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Abstract.

We present an error-diagnostic validation method for posterior distributions in

Bayesian signal inference. It transfers deviations from the correct posterior into characteristic de-
viations from a uniform distribution of a quantity constructed for this purpose. We show that
this method is able to reveal and discriminate several kinds of numerical and approximation errors.
For this we present a number of analytical examples of posteriors with incorrect variance, skew-
ness, position of the maximum, or normalization. We show further how this test can be applied to

multidimensional signals.

Subject headings: critical test - Bayesian inference - software validation - error diagnostics.

Introduction. Bayesian inference methods are gain-
ing importance in many areas of physics, like e.g. preci-
sion cosmology [I]. Dealing with Bayesian models means
to grapple with the posterior probability distribution,
whose calculation and simulation is often highly com-
plex and therefore prone to errors. Rather than taking
the correctness of the numerical implementation of the
posterior for granted, one should validate it in some way.

Although there are validation approaches (e.g. [2] B]),
these provide little diagnostics for the type of error. How-
ever, this information would be very useful in order to
locate a mistake in a posterior calculating code or in its
mathematical derivation. Therefore we introduce a vali-
dation method that is able to detect errors in the numeri-
cal implementation as well as in the mathematical deriva-
tion. The typical deviation of a quantity constructed for
this purpose from a uniform distribution encodes infor-
mation on the kind of errors made.

Posterior validation method. Within this work
we assume a data set d is given in the form d =
(di,da,...,dyn)" € R™, where m € N, and we want
to extract a physical quantity, s € R, from its posterior
probability density function (PDF), P(s|d). The data is
drawn from the likelihood P(d|s),

d < P(d]s). (1)

The posterior is given by Bayes’ Theorem [4],

Pl = S PR

where the prior is denoted by P(s) and the evidence by
P(d). A concrete example of such a calculation including
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approximations that require validation can be found in

B].

Now we introduce the Diagnostics for Insufficiencies of
Posterior calculations (DIP). This is a validation method
for the numerical calculation of the posterior P(s|d). For
this purpose we use the following procedure [2)]:

1. Sample Sgen from the prior P(s).
2. Generate data d for sgen according to P(d|sgen)-

3. Calculate a posterior curve for given data by de-
termining P(s|d) according to Eq. , where P de-
notes the posterior including possible approxima-
tions.

4. Calculate the posterior probability for s < sge, ac-
cording to

- / " s Bsld) € [0,1]. ()

—0o0

5. If the calculation of the posterior was correct, the
distribution for =, P(z), should be uniform between
0 and 1.

The uniformity of P(z) can then be checked numerically
by going through steps 1-4 repeatedly. Note that the
distribution of z can be uniform even if there is an error
in the implementation or mathematical derivation. The
reason for this is the unlikely possibility of at least two
errors compensating each other exactly. However, this is
a fundamental problem of nearly every numerical valida-
tion method.

Proof: We show here analytically that P(x) = 1 if
(s|d) = P(s|d), as an alternative to the discussion in

By



Pla) = /_O; ds/Dd Plz,d,s)

_ /O; ds/Dd P(z|d, s)P(d, s)
- /O:o ds/Dd P(d,s) § (a: - /; ds’ P(Sld)>

= /_OO ds/Dd P(d)P(s|d) 6(x — x4(s)),
(4)

where z4(s) := [°__ ds’ P(s'|d) and [ Dd denotes a path-
integral over all possible realizations of d. Now we show
P(z) =1 for z € [0,1]:

x) =0y /Ow da'P(x2')
_ 0, /Dd P(d) /O; ds P(s|d) /0 dz’ 5(2' — za(s))

O(z—za(s))

sa(x)
—a, /de / ds P(s|d)

8x/DdP

—8/DdP )xdsd

=0,zx=1
(5)

Here sq(x) is the inverse of z4(s) and © the Heaviside
step function. This inverse exists because z4(s) is strictly
monotonous, unless P(s|d) = 0 exactly for some s-range.
O

Analytic examples of insufficient posteriors. To
investigate the influence of an insufficient posterior on
the distribution P(z) we study as an example a Gaussian
posterior,

P(s|d) = G(sq,0?) = \/2;7@@ (-2‘“';2) (6)

with s4 = s — 54 and §4 the data dependent maximum of
the posterior. In the following we assume the variance to
be data independent and consider a wrongly determined
value 2¢ = [*ds P<(s|d), where P(s|d) is Gaussian
with wrong variance or non-zero skewness or wrong max-
imum position or wrong normalization.

