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Abstract

We investigate the applicability of curvilinear grids in the context of astro-
physical simulations and WENO schemes. With the non–smooth mapping
functions from Calhoun et al. [1], we can tackle many astrophysical problems
which were out of scope with the standard grids in numerical astrophysics.
We describe the difficulties occurring when implementing curvilinear coor-
dinates into our WENO code, and how we overcome them. We illustrate
the theoretical results with numerical data. The WENO finite difference
scheme works only for high Mach number flows and smooth mapping func-
tions whereas the finite volume scheme gives accurate results even for low
Mach number flows and on non–smooth grids.

Keywords: methods: numerical, WENO scheme, numerical astrophysics,
hydrodynamics, curvilinear coordinates

1. Introduction

There are many astrophysical applications where the physical domain of
interest is a sphere or a circle, e.g. the numerical simulation of core convection
[2, 3] or of convection in giant planets [4, 5]. The usability of spherical
coordinate systems is restricted due to the grid singularity in the centre of
the sphere as discussed, for instance, by Evonuk and Glatzmaier [5]. With
a Cartesian grid, a huge part of the computational resources are wasted [6]
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and to improve resolution along spheres, complex adaptive mesh refinements
have to be used [7] to keep the computational requirements manageable.
Therefore, all default grids used in numerical astrophysics have some fatal
deficiencies.

For the specific case of a sphere with grid singularity at the centre, Cai
et al. [3] proposed a different approach. They use spectral expansion methods
on a spherical grid. To avoid the time step restriction due to converging grid
lines at the centre, they lower the order of the harmonic expansion at the
centre. The equations are recast in a form such that boundary conditions
can easily be applied at the centre. In this way, the simulation domain
can be extended to the full sphere. Anyway, their procedure still requires
the specification of a boundary condition at the centre, and applies only to
spherical domains.

Mocz et al. [8] implemented a discontinuous Galerkin method on arbitrary
static and moving Voronoi meshes. In theory, their approach promises great
flexibility and wide applicability. In applications, however, there are still
numerical difficulties present, e.g. in the treatment of shocks, making the use
of the method in astrophysical applications difficult at the moment.

In this paper, we present the methods used to extend the applicability
of the simulation code ANTARES [9] to more general geometries. Until
now, ANTARES was exclusively applied to numerical simulations of solar
and stellar surface convection and stellar interiors in Cartesian geometry
[e.g., 9, 10] as well as convection in Cepheids in spherical geometry [e.g.,
11]. For the advective part of the Navier–Stokes equations, the WENO finite
difference scheme is employed [12, 13, 14]. The WENO scheme is a highly
efficient shock–capturing scheme of fifth order. Its superiority compared
to other high–order schemes was shown, e.g., in Muthsam et al. [15]. On
the other hand, its applicability is restricted by its specific requirements
concerning the grid geometry [14].

The technique of curvilinear or mapped grids is widely used in engineer-
ing [16, 17, 18], but until now was only seldomly applied in an astrophysical
setting [19]. In principle, given a suitable mapping function, any problem
defined on a general domain can be transformed into a problem in a com-
putational space which is equidistant and Cartesian and where any standard
numerical scheme, the applicability of which often is restricted to Cartesian
and equidistant grids, can be used. The only requirement is that the grid in
physical space is structured.

In the context of curvilinear coordinates, Calhoun et al. [1] presented
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several functions mapping spherical domains to the Cartesian computational
domain. These functions are not strongly differentiable and were mainly
applied in engineering applications until now.

In this paper, we will show how well the WENO finite difference and
finite volume scheme performs on smooth and non–smooth grids for flows in
the intermediate flow regime of 0.1 ≤ Ma ≤ 1 typical for many problems
in stellar astrophysics. We will call a grid (non)smooth if the associated
mapping function is (non)smooth.

Shu [13] applied the WENO finite difference scheme in a straightforward
way to smooth grids. In all numerical examples in the mentioned paper,
the Mach number Ma = |u|

vsnd
was higher than 1. The behaviour of the

method in the low Mach number limit on Cartesian grids was investigated
in Happenhofer et al. [10]. They showed that the WENO5 finite difference
scheme does not perform well for Mach numbers smaller than 0.1 even on
Cartesian grids.

Most of the findings of this paper are not restricted to our specific code,
but apply to any finite difference or finite volume code. From the numerical
experiments in Section 3, we conclude in which situations and in which nu-
merical setup the mapped grid technique gives reliable results. Thereby, we
concentrate on the WENO algorithm and on astrophysical simulations. We
demonstrate the usefulness and applicability of the mapping functions for a
sphere from Calhoun et al. [1] in this setting.

1.1. WENO Finite Difference and Finite Volume Formulation

The Euler equations are a system of partial differential equations. In two
spatial dimensions and in a Cartesian coordinate system, their differential
form is

∂

∂t
Q+

∂

∂x
F+

∂

∂y
G = 0, (1)

with the state vector Q and the flux functions F and G given by

Q =







ρ
ρu
ρv
E







,F (Q) =







ρu
ρu2 + p
ρuv

(p+ E)u







,G (Q) =







ρv
ρvu

ρv2 + p
(p+ E)v







, (2)
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where the pressure p = p(ρ, e) is given by an equation of state and e =
E− u2+v2+w2

2ρ
is the internal energy. In the following, we will write u := (u, v)T

for the velocity vector.
We discretise the Euler equations as described in Appendix A and in

Merriman [14] for the case of an equidistant Cartesian grid. In the finite
difference case, the fluxes are reconstructed directly, whereas in the finite
volume case, the conservative variables are reconstructed. The procedure is
described in pseudo code in Algorithms 1 and 2.

Algorithm 1 Finite difference scheme for the two–dimensional Euler equa-
tions.
1: Qi,j is given as point value at the cell centre.
2: A(f)i,j = Fi,j , A(g)i,j = Gi,j

3: fi± 1

2
,j = Rx (Fi,j), gi,j± 1

2
= Ry (Gi,j)

4:
∂Qi,j

∂t
= − 1

δx

(

fi+ 1

2
,j − fi− 1

2
,j

)

− 1
δy

(

gi,j+ 1

2
− gi,j− 1

2

)

Algorithm 2 Finite volume scheme for the two–dimensional Euler equations.

1: Qi,j = Qi,j is given as cell average.

