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Abstract. We make the first detailed MCMC likelihood study of cosmological constraints
that are expected from some of the largest, ongoing and proposed, cluster surveys in different
wave-bands and compare the estimates to the prevalent Fisher matrix forecasts. Mock cata-
logs of cluster counts expected from the surveys – eROSITA, WFXT, RCS2, DES and Planck,
along with a mock dataset of follow-up mass calibrations are analyzed for this purpose. A
fair agreement between MCMC and Fisher results is found only in the case of minimal mod-
els. However, for many cases, the marginalized constraints obtained from Fisher and MCMC
methods can differ by factors of 30-100%. The discrepancy can be alarmingly large for a
time dependent dark energy equation of state, w(a); the Fisher methods are seen to under-
estimate the constraints by as much as a factor of 4–5. Typically, Fisher estimates become
more and more inappropriate as we move away from ΛCDM, to a constant-w dark energy
to varying-w dark energy cosmologies. Fisher analysis, also, predicts incorrect parameter
degeneracies. There are noticeable offsets in the likelihood contours obtained from Fisher
methods that is caused due to an asymmetry in the posterior likelihood distribution as seen
through a MCMC analysis. From the point of mass-calibration uncertainties, a high value
of unknown scatter about the mean mass-observable relation, and its redshift dependence, is
seen to have large degeneracies with the cosmological parameters σ8 and w(a) and can de-
grade the cosmological constraints considerably. We find that the addition of mass-calibrated
cluster datasets can improve dark energy and σ8 constraints by factors of 2–3 from what can
be obtained from CMB+SNe+BAO only . Finally, we show that a joint analysis of datasets
of two (or more) different cluster surveys would significantly tighten cosmological constraints
from using clusters only. Since, details of future cluster surveys are still being planned, we
emphasize that optimal survey design must be done using MCMC analysis rather than Fisher
forecasting.
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1 Introduction

Galaxy cluster counts have been recognized as potentially important probes of precision cos-
mology [1–6], and have yielded in recent years, the first set of independent constraints on Ωm,
the matter density of the Universe and σ8, the RMS density fluctuations on a scale of 8 h−1

Mpc [7–10]. There are many large scale structure (LSS) surveys that are either operational
or being built, which are expected to yield a much larger dataset of cluster observations. This
would provide strong constraints not only on Ωm and σ8, but also on the dark energy equation
of state (w0) and its evolution (wa/wz). There have also been recent works which demon-
strate that cluster data can also be used to place constraints on the extensions of the standard
cosmological model, for e.g. probing non-Gaussianities in primordial density perturbations
[11–14], modifications to general relativity [15, 16] and to probe neutrino properties [17]. The
cosmological constraints obtained from galaxy clusters are complementary to those obtained
from other cosmological probes such as cosmic microwave background (CMB), supernovae
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type Ia observations and baryon acoustic oscillations. This is because clusters have the dual
advantage of not only probing the expansion history but also the growth of perturbations
in the universe. Using datasets from various different probes helps in breaking degeneracies
between various cosmological parameters, and gives tighter constraints [3, 18–23].

In recent years there have been a large number of cluster surveys running, funded or
proposed with the aim of detecting between thousand to hundreds of thousands of clusters up
to high redshifts (z & 1) 1. With the newer surveys being proposed, it is important to asses
the cosmological relevance of such observations. Fisher based estimates of the constraints
have been widely used in making forecasts because of both simplicity and lower computa-
tional costs [24]. However, Fisher estimates are reliable only when the underlying probability
distribution function (pdf) is Gaussian shaped, while MCMC forecasts are always correct
irrespective of the pdf of the likelihood. MCMC techniques can be used on real data whereas
Fisher analysis is limited to making forecasts. Detailed comparisons of forecasts from Fisher
and MCMC have been made in the context of CMB in [25] and SNe, BAO and weak lensing
in [26]. However, no such comparison has been made for cluster surveys and in this work, we
make a first detailed comparison for cluster surveys. Unlike the CMB where there are a few
nuisance parameters like τ (optical depth) and YHe (Helium abundance), analysis of cluster
data requires a larger number of such parameters to arrive at unbiased cosmological param-
eter values. This is due to the significant non-linear astrophysical processes occurring in the
intra-cluster medium (ICM) (much of which are still not well understood), as compared to
the CMB physics which is both linear and well understood.

In this paper, we compare results on parameter constraints from both Fisher and MCMC
methods for various cluster surveys in x-rays, SZE and optical. We make detailed comparison
on a case by case basis for various cosmological models like ΛCDM2, wCDM3 and also
waCDM(wzCDM)4. The rest of the paper is organized as follows. In section 2 we begin by
describing how clusters are used to probe cosmology. In section 3 and 4 we summarize the
methodology of MCMC and Fisher analysis in the context of cluster data and also mention
the advantages and disadvantages of each method. In section 5 we describe our fiducial
cosmological models, and the priors used in this work; we also outline here our procedure
for constructing the mock mass follow up catalog. Next, in section 6 we move on to briefly
describe the six surveys across multiple wavelength bands that have been considered in the
paper. Our results are described in detail in Section 7 and are also highlighted in Tables
2 - 6, which also offer a detailed comparison between MCMC and Fisher forecasts. Here,
we also provide some examples of how the synergies of two independent cluster surveys may
be utilized to break the parameter degeneracies to obtain significantly better cosmological
constraints. We discuss some technical points relevant to our work in section 10 before
concluding in section 11.

