(g) = 3.90+ 0.03 [Fe/H] = —0.459+ 0.006. Note that we
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Figure 8. The PDF'’s for one of the sample stars from the SEGUE sub-salfsge Sec. 3.8). Top left: the combined PDF from photonm@ior-stellar
evolution projected ontoTgg, logg)-space; top right: the spectroscopic PDF in photometyiclowed space. These two estimates combine to the overall
PDF in the bottom left panel. The bottom right: metallicitypectation values from spectroscopy (coloured area) amghiotometrignodel part (coloured

dots).

add the reported uncertainties just for the sake of compbste

The formally reported errors from the SEGUE pipeline carbet

considered realistic. They are severely under-estimdigalpout

an order of magnitude) as shown by the comparisom etal
) as well the discussion later in this work. The spéfits

in our six standard bands for the best spectroscopic salaie

shown in Fig[8.

This discussion also shows that even a relatively unceiriain
formation can give an improvement to more precise valuesisha
beyond a simple one-dimensional combination. More immadista
mismatches betweenftirent sources of information help to flag
pathologies in a sample by unexpectedly small overlap ottme
tributing PDFs.

4 APPLICATION TO OBSERVATIONS
4.1 Datasets

Our approach is most needed and also most powerful, wiitar-di
ent observations are available for a star and the informatmtent
is complementary but limited. With this in mind and to tese¢ th
stability of our method, we choose both a sample featuriigip-hi
resolution spectraR > 40000), as well as one with low-resolution

spectra R ~ 2000) from SEGUE. For the high-resolution sam-
ple we have a combined reference dataset from Heiter etral. (i
prep.), for the low resolution spectra we have two sets ofpam
ison values: The SEGUE parameter pipeline (SSPP) values and
%intermediate resolution follow-up by_Allende Prieto et al.
).

The high-resolution sample comprises 87 high-resolution
spectra of 40 nearby stars including the Sun, taken with hRPS
and UVES instruments at VLT, and with NARVAL at the Pic du
Midi observatory. This dataset was kindly provided by Prdof
In addition, there are Hipparcos parallax 20
making the sample closely resemble future data from Gaia as-
trometry combined with Gaia-ESO spectroscopy. The sanwle i
particularly valuable because the spectra were taken fbereint
instruments and there are independent parameter deteionisia
including interferometric angular diameters and astsos@& sur-
face gravitiea The stars cover a very wide range in metallicities,
gravities and temperatures in parameter space (see a derdple
scription in Blanco-Cuaresma et al. in prep). Photometryhia

4 The parameters were kindly provided by U. Heiter and will belished
in Heiter et al.(in prep.).
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U,B,V,I,J H,K bands, was compiled from the Hipparcos cata-

logue (Perryman et Al. 1997), from 2MASS (Skrutskie ét D)0 0.5 — ' : ; : : 0.8
and from Johnson et al. (1966)~band photometry for HD22879 e cleanphotometry * g
stems from_Koen et dl,[ (20110), improvetHK-photometry for op - others . b 101 97
& Hya from|Laney, Joner & Pietrzynski (2012). Solar photayet e 06
was adopted from Binney & Merrifield (1998), updated with the ~ 0-3 | ol o T '
values of Ramirez et al. (2012). We increased the erroigli bf g e° ° . 05
the general uncertainty of the Sun’s photometry.@80nag. T 1t W '
Our low-resolution sample was selected from SEGUE by E - ¢ 0.4
Allende Prieto et al.| (2008), who did an intermediate-resoh =15} Pl .
follow-upﬁ It consists of 78 stars within the parameter range o . 0.3
—25 < [FeH] < 0.3, 4000 < Ter < 7000 K, and 55 < 2T 7 1
log(g) < 4.5. For these stars, we have low-resolution SEGUE 2 0.2
spectra, R ~ 2000) photometry in the SDS8griz bands, 25} - . . . .
' is_(1998) reddening estimates @or 25 =2 a5 1 o5 o0 o5 M
sitional data from SDSS DR (Ahn et Al. 2012). One star was re- [Fe/H]xpos
moved from the sample, as it was flagged for strongly disaggee 0.5 — . i i . . 0.8
overvational information (very low quality measu@ < —20, cf. clean photometry L
equatior 24). ol others C e b 0.7
L]
0.5} C ot 0.6
4.2 Using photometry only g . oo : 05
= -1t . 1
Before we turn to testing the performance of the full aldorit % . °‘. ° 04
against our reference samples, we test it for the simpler, edsere Last |
spectroscopic information is not available. For the vagonityt of ° L 0.3
stars in the Galaxy, we will also after the big spectroscepiweys 2t o ]
just have photometric and astrometric information. Howetee K * 0.2
Bayesian method is capable of deriving stellar parametscsia 251t OO
this case. P - L L L L 0.1

