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ABSTRACT

The CLEAN deconvolution algorithm has well-known limitations due to the restriction of locating point source model components
on a discretized grid. In this letter, we demonstrate that these limitations are even more pronounced when applying CLEAN in the
case of Rotation Measure (RM) synthesis imaging. We suggesta modification that uses Maximum Likelihood estimation to adjust the
CLEAN-derived sky model. We demonstrate through the use of mock one-dimensional RM synthesis observations that this technique
shows significant improvement over standard CLEAN and givesresults that are independent of the chosen image pixelization. We
suggest using this simple modification to CLEAN in upcoming polarization sensitive sky surveys.
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1. Introduction

CLEAN (Högbom 1974) is a deconvolution algorithm that is
widely used throughout astronomy. In CLEAN, a deconvolved
image is constructed iteratively by locating the maximum inthe
image, adding a delta function at that location with some fraction
of the peak brightness to a model, and then subtracting a point
spread function (PSF) that has been shifted to the location of
the model component and scaled by its strength. This is repeated
until a user-defined stop condition has been reached.

The algorithm makes an implicit assumption that the im-
age is well described by a collection of statistically indepen-
dent point sources. In some cases this is an adequate assumption
and experience has shown that even in circumstances where this
assumption is not ideal, CLEAN is still able to produce quali-
tatively reasonable results. Because of its flexibility, simplicity,
and speed, CLEAN has become the standard tool for image re-
construction in radio astronomical aperture synthesis imaging.

A limitation of CLEAN arises due to the discretization of
the image space, and therefore one can only create model point
sources on a regularly spaced grid. To properly remove the PSF
pattern associated with a strong point source, it is crucialfor
the delta function representing the source in the CLEAN model
to have an accurate position. While the PSF limits the mini-
mum spatial scale of structures that can be resolved, the accu-
racy with which one can measure the location of a point source
depends on the signal-to-noise ratio. In the high signal to noise
regime the uncertainty in the location of a source can be much
smaller than the PSF, and to measure the source location ac-
curately with a single model point source one would have to
create an image with a large number of pixels within the PSF.
Such over-resolving is at best computationally wasteful and in
some cases may make the imaging problem completely unfeasi-
ble. For example, even with a few pixels per resolution element,
three-dimensional (3D) Faraday synthesis (Bell & Enßlin 2012)
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images will easily exceed the available memory on a single com-
puter.

CLEAN is able to partially overcome this issue by describing
a single point source by a cluster of CLEAN components around
the true source location. The strongest model point source will
lie on the pixel closest to the source location. Weaker model
points will be added to neighboring grid points such that when
the collection of model sources is convolved by a Gaussian
restoring beam that approximates the idealized PSF, the resulting
image will be closer to the true source position and flux than that
of a single model point located on the grid. Nevertheless, inaccu-
racies in image reconstructions due to the pixelization of the sky
are a well known limiting factor to dynamic range when using
CLEAN (Briggs & Cornwell 1992; Perley 1999; Cotton & Uson
2008; Yatawatta 2010).

Rotation Measure (RM) synthesis (Brentjens & de Bruyn
2005) is a promising new technique for studying magnetic fields
with the new generation of broadband radio telescopes. RM
synthesis allows for the separation of multiple sources of po-
larized emission along a line of sight when each is Faraday
rotated by different amounts. It produces an estimate of the
Faraday spectrum, or the polarized emission as a function
of the Faraday depth, which is a quantity that measures the
amount of Faraday rotation. The Faraday depth,φ, is propor-
tional to

´

neBzdz wherene is the density of thermal electrons
and Bz is the component of the magnetic field along the line
of sight. RM synthesis is similar to aperture synthesis imag-
ing due to the Fourier relationship between the Faraday spec-
trum and the polarized intensity as a function of the squared
wavelength. CLEAN has been proposed as a deconvolution
technique to be applied to RM synthesis imaging (Heald et al.
2009), and is often referred to as RMCLEAN in this con-
text. Several alternative image reconstruction techniques have
been proposed (Frick et al. 2010; Li et al. 2011; Andrecut et al.
2012), but RMCLEAN has thus far been used most often
as the deconvolution method of choice (Feain et al. 2009;
Harvey-Smith et al. 2010; Mao et al. 2010; Bernardi et al. 2010;
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Brentjens 2011; Van Eck et al. 2011; Heald 2012; Mao et al.
2012a,b; van Weeren et al. 2012; Iacobelli et al. 2012).