1www.darkenergysurvey.org www.rcs2.org www.mpe.mpg.de/eROSITA wfxt.pha.jhu.edu
www.rssd.esa.int/index.php?project=planck pole.uchicago.edu www.princeton.edu/act

2Cold dark matter with the cosmological constant as the dark energy component.
3Cold dark matter with a single parameter dark energy equation of state, w0.
4Cold dark matter with an evolving dark energy equation of state, described by two parameters – w0 and

wa(wz), see section 5 for more details.
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2 Redshift distribution of clusters as a probe of cosmology

The redshift distribution of clusters is given by,

dN

dz
(z) = ∆Ω

dV (z)

dzdΩ

∫ ∞

Mlim

dn(M,z)

dM
dM (2.1)

where dV/dzdΩ is the comoving volume element and ∆Ω is the solid angle of the survey.
This dV/dzdΩ is related to the expansion history of the background cosmology and depends
on cosmological parameters – Ωtot,Ωm, h and w(z). The halo mass function dn

dM shows ex-
ponential sensitivity to the growth of perturbations in the matter density field through σ8
and the growth function G(z), which again depends on the cosmological parameters. There
have been a number of fitting forms [27–31] available in literature obtained from both semi-
analytic as well as large N-body simulations; in this work we use the fitting form as given in
reference [32].

As the mass, M , is not directly observed for most of the detected clusters in the sample,
it is convenient to use a more readily observable proxy for mass, O, such as luminosity,
temperature or the product of gas mass and temperature in x-rays, YX [33]; integrated Y
parameter in SZE or max S/N in matched filtering of SZ maps [34]; and richness of red
galaxies in optical [35, 36]. Often, the relationship between mass and its observable proxy
is described a simple power law form as, logM = A+ α logO + γ log(1 + z). Here A is the
amplitude, α is the slope while the parameter γ captures any non-standard (departure from
self-similar) cluster evolution [37]. Since the cluster mass function decreases steeply with
mass, a knowledge of the distribution of clusters about this relation (or scatter) becomes
very important. One frequently uses a log-normal model to account for this scatter between
mass and its proxy. While in some cases, the values of these cluster scaling parameters may
be known from past observations to within some error, a slightly different choice of the cluster
parameters A,α and γ from their true values could bring in a significant bias in the derived
cosmology. This occurs due to the strong correlation between the cluster and cosmology
parameters. Thus, these scaling parameters should preferably not be fixed, but derived from
the data along with the cosmology. However, attempts at marginalizing over these cluster
parameters to determine the cosmology from only cluster counts, results in a significantly
weakened set of cosmological constraints. There have been several ideas that have been
proposed to break this cluster physics – cosmology degeneracy through self-calibration; for
e.g. adding cluster power-spectrum [38, 39], counts-in-cells [40], binning in mass proxy [2]
as well as redshift, planning a survey with both deep and wide component [41], etc. Even a
simple mass follow-up of clusters can be very effective at breaking this degeneracy and can
give a significant improvement in the cosmological constraints [42]; here, we construct a mass
follow-up [37, 39], to calibrate the mass – observable relation. Since both weak lensing as well
as x-ray observations can measure the mass like quantity Mf (θ) = M(θ)/dA(z), where M(θ)
is the halo mass within an angle θ, we use this quantity as the observable for constructing our
mock catalogs; henceforth we shall refer to it as the mass follow-up. We assume a flat 30%
error estimate on Mf in all our mass catalogs constructed for each of the surveys considered
in section 6. Note, that this is very conservative since with better observations one would be
able to achieve more robust estimates of cluster masses [43].
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3 Monte Carlo analysis of mock data

An accurate and computationally feasible mapping of the underlying multivariate distribution
in a high dimensional parameter space is achieved by constructing Markov Chain Monte Carlo
(MCMC) chains. A MCMC chain generates a set of points in the parameter space which
have the same distribution as the target distribution (posterior likelihood). Our MCMC
chains are obtained by computing the Bayesian likelihood at random points selected using
the Metropolis Hastings (MH) algorithm [44, 45]. For other sampling algorithms used in the
context of cosmological parameter estimation we refer the reader to [46–52]. At each point
Θ = (θ1, θ2, ...θn) the Bayesian posterior likelihood, L(Θ | D) is computed given the data
D as, L(Θ | D) ∝ L(D | Θ)L(Θ). Here L(Θ) is the prior likelihood and L(D | Θ) is the
likelihood of getting the data D given the parameter θ. For number count observations of
clusters this is given by the Poisson statistic,

L(D | Θ) =
∏

m

Nm(Θ)N
(D)
m e−Nm(Θ)

N
(D)
m

(3.1)

Here, the product is over the redshift bins; N
(D)
m corresponds to the observed number of

clusters in the redshift m, while Nm(Θ) is the expected value for a model described with the
parameter vector Θ. We add to this the chi-sq likelihoods L = exp(−χ2/2) constructed from
the mass follow up data.