-2.5 -2 -1.5 -1 -0.5 0 0.5

In Fig.[18, we compare temperatures, gravities and metallic
[Fe/H]apos

ities derived from photometry and parallaxes only with oighh
resolution reference sample (top row). The bottom row shaws
sults from photometry alone for the SEGUE sample compared to
values from SEGUE DR9. While in the high resolution sampée th
temperatures (top row) are mildly larger than in the refeeerthe
random scatter is as low as 110 K. This is particularly remark-

Figure 10. Photometric metallicities (expectation values of the st
distributions) in the SEGUISDSS sample versus the determinations from
Allende Prieto et al. (2008). Top panel includes the agergram ed.27,
while the bottom panel does not, resulting in a bias towamismyger ages.
Colours code the standard deviation of the posterior Bigions, capped

able, since the photometric information for most of thesessis

not even remotely competitive with typical modern photatcet
surveys. We only have "good” values for tBeV, | Johnson bands
(accurate to of order.03 mag),U—band information for a minor-
ity of stars. The infrared bands fromVRAS Sare highly uncertain

with errors of about B mag, since our stars are beyond the bright

limit for this survey. The excellent outcome oz and log(g) is
reasonable, however, as both gravity and temperature diredtly
constrained by the stellar models in combination with thpgdi-
cos parallaxes. Note that even uncertain parallaxes wouhdast
cases be dficient to fix log(g) and distancs, since it is sificient
to have a determination of the stellar branch. In contrhstntetal-
licities are only very weakly determined. Johnson colovesper se
not a good diagnostic for stellar metallicities and for msiats we

have noU-band magnitude. The resulting wide error bars lead to a

concentration of the expectation values towards the midtitur
grid. This underlines the need for photometric surveys tioaer

5 We do not use this study as a reference, because it is véigudti to

assess their accuracy and homogeneitfferént parts of the sample were
analysed with dferent methods (equivalent width method for the higher-

resolution stars vs spectrum synthesis for the lower-uéisol stars). For
most of these stars, the spectra were degradedt@®00 from the original
R ~ 15000 with unclear consequences.

at 08 dex. Stars with clean photometry according to the SDS$dataare
depicted with discs, while stars with problematic photayetre shown as
smaller triangles.

intermediate or narrow band filters capable of constraistedjar
parameters.

The precise SDSS photometry and the location of SDSS

colour bands allow a better handle on metallicities. In tifv-
ing, we have to look more closely at the importance of ourmgsu
tions.

4.2.1 The importance of priors

In Fig.[10 we compare our photometric metallicities (y-axisthe
metallicites from Allende Prieto et al. (2008) for our SEGEdin-
ple (y-axis), plotting stars with clean photometry withger discs
and stars with bad photometry with smaller triangles. Cad@ade
the error estimate from the Bayesian method. Evidentlyiethe
enough information to constrain metallicities at leasthia higher
metallicity range to an accuracy of abou? @ex. Contrary to com-
mon derivations liké_Ivezic et all_(2008), which fail at rakiti-
ties> —0.5 (cf.|Arnadottir, Feltzing & Lundstrom 2010), our ap-
proach is valid throughout the entire metallicity range wdwer,
it is important to realize how important the age prior becsrire




Comparisons to reference sample

parameter Ap a Aptastros T astros
Ter/ K (65+19) 141 (69 13) 66
log(g)/dex  (0.024+0.017) Q13 (0031 + 0.009) Q046
[FeH]/dex  (0.099+0.026) Q19 (-0.049+0.014) Q07

Table 1. Differences in the mean expectation values of our sample minus
the reference sampleu and rms scatter af for the entire reference sam-
ple (left two columns) and the subsample with astroseismeierchinations.
While the astroseismic subset has competitive accuracypeeaision, the
remainder of the reference sample strongly scatters dgainsalues.

this case. In the lower panel we show the same data with a fully
flat age prior instead of using dq.]27. This flat age prior iegph
far larger uncertainty in the gravity of a star, which selyeadfects
objects that cannot be clearly identified as subgiants, dn &
guence stars. Via the degeneracyueband information, their po-
tentially lower gravities allow for a wider range of (mostbwer)
metallicities, which lowers the expectation values andst®ohe
error estimates. Despite this problem, the situation ibédter than

in the traditional approach: the classical metallicityilmations like
lvezit et al.|(2008) ar An et &l. (2013) rely on stars fallimgf only

on a fixed age bin, but also onto a single evolutionary seaienc
This undue neglect of surface gravity uncertainties leadsetal-
licity bias and overconfidence concerning the uncertantiecon-
trast, the full Bayesian approach makes optimal use of allable
colour information, while it allows to explore the uncengiin the
assumptions.