2: Qi± 1

2
,j = Rx

(
Qi,j

)
, Qi,j± 1

2
= Ry

(
Qi,j

)

3: Fi± 1

2
,j = F

(

Qi± 1

2
,j

)

, Gi,j± 1

2
= G

(

Qi,j± 1

2

)

4:
∂Qi,j

∂t
= − 1

δx

(

Fi+ 1

2
,j − Fi− 1

2
,j

)

− 1
δy

(

Gi,j+ 1

2
−Gi,j− 1

2

)

Both algorithms need the specification of a reconstruction operator. A
reconstruction operator calculates the point value of a function given its
cell averages. The WENO reconstruction operator is described, e.g., in Shu
[13] and Appendix C. In the derivation of the finite difference scheme, we
required the grid to be equidistant. The fluxes in the finite volume scheme are
second–order approximations to the analytical fluxes which are line integrals
over the cell boundary. Details can be found in Appendix A.

2. Mapped Grids

Numerical schemes which are designed for Cartesian, equidistant grids can
be generalised to more complicated domains with the technique of mapped
grids. There, a mapping function
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M : [−1, 1]2 → Ω, M(ξ, η) = (x, y)T , (3)

is defined which maps the Cartesian and equidistant computational space into
the physical space. The information about the geometry of the physical space
is then contained in the transformed partial differential equations. The Euler
equations in strong conservation form in physical space (1) are transformed
into strong conservation form in computational space. In two dimensions,
they take the form

∂

∂t
J−1Q+

∂

∂ξ
F̂+

∂

∂η
Ĝ = 0 (4a)

with

F̂ =
∂y

∂η
F− ∂x

∂η
G, (4b)

Ĝ =− ∂y

∂ξ
F+

∂x

∂ξ
G, (4c)

where J−1 is the determinant of the inverse Jacobian of the mapping function
M [see, e.g., 19]. ξ and η are the computational variables defined by the
mapping function M .

We present two derivations of the strong conservation form of the two–
dimensional Euler equations in computational space (4) which differ in their
differentiability assumptions concerning the mapping function M . The clas-
sical first approach assuming strong differentiability of the mapping function
can be found in Appendix B. A more general derivation is sketched out in
the following section.

In applications, the mapping functionM which maps the physical domain
Ω into the computational domain is unknown or does not possess an analyti-
cal form. We therefore seek for a derivation of the transformed equations (4)
which does not require any differentiability of the mapping function M . Fol-
lowing the description in Wesseling [16], we assume that a structured set of
nodes (xi± 1

2
,j± 1

2
, yi± 1

2
,j± 1

2
), 1 ≤ i ≤ n, 1 ≤ j ≤ m, is given [e.g., by an exter-

nal grid generation program, see 20], instead of an analytical expression for
M . Ω is the smallest region R ⊂ R

2 such that (xi± 1

2
,j± 1

2
, yi± 1

2
,j± 1

2
) ∈ R ∀i, j,

where R is the closure of R. Then we define the discrete mapping function
M̃ point–wisely by
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M̃(ξi− 1

2
, ηj− 1

2
) = (xi− 1

2
,j− 1

2
, yi− 1

2
,j− 1

2
), i = 1, . . . , n+ 1, j = 1, . . . , m+ 1. (5)

For (ξ, η) ∈ Ci,j :=
[

ξi− 1

2
, ξi+ 1

2

]

×
[

ηj− 1

2
, ηj+ 1

2

]

, we define M(ξ, η) by

bilinear interpolation of the physical coordinates of the edges of the cell. In
this way, we continue M̃ to M : [−1, 1] × [−1, 1] → Ω. M is continuous,
linear in each Ci,j, but not differentiable on the boundary of each cell Ci,j.
It follows that M 6∈ C1([−1, 1]2), but M ∈ H1([−1, 1]2).

If the mapping function is defined in this way, the image of each cell Ci,j

is a quadrilateral Di,j with edges
(

xi− 1

2
,j− 1

2
, yi− 1

2
,j− 1

2

)

,
(

xi− 1

2
,j+ 1

2
, yi− 1

2
,j+ 1

2

)

,
(

xi+ 1

2
,j− 1

2
, yi+ 1

2
,j− 1

2

)

, and
(

xi+ 1

2
,j+ 1

2
, yi+ 1

2
,j+ 1

2

)

in physical space. All cell sides

are straight lines. We can choose the quadrilateral Di,j as the (arbitrary)
control volume W ⊂ Ω of the integral formulation of the Euler equations

∂

∂t

∫

W

ρ dV =−
∫

∂W

n · ρu dA, (6a)

∂

∂t

∫

W

ρu dV =−
∫

∂W

[n · ρu⊗ u+ np] dA, (6b)

∂

∂t

∫

W

E dV =−
∫

∂W

n · (p+ E)u dA, (6c)

where n is the unit outward normal on ∂W , the boundary of W . Due to
Gauss’ Theorem [p. 627, 21], equations (6) are equivalent to the differential
form (1) for sufficiently smooth functions [22]. But ∂W = ∂Di,j consists of
the four straight lines

Si± 1

2
=

(

xi± 1

2
,j+ 1

2

yi± 1

2
,j+ 1

2

)

−
(

xi± 1

2
,j− 1

2

yi± 1

2
,j− 1

2

)

, (7a)

Sj± 1

2
=

(

xi+ 1

2
,j± 1

2

yi+ 1

2
,j± 1

2

)

−
(

xi− 1

2
,j± 1

2

yi− 1

2
,j± 1

2

)

. (7b)
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Their length is given by

∣
∣
∣Si± 1

2

∣
∣
∣ =

√
(

xi± 1

2
,j+ 1

2
− xi± 1

2
,j− 1

2

)2

+
(

yi± 1

2
,j+ 1

2
− yi± 1

2
,j− 1

2

)2

, (8a)

∣
∣
∣Sj± 1

2

∣
∣
∣ =

√
(

xi+ 1

2
,j± 1

2
− xi− 1

2
,j± 1

2

)2

+
(

yi+ 1

2
,j± 1

2
− yi− 1

2
,j± 1

2

)2

, (8b)

and the normal vectors n =

(
n1

n2

)

in equations (6) are exactly

n1 =
(

yi± 1

2
,j+ 1

2
− yi± 1

2
,j− 1

2

)

/
∣
∣
∣Si± 1

2

∣
∣
∣ , (8c)

n2 = −
(

xi± 1

2
,j+ 1

2
− xi± 1

2
,j− 1

2

)

/
∣
∣
∣Si± 1

2

∣
∣
∣ (8d)

on Si± 1

2
and

n1 = −
(

yi+ 1

2
,j± 1

2
− yi− 1

2
,j± 1

2

)