The MH algorithm requires a proposal pdf to be specified, which we choose to be a
multivariate Gaussian distribution for simplicity. For a quicker convergence, the proposal
distribution should be as close to the actual distribution. In practice, this is achieved by
making repeated short runs, each time using the computed covariance matrix from the data
to be the new proposal matrix. One may also invert the Fisher matrix computed for the same
observations in order to obtain the proposal covariance matrix, see section 4. The number
of iterations required for convergence roughly scales as the number of parameters of the
model and also depends on the nature of the actual distribution. Longer chains need to be
constructed when the posterior likelihood departs from a Gaussian distribution. On having
sampled sufficiently enough points in the parameter space the MCMC chain equilibrates to
the target distribution, i.e. L(Θ | D), and is said to have reached convergence. In practice,
convergence may be tested thorough one of the many convergence tests, see section 10. We
refer the reader to the references [53, 54] for further details on the MCMC technique.

4 Fisher matrix analysis

The Fisher information matrix [55, 56] is often used to obtain a quick estimate of the con-
straints on the parameters of a model for a given experiment. The Fisher information matrix
is defined about a fiducial cosmological model as,

Fij ≡ −
〈∂2 lnL(Θ | D)

∂θi∂θj

〉

(4.1)

For a large dataset the likelihood function may be approximated as a multivariate Gaussian
pdf of the model parameters, in which case the covariance matrix of the model parameters
may be constructed as the inverse of the Fisher matrix, Cij ≡ 〈θiθj〉 − 〈θi〉〈θj〉 = F−1

ij . Using
the Cramer-Rao inequality one estimates the marginalized standard deviation (s.d.) of the
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parameters as follows, ∆θ ≡ 〈θ2i 〉 − 〈θi〉〈θi〉 ≥ C
1/2
ii . For galaxy cluster surveys the Fisher

matrix may be constructed as [1, 37, 39],

Fij = Σm
∂Nm

∂pi

∂Nm

∂pj

1

Nm
+Σk

∂M
(k)
f

∂pi

∂M
(k)
f

∂pj

1

σ2
Mf

(k)

+
δij

σ2(θi)
(4.2)

where Nm is the number of observed clusters in each redshift bin m; k is the summation
index over all the follow-up masses; and σ(θi) is the Gaussian prior on the parameter θi.

Fisher matrix analysis has the advantage of being computationally simpler as it is cal-
culated just about a single point, i.e. for the fiducial model parameters. However it must
be emphasized that, this technique provides a reasonably accurate estimate of parameter
constraints only when the likelihood function is close to being Gaussian. When 3rd or higher
order moments of the parameters start becoming important the Fisher analysis may fail. In
practice this happens when the model is described by a large number of degenerate param-
eters, leading to weakened constraints due to extended degeneracy between the parameters.
However, the likelihood distribution of the combination of many independent parameters is
always more Gaussian than the one of a single parameter [for e.g. ref. 56]. Non-Gaussian
likelihoods are also seen when the data is not sufficiently large; or for non-Gaussian distri-
bution of errors in the data. Another disadvantage of Fisher analysis is that it can handle
only Gaussian priors; many a times, there are parameters which can take values only within
a certain range, as other values may not be physical, for e.g., in a flat universe, 0 ≤ Ωm ≤ 1.
Such flat priors can only be imposed through an MCMC analysis. In our results we have
taken care to see that the comparisons between Fisher and MCMC results are not affected
by such issues.

5 Fiducial cosmology, priors and mass follow-up

We adopt our fiducial cosmology from the WMAP 7-year results (Table 6 of [57]). For
simplicity, we choose a flat Universe since for an open wCDM model, WMAP7+BAO+H0
tightly constraints ∆Ωtot ≤ 0.007. However, including the flatness as an additional parameter
Ωk with the WMAP prior does not change our results significantly.

We vary the following cosmological parameters - Ωm,Ωb, w(z), h, ns, σ8 along with clus-
ter parameters A,α, γ. Since cluster counts by themselves do not constrain the cosmological
parameters h,Ωb and ns very well, we impose WMAP Gaussian priors with s.d. 0.013, 0.0016
and 0.013 on these parameters respectively. We consider the following cosmological models
for making comparisons between Fisher and MCMC – ΛCDM (dark energy equation of state
is fixed to be -1), wCDM (with a single parameter, w0 dark energy equation of state). We
also consider the dark energy models with a redshift dependent equation of state for which we
use the two common parametrizations – the Linder parametrization [58] w(z) = w0 +wa

z
1+z

and the other simple form w(z) = w0 + wzz. In the rest of the paper, for the wCDM model
we shall always use w0 even to denote the single parameter dark energy equation of state, to
ensure notational consistency.

We model a log-normal scatter [59] in the mass-observable relations parametrized as
[11], η(z) = η0(1 + η1z). Due to the steep form of the cluster mass function, dn

dM cluster
counts are very sensitive to the amount of scatter. Thus when analysing the cluster count
data the scatter should preferably not be fixed, but determined jointly with the cosmology.
This is especially true for cluster data in optical/IR where the scatter is seen to be large
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[8, 10]. However, this scatter need not be assumed to be completely unknown; it is expected
that the mass follow-up observations would yield some constraints on the amount of scatter
in the M − O relation. Thus, we place Gaussian priors with s.d. of 0.1 and 0.12 on the
log-normal scatter of 0.45 and 0.58 in DES and RCS2 respectively. In our analysis of mock
cluster data from the x-ray and SZE surveys, the relatively small scatter η is kept fixed.