4.3 Testsof thecomplete algorithm
4.3.1 High-resolution spectra

Currently, our spectral grids do not cover stars Wigh < 4400 K,
log(g) < 1.4 and assume a slow rotation of 1 km,swhich is typi-

cal for most G and K star04). Hence, for the-spec
troscopic comparison sample we have exclude stars Wifh>
4500 K and drop the fast rotating stgrBootis andu Leonis, which
havevsini ~ 15kms! and~ 5kms?. We also remove Hya
due to contradictory results fromftBrent astroseismic derivations

[ 2006). This leaves 20 stars with 53 spectra.

As a comparison or "reference” sample we use stellar param-
eters from Heiter et al. (in prep.). Theiffective temperatures were
derived from the interferometric angular diameters orhbration
relations. the gravities stem from astroseismology or Hipps
parallaxes, and their metallicities are based on the aisadj$-e Il
lines, which are notféected by non-LTE fects
2012).

Parameters from the comparison sample (x-axis) are com-
pared to expectation values from our full Bayesian analysaxis)
in the top row of Figl_IlL, while we give statistics for the caaripon
in Table[1. Colour codes the quality measure

f Pphmodpr,astr . Psde

2f Pgh,mod,pr,astrdx + f ngdx ’

Q =l0g,o (24)
which gives a simplified indication on how well the spectagsic
PDF agrees with the remaining information.

The two metallicity outliers at high metallicity in FigL L1ea
eVir andB Gem. Both have very high macro-turbulence values (
5kms? Hekker & Melendez 2007), which contradict the current
assumptions of our spectral pipeline.
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From TabledL, it is apparent that if we confine the sample to
the subset with astroseismic determinations, the randoamseat-
ter is cut by more than half. This implies that only the asties
mic subset can match or exceed our precision, while the Bayes
method is clearly superior to the traditional analysis ompara-
ble data. Some of the reference gravities were derived frgpa H
parcos parallaxes, which should make them similar to ourtes
In this case, our fully Bayesian determinations in gravibpear
more reliable than the less sophisticated reference betaeg also
take into account physical information from colours andcéfze
InterferomericTes, although they are usually taken to be mildly
model-dependent, still require an estimate of limb darkgrand
bolometric fluxes. The former are determined with 1D LTE niode
atmospheres, while Chiavassa etlal. (2010) showed that @8@hy
dynamical models predict flerent center-to-limb variation, which
may cause systematic biases in angular diameter estiniaiks.
metric fluxes are estimated by interpolating between olesEpho-
tometric magnitudes with the help of theoretical spectirang rise
to another systematic uncertainty.

It is very instructive to compare the full method resultstie t
spectroscopic results. In the bottom row of [Figl. 11 we shopeex
tation values and parameter uncertainty from purely spsctipic
information (green error bars) and when using spectrosgiyy
the model prior (colored points with blue error bars). Spesttopic
values alone are generally too low byX@+ 0.06) dex with a resid-
ual scatter of about® dex compared to the full solution (See Ruchti
2013, for discussion of similar spectroscopic underedts)a Us-
ing the Bayesian framework (but excluding the parallax and-p
tometric information) this greatly improves to 0.3 dex residual
scatter with no systematidfset at all. Hence, while spectroscopic
information alone cannot compete with astrometric infaiorg it
gives stfficient information on surface gravity to allow for decent
values derived by the Bayesian framework.

In Table[2 we provide a synopsis of the best available stellar
parameters and ages from full the Bayesian method. When more
than one spectrum is present for a star, we provide the wesigiu-
erage of the expectation values and errors (we have to asbamne
the errors between the single determinations are highlgmtignt)
for single spectra. Where no spectral information is atéélawe
fill in the results from the combination of photometry andgikaix
measurements.

4.3.2 Comparison with SEGUE DR9

Fig.[12 shows the comparison of our parameter expectatinesa
with the SEGUE DR9 data release.

Our temperatures are systematically colder than SEGUE DR9
by about 130 K. This is a consequence of our spectral and photo
metric Tex scales being 160K and respectively 60 K colder, sug-
gesting that SEGUE DR9 overestimates stellar temperatiites
results from|(Allende Prieto et al. 2008, , hereafter APG@8% on
average~ 200K below the SEGUE DR9 derivations and about
70K below ours. The strength of our approach becomes apparen
in the residual scatter of the temperature values afteecting for
the systematic fiset: while spectroscopic and purely photometric
temperatures give a residual rms-0fL38 K and~ 156 K relative
to SEGUE DRY, the full approach excels with 87 K.