/
∣
∣
∣Sj± 1

2

∣
∣
∣ , (8e)

n2 =
(

xi+ 1

2
,j± 1

2
− xi− 1

2
,j± 1

2

)

/
∣
∣
∣Sj± 1

2

∣
∣
∣ . (8f)

on Sj± 1

2
. From now on, we will write n =

(
n1

n2

)

for the normal vector on

Si± 1

2
and m =

(
m1

m2

)

for the normal vector on Sj± 1

2
. The surface area of

the quadrilateral Di,j is

|Di,j| =
1

2

∣
∣
∣(yi− 1

2
,j− 1

2
− yi+ 1

2
,j+ 1

2
)(xi− 1

2
,j+ 1

2
− xi+ 1

2
,j− 1

2
)

+ (yi+ 1

2
,j− 1

2
− yi− 1

2
,j+ 1

2
)(xi− 1

2
,j− 1

2
− xi+ 1

2
,j+ 1

2
)
∣
∣
∣.

Since |Di,j| > 0, we define the cell average of the state vector Qi,j in the
cell (i, j) by

Qi,j = |Di,j|−1

∫

Di,j

Q dV. (9)

With U := n1u+ n2v, V := m1u+m2v, we can write equations (6) as
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∂

∂t
Qi,j = −





∫

S
i+1

2

F̂ dS −
∫

S
i− 1

2

F̂ dS +

∫

S
j+1

2

Ĝ dS −
∫

S
j− 1

2

Ĝ dS



 , (10)

where

Q =







ρ
ρu
ρv
E







, F̂ =







ρU
ρUu + n1p
ρUv + n2p
(p+ E)U







, Ĝ =







ρV
ρV u+m1p
ρV u+m2p
(p+ E)V







. (11)

Evaluating the line integrals in (10) with the midpoint rule, we get

∂

∂t
|Di,j|Qi,j = −

(

F̂i+ 1

2
,j − F̂i− 1

2
,j + Ĝi,j+ 1

2
− Ĝi,j− 1

2

)

. (12)

In the computational space, all standard numerical methods can be used
to calculate the value of the numerical flux functions F̂ and Ĝ since the com-
putational space is equidistant and Cartesian. In particular, both the finite
difference and the finite volume WENO scheme as described in Algorithms 1
and 2 can be applied to solve (12). The specific form of the algorithms for
curvilinear coordinates can be found in Algorithms 3 and 4.

Algorithm 3 Finite difference scheme for curvilinear coordinates.

1: Qi,j is given as point value at the cell centre.

2: A(̂f)i,j = F̂i,j = n1|i,jFi,j + n2|i,jGi,j,

A(ĝ)i,j = Ĝi,j = m1|i,jFi,j +m2|i,jGi,j

3: f̂i± 1

2
,j = Rξ

(

F̂i,j

)

, ĝi,j± 1

2
= Rη

(

Ĝi,j

)

4:
∂Qi,j

∂t
= − 1

δξ

(

f̂i+ 1

2
,j − f̂i− 1

2
,j

)

− 1
δη

(

ĝi,j+ 1

2
− ĝi,j− 1

2

)

The advantage of the weak derivation, besides that it does not require M
to be differentiable, is that one gets formulae for all metric terms occurring
in the transformation process. The Jacobian of the transformation is given
by the area of the corresponding quadrilateral and therefore is positive by
definition. The mapping function is not required to fulfil any smoothness
properties. We therefore prefer to define our mapping function in this way.

We note that similar formulae exist for the three–dimensional case. The
precise formulation can be found, e.g., in Visbal and Gaitonde [23].
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Algorithm 4 Finite volume scheme for curvilinear coordinates.

1: Qi,j = Qi,j is given as cell average.

2: Qi± 1

2
,j = Rξ

(
Qi,j

)
, Qi,j± 1

2
= Rη

(
Qi,j

)

3: F̂i± 1

2
,j = n1|i± 1

2
,jF
(

Qi± 1

2
,j

)

+ n2|i± 1

2
,jG

(

Qi± 1

2
,j

)

,

Ĝi,j± 1

2
= m1|i,j± 1

2
F
(

Qi,j± 1

2

)

+m2|i,j± 1

2
G
(

Qi,j± 1

2

)

4:
∂Qi,j

∂t
= − 1

δξ

(

F̂i+ 1

2
,j − F̂i− 1

2
,j

)

− 1
δη

(

Ĝi,j+ 1

2
− Ĝi,j− 1

2

)

2.1. Grids for Spherical Domains

There is no strongly differentiable function (a diffeomorphism) from the
(unit) sphere to the (unit) square since the square is not a submanifold of
R

2. Therefore, if we want to use the mapped grid technique to perform
simulations on spherical domains, we have to rely on mapping functions
which are only weakly differentiable.

For the mapped grid technique, Calhoun et al. [1] gave some examples of
mapping functions which map a circular domain to [−1, 1]2 and vice versa.
In this paper, we want to investigate how the mapping functions M1 and M2

from Calhoun et al. [1] defined by

M1 : [−1, 1]2 → Ω, x = R · max (|ξ| , |η|) ξ
√

ξ2 + η2
, (13a)

y = R · max (|ξ| , |η|) η
√

ξ2 + η2
, (13b)

M2 : [−1, 1]2 → Ω, w = max (|ξ| , |η|)2 , (13c)

x = w · xM1
+ (1− w) · Rξ√

2
, (13d)

y = w · yM1
+ (1− w) · Rη√

2
, (13e)

where xM1
and yM1

are the physical coordinates defined by M1, and

Ω = {(x, y) ∈ R
2 :
√

x2 + y2 ≤ R}, (14)

perform in numerical simulations when WENO schemes are employed.
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Figure 1: Grid defined by function M1 from Calhoun et al. [1].

It is obvious to see that these functions are only weakly differentiable.
Therefore, they should be applied only in the context of the methods devel-
oped in Section 2.

2.2. Freestream Problem

Nonomura et al. [24] emphasize the importance of the following, seemingly
simple, test problem.

Problem 1 (Freestream preservation for the Euler equations). Given the

initial conditions

(ρ, ρu, ρv, E) = (ρ0, 0, 0, e0) , (15)

with constant density ρ0 and internal energy e0, the numerical solution of the

transformed system (4) should stay close to the analytical solution

(ρ, ρu, ρv, E) = (ρ0, 0, 0, e0) (16)

for all times. p0 = p(ρ0, e0) is the pressure given by the equation of state.