For computing the dN
dz likelihoods we first generate a mock dataset cluster distribution

in redshift bins of width 0.1. We then use eq. 3.1 to compute the likelihoods for each point
Θ in the Markov chain. As mentioned in section 2, just cluster counts cannot place tight
constraints on cosmology by themselves. To break the cosmology-cluster physics degeneracy
we consider a simple mass follow-up, Mf , of 100 clusters for all our surveys except the
WFXT. For the WFXT we consider a larger follow-up of 1,000 clusters. Our mass catalogs
are uniformly sampled over mass (from 2 − 8 × 1014 M⊙) and redshift (0.3 ≤ z ≤ 0.9) and
consists of a table of redshift, mass, and observable mass-proxy. The likelihood of Mf is then
added to the likelihoods from dN

dz .

6 Cluster surveys

6.1 Large Yield Surveys

We examine in detail, on a case by case basis, the model dependent cosmological parame-
ter constraints from various surveys. We focus mainly on upcoming surveys, especially in
x-ray and optical, which promise to provide survey yields of ten-to-hundreds of thousands
of clusters of galaxies. These are the surveys which will have enough number of clusters so
as to self-calibrate multiple cluster specific nuisance parameters to give unbiased cosmolog-
ical parameter constraints. We consider two survey cases each for x-ray and optical based
observations. In x-ray we consider the very large surveys, the upcoming eROSITA and the
proposed WFXT. For optical surveys we consider the RCS2 survey whose observation runs
have been recently completed and the DES survey that will yield clusters in the near future
.

Table 1 summarizes the details like area coverage, expected cluster detections, redshift
range, etc. that were assumed for each of the cluster surveys investigated in this paper.

Survey wavelength Ncl area flux/Bgc/N200 redshift Nfollow−up

(in k) (deg.2) cut range clusters

eROSITA x-ray 120 27,000 4× 10−14 erg-cm-2-s-1 0.1 - 1.3 100
WFXT x-ray 300 20,000 5× 10−15 erg-cm-2-s-1 0.1 - 1.3 1,000
RCS2 optical 15 1,000 Bgc = 300 0.1 - 1.0 100
DES optical 155 5,000 N200 = 17 0.1 - 1.3 100
Planck SZE 2 32,000 300 mJy 0.1 - 1.3 100

Table 1. A summary of the six cluster surveys that we consider in this work along with the relevant
parameters.

6.1.1 X-ray surveys

Clusters are detected in x-ray due to the thermal Bremsstrahlung emission from the hot ICM.
X-ray telescopes like ROSAT, XMM-Newton and Chandra along with others have observed
a large number of clusters at various redshifts. Some of these observations have already given
interesting independent constraints on cosmological models [7, 9].
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For a given survey the limiting mass Mlim(z) in eq. 2.1 is found from the flux limit, flim
of the survey. For x-ray survey, we adopt luminosity-mass relations from [33] given by the
following expression5 with fiducial parameter values: A = −4.24, α = 1.61 and γ = 0 with a
log-normal scatter of 0.246.

LX = 10A
(

M500

1× 1015

)α

E1.85(z)(1 + z)γ (6.1)

eROSITA : The extended Roentgen Survey with an Imaging Telescope Array (eROSITA)
is the next big full sky x-ray survey, expected to be launched in the near future [60]. The
primary scientific goal would be to study the nature of dark energy using about 100,000 x-ray
galaxy clusters. We model the survey with a limiting flux of flim = 4× 10−14 erg cm-2 s-1 in
the [0.5-2.0 keV] band with a sky coverage of ∼ 27,000 deg2.

WFXT : The Wide Field X-ray Telescope (WFXT) is a proposed x-ray mission which is
expected to be 2 orders of magnitude more sensitive than any previous x-ray mission [61].
It would survey a large fraction of the sky at a high angular resolution with a deep, wide
and a medium survey. The proposed survey would be in 3 parts – a deep survey of 100 sq.
deg, a medium survey of 3,000 sq. deg and a wide survey of 20,000 sq. deg. We examine
the constraints from the wide survey with a flux limit of flim = 5× 10−15 erg cm-2 s-1 in the
[0.5-2.0 keV] band.

In both the x-ray surveys we impose an additional flux cut-off corresponding to a mass
limit of 8× 1013h−1 M⊙. This is to prevent selection of very low mass halos like groups of
galaxies, especially at lower redshifts.

6.1.2 Optical surveys

Clusters are detected in optical surveys by searching for over-densities of galaxies with known
color properties. Compared to other wavelengths, cluster surveys in optical provide the
advantage of a high S/N ratio and a wide field of view. Also, because of a greater depth,
these surveys give the largest yield in terms of cluster detection per sq. deg. Optical surveys
are also essential to provide photometric redshift information of clusters detected in other
wavelengths and for the measurement of galaxy power spectrum.

RCS2 : The Red Sequence Cluster Survey 2 (RCS2) is the sequel to RCS1 which was a
78 sq. deg. survey which detected ∼ 1,000 clusters. The RCS2 is a larger survey with 1,000
sq. deg of sky coverage carried out using the one-square-degree MegaCam on the CFHT. As
with the RCS1, it uses a red-sequence of cluster early-type galaxies to identify galaxy clusters
[62]. It is expected to detect 15,000 clusters in the redshift range 0.3 - 1.0. We model the
RCS2 on the lines of RCS1 (see [10]) [36] with a uniform BgcR = 300 cut-off as follows, with
A = 10.29, α = 1.70, γ = 0.64 and η0 = σM200|Bgc = 0.58.