The Bayesian gravities are systematically higher for stisge
main sequence stars (log(g) 4), reflecting the systematic grav-
ity underestimates of SEGUE DR9 in this range (also confirmed
by SEGUE not matching expectations for the main sequente). T
purely spectroscopic gravities of our method are signifigdower




12 R. Schonriclé- M. Bergemann
7000 0 5 0 0.5 - 0
full method -1 45 full method -1 full method -1
6500 -2 . Y -2 2
b -3 s -3 -0.5 . 1k4-3
35 .
§6000 ' L] 4 ’3 4 '_‘E‘ 1 [H 4
= 53 3} 5 T -5
5500 v s 8 L5 7 s & 15 1M -6
ORIy~ 7 ' 7 2 7
r 2} - 1
5000 -8 -8 )5 h -8
9 15} 9 w4 (?‘ T 9
A
4500 -10 1 -10 -3 -10
4500 5000 5500 6000 6500 Q 1 15 2 25 3 35 4 45 Q -3 -25 -15 -1 -05 0 Q
eff, ref IOg(g)ref [Fe/H]ref
7000 T T -2 5 T T T T T T T -2 0.5 T T T T -2
—— only spectr. —— only spectr. H —— only spectr. A
—— spectr. + models -3 45 — spectr. + models g -3 0 —— spectr. + models P =AU
6500 ‘ i
-4 4t | | 4 s |Fd-4
5 35} h? * -5 5
56000 I i % \ E |
5 M- ©F s + >
5500 . + % 7 9 55| 7 = -7
L = -8 2t -8 2 181 -8
5000
-9 1sf o9 25 { M,
4500 1 n n n _10 l n n n n n n n _10 _3 n n n n n n _10
4500 5000 5500 6000 6500 Q 1 15 2 25 3 35 4 45 Q -3 25 -2 -15 -1 -05 0 Q
Teff, ref IOg(g)ref [Fe,H]ref
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Figure 12. Bayesian expectation values for the SEGUE sub-sample aeahpathe results from the SEGUE parameter pipeline. Thauc@odes the quality
measure), as in Fig[Tl.

the corrections are minor. This also shows the importandaiof
error assessment: in this case a too low error estimate fpao-s
troscopy prevents a stronger correction of the value by Hweg
metric information, which has intrinsic uncertainties~00.25 dex
in this range. The metallicity underestimates result atsa slope
against the SEGUE DR9 values at high metallicities as seen in
Fig.[12. Tests show stability of our results down to a sigoaidise
ratio of ~ 30 and checks on the continuum setting yielded no con-
clusive evidence. It is very likely that a finer resolutiontioé syn-
The metallicity determinations for [fAd] between—-2 and thetic spectral grid and inclusion of thheenhancement dimension
~ —0.6 dex are robust. However, metal-rich stars have a recogniz- will solve the problem, for remaining fierences we can use the
able metallicity dfference between our photometric and our spec- Bayesian framework to detect and rectify remaining bia3éss
troscopic determinations, with the latter being systecadl§i lower. work is in progress and will be presented in a future papelirtea
For the open clusteM67 ([FgH] ~ 0.0 or ~ 0.05 . specifically with the analysis of SEGUE spectra.
[2010;/ Gratton 2000) our spectroscopy alone givegHFe- 0.17
versus a photometric estimate-00.05. As in the case of the grav-
ities, the Bayesian method partly mitigates this problenotpmet-
ric metallicities in this range push the combined estimszesrds
higher values; however, due to the intrinsic uncertaint@.afdex,

than DR9 and APO8 by 0.5dex in the intermediate and lower
gravity range (about.@ dex for all stars). This is clearly identified
as a bias, since the Bayesian approach reports too youngesges
cially for several metal-poor stars. Though the Bayesigr@gch
cannot completely eradicate a systematic bias in one ofijsts,

it strongly reduces this problem by systematically inciregdhe
surface gravities by an average o29dex compared to the purely
spectroscopic value.

The most important result is, that even at significant system
atic biases, the Bayesian method itself remains robustpiter
parameters are not stronglffected, and the solutions are pushed
towards a significantly less biased result.



0.5 . — . . . 6600
o |

ol — ‘jk— 6400
os eSS Ea 6200
' ° 6000

g -1t
= 5800

I
i -15¢ ® 5600
21 ¥ 5400
25 ] 5200
4‘7

2 5000

3}
s : : - : : 4600

0 2 4 6 8 10 12 T
eff, bay

agey,, / Gyrs

Figure 13. Ages and metallicities for the high-resolution referenample
with Bayesian stellar parameters. Colours encode the tertye estimate.
For better visibility we merged theftiérent values of each star according to

Table2.

. . . 0.7
— BASTI, [M/H] = )
——— BASTI 0.6
251 pASTHMH ot
[—-=<""" distance-error, b#y 4 0.5
_ 3t ro
P / 0.4
2 35
S 0.3
41 0.2
45 0.1
5 : : : : 0
7000 6500 6000 5500 5000 ol
Tbay/ K s

Figure 14. Distance error estimates for the Bayesian method in the
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certainties are not a clear function of magnitude. Whileutjeidentified
main sequence staréfer the best accuracy, even stars with high gravity es-
timates can have low confidence in their actual classifinatiod distance
estimates.