Plugging these initial conditions into the transformed Euler equations (4),
we get

10
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Figure 2: Grid defined by function M2 from Calhoun et al. [1].

0 = p0

(
∂n1

∂ξ
+

∂m1

∂η

)

, 0 = p0

(
∂n2

∂ξ
+

∂m2

∂η

)

, (17)

since ∂
∂t
(ρu) = ∂

∂t
(ρv) = 0. This condition must be fulfilled numerically in

order to prevent numerical errors. Since

n1 =
∂y

∂η
, n2 = −∂x

∂η
,m1 = −∂y

∂ξ
,m2 =

∂x

∂ξ
, (18)

this is equivalent to the requirement that the second derivatives of the map-
ping function M are symmetric. Every function which is twice (weakly)
differentiable fulfils this property.

Next, we investigate if the freestream is preserved by the finite difference
and the finite volume discretisation of the Euler equations. The WENO finite
difference scheme as summarised in Algorithm 3 corresponds to the scheme
WENO-G in Nonomura et al. [24]. In the cited reference, they describe precisely
why the finite difference scheme does not fulfil the freestream preservation
property. The fluxes F̂ and Ĝ are reconstructed directly from their value
at the cell centre, including the metric terms evaluated at the cell centre.
These fluxes are not constant for the freestream initial conditions. The re-
constructed fluxes at the cell boundary will not be constant, too, and be
different on any cell boundary. Therefore, they will not cancel out, and
steadily, a numerical error is introduced.
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We note that Nonomura et al. [24] introduced the WENO-C scheme as a
different WENO finite difference scheme which fulfils the freestream property
by calculating ∂Q

∂t
via

∂Q

∂t
=

∂ξ

∂x

∂F

∂ξ
+

∂η

∂x

∂F

∂η
+

∂ξ

∂y

∂G

∂ξ
+

∂η

∂y

∂G

∂η
. (19)

We did not consider this scheme in our paper since it is not conservative
and its computational costs are three times higher than WENO-G in three
dimensions, making the scheme useless for our purposes.

On the contrary, for the WENO finite volume scheme as summarised in
Algorithm 4, the state vector Q is reconstructed at the cell boundaries from
its cell averages. Therefore, for Problem 1 the reconstruction process will
yield constant approximations for the state vector at the cell interface, i.e.

Qi± 1

2
,j = Qi,j± 1

2
= (ρ0, 0, 0, e0)

T . (20)

In the update step (12), only the metric terms will be non–constant. In
precise terms, the conditions

n1|i+ 1

2
,j − n1|i− 1

2
,j

δξ
+

m1|i,j+ 1

2
−m1|i,j− 1

2

δη
= 0, (21a)

n2|i+ 1

2
,j − n2|i− 1

2
,j

δξ
+

m2|i,j+ 1

2
−m2|i,j− 1

2

δη
= 0, (21b)

are equivalent to preserving the freestream. If the metric terms are calcu-
lated, as described in Section 2, by

n1|i± 1

2
,j =

∂y

∂η
|i± 1

2
,j =

yi± 1

2
,j+ 1

2
− yi± 1

2
,j− 1

2

δη
, (22a)

n2|i± 1

2
,j =− ∂x

∂η
|i± 1

2
,j = −

xi± 1

2
,j+ 1

2
− xi± 1

2
,j− 1

2

δη
, (22b)

m1|i,j± 1

2
=− ∂y

∂ξ
|i,j± 1

2
= −

yi+ 1

2
,j± 1

2
− yi− 1

2
,j± 1

2

δξ
, (22c)

m2|i,j± 1

2
=
∂x

∂ξ
|i,j± 1

2
=

xi+ 1

2
,j± 1

2
− xi− 1

2
,j± 1

2

δξ
, (22d)
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conditions (21) are fulfilled exactly and the freestream will be preserved nu-
merically.

We note that the freestream is never preserved in general if analytical
expressions for the metric terms are used (if available).

We remark that even though conditions (22) look like second–order ap-
proximations, they are rather analytical requirements which must be fulfilled
by the discretisation of the metric terms in order to preserve the freestream.
They are a consequence of the conservative discretisation of the derivatives
in equations (1). As described in Appendix A, the discrete formulations of
the Euler equations as in (A.5) and (A.8) are analytically equivalent to (1).

For trivial mapping functions such as M : [−1, 1]2 → [−1, 1]2, M(ξ, η) =
(ξ, η)T with ∂y

∂η
= ∂x

∂ξ
= const, ∂y

∂ξ
= ∂x

∂η
= 0, freestream preservation is of

course possible even for the finite difference scheme WENO-G.
We conclude that the mapped grid technique should be used only with the

WENO finite volume scheme and with the metric terms calculated by (21).
Non–preservation of the freestream leads to inacceptable errors, as we will
demonstrate in the following section. The WENO finite difference scheme
cannot preserve the freestream and be conservative at the same time.

3. Numerical Results

In the following, we illustrate the theoretical results from the preceeding
sections by numerical simulations. Besides the mapping functions M1 and
M2 defined in (13), we use the mapping functions

M3 : [−1, 1]2 → Ω,
x = −R + 2R · (ξ + 0.1 sin (2πξ) sin (2πη)) ,

y = −R + 2R · (η + 0.1 sin (2πξ) sin (2πη)) ,
(23)

M4 : [−1, 1]2 → Ω,
x = −R + 2R · ξ,
y = −R + 2R · η, (24)

where Ω = [−R,R]2. M3 was used in Colella et al. [25] to test the order of
accuracy of their scheme since it is a smooth function, whereas M4 gives a
Cartesian grid. We will call a grid “smooth” if the mapping function defining
this grid is smooth.

All simulations are performed with the code ANTARES [9] using explicit
time integration schemes and Marquina flux splitting [26]. If not stated oth-
erwise, the Runge–Kutta scheme employed in the simulations is SSP RK(3,2),
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Figure 3: Grid defined by function M3 from Colella et al. [25].

a second–order Runge–Kutta scheme with three stages [27, 28]. In all sim-
ulations, the ideal gas equation is used, and the Courant number is fixed to
0.1. The WENO finite difference scheme corresponds to the method WENO-G

in Nonomura et al. [24].

3.1. Gresho Vortex

The specific setup of the Gresho Vortex used in this paragraph is described
in Happenhofer et al. [10] and Miczek [29]. We repeat the definition here for
convenience.