M200 = 10ABα
gcR(1 + z)γ (6.2)

5An alternate way is to take γ directly as the exponent of E(z) without the need for the (1 + z)γ term;
however we avoid this form as we find that it induces extra correlations of γX with the cosmological parameters
- Ωm, h and others.
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DES : The Dark Energy Survey (DES) is an upcoming optical imaging survey project that
would map out 5,000 sq. deg. of area in 5 years using the Blanco 4-meter telescope at the
Cerro Tololo Inter-American Observatory in Andes. One of the primary goal of this survey
is to make precision measurements of dark energy using various cosmological probes like
Supernovae, baryon acoustic oscillations, weak lensing and galaxy clusters [63]. We model
this survey with a maxBCG selection function and a mass cut-off corresponding to N200 = 17
as used in ref. [64], with A = 2.34 and α = 0.757 and γ = 0 and a log-normal scatter,
η0 = σM200|N200

= 0.45 in the mass-richness relation. Larger datasets give the opportunity
to play with greater number of nuisance parameters for more robust cosmological constraint
forecasts. Thus, for the DES we also examine the effect of introducing an extra nuisance
parameter η1 (as described in section 5) that can capture the redshift dependent scatter.

ln(N200) = A+ α ln

(

M200

1.09 × 1014

)

+ γ ln(1 + z) (6.3)

6.2 Smaller Yield SZE Surveys

For the sake of completeness and to explore survey complementarity, we also consider the
ongoing space based Planck mission. The Planck survey has already detected clusters [65]
through their SZE signal and have obtained initial mass calibration [66]. For the Planck
survey, we use the integrated Compton y parameter – Y as the mass proxy and write the
SZE flux-mass relation as in [37, 39],

Y d2A = f(ν)10AMα
200E

2/3(z) (1 + z)γ (6.4)

Here, f(ν) is the well known frequency dependence of the SZ effect and dA is the angular
diameter distance in Mpc. The conversion from Y to SZ flux is done as in ref. [67]. The
values for the SZE scaling parameters are: A = −28.07, α = 1.61, γ = 0 which are taken from
recent observations [68]. A log-normal scatter of 0.2 is assumed in the flux-mass relation.

Planck : Planck covers the entire sky, with good sensitivity and at a high angular resolution
over 9 frequency channels from 30–857 GHz. Planck was launched into orbit in 2009, and
is expected to complete its observations by 2012. Among other goals such as measurements
of intensity and polarization of the primordial and lensed CMB, Planck would also create a
catalog of galaxy clusters through SZE. The first all sky SZ catalog from Plank was released
recently which was from six months of survey. Projecting the initial cluster count to the full
Planck mission time, one would expect a total yield of 1000 − 2000 clusters over the entire
sky. We take the flux limit to be 160 mJy (at 353 GHz) which gives . 2,000 clusters [69]
in ∼ 32,000 deg2. The higher flux limit means that Planck would be able to detect only the
most massive clusters.

7 Results

We now compare the forecasts for parameter constraints from each of the surveys considered
in section 6, obtained from Fisher and MCMC analysis of mock cluster data.

7.1 X-ray surveys

eROSITA : The eROSITA survey places strong constraints on the ΛCDM cosmology,
with ∆Ωm = 0.028 and ∆σ8 = 0.016. To compare, these constraints are slightly better than
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model ΛCDM wCDM waCDM
parameter MCMC Fisher MCMC Fisher MCMC Fisher

Ωm 0.028 0.026 0.035 0.028 0.080 0.028
w0 — — 0.191 0.145 0.374 0.172
wa — — — — 0.685 0.165
σ8 0.016 0.018 0.034 0.025 0.059 0.026
A 0.048 0.036 0.052 0.039 0.096 0.055
α 0.031 0.035 0.037 0.040 0.066 0.047
γ 0.100 0.089 0.179 0.177 0.204 0.185

Table 2. A comparison of the standard deviations of marginalized parameter constraints from analysis
of the mock cluster data from the eROSITA x-ray survey using MCMC and Fisher methods. Numbers
in bold highlight the significant discrepancy in constraint estimates between the two methods.
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Figure 1. The degeneracy between the cosmological parameters Ωm and σ8 for the eROSITA survey
is indicated by a few samples drawn from the posterior likelihood distribution of the wCDM model.
The correlation with a third parameter – Ωm (left) and γ (right) is indicated through the color or
value of the third parameter.
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Figure 2. The dark(light) green regions indicate the projected 1-σ (2-σ) confidence regions obtained
from the analysis of mock cluster data for the eROSITA survey using MCMC methods for a waCDM
model. The blue ellipses are the corresponding constraints from a Fisher analysis.

those obtained from just the CMB (WMAP7 results) for which ∆Ωm = 0.029 and ∆σ8 =
0.030. For the wCDM model, the constraints get relaxed to 0.035 and 0.034 on Ωm and σ8
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Figure 3. The dark (light) green regions indicate the projected 1-σ (2-σ) confidence regions obtained
from the analysis of mock data for eROSITA using MCMCmethods for the three cosmological models –
ΛCDM, wCDM and waCDM in the Ωm−σ8 plane. The blue ellipses are the corresponding constraints
from a Fisher analysis.