4.3.3 More advanced results

Inspection of Fig[Ib gives us a clue about the reliabilityeath
parameter determination. This figure shows the HR diagrams i
the (Ter, l0g(g))-plane with expectation values from the Bayesian
method (top row), versus the reference samples (bottom}th®n
left hand side, we show the values for SEGUE spectra, on g ri
hand side our analysis of the high-resolution referencetaoom-
pared to the results from Heiter et al.(in prep.). To faaiétthe in-
terpretation, we plot isochrones at 10 and 13 Gyr at thr&erdnt
metallicities 2, —1, 0), matching the colour scale of the stars.
The key diferences between our results and that determined

by conventional methods are obvious. Despite the mildlysdaia
spectroscopic gravity estimates, our results show a gleane-
rior performance in this plot. The Bayesian results coverrttain
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in highly unphysical positions, with the error estimates eeen
close to the fiset from the nearest evolutionary sequence. E.g. both
SEGUE DR9 and the high-resolution reference sample plaee th
stars around [Fe&l] ~ -1 far right of the turn-& or respectively
right of the main-sequence. The plot suggests that thetyreffi
sets between the high-resolution reference values andaesBn
method track back to a neglected metalliciffeet in the reference
sample. In principle the Bayesian method could yield starse-
tween the sequences, since we here give expectation vallést

of this tendency can be seen, but by construction our errdts w
correspond to theffset, because the actual likelihood at the un-
physical points is near zero.

The resulting age-metallicity relation for the high-ragain
sample is displayed in Fif. 113. To make the plot easier to,read
we merged the entries forfiierent spectra as in Tallg 2. The pic-
ture very much resembles the results of Casagrande et 41120
The younger expectation values for one of the very metal-paos
corresponds to a larger error estimate, forcing the expentaalue
away from the hard boundary given by the age of the univense. F
ther there is no striking trend in metallicity at younger sg€he
importance of a reliable assessment of all stellar paraset®ne
single approach is demonstrated in [ig. 14. Here we plotdhees
stars from SEGUE as in the top left panel of [Eig. 15, but nowwol
coded with the estimated fractional distance error. It gaent that
even some very high gravity estimates are no guarantee foo@ g
main sequence classification, vice versa stars with lowaviiyr
can have high distance confidence. As expected, these starsia
ally cleanly identified subgiants, giants, or even betted-clump
stars. While the distance and its uncertainty are in prle@pough
to support estimates of mean motion and velocity dispessiora
population, we point out that an investigation of velocitgtdbu-
tions themselves requires accurate estimates of the exape ©f
the probability distribution in distance space, which they8sian
method can deliver.

5 DISCUSSION AND FUTURE DEVELOPMENTS

The method presented in this work is essential for accureiterd
mination of astrophysical parameters of stars. Though émeath-
strated scheme appears to be the méstient way to extract in-
formation from the current and upcoming Galactic survegsesl
shortcomings need and will be addressed.

e We are working on extending the grids of stellar spectrum
models, i.e. wider wavelength coverage (UV to IR) and finéd gr
resolution, inclusion ofr-enhancement and rotation as extra di-
mensions in the grids.

e Especially on the low-resolution side, the continuum figdin
algorithms need to be improved.

e Parameters, like micro-turbulence, which in fact paraisetr
the deficits of the current 1D-models in physical realismsthe
better constrained or best be made obsolete by the use of more
physical models. In the short and intermediate range wefinl
smoother corrections on a denser grid that allow for moreipee
evaluation. In the far future, this problem should be solygdetter
physics, i.e. 3D-NLTE calculations for stars, which are r@spgnt
still too costly.

e |tis also interesting to include age- and mass- sensitiag-di

sequence, while SEGUE DR9 does not attain main sequence val-nostics (such as, Ca UV lines), that would in principle allasvto

ues. Even more striking is the appearance of unphysica: 8ath
SEGUE DR9 and the reference sample from Heiter et al. hav sta

choose spectroscopic models which are more appropriatgiviea
domain of the HRD. At present, the analysis of OBA stars sabie



14  R. Schonricke- M. Bergemann

0.5 o[ : : 0.5
—— BASTI, [M/H] =
0 —— BASTI . 0
2571 BAST, [M/H] =0
05 3 high-res s., Bayes. m 05
g g
o~ —~
(=) -1 2 35¢ -1
[ =)
o o
-1.5 atb -1.5
-2 45 -2
5 L L L L -25 5 L L L L -2.5
7000 6500 6000 5500 5000 [Fe/H]bay 7000 6500 60(_)|_O /5K500 5000 [Fe/H]bay
bay
0.5 of T T T T 0.5
—— BASTI, [M/H] =~ /A
0 ——— BASTI -1 7 0
251 BASTL[MH] =0
05 o, 1 //—. high-res sample, ref 05
I I
o N
-~ B
2 1 5 35t -1
8 g
-15 = a4t .- -15
-2 45t -2
5 : : : . -25 5 . L . L -2.5
7000 6500 60_(|)_0 /?(500 5000 [Fe/H]pro 7000 6500 69|_00 /5?(00 5000 [Fe/H],
DR9 ref, HR
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NLTE model atmospheres, whereas LTE models are standard forrameter space, which can be expanded arbitrarily depenating