ρ =1, (25a)

p0 =
ρ

γMa2ref
, (25b)

uφ =







5r, 0 ≤ r < 0.2,

2− 5r, 0.2 ≤ r < 0.4,

0, 0.4 ≤ r,

, (25c)

p =







p0 +
25
2
r2, 0 ≤ r < 0.2,

p0 +
25
2
r2 + 4(1− 5r − ln 0.2 + ln r), 0.2 ≤ r < 0.4,

p0 − 2 + 4 ln 2, 0.4 ≤ r.

(25d)
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r =
√

x2 + y2 is the distance from the origin and uφ the angular velocity
in terms of the polar angle φ = atan2(y, x). Note that the difference to
the setup as it is described in Liska and Wendroff [30] is the introduction
of a reference Mach number Maref . The pressure p is scaled such that the
reference Mach number is the maximum Mach number of the resulting flow.

We performed a simulation with Maref = 0.1 and γ = 5
3
over a time

interval of 2 s. The size of the domain is 1 cm in each direction, and we use
100×100 grid points. The analytical solution is pure angular rotation of the
vortex. The results on the four grids defined by the mapping functions M1,
M2, M3 and M4 are shown in Figure 4 for the finite difference scheme and in
Figure 5 for the finite volume scheme.

With the non–smooth mapping functions M1 and M2, the results with
the finite difference scheme are catastrophic, whereas with the finite volume
scheme, the difference to the solution on the Cartesian grid is small. It is
obvious that the problems come from the grid points where the mapping
functions are not smooth. But even with the smooth mapping function M3,
the symmetry of the vortex is destroyed with the finite difference scheme,
whereas there is no visible difference to the Cartesian solution with the finite
volume scheme.

The Mach number Maref = 0.1 of this test is rather low for an explicit
time integration scheme, but Happenhofer et al. [10] showed that the WENO
scheme with Runge–Kutta time integration yields reliable results in this
regime. As shown in Figure 6, the deformations due to the grid get smaller
with higher Mach numbers, but in any case, the results with the finite volume
scheme are more accurate. On the other hand, this explains why applying
the mapped grid technique to the WENO finite difference scheme in Shu [13]
worked properly: the mapping function were smooth, and the Mach number
in the numerical tests was always larger than 1.

We conclude that the WENO finite difference scheme should only be used
in combination with the mapped grid technique if the mapping function is
smooth and if the Mach number of the simulation is high. The reason for the
bad performance lies in the violation of the preservation of the freestream.
The finite volume scheme, however, yields accurate results even on non–
smooth grids and in low Mach number tests.

3.2. Sod Shock Tube

With the Sod Shock Tube [31] we test the performance of our schemes
in the high Mach number regime. The computational domain is [−0, 5, 0.5]2
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Figure 4: Mach number in the Gresho vortex test after 2 s with the WENO finite difference
scheme. The initial Mach number was 0.1. In all figures, the results of the simulation with
M1 are shown in the top left panel, with M2 in the top right, with M3 in the bottom left
and with M4 in the bottom right panel.
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Figure 5: Mach number in the Gresho vortex test after 2 s with the WENO finite volume
scheme. The initial Mach number was 0.1.
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Figure 6: Mach number in the Gresho vortex test after 2 s with the WENO finite difference
scheme with initial Mach number of 0.5.
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and γ = 1.4. In each direction, we use 100 grid points. The inital shock
position is at 0.2 in x direction.

Even in this setup where the Mach number is rather high, the WENO
finite difference scheme performs badly with the non–smooth mapping func-
tions M1 and M2. With M1, the simulation crashed after 0.09 s because of
negative densities. At the diagonals, numerical artifacts occur even without
any flow present at this position as a consequence of the violation of the
freestream preservation.

The simulations with the finite volume scheme do not show any anomalies.
On the smooth grids, the results from the two schemes are very similar.

3.3. Nonlinear Advection

Yee et al. [32], Zhang et al. [33] and Kifonidis and Müller [19] suggested
a non–linear flow example to test the order of accuracy of a scheme. They
showed that a smooth linear flow is not a suitable test case to test the ac-
curacy of a finite volume method, because for a linear initial condition, the
integration in equation (A.14) is exact, and the overall order of the method is
not restricted. They suggested to instead use the non–linear initial conditions

ρmean = 1, umean = 1, vmean = 1, pmean = 1, (26a)

with the perturbations of the velocities u and v, the temperature T ∼ p/ρ,
and the entropy S ∼ p/ρ1.4

(δu, δv) =
ǫ

2π
e0.5(1−r2)(−y, x), δT = −(γ − 1)ǫ2

8γπ2
e1−r2 , δS = 0. (26b)

The computational domain is [0, 10]2, (x, y) = (x−5, y−5), r2 = x2+y2,
γ = 1.4 and the vortex strength ǫ is 5. The analytical solution is passive
convection of the vortex with the mean flow. For the explicit time integration,
we used the third–order TVD3 scheme [12] in this test.

In Figures 9 and 10, the error of the WENO finite difference and the finite
volume scheme for the nonlinear advection problem are shown. The error is
measured by comparing the numerical solution after 0.2 s to the analytical
one in the L1 norm. We conclude that for the Cartesian and the smooth grid
defined by the mapping functionsM4 andM3, both schemes show comparable
error sizes. The empirical order of convergence is between two and three for
M3 and higher than three for M4 in both cases.
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Figure 7: Density in the Sod Shocktube Test after 0.22 s with the WENO finite difference
scheme. M1 (top left panel) after 0.09 s. In the outermost three layers, outflow boundary
conditions are set.
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Figure 8: Density in the Sod Shocktube Test after 0.22 s with the WENO finite volume
scheme. In the outermost three layers, outflow boundary conditions are set.
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Figure 9: Order of accuracy of the WENO finite difference scheme for the nonlinear advec-
tion problem measured in the L1 norm. The grey line indicates second–order convergence.
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Figure 10: Order of accuracy of the WENO finite volume scheme for the nonlinear advec-
tion problem measured in the L1 norm. The grey line indicates second–order convergence.