respectively, with almost a twofold increase in ∆σ8. This occurs due to the long degeneracy
between w0 and σ8, that causes wider constraints on σ8 after marginalization over w; the
marginalised constraint on w0 is 0.191. This degeneracy in the w0 − σ8 plane is indicated
through figure 1; the correlation of σ8 and w0 with other parameters like Ωm and γ is also
shown here. The expected degeneracy of Ωm − σ8 and w − γ is clearly visible through the
color coding. We find here that the Fisher results are underestimated by a factor of ≈ 1.3 for
all Ωm, σ8 and w0. Addition of priors from the WMAP7 results can significantly shrink the
constraints on the wCDM model to ∆Ωm = 0.013, ∆w0 = 0.042 and ∆σ8 = 0.011. The large
number of clusters expected to be detected from a full sky survey like eROSITA will also
place constraints on the possible evolution of the dark energy equation of state. We examine
the constraints from waCDM model in which dark energy equation of state varies smoothly
from w0 at z = 0 to approach w0 + wa at a large redshift (z ≫ 1). For the waCDM model,
with a two parameter dark energy equation of state there would be weaker constraints on
cosmology. We also see that there is no agreement between Fisher and MCMC estimates
whatsoever – ∆Ωm = 0.080(0.028), ∆w0 = 0.374(0.172), ∆wa = 0.685(0.165) and ∆σ8 =
0.059(0.026) for the MCMC(Fisher) results respectively. There is also a noticeable difference
in the degeneracy direction in the w0 − wa plane, see figure 2. It is alarming to note how
the Fisher estimates mislead us into false estimates of tight constraints on the parameter wa,
where the two forecasts can differ by a factor up to 4 or more. We find fairly good agreement
between the Fisher and MCMC results only for the ΛCDM model. The results between the
two methods are seen to progressively diverge for the wCDM and waCDM models, see figure
3. The detailed results for eROSITA are also listed in table 2.

WFXT : The WFXT is seen to place much stronger constraints on cosmology – i) By
virtue of a large number of cluster detections due to its high flux sensitivity; ii) a 10 times
larger mass follow-up of 1,000 clusters that we have considered to break the cosmology -
cluster physics degeneracy. On the ΛCDM model we get very tight constraints with ∆Ωm =
0.012 and ∆σ8 = 0.027. These constraints are about a factor of 2 or so better as compared
to eRSOITA. Here, the Fisher case slightly overestimates for the constraints as compared
to MCMC. For the wCDM model we find ∆Ωm = 0.029, ∆σ8 = 0.031 and ∆w0 = 0.133;
while the Fisher and MCMC give very similar results. However they turn out to be very
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model ΛCDM wCDM waCDM wzCDM
parameter MCMC Fisher MCMC Fisher MCMC Fisher MCMC Fisher

Ωm 0.012 0.017 0.029 0.026 0.047 0.026 0.034 0.043
w0 — — 0.133 0.120 0.225 0.120 0.181 0.206
wa — — — — 0.343 0.093 0.172 0.125
σ8 0.014 0.017 0.031 0.029 0.041 0.029 0.037 0.043
A 0.024 0.028 0.039 0.035 0.052 0.037 0.045 0.053
α 0.037 0.037 0.038 0.038 0.039 0.038 0.039 0.039
γ 0.048 0.057 0.136 0.137 0.140 0.153 0.145 0.154

Table 3. A comparison of standard deviations of marginalized parameter constraints obtained using
MCMC and Fisher analysis of the mock cluster data from the WFXT x-ray survey. Numbers in bold
highlight the significant discrepancy in constraint estimates.
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Figure 4. A comparison of parameter constraints from the WFXT survey for the two different
parametrizations of the dark energy equation of state – w(z) = w0 +

waz

1+z
(left) and w(z) = w0 +wzz

(right). The dark(light) green regions indicate the projected 1-σ (2-σ) confidence regions obtained
from the analysis of mock cluster data using MCMC methods. The blue ellipses indicate the corre-
sponding constraints from a Fisher analysis.

different for the waCDM model, as seen in the eROSITA case before. Here, we find ∆Ωm

= 0.047(0.026), ∆w0 = 0.225(0.120), ∆wa = 0.343(0.093) and ∆σ8 = 0.041(0.029) for the
MCMC(Fisher) forecasts respectively. The only difference is that the estimates for σ8 are
not as divergent. We find again that introducing the parameter wa for the redshift evolution
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of dark energy equation of state makes the Fisher constraints seem much tighter than they
actually are; also we find that the degeneracy direction predicted by the Fisher method is
incorrect, see figure 4. Figure 5 shows the 2-dimensional likelihood contours for pairs of
some of the relevant parameters, along with the 1-dimensional marginalized pdf’s along the
diagonal. In the figure, for the 2-dimensional likelihoods, the red and blue contours indicate
the 1-σ and 2-σ confidence regions for MCMC and Fisher forecasts respectively.

For the WFXT survey we also examine the effect of a different parametrization for the
dark energy equation of state: w(z) = w0 + wzz. We do so since both models, wa and wz

have been considered in the literature, and here we point out the degeneracies resulting from
the two parametrizations. The wz parametrization goes linearly with z, clearly not realistic
at very large z (z ≫ 1). However as long as we are dealing with low redshift data, and we
are interested in constraining deviations from a w = −1 equation of state, both models can
be used.