Wrong variance. In the case in which P(x) was calcu-
lated from a posterior whose standart deviation deviates
by a fraction € from the true value of o, we consider

ol = o sa
Pld) = S p(-grt ).

(7)
)

with € > —1. To determine the distribution P(z) we use
Eq. . This yields

P(z) =(14¢€)exp (— [exf ™" (22 — 1)]2 [(1+€)? - 1])

(8)
with the limit P(x) <29 1. The deviations from the uni-
form distribution increase with the value of |e| and are
shown in Fig. [I} In case the standard deviation was un-
derestimated, € < 0, the distribution for x becomes con-
vex (“U-shape”) and for an overestimation, € > 0, it be-
comes concave (“N-shape”). Since the underestimation
of variances is a typical mistake, the DIP-test produces
often test distributions with a dip in the middle.
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FIG. 1: Influence of an insufficient posterior on the DIP-
distribution P(z). The upper (lower) panel shows the effect of
calculating P(z) from a posterior with wrong variance (skew-
ness) as described by Eq. @ (Eq. @)

Wrong skewness. Next, we consider the case in which
P(zx) was calculated from a falsely skewed posterior,

Pe(s|d) = exp< ;5 ) <1+e f(j’i)) (9)
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Thus, x€ is given by

=y et ( )

B l ‘/E & exXp (_% (%)2 (1 + gQ)) (10)

T 1+ é2

=[Gl - (G

where T (2¢,¢) is the Owen’s function [6], and e de-
notes the dimensionless skewness-parameter. Now we fo-
cus on |e[ = 1 for simplicity, for which 27" (2, +1) =

+ (1 — erf? (\jﬁ )) /4. Applying Eq. (4) yields

1/ (2y7)
Ixx)::{1/(2¢1—aj

The effect of an incorrectly skewed posterior is an en-
hancement of values close to = 0 or x = 1 (Fig.
and means that the 68% confidence interval around the
expectation value (maximum of the Gaussian PDF) is
falsely calculated to be asymmetric. Here, we restricted
ourselves to the cases € = £1 due to their analytic treata-
bility. Smaller deviations with |e| < 1 will lead to qual-
itatively similar but less pronounced distortions of the
sampled distribution P(x).

ife=1

fe=-1" (11)

Wrong mazimum position. In the case in which P(z)
was calculated from a posterior whose maximum has a
wrong position, we consider

1 e (Sd — 6)2

)

Applying again Eq. (4 yields

1 /7e\2 € 1
P(x) = exp( 5 (U> \/5(0) erf™" (2z 1))

(13)
with the limit P(x) 91, The resulting distribution of
x for 0 = 1 is shown in Fig. [2l Here, the z abundances
near to x = 0 or = 1 are enhanced, similarly to the case
of incorrect skewness. However, the slope of P(z) at the
suppressed end differs significantly from the former case.

P(sld) =

@

(12)

l\D\H

Wrong normalization. Lastly, we consider the case in
which P(z) was calculated from a posterior with wrong
normalization,

Pe(sld) 1 (-2%)
sld) = ———exp | =% |,
2mo (1 + €) P\ 202

(14)
xe:ﬁ [1+ f(\f(f)}
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FIG. 2: Influence of an insufficient posterior on the DIP-
distribution P(z). The panel is showing the effect of calcu-
lating P(z) from a posterior with wrong maximum position
as described by Eq. ,

which yields (Eq. ({4))

Px)=1+¢ for x € [0,1 — €. (15)
This means, the value of € can be determined precisely
from the z-interval.