22



grid M1 M2 M3 M4

spacing error order error order error order error order
6.25e-1 7.74e-3 1.39e-3 2.77e-3 7.74e-4
3.13e-1 5.89e-3 0.392 1.31e-3 0.088 4.76e-4 2.539 1.23e-4 2.652
1.56e-1 3.83e-3 0.621 9.29e-4 0.492 7.01e-5 2.764 1.05e-5 3.548
7.81e-2 2.95e-3 0.380 8.03e-4 0.209 1.20e-5 2.546 5.46e-7 4.270
3.91e-2 1.98e-3 0.572 5.43e-4 0.566 2.83e-6 2.087 7.21e-8 2.919

Table 1: Mean L1 error sizes and order of accuracy for the finite difference scheme.

grid M1 M2 M3 M4

spacing error order error order error order error order
6.25e-1 2.00e-3 6.20e-4 1.74e-3 8.46e-4
3.13e-1 6.40e-4 1.643 1.27e-4 2.283 2.64e-4 2.717 1.04e-4 3.018
1.56e-1 2.26e-4 1.498 2.73e-5 2.222 3.37e-5 2.970 8.40e-6 3.635
7.81e-2 7.06e-5 1.681 7.32e-6 1.900 6.53e-6 2.369 7.53e-7 3.480
3.91e-2 1.93e-5 1.869 1.97e-6 1.894 1.63e-6 1.998 1.64e-7 2.201

Table 2: Mean L1 error sizes and order of accuracy for the finite volume scheme.

For the non–smooth mapping functionsM1 andM2, the error does not de-
crease significantly for the finite difference scheme, whereas first– to second–
order convergence can be observed with the finite volume scheme.

This test demonstrates once more that the WENO finite difference scheme
should only be combined with the mapped grid technique if the mapping
function is smooth. With the finite volume scheme, the simulation converges
also on non–smooth grids, but at a much slower rate than on smooth grids.
With both algorithms, the “smoother” function M2 yields more accurate
results than M1. We conclude that also the finite volume scheme performs
better the smoother the grid is. Therefore, non–smooth grids should only be
used if absolutely necessary.

On Cartesian grids, the finite difference algorithm is superior compared
to the finite volume algorithm. For the finite volume algorithm, we observe
in accordance with the results from Zhang et al. [33] higher than third order
convergence for lower resolutions, but only second order convergence for high
resolution. On the contrary, the finite difference scheme is at least third order
accurate also for very high resolution. We note that the Courant number is
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0.1 in all of our tests minimising the error due to the time integration scheme.
For coarse resolutions, the results of M2 with the finite volume scheme

are better than the results with M1, but also with the smooth mapping M3.
They are even comparable with the Cartesian mapping M4. In astrophysical
applications where the grid resolution usually is very coarse, grids like the one
defined by M2 combined with the WENO finite volume algorithm may well
yield sufficiently accurate results. These grids are an acceptable alternative,
if a non–smooth grid is needed by the problem geometry.

4. Discussion and Outlook

Curvilinear coordinates are an easy and efficient way to extend existing
codes written for Cartesian grids to more complicated geometries. The grid
can be generated either by a (analytical or numerical) mapping function, or
by an external grid generation program. Within the framework introduced
in Section 2 it must always be structured.

For the case of spherical domains, Calhoun et al. [1] provided mapping
functions which are not strongly differentiable. We showed that the ana-
lytical transformation also works in a weak sense without assuming strong
differentiability of the mapping function.

In Shu [13], the application of the WENO finite difference scheme to
smooth curvilinear grids is shown. The results are of high accuracy, since
the mapping functions are smooth and the Mach number of the numerical
tests are high.

In this paper, for the first time the WENO finite difference and finite
volume scheme were applied with non–smooth mapping functions as those
defined by the mapping functions from Calhoun et al. [1]. Particular atten-
tion is paid to problems arising when the Mach number of the flow is rather
low. Whereas the WENO finite volume scheme performs well in these cases,
the WENO finite difference scheme does not give a convergent solution. It
only works if the mapping function is smooth, but even in this case the finite
volume scheme yields better results for the low Mach number tests presented
in this paper.

Since it is only a minor algorithmic change from the WENO finite dif-
ference to the WENO finite volume scheme, we recommend to switch to the
WENO finite volume scheme when the mapped grid technique is used for
non–smooth mapping functions and also for low Mach numbers. As demon-
strated in Section 3 the smoother the mapping function is, the more accurate
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are the results. Therefore, one should always use the smoothest mapping
function allowed by the simulation setup.

In theory, the finite volume scheme is only second order accurate. In
our calculations, however, the empirical order of accuracy of the finite vol-
ume scheme was higher. To increase the theoretical order of accuracy the
computational requirements and the complexity of the code has to be in-
creased considerably [33]. In practice, WENO schemes usually are combined
with lower order Runge–Kutta methods for time integration with highest–
possible Courant numbers. The overall error of the scheme will be dominated
by the temporal error, and the overall order of the method will be limited to
two or three, anyway.

Furthermore, in astrophysical simulations the typical resolution is rather
coarse. In this case the spatial error dominates and fast second order time
integrators such as SSPRK(3,2) (Kraaijevanger 27, cf. also Ketcheson et al.
34, Kupka et al. 28) are sufficient. In this regime, non-smooth mapping func-
tions perform nearly as well as smooth ones provided they are combined with
the WENO finite volume scheme. We conclude that they are an acceptable
alternative, if the problem geometry requires the use of non–smooth map-
ping functions. Moreover curvilinear coordinates provide enough flexibility
for most problems in computational astrophysics whereas keeping the high
efficiency and accuracy of the Cartesian schemes they are based on.

We show how the grid capability of an existing code written for Cartesian
coordinates can be extended to more general geometries. In this way, a wide
variety of astrophysical problems can be tackled with ANTARES which were
not feasible with standard grids in numerical astrophysics and without any
fundamental changes in the numerical method.

In the near future, we plan to extend our work to the Navier–Stokes
equations with gravity and diffusion in three spatial dimensions. It would be
interesting to apply low Mach number methods such as the one presented in
Kwatra et al. [35] and Happenhofer et al. [10] to curvilinear coordinates and
further improve their performance for low Mach numbers.

Furthermore, the influence of the Mach number on the results needs ad-
ditional investigations. We assume that the distortions due to the freestream
preservation violation for finite difference schemes are hidden when there are
fast motions of the fluid. Only with low Mach numbers, the numerical errors
get large enough to disturb the numerical solution considerably.

25



Acknowledgements

We acknowledge financial support from the Austrian Science fund (FWF),
projects P21742 and P25229. HGS wants to thank E. Müller, A. Wongwatha-
narat, P. Edelmann and F. Miczek for helpful and inspiring discussions and
the MPA Garching for a grant for two research stays in Garching. Particular
gratitude is owed to A. Wongwathanarat for adverting the work of Calhoun
et al. to HGS.