The degeneracy direction of Fisher ellipses in the w0-wa plane is different from that in
the w0-wz plane. Although the Fisher ellipses do not provide a very accurate description for
the dark energy constraints for both the parametrizations (see Fig. 4), we find that the wz

parametrization compares much favorably as far as the discrepancy between Fisher/MCMC
forecasts from cluster surveys are considered. For e.g. we find that ∆Ωm = 0.034(0.043), ∆w0

= 0.225(0.140), ∆wz = 0.343(0.075) and ∆σ8 = 0.041(0.031) for the MCMC(Fisher) forecasts
respectively. For the wzCDM model not only is the discrepancy significantly smaller, but
also the degeneracy directions are more or less correctly predicted by the Fisher method, see
figure 4. However, the marginalized 2-dimensional likelihoods in the dark energy plane are
seen to be highly skewed. Table 3 summarises the results for the WXFT survey. Finally, we
emphasize again that the computation of the Fisher matrix (and therefore the constraints
resulting from it) are dependent on the derivatives computed just at the Fiducuial point in
the parameter space. For a non-Gaussian distribution of the likelihood, the Fisher matrix
may or may not provide a correct estimate of the actual (MCMC) constraints. This may
be the reason for the different discrepancies in the Fisher/MCMC comparison for the two
parametrizations, as seen here. See also the discussion under DES in section 7.2.

model ΛCDM wCDM
parameter MCMC Fisher MCMC Fisher

Ωm 0.040 0.040 0.046 0.040
w0 — — 0.144 0.137
σ8 0.141 0.140 0.153 0.151
A 0.299 0.300 0.302 0.301
α 0.117 0.117 0.117 0.117
γ 0.210 0.220 0.227 0.221
η0 0.099 0.114 0.111 0.120

Table 4. A comparison of standard deviations of marginalized parameter constraints obtained using
MCMC and Fisher analysis of the mock cluster data from the RCS2 optical survey for the wCDM
model.

7.2 Optical surveys

For the optical surveys there is a large scatter between the mass-observable relation. To
account for this we introduce two additional parameters to characterize this scatter and
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Figure 5. Projected 1-σ and 2-σ confidence regions obtained from the analysis of mock cluster data
for the WFXT survey for the waCDM model. The contours in red (blue) show results obtained using
MCMC (Fisher) analysis. The diagonal plots in black show the corresponding marginalized pdf’s for
each parameter.

its evolution with redshift. As we shall see, the presence of an unknown scatter creates
extra degeneracies, and weakens the cosmological constraints. In order to investigate this
degeneracy, we consider here only the ΛCDM and wCDM model for simplicity.

RCS2 : For the RCS2 we see a reasonably good agreement between the Fisher and MCMC
forecasts. For the ΛCDM model we find fairly wide constraints of 0.040 and 0.141 on Ωm

and σ8 respectively, which get marginally relaxed to 0.046 and 0.153 in the wCDM model
with ∆w0 being 0.144. It is interesting to note that the constraints on σ8 are much wider
than those from smaller yield SZ surveys like Planck. This is caused due to presence of large
scatter in the mass - proxy relation which causes a large degeneracy between σ8 and the
scatter η0; marginalizing over this degeneracy washes out the constraints on σ8. Figure 6
shows the 2-dimensional likelihood contours for each pair of some of the relevant parameters,
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Figure 6. Projected 1-σ and 2-σ confidence regions obtained from the analysis of mock data for the
RCS2 survey for the wCDM model. The contours in red (blue) show results obtained using MCMC
(Fisher) analysis. The diagonal plots in black show the corresponding marginalized pdf’s for each
parameter.

along with the 1-dimensional marginalized pdf’s along the diagonal. For the 2-dimensional
likelihoods, the red and blue contours indicate the 1-σ and 2-σ confidence regions for MCMC
and Fisher forecasts respectively. The RCS2 results are listed in table 4.

DES : For a larger optical survey like DES we also examine the effect of introducing η1 as
the free parameter for the redshift dependent scatter. As expected, with an extra parameter
the errors on Ωm and σ8 get larger from 0.025 to 0.030 and 0.070 to 0.113 respectively, for the
ΛCDM model. For the wCDM case the increase is smaller, 0.033 to 0.037 for Ωm and 0.094 to
0.116 for σ8. The parameter w0 is seen to be degenerate with η1, see figure 7; and this causes
a significant degradation in the constraints on w, from 0.071 to 0.149, with and without η1,
respectively. The Fisher results for w0 are always underestimated; for σ8 they are either
overestimated (up to 50%) or remain same; while for Ωm these are seen to be more or less
consistent. This may be understood by observing the shape of the peaks in the marginalized
single parameter pdf’s – for a sharply peaked curve such as in w0, the Fisher results would
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model ΛCDM ΛCDM wCDM wCDM
parameter MCMC Fisher MCMC Fisher MCMC Fisher MCMC Fisher

Ωm 0.025 0.028 0.030 0.032 0.033 0.035 0.037 0.036
w0 — — — — 0.071 0.051 0.149 0.130
σ8 0.070 0.101 0.113 0.118 0.094 0.109 0.116 0.123
A 0.082 0.080 0.095 0.099 0.102 0.100 0.104 0.100
α 0.055 0.050 0.055 0.052 0.055 0.052 0.056 0.052
γ 0.099 0.124 0.131 0.146 0.140 0.143 0.148 0.146
η0 0.057 0.084 0.091 0.100 0.075 0.097 0.089 0.100
η1 — — 0.041 0.026 — — 0.072 0.066

Table 5. Comparison of 1− σ marginalized parameter constraints from MCMC and Fisher analysis
of the mock cluster data from the DES optical survey. Numbers in bold highlight the significant
discrepancy in forecasts.
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Figure 7. The dark (light) regions indicate the projected 1-σ (2-σ) confidence regions obtained from
the analysis of mock data for the DES survey using MCMC methods for the wCDM model in various
parameter planes. The green(red) region indicates constraints with (without) redshift dependent
scatter.

be underestimated, while for a flatly peaked curve, they would be overestimated, see figure 8.
The Fisher constraints on η0 are overestimated, but underestimated for η1. The marginalized
pdf’s in this figure show asymmetry as well as the presence of extended non-Gaussian tails.
The degeneracy of σ8 with η1 is seen to be much weaker than with η0, however the degeneracy
shape is highly non-Gaussian and skewed, see figure 9 causing a factor of 1.5–2 discrepancy
in ∆η1, in Fisher and MCMC forecasts. The above mentioned results are also listed in detail
in Table 5.