FGK stars.

e The stellar evolution models still apply rather simpligfice-
quently gray) atmosphere models. Consequent systematicbe
explored via residuals from this Bayesian method e.g. innitade
space, as well as aberrations of physical parameters. Atkmng
goal would be to gear the stellar evolution codes with theesam
atmosphere models used for the spectroscopic modellingaid a
biases by partly contradictory models.

e The photometric information in our scheme iteated by red-
dening. Colour distortions and mismatches between theophett
ric and other information can be directly used to determi r
dening, in addition spectral information can be extractetligh
resolution e.g. from interstellar Na D lines. Since we siiaug-
ously derive probability distribution functions for slldistances,
the method can be adapted for reddening reconstructidastfie

ones by Schlafly, Green & Finkbeifer 2013).

6 CONCLUSIONS

In this paper we present the first generalised Bayesian appifor
stellar parameter determination.

a) the available observational information for a star, ahdhie
desired physical quantities. The presented framework ltimer
ously evaluates the spectroscopic informations (gainau ftom-
parisons to theoretical spectra) and all other sourcedafiration.
This allows to calculate the full probability distributi®in param-
eter space and helps to cut computational costs by preragnag
the parameter space that has to be searched with the spegims
method.

In this work we showed how to combine low or high-
resolution spectroscopy, photometry, parallax measumesmand
reddening estimates to estimate central physical parasnete
Tex, l0g(g), [Me/H] of a star, as well as its mass, age, distance, or
detailed chemical composition. The exploitation of théioed con-
straints like stellar models, as well as strong mutual ddpece
or independence of flerent parameters reduce the complexity and
effective dimensionality of the problem and make the compautati
possible. The scheme can be easily expanded to other safiines
formation, in particular to astroseismic e.g. from CoroKepler.

The presented method has unique advantages compared to
other available approaches:

¢ It makes an optimal and unbiased use of all observational dat

The essence of the Bayesian method is a combination of sev-and theoretical information for a star, thus providing thegmeter

eral probability distribution functions in the multi-dimsional pa-

estimates that satisfy all observational constraints;
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e The method is robust with respect to missing data, such as low great hospitality of the Aspen physics center, where pdrthis

quality or missing spectral or photometric information.

e The method is vital to gain a grip on derived quantities. E.g.
to determine the distance of a star, it is noffisient to know its
best-fit values for surface gravity, temperature, meigflend their
errors; a fair assessment is only possible if we know thecfuth-
bined PDF in all parameters. We showed that indeed the Bayesi
estimates in particular for uncertaintie$rtdr from simple expecta-
tions.

e Data from diferent surveys can be analysed with exactly the
same scheme: stellar models are available in most photizcregs-
tems and the synthetic spectra grids can be folded with atyuin
ment response function. This avoids systemaffsets caused by
applying diferent analysis methods tofféirent surveys and the
Bayesian method can serve as a benchmark for cross-cadibrat
between surveys.

The method requires unbiased assessments from all itsesourc
of information. However, we know that systematic biaseg. (e-
oretical atmosphere flaws, stellar evolution uncertagniilee con-
vection, nuclear reaction rates, etc.) currentiiget these sources.
This vulnerability can bias the entire derived parameter&etest
the performance of our method we compared both to reference
samples for low-resolution and for high-resolution spectn all
cases where we encounter problems, e.g. lower spectrospai-
ities, the Bayesian method remains robust and pushes a#séb-
wards the benchmark. Comparisons with astroseismicatiytian
ditionally derived parameters shows that the Bayesian odepho-
vides excellent results on the astroseismic sample andyckae-
rior performance compared to our traditionally derivecerefice.
We provide parameter estimations for these stars in Table 2.

Similarly the photometric information isfi@cted by red-
dening. However, this impact can be directly used to deter-
mine reddening especially in a larger sample. By the simul-
taneous determination of distance distributions, the otbtbf-
fers an excellent basis for reddening measurements sindlar
ISchlafly, Green & Finkbeiner (2013).

Up to the last decade, sample sizes of Galactic surveys-deter
mined the scope of model comparisons: at sample sizes1®00
stars, Poisson noise was usually of the same importancest&ssy
atic uncertainties and knowledge of the detailed erroridistions.