Appendix A. Finite difference and finite volume discretisation of

the Euler equations

First, we derive the finite difference and finite volume discretisation of
the Euler equations for the one–dimensional case. The differential form of
the Euler equations in one spatial dimension is

∂

∂t
Q+

∂

∂x
F = 0, (A.1)

Q =





ρ
ρu
E



 , F (Q) =





ρu
ρu2 + p
(p+ E)u



 , (A.2)

where p = p(ρ, e). The internal energy e is given by e = E− u2

2ρ
. Let Ω = [a, b]

and let a grid on Ω be defined on the half–integer nodes, i.e.

xi+ 1

2
= xi− 1

2
+ δxi, i = 1, . . . , n, x 1

2
= a, xn+ 1

2
= b. (A.3)

The grid is not necessarily equidistant. The index i refers to the centre

of the cell Ci =
[

xi− 1

2
, xi+ 1

2

]

.

Definition 1. The Cell Average Operator A on a grid (A.3) is defined

by

A(h)i :=
1

δxi

∫ x
i+1

2

x
i− 1

2

h(x̂)dx̂. (A.4)

Applying A to (A.1) gives

∂

∂t
(AQ)i +

δFi

δxi

= 0 with
δFi

δxi

=
Fi+ 1

2
− Fi− 1

2

δxi

(A.5)
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with Fi+ 1

2
= F

(

Q(xi+ 1

2
)
)

. (AQ)i =: Qi is the Cell Average of Q in the cell

Ci =
[

xi− 1

2
, xi+ 1

2

]

.

Applying now A−1 as in Merriman [14], we get

∂

∂t
Qi +A−1 δFi

δxi

= 0. (A.6)

Merriman [14] showed that

A−1 δFi

δxi

=
δ (A−1Fi)

δxi

if the grid is equidistant, i.e. δxi = δx ∀i. (A.7)

In general, this is not the case since δFi

δxi
is a translation operator, but

A is not translation–invariant. For an equidistant grid, however, (A.6) is
equivalent to

∂

∂t
Qi +

δfi
δxi

= 0 with Fi = (Af)i. (A.8)

(A.8) is called the Shu–Osher form of (A.1). It is equivalent to (1) if
the grid is equidistant [14]. f is defined such that its average in cell Ci is
given by the point value of the analytical flux function F at the cell centre.
In terms of Shu and Osher [12], F is exactly the “primitive function” of f .

A finite volume scheme starts with equation (A.5) and computes approx-
imations for Qi+ 1

2
from the given cell averaged Qi. The numerical flux Fi+ 1

2

is calculated by

Fi+ 1

2
= F

(

Qi+ 1

2

)

. (A.9)

In contrast, the finite difference scheme starts with equation (A.8) and
computes approximations for fi+ 1

2
from the values of the analytical flux func-

tion F. Since Fi = (Af)i, both approaches are computationally equivalent
and require the numerical solution of the following

Problem 2 (Reconstruction problem). Given a set of cell averages, compute

the value of the underlying function at the half–integer nodes.

Definition 2. The Reconstruction Operator R acts on cell averages and

reconstructs the point value of the underlying function
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R(Ah)i+ 1

2
= hi+ 1

2
(A.10)

on a given grid (A.3).

If the grid is equidistant, the same algorithm can be used to compute
Qi+ 1

2
and fi+ 1

2
. The only difference lies in the input for the reconstruction

process: in the case of a finite volume scheme, the inputs are given by the
cell averages Qi of the state vector, whereas in the case of a finite difference
scheme, they are given by the analytical flux function F evaluated at the cell
centre.

Given a reconstruction operator R, Problem 2 can be solved. The WENO
reconstruction operator is described in detail in Shu [13] and also in Appendix C,
following the cited reference. In general, finite volume methods can be de-
signed on non–equidistant grids. However, since the WENO reconstruc-
tion operator as it is described in Appendix C works only on equidistant
grids, the applicability of the finite volume method using this reconstruction
method is restricted to equidistant grids, too.

The advantage of the finite difference scheme lies in its easy extension to
higher dimensions. Let a region (i.e., a non–empty, open, and connected set)
Ω ⊂ R

2 be given. The Euler equations are a system of partial differential
equations on Ω. In two spatial dimensions and in a Cartesian coordinate
system, their differential form is

∂

∂t
Q+

∂

∂x
F+

∂

∂y
G = 0, (A.11)

with the state vector Q and the flux functions F and G given by

Q =







ρ
ρu
ρv
E







,F (Q) =







ρu
ρu2 + p
ρuv

(p+ E)u







,G (Q) =







ρv
ρvu

ρv2 + p
(p+ E)v







, (A.12)

where p = p(ρ, e). In the following, we will write u := (u, v)T for the velocity
vector.

In the finite volume approach, applying AxAy to the two–dimensional
Euler equations (1) results in
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∂

∂t
(AxAyQ)

i,j
+

Ay(Fi+ 1

2
)j −Ay(Fi− 1

2
)j

δx
+

Ax(Gj+ 1

2
)i − Ax(Gj− 1

2
)i

δy
= 0.

(A.13)
The fluxes are now line integrals over the cell boundaries. With the

midpoint rule,

Ay(Fi+ 1

2
)j = Fi+ 1

2
,j +O(h2). (A.14)

With only one evaluation of the fluxes, the overall order of the method is
restricted to two. We remark that if F is linear, this integration is exact.

Contrary, in the finite difference approach, (A.11) is transformed to

∂

∂t
Qi,j +

fi+ 1

2
,j − fi− 1

2
,j

δx
+

gi,j+ 1

2
− gi,j− 1

2

δy
= 0 (A.15)

with F = Ax(f) and G = Ay(g). The overall order of the method only
depends on the order of the reconstruction of f and g, which are one–
dimensional reconstruction problems. The one–dimensional algorithms can
be directly applied without loss of order of accuracy.

Even if the high order one–dimensional WENO reconstruction algorithm
is applied to evaluate the flux functions in (A.13), the resulting finite vol-
ume method is only second order accurate. To obtain a truely high–order
multidimensional finite volume method, more complicated integrations for
the line integrals in (A.13) must be performed, increasing the computational
costs of the finite volume scheme tremendously [13, 25, 33]. Therefore, finite
difference schemes are clearly preferable on Cartesian grids.