In this letter we show that the limitations of CLEAN due to
pixelization of the sky are particularly pronounced in the case
of RM synthesis, and propose to use a Maximum Likelihood
(ML) estimation procedure to improve the model obtained us-
ing the standard RMCLEAN algorithm. This method is similar
to those proposed previously in the context of high-fidelityaper-
ture synthesis imaging (El-Behery & MacPhie 1980; Yatawatta
2010; Bernardi et al. 2011). It is also similar to the method pro-
posed by O’Sullivan et al. (2012), but is more easily scaled to
higher dimensions and includes fewer assumptions about the
Faraday spectrum. Our aim is to maintain or improve accuracy
of the standard RMCLEAN algorithm while keeping the number
of pixels to a minimum.

2. The algorithm

Here we consider the case of 1D RM synthesis where one is at-
tempting to reconstruct the complex valued Faraday spectrum, s,
from some polarized sky brightness data,d, that has been taken
at many frequencies. We note that the following descriptionis
trivially extended to 3D as would be required in the case of
Faraday synthesis (Bell & Enßlin 2012), which combines aper-
ture and RM synthesis into a single procedure that provides sig-
nificantly better results than when they are performed separately.

The Faraday depth coordinate axis (the image coordinate)
will be denoted asφ, and the data coordinate isλ2. For RM syn-
thesis, the following measurement equation applies:

d(λ2) = S (λ2)
ˆ

dφs(φ)e2iφλ2
+ n(λ2). (1)

Heren is a Gaussian additive noise term andS represents a sam-
pling function defining the discreteλ2 values at which measure-
ments are obtained.

Using the CLEAN algorithm, one generates a list of model
pointsM = mi, φii with flux values and positions given bymi and
φi, respectively, wherei is an index over the list ofNM model
points. The representation of the model in data space is

d̃ j =
∑

i

mie
2iφiλ

2
j , (2)

where j is an index over theNd values ofλ2 for which measure-
ments have been made.

We assume that the probability of measuring the full data set,
d, given the CLEAN model (i.e. the likelihood), is a product of
the probabilities of measuring each individual data point,di. In
this way, we assume the measurements to be independent of one
another, thus making the likelihood

P(d|M) =
∏

j

P(d j|M) =
∏

j

√
1

2πσ2
j

e
− 1

2σ2
j

(
d j−d̃ j

)2

. (3)

Here, as mentioned previously, we assume Gaussian distributed
noise, andσ2

j is the variance of the noise in channelj.
Our approach is to adjust the CLEAN model by maximizing

the likelihood with respect tomi andφi. For simplicity, we opt to
work with the negative log-likelihood

H(d|M) = −ln P(d|M) =
1
2

∑

j



(
d j − d̃ j

)2

σ2
j

+ ln
(
2πσ2

j

)
 . (4)
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Fig. 1. A comparison of the (a) flux and (b) position errors as a
function of image pixel size in reconstructions of a single point
source using RMCLEAN (black line) and the ML algorithm de-
scribed in this paper (red line). The reported errors are theaver-
age absolute errors from 100 simulated data sets.

The maximum likelihood solution is obtained byminimizing
this function. There are many possible approaches to minimiz-
ing Eq. 4. The iterative procedure that we use is presented in
Appendix A.

Minimization of Eq. 4 provides an estimate for the optimal
model parameters under the assumption that the number of point
sources in the initial CLEAN model is appropriate. This, how-
ever, is almost certainly not the case. CLEAN will naturally
over-estimate the number of point sources that are requiredto
model the data because it needs a cluster of sources in order to
model a single source at an arbitrary location.

To find the most appropriate number of free parameters in
the model that are supported by the data, we modifyH to add
a term that penalizes additional degrees of freedom. We use the
so-called Bayesian Information Criterion (Schwarz 1978, BIC)
to suit this role. The BIC,C, is given by

C = 2H(d|m) + 3NmlnNd . (5)

The algorithm proceeds as follows:

1. Start with a list of model point sources generated by
RMCLEAN. Condense the model such that there is only one
entry per pixel location.

2. Throw away any model entries with a flux below a user-
defined threshold. This step removes model points that result
from cleaning too deeply or that only function to slightly
shift a single point source location. We use a threshold of
twice the CLEAN image noise level. This step is not neces-
sary, but can speed up computation in case there are many
excess point sources in the initial model.

3. Take one or more steps to iteratively minimize Eq. 4 for
the current model using e.g. the prescription outlined in
Appendix A.

4. Attempt to merge nearby model points. Pairwise combine
CLEAN components into a single component having a lo-
cation at the flux-weighted mean location and a flux that is
either the sum of the two model point fluxes or that is solved
for using e.g. Eq. A.7. Accept the merged CLEAN compo-
nent ifC is reduced, otherwise revert to the previous model.