In the future we can advance from a more qualitative undedstg
of best-fit parameters for our Galaxies to full quantitatwvelysis.
The implies, however, that progress in evaluating the upegrand
present large stellar surveys for the Milky Way criticallgpgnds
on our ability to cope both with the systematic biases ancenmor
portantly derive precise and accurate error distributiansl hence
on the development and success of methods like the presented
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8 APPENDIX

8.1 Selection function

Previous approaches (e.g., Burnett & Binney (2010)) intoed a

selection function. With our choice of symbols, this woubcd:

P(SIO, X)
P(S,0)

whereS denotes the selection functian. Burnett & Binhey (2010)
then split the selection function into two parts: the one tlegpends
on the parameterX and the other one, that does not and is thus of
no importance. However, there appears to be no reason tw intr
duce the other term: selections of a sample are nearly aimade

on observations and not on stellar parameters that are ootrka
priori. The one example of such a selection function actimga-
rameter space we could find in the literature, is actuallybtams a
misunderstanding hy Burnett & Binney (2010): Knowing thaikv
able parallax measurement and its error for a star, they myimic

a typical kinematic quality cutin a sample by nulling all pedility
that produces too low parallaxes in proportion to the messpar-
allax error. However, it is not clear why one should not ugefthl
parallax information here: applying the selection functimplies
that one has the knowledge necessary to compute the fuli-like
hood, the selection function instead gives an undesirai#esaled
constraint against far-away stars, and when pretendingpritave
the parallax information for testing purposes, the sedadtiinction
will arbitrarily cut away the tail of &ective distance overestimates,
leading to wrong confidence and biased error estimates.

P(X|S,0) = P(OIX)P(X) (25)

8.2 detailson priors

For the metallicity-iron abundance prior we assume a fixptal
enhancement. It is known that also alpha enhanced stelldelsio
are very well approximated by scaled solar abundance méckels

[199M1| Salaris & Weiss 1998). We use this fact by set-

ting the relation:

[Fe/H] + 0.1 it [Fe/H] <-1.0
[Me/H] = {[Fe/H] — 0.2([FgH] + 0.5) if ~1.0 < [Fe/H] < —0.5(26)
[Fe/H] it [Fe/H]>-

The combined prior probability density of age and metadifici
is used as::

0 if 7> 14 Gyr
P(r, [Fe/H]) = N-P([Fe/H])- 1 if 11 Gyr < 7 < 14 Gyr(27)
exp(T MGyr) if < 11Gyr
where
1.5Gyr if [Me/H] < -0.9
o= (1.5+ 9. ﬂW) Gyr if -09<[FeH] <-05 (28)
9Gyr else.

For the sake of simplicity we give each population the
same upper limit of 14 Gyr and allow for a constant density in
age down to 11 Gyr. Cosmological studies as well as observa-

tions in the Milky Way discl(Madau, Pozzetti & Dickinson 1998
\Aumer & Binney 2009; Schonrich & Binnky 2009) measure a sig-

nificant decline of star formation rates with time even foldgtc
disc stars. Observations and these theoretical modelsdai$ee

a significantly older age for more metal-poor populationkjchy
motivates the decreasing time constant towards lower fiodiak.
The high altitude of the SDSSEGUE sample additionally favours
older ages (cf._Just & Jahrreiss 2007), but in order not tdlicon
with Cromwell’s rule on the other hand, we lean towards a-rela
tively moderate decline with time.s In addition we use a pado
the spatial distribution of stellar densities. It cannofjnified to
apply a flat distance prior to a general sample. This is fodride
the specific sampling in space implied by our observatiangeh-
eral every sample will cover some fixed angle on the sky (be-it s
called pencil beams like in SEGUE or a complete sky coverage)
so the actual volume is a cone that covers an & = k - d?,
whered is the distance ankigiven by the sky coverage and selec-
tion probabilities. Well within the magnitude limits staase hence
preferentially found far away. However, the likelihood twdeup in
the sample is also proportional to the density of the pojmnan
the observed region, i.e.:

Ps(s) = kdszp(s,w)szw

where we integrate over the sky positian SEGUE measures
mostly stars in the high disc, so we describe the spatiatilolist
tion for our stars by a primitive thick disc plus halo modeg.i

(29)

25
o(R2) = e /e RRIR1 1 003. (F:O) (30)
whereR is the zylindrical galactocentric radial coordinatethe
galactocentric distance the altitude above the plang, = 0.9 kpc
the assumed scale height of the Galactic d&gcs 2.5 kpc the scale
length of the Galactic disé, = 8.27 kpc the assumed galactocen-

tric distance of the Sun from McMillan (2011); Schonficiol2).
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Figure 16. Parameter estimates without using spectroscopic inféomalhe top row shows our high resolution comparison sajmp&ebottom row shows
our comparison with the SEGUE stars. Temperatures are fibetim occasions. In the absence of parallaxes, gravity imdition is marginal, leading to
large uncertainties. Similarly, our high resolution saeiphs virtually ndJ-band photometry, such that metallicities are weakly daeitged. This pushes the
expectation values strongly towards the middle.
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name HIP spectra  [Fe/H] T[Fe/H] Ter 0T 100(9)  Tlog(g) T o remark

HD 107238 60172 0 -0.14 0.26 4473 81 2.04 0.20 6.3 3.3  phot.