8 Improved constraints from a combination of clusters with CMB+BAO+SNe

observations

We also we consider the effect of adding the results from CMB+BAO+SNe to the dN
dz

constraints from cluster surveys. We add Gaussian priors of ∆Ωm=0.015, ∆w=0.053 and
∆σ8=0.038 obtained from the WMAP7 analysis. We find a significant improvement in the
cosmological constraints on adding these priors. For the eROSITA and WFXT surveys ∆σ8
value can be improved by a factor of 2.5–3 over the WMAP7 constraints. The constraints on
the dark energy equation of state w0 shrink by half for WFXT and DES surveys, in compar-
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Figure 8. Marginalized pdf’s for a few parameters obtained from the analysis of mock cluster data of
the DES using MCMC methods. (a) wCDM model with a one parameter scatter; (b) wCDM model
with a two parameter scatter
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Figure 9. An analysis of mock data for DES using MCMC methods shows the degeneracy between
the scatter parameters η0 and η1 as well as their correlation with a third parameter – w0 (left) and
σ8 (right). The dots indicate a few samples drawn from the posterior distribution, colored according
to the value of the third parameter, Ωm or γ.

ison to the results from just CMB+BAO+SNe. These results are also summarized in table
6.

survey CMB +eROSITA +WFXT +DES

parameter +SNe dN
dz +FUP dN

dz +FUP dN
dz +FUP dN

dz +FUP dN
dz +FUP dN

dz +FUP
+BAO +WMAP7 +WMAP7 +WMAP7

Ωm 0.015 0.035 0.013 0.029 0.011 0.033 0.013
w0 0.053 0.191 0.042 0.133 0.025 0.071 0.026
σ8 0.038 0.034 0.011 0.031 0.013 0.094 0.035

Table 6. Improvement in the 1− σ marginalized parameter constraints (from MCMC analysis) from
adding clusters to WMAP7 analysis of CMB+BAO+SNe datasets. All constraints are for the wCDM
model.
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parameter fiducial mean 1-σ 2-σ 3-σ
MCMC Fisher MCMC Fisher MCMC Fisher

0.408 0.339 0.502 0.396 0.608 0.453
Ωm 0.282 0.346

0.284 0.225 0.256 0.168 0.229 0.111
-0.700 0.811 -0.492 -0.622 -0.294 -0.433

w0 -1 -0.897
-1.092 -1.189 -1.293 -1.378 -1.557 -1.567
0.802 0.846 0.823 0.890 0.843 0.934

σ8 0.802 0.760
0.718 0.758 0.667 0.714 0.618 0.670

Table 7. A comparison of 1-σ, 2-σ and 3-σ marginalized limits on the cosmological parameters
obtained using MCMC and Fisher analysis of the mock cluster data from the Planck SZ survey for
the wCDM model.
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Figure 10. The dark (light) green regions indicate the projected 1-σ (2-σ) confidence regions obtained
from the analysis of mock cluster data for the Planck SZE survey using MCMC methods for the ΛCDM
and wCDM cosmological models in the Ωm − σ8 plane. The blue ellipses are the corresponding
constraints from a Fisher analysis.

9 Improved constraints from combining multiple cluster surveys

In the previous section we showed how having clusters together with CMB, SNe & BAO
leads to percent level constraints on key cosmology parameters. In this section we point out
a way to have tight cosmological constraints, than possible in section 7, but using cluster
datasets only. The surveys that we have discussed till now along with SZE survey (like
Planck) will have datasets which will include clusters common in overlapping regions of the
sky. A subset of these clusters can be used innovatively to constrain cosmological constraints
from using number counts only from any particular dataset [70]. However, we show below,
that due to the different degeneracy directions among cosmological and cluster parameters
in each of these surveys, a joint analysis of dN

dz from any two surveys will greatly increase the
constraining power of clusters as cosmological probes. We show this for three sets: (i) optical
(DES) + x-ray (WFXT), (ii) optical (DES) + SZE (Planck), and (iii) x-ray (eROSITA) +
SZE (Planck). Before proceeding further, we look at the prospects from Planck clusters.

Planck Cluster Cosmology : With an estimated yield of ∼ 2000 clusters, Planck gives
the following constraints - ∆Ωm = 0.044 and 0.064, while ∆σ8 = 0.028 and 0.041 for the
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ΛCDM and wCDM models respectively with ∆w0 = 0.199 in the latter case. We find that
fairly good agreement exists between the Fisher and MCMC estimates for Planck. However,
it is interesting to take note of the fact that the 2-dimensional projected likelihoods obtained
using Fisher in the Ωm − σ8 plane show a substantial offset as compared to the MCMC
likelihoods, see figure 10