5. Iterate steps 3 and 4 until the fractional change inH from
one step to the next is below a user-defined threshold.

6. Obtain a residual image by subtracting the new model from
the data.

7. Convolve the new model with an idealized PSF and add it to
the residual image.
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Fig. 2. As Fig. 1 but with the average errors of two sources that
are separated by 2×FWHM (top row) and 6×FWHM (bottom
row).

3. Demonstration

To demonstrate the effectiveness of the approach outlined above,
we present a series of 1D RM synthesis mock observations of
simple single and double point-source sky models. We generate
simulated data according to Eq. 1 including Gaussian random
white noise and sample using a frequency coverage with 800
channels equally spaced between 1 and 4.2 GHz. This frequency
range is similar to that of the combination of the upgraded Very
Large Array L- and S-band receivers and corresponds to a PSF
with a full width at half maximum (FWHM) of the main peak
of ∼ 40 rad/m2. A Clark style CLEAN (Clark 1980) is then per-
formed and the resulting model is used as input for the ML al-
gorithm. The output images from both procedures are stored for
comparison.

In Fig. 1 we compare the performance of standard
RMCLEAN to that of the ML method at reconstructing the posi-
tion and flux of a single point source as a function of pixel size.
The source is located at roughly the sameφ location at each reso-
lution, but shifted slightly to ensure that it is always located one-
third of the way between two pixels. The source flux is roughly
100 times the noise level. The plotted flux and position errors are
the average of the magnitude of those from 100 trials with dif-
ferent noise realizations. Source position and flux are measured
by locating the maximum of the modulus of the Faraday spec-
trum and fitting a Gaussian to the image around this point. We
find that for RMCLEAN the position and flux errors increase
significantly with pixel size while those for the ML approach
remain nearly constant. Six or more pixels per FWHM of the
PSF are required before the positional accuracy for RMCLEAN
matches that of the ML approach. To obtain accurate fluxes with
RMCLEAN, 40 or more pixels per FWHM are required.

For a sky model with a single source, RMCLEAN is found to
work well as long as the image is sufficiently over-resolved. With
more than one source, however, over-resolution is no longer
effective, as shown in Fig. 2. Here we show positional and
flux errors in the case where there are two sources along the
line of sight. In one case, they are separated by 80 rad/m2
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Fig. 3. As Fig. 2 but with fixed resolution and varying source
separation, which is given as a multiple of the FWHM of the
PSF (40 rad/m2).

(roughly 2×FWHM of the PSF) and in the other by 240 rad/m2

(6×FWHM). The modulus and phase of the complex valued flux
is the same for both sources. The errors that are plotted are the
average of those from both sources (the errors for the individ-
ual sources were qualitatively similar). We find that increasing
the resolution does not reduce errors in the RMCLEAN recon-
struction and that on average these errors are two or more or-
ders of magnitude larger than in the maximum likelihood re-
constructions. This behavior is due to the interactions between
the highly structured, complex valued PSFs associated witheach
point source. The exact dependence on the error as a functionof
source separation depends on the specific sampling function, and
therefore PSF, being used.

We also find that the errors are larger for both approaches
when sources are close together relative to the FWHM of the
PSF. To test this further, we kept the image resolution fixed (at
5 rad/m2 per pixel) and varied the separation between the two
sources (again, each having the same flux and phase). In Fig. 3
we see that below a source separation of 2×FWHM the errors for
both methods increase dramatically. Nevertheless, at separations
of 1×FWHM or larger, the maximum likelihood approach fares
significantly better than RMCLEAN.

Even though the errors increase dramatically as source sep-
aration decreases for both methods, we find that the ML recon-
structions are still a significant improvement over RMCLEAN.
In Fig. 4 we show reconstructed Faraday spectra from 500 data
realizations of the same sky model. Although the ML results
show a systematic reduction in flux and a shift in position rel-
ative to the sky model, two distinct sources are clearly identi-
fiable. This is not the case in the RMCLEAN image. We per-
formed similar tests for hundreds of combinations of sourcesep-
aration (between 1 and 6×FWHM), relative fluxes (flux ratios
between 1 and 10), relative phases, and noise levels. In all cases
the ML approach was an improvement over RMCLEAN, and it
only showed significant errors in a few cases like the one shown
in Fig. 4.