HD 122563 68594 4 -2.650 0.076 4809 a7 1.54 0.13 9.7 2.9  cdrab.photometric T
HD 140283 76976 4 -2.73 0.11 5608 40 3.539 0.056 13.49 0.47 bcom

HD 173819 92202 0 -0.42 0.64 4240 95 1.05 0.25 2.9 4.0 phot

HD 190056 98842 0 -0.11 0.29 4449 94 2.07 0.17 5.8 4.0 phot

HD 220009 115227 0 -0.43 0.28 4369 85 1.67 0.19 6.2 3.9 phot

HD 22879 17147 3 -0.592 0.024* 6006 19* 4.316 0.044* 121  1.2tomb!

HD 84937 48152 1 -2.11 0.14 6242 70 3.931 0082 1357 041 fomb

ksi Hya 56343 1 -0.458 0.032* 4933 35 2.476 0.080 3.9 1.6  comeétallicity fit questionable
Procyon 37279 4 -0.161 0.078 6515 79 3.993 0.073 2.44  0.53 bhcom

alphaCen A 71683 2 0.275 0.063 5939 79 4.380 0.066 3.7 2,5 .comb

alpha Cen B 71681 1 0.175 0.072 5364 58 4.482 0.041 6.6 4.4  .comb

Psi Phe 8837 0 0.14 0.36 3586  31* 0.65 0.22 4.9 45  phot.

Sun 0 4 -0.013 0.046 5842 49 4.464  0.063 4.3 2.9  comb.

18 Sco 79672 2 -0.050 0.059 5849 54 4.492  0.064 4.3 3.2 comb.

61 Cyg A 104214 0 -0.45 0.43 4563 83 4.717  0.060 6.8 4.0 phot.

alpha Tau 21421 0 0.09 0.22 3889 57 121 0.14 5.9 3.8  phot.

Arcturus 69673 0 -0.27 0.31 4399 91 1.82 0.19 4.2 1.9 phot.

alpha Cet 14135 0 -0.53 0.26 3723 41 0.50 0.16 5.5 3.7  phot.

tau Cet 8102 1 -0.520 0.047 5515 32 4.612 0.053 7.8 3.9 combh.

beta Ara 85258 0 -0.07 0.36 4118 83 1.02 0.20 3.3 1.3 phot.

mu Ara 86796 1 0.379 0.073 5950 97 4334  0.077 3.9 2.3 comb.

Pollux 37826 1 -0.376 0.043 4846 53 2.66 0.12 4.3 2.1 comgh macroturbulence
eps For 14086 2 -0.479 0.049 5218 68 3.614  0.072 7.2 2.0 comb.

eps Vir 63608 2 -0.457 0.050 5024 58 2.62 0.12 1.11  0.75 cdwgh,macroturbulence
beta Vir 57757 1 -0.037 0.080 6225 93 4.163  0.077 3.8 1.1 comb.

eta Boo 67927 0 0.12 0.37 6332 162  3.868  0.093 2.8 1.7  phstrdeator

delta Eri 17378 2 0.047 0.050 5139 59 3.791 0.071 6.99 0.88 bfom

eps Eri 16537 3 -0.202 0.050 5184 27 4.562 0.049 6.5 3.8 comb.

gam Sge 98337 0 -0.13 0.25 3942 83 1.15 0.19 5.6 3.9 phot.

gmb 1830 57939 1 -1.56 0.11 5304 36 4.649 0.060 7.8 4.1  comb.

mu Cas 5336 1 -0.598 0.010* 5584 39 4.601 0.053 5.6 3.6 domb.

mu Leo 48455 0 0.24 0.22 4607 74 2.43 0.11 4.7 3.7 phot. Tigmand rotating
beta Hyi 2021 3 -0.189 0.081 5848 79 3.997 0.074 6.89 0,58 comb

Table 2. Parameter expectation values and errors for metallicéHHn dex, temperatur@; in K, surface gravity log(g) in dex, and agén Gyr, all values
rounded to two significant digits in the formal error. The@®t column provides the Hipparcos catalogue number for sgehthe third column the number
of spectra involved. Stars outside the spectral grid or wittl spectra have 0 used spectra and are denotecphithin the last column, as their parameters
stem from photometry, stellar models and parallax measem&nwhile “comb.” in the last column denotes a full Bayrsi@proach. Detailed remarks on
single starslinternal rim solution by §/Fe] step at-0.6 dex, metallicity and errors biasetlJVES and HARPS spectra droppeé®utside model grid (rim
solution).*NARVAL bad spectral fit. disregarded, though Bayesian \&indine with other estimates.
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