A numerical example of an insufficient poste-
rior. Next, we demonstrate the effects of insufficient
posteriors with a numerical example. For this we gener-
ate mock data according to

d=s+mn, (16)

where s and n are zero-centered Gaussian random num-
bers with covariance S = 1 and N = 0.1, respectively. To

reconstruct s optimally from the data we apply a Wiener
filter [7] on d,

= (S + N‘l)*1
—_————
=:D

N~ta. (17)

After that, the posterior for s is given by
P(s|d) =

To investigate the accuracy of our implementation we
go through the DIP validation procedure. For that pur-
pose we sample sgen-values from the distribution G(s, S).
Next, we generate data according to Eq. (16) and cal-
culate a posterior curve according to Eq. (18]). Subse-
quently, we numerically determine the posterior proba-
bility for s < sgen, which is denoted by z. Now this
procedure is repeated 500 times to sample P(x).

G(s —m, D). (18)
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FIG. 3: Distributions of the numerically calculated z-values. The left (middle, right) histogram shows the unnormalized
distribution of 500 (500, 50000) z-values within eight (eight, fifty) bins as calculated from the posterior with correct (wrong,
wrong) maximum position. The standard deviation interval (1) around the expectation value as calculated from Poissonian

statistics is also shown.

In order to demonstrate the effect of an insufficient
posterior we falsely include a wrong maximum position
with € = 0.15, i.e. our wrong test-posterior is given by

Pe=0.15(8|d) _ g(s —m—0.15,D), (19)

and apply the validation procedure once again. Fig.
shows the distributions of x for the correct and incorrect
posterior.

The results are in agreement with the analytical consid-
erations. Another application of this validation approach
in cosmology and its implications is given in [5]. There, a
new way to calculate the posterior for the local primordial
non-Gaussianity parameter fp; from Cosmic Microwave
Background observations is presented and validated.

With the help of the introduced tools of error-diagnosis
it is possible to detect not only the presence of the mis-
take but also to get an indication of its nature.

Outlook. Although we have presented the DIP-test in
one dimension (s € R) this approach can be extended to
arbitrary dimensions (¢t € R™, m € IN) by mapping this
multi-dimensional posterior P(t|d) onto one dimension,
s = s(t) € R. Now it is possible to apply the DIP-test

for the remaining coordinate, P(s|d). Because there are
infinitely many ways to perform the mapping, ¢t — s =
s(t), a suite of tests can be constructed to probe P(t|d)
in various ways. A combination of these tests then yields
a multi-dimensional posterior test.

Furthermore, it is theoretically possible to do not only
a qualitative error diagnosis, but also a quantitative
study. One possibility is to consider the intersection of
the distribution P(z) of an insufficient posterior with the
expectation value, P(z) = 1, which encodes (in combi-
nation with the shape and slope of P(x)) the value of
€. However, in reality there are combinations of different
error types and numerically determined distributions are
not as precise as the theoretical ones so that one might
want to construct a Bayesian test for this.

We leave the development of fully automated error de-
tection and classification methods for future work. In-
spection of the results of the DIP-test by eye is already a
powerful way to diagnose posterior imperfections, as we
show in [5].

Acknowledgments. We want to thank Rishi Khatri
for useful discussions.

[1] Planck Collaboration, P. A. R. Ade, N. Aghanim,
C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-
Barandela, J. Aumont, C. Baccigalupi, A. J. Banday,
et al.,, ArXiv e-prints (2013), 1303.5076.

[2] S. R. Cook, A. Gelman, and D. B. Rubin, Journal of Com-
putational and Graphical Statistics 15, 675 (2006).

[3] J. Geweke, Journal of the American Statistical Association
99, 799 (2004).

[4] T. Bayes, Phil. Trans. of the Roy. Soc. 53, 370 (1763).

[5] S. Dorn, N. Opperman, R. Khatri, M. Selig, and T. A.
EnBlin, ArXiv e-prints (2013).

[6] D. B. Owen, Ann. Math. Statist. 27, 1075 (1956).

[7] N. Wiener, Extrapolation, Interpolation, and Smoothing of
Stationary Time Series (New York: Wiley, 1949), ISBN
9780262730051.



	 References