Appendix B. Classical Transformation to Curvilinear Coordinates

Assuming Strong Differentiability

If there is a differentiable function

M : [−1, 1]2 → Ω, M(ξ, η) = (x, y)T , (B.1)

we can transform the Euler equations in differential form (1) to

∂

∂t
J−1Q+

∂

∂ξ
F̂+

∂

∂η
Ĝ = 0 (B.2a)
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with

F̂ =
∂y

∂η
F− ∂x

∂η
G, (B.2b)

Ĝ =− ∂y

∂ξ
F+

∂x

∂ξ
G, (B.2c)

and the determinant of the inverse Jacobian of the transformation

J−1 =

∣
∣
∣
∣

∂(x, y)

∂(ξ, η)

∣
∣
∣
∣
=

∂y

∂η

∂x

∂ξ
− ∂y

∂ξ

∂x

∂η
. (B.2d)

In this way, the conservation law (1) defined in the physical space is
transformed into a conservation law in the computational space. If M is at
least in C1, all derivatives and the Jacobian are well–defined [36, 19].

Following the description in Tannehill et al. [37], this form can be derived
by multiplying (1) with J−1 and rearranging terms. First we look at ∂F

∂x
J−1.

With the chain rule of differentiation,

∂F

∂x
J−1 =

(
∂ξ

∂x

∂F

∂ξ
+

∂η

∂x

∂F

∂η

)

J−1

=
∂

∂ξ

(

F
∂ξ

∂x
J−1

)

+
∂

∂η

(

F
∂η

∂x
J−1

)

− F
∂

∂ξ

(
∂ξ

∂x
J−1

)

− F
∂

∂η

(
∂η

∂x
J−1

)

.

In two dimensions,

(
∂ξ

∂x

∂ξ

∂y
∂η

∂x

∂η

∂y

)

=

(
∂x
∂ξ

∂x
∂η

∂y

∂ξ

∂y

∂η

)−1

= J

(
∂y

∂η
−∂x

∂η

−∂y

∂ξ
∂x
∂ξ

)

, (B.3)

and as a direct consequence,

∂ξ

∂x
J−1 =

∂y

∂η
,
∂ξ

∂y
J−1 = −∂x

∂η
,
∂η

∂x
J−1 = −∂y

∂ξ
,
∂η

∂y
J−1 =

∂x

∂ξ
. (B.4)

We can further write
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∂F

∂x
J−1 =

∂

∂ξ

(
∂y

∂η
F

)

+
∂

∂η

(

−∂y

∂ξ
F

)

− F

(
∂2y

∂ξ∂η
− ∂2y

∂η∂ξ

)

︸ ︷︷ ︸

=0

.

Here we assumed the mapping function to be at least in C2. The same
procedure leads to similar expressions for ∂G

∂y
J−1. Plugging all these expres-

sions into (1) leads to (B.2).

Appendix C. The 5th order WENO Reconstruction Algorithm

In the following, the WENO reconstruction operator is derived following
Shu [13]. The purpose of the reconstruction operator is to solve Problem 2,
i.e. reconstruct the value of the underlying function at a certain position
given a set of cell averages.

We will only consider equidistant one–dimensional grids and reconstruc-
tion of the value at the half–integer node i+ 1

2
. This is sufficient for the finite

difference and finite volume algorithms used in this paper.
The idea of the WENO reconstruction process is to use several stencils

in the neighbourhood of i + 1
2
. On each of the stencils, an interpolating

polynomial of high order is defined. The interpolated value is obtained by
summing these polynomials weighting them according to their smoothness.
If a discontinuity is contained in the stencil of a polynomial, its weight will
be very small thereby avoiding oscillatory behaviour known from high order
interpolation.

Assume that the cell averages φi = (Aφ)i of the function φ are given and
φi+ 1

2
should be reconstructed. We consider k stencils

Sr(i) = {xi−r, . . . , xi−r+k−1}, r = 0, . . . , k − 1. (C.1)

On each stencil Sr(i) a polynomial pr of degree k− 1 is defined such that

the approximation φ
(r)

i+ 1

2

to φi+ 1

2
is given by

φ
(r)

i+ 1

2

= pr(xi+ 1

2
) +O((δx)k) (C.2)

and

A(pr) = A(φ) = φ on Sr(i). (C.3)
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Solving the resulting linear system for the case k = 3 gives the interpola-
tion polynomials

p0(xi+ 1

2
) =

1

3
φi−2 −

7

6
φi−1 +

11

6
φi, (C.4)

p1(xi+ 1

2
) = −1

6
φi−1 +

5

6
φi +

1

3
φi+1, (C.5)

p2(xi+ 1

2
) =

1

3
φi +

5

6
φi+1 −

1

6
φi+2, (C.6)

The Lagrange polynomial of fifth order can be obtained by combination
of the three polynomials of third order. If we define the weights

d0 =
3

10
, d1 =

3

5
, d2 =

1

10
, (C.7)

the fifth order interpolation polynomial p(5) can be obtained by

p(5)(x) = d0p0(x) + d1p1(x) + d2p2(x). (C.8)

High–order polynomial interpolation is known to produce oscillatory re-
sults. To avoid oscillations in the WENO approach, a convex combination
of all candidate stencils pr is used to compute φi+ 1

2
. This procedure leads to

non–oscillatory approximations of order 2k− 1, where k is the width of each
of the stencils Sr(i).

Therefore, the approximation to φi+ 1

2
is calculated by

φi+ 1

2
= ω0p0(xi+ 1

2
) + ω1p1(xi+ 1

2
) + ω2p2(xi+ 1

2
), (C.9)

where ω0, ω1 and ω2 are nonlinear weights comparing the smoothness of
the interpolation polynomials. Defining

β0 =
13

12

(
φi − φi+1 + φi+2

)2
+

1

4

(
3φi − 4φi+1 + φi+2

)2
,

β1 =
13

12

(
φi−1 − 2φi + φi+1

)2
+

1

4

(
φi−1 − φi+1

)2
,

β2 =
13

12

(
φi−2 − 2φi−1 + φi

)2
+

1

4

(
φi−2 − 4φi−1

)2
,

(C.10)

we calculate
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ω̃0 =
d0

(β0 + ǫ)2
, ω̃1 =

d1
(β1 + ǫ)2

, ω̃2 =
d2

(β2 + ǫ)2
, (C.11)

and finally

ω0 =
ω̃0

ω̃0 + ω̃1 + ω̃2
, ω1 =

ω̃1

ω̃0 + ω̃1 + ω̃2
, ω2 =

ω̃2

ω̃0 + ω̃1 + ω̃2
. (C.12)

ǫ is a small parameter which is used to avoid division by zero.
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