4. Conclusions

We have shown that the well-known limitations of the CLEAN
algorithm that arise due to discretization of the sky are particu-
larly pronounced in the case of RM synthesis. We find that accu-
racy of the results obtained by CLEAN depend strongly on the
choice of pixelization, and significant over-resolution isrequired
to obtain accurate measurements of flux and Faraday depth in
the simplest case where there is a single source along the line of
sight. Furthermore, RMCLEAN is unable to accurately recon-
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Fig. 4. Modulus of the Faraday spectra of two point sources having similar fluxes and the same phase and that are separated by
1×FWHM (40 rad/m2). The dashed line shows the sky model after convolution withthe idealized PSF. The (a) RMCLEAN and (b)
ML reconstructions from 500 trials are plotted in red/yellow, with the color scale indicating the log of the numberof reconstructions
that pass through each location on the figure.

struct fluxes and locations of the individual sources even with
over-resolution when there are multiple sources of emission.

We propose a simple algorithm to adjust the CLEAN model
parameters using Maximum Likelihood estimation together with
a prescription for reducing the degrees of freedom in the model
to the minimum number that are supported by the data. We show
that this algorithm improves upon the results obtained using
RMCLEAN alone and provides highly accurate reconstructions
independent of the choice of pixelization of Faraday depth space.

Both algorithms struggle in cases where two point sources
are located within 1×FWHM of the PSF, but this merely re-
flects the fundamental limitation of the observations to resolve
structures on these scales. However, although errors increase as
source separation decreases, the ML algorithm still provides sig-
nificant improvement over RMCLEAN.

CLEAN is ideally suited for the case where the image to
be reconstructed is well-described by a set of independent point
sources, but as we have shown, does not perform well even in
these ideal circumstances when applied in the case of RM syn-
thesis. The algorithm described herein provides significant im-
provements over RMCLEAN alone and is easy to append to
existing RM synthesis imaging pipelines. Therefore, we recom-
mend its use in upcoming polarization surveys that plan to in-
clude RM synthesis imaging.

The ML procedure still assumes that the image is described
by a set of independent point sources, and will likely not be ideal
in case large-scale, diffuse emission is present. A point-source
based image reconstruction method is nevertheless an important
tool to have on hand. It can be used as a method for separating
point sources from a diffuse background, which may be better re-
constructed using other methods that do not handle point sources
well. It may also be the optimal deconvolution method for use
with instruments that are not sensitive to scales much larger than
the PSF, as is the case with e.g. LOFAR (Beck et al. 2012).
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Appendix A: Iterative maximization approach

We assume that the optimal model point position is shifted bysome small distance,δφi, relative to the grid point location found
using CLEAN,φi

φi = φi + δφi. (A.1)

The maximum likelihood solution is obtained by minimizingH in Eq. 4 with respect toδφi, which gives

∂H(d|M)
∂δφi

=
2
σ2

n

∑

j

ℜ

[
iλ2

jmi

{
m∗i −

(
d j −

˜̃
di

j

)∗
e2iλ2

jφi

}]
= 0 (A.2)

where
˜̃
di

j is the same as̃d j, Eq. 2, except that the sum is overk , i. The operatorℜ selects the real part of its argument. This
expression cannot be solved analytically forδφi, but we can use it to search for the solutions iteratively. Todo so we Taylor expand
the exponential term in Eq. A.2 to first order, thereby makingH second order inδφi. This gives

∂H
∂δφi

=
2
σ2

n

∑

j

ℜ

[
λ2

jmii

{
m∗i −

(
d j −

˜̃
di

j

)∗
e2iλ2

jφi − 2iλ2
j

(
˜̃
di

j − d j

)∗
e2iλ2

jφiδφi

}]
= 0, (A.3)

which we can rewrite in the form

A = Bδφi, (A.4)

where

A =
∑

j

ℜ

[{
m∗i −

(
d j −

˜̃
di

j

)∗
e2iλ2

jφi

}
λ2

jmii

]
,

B =
∑

j

ℜ

[
−2λ4

jmi

(
d j −

˜̃
di

j

)∗
e2iλ2

jφi

]
. (A.5)

We must also solve for an updated flux. We can again extremize Eq. 4, this time with respect tomi. We find

∂H
∂mi
=

1
2σ2

n

∑

j

[m∗i − (d j −
˜̃d j)∗e

2iφiλ
2
j ] (A.6)

and thus

mi =
1

Nd

Nd∑

j=1

[(d j −
˜̃
di

j)e
−2iφiλ

2
j ]. (A.7)

In our example implementation, we solve forδφ andm iteratively until convergence is achieved. We also attemptto merge nearby
model components to reduce the degrees of freedom in the model according to the prescription described in Sec. 2.

We tried other iterative schemes, e.g. solving for positionand flux changes by inverting the Hessian matrix ofH, but found that
the approach given here is the most stable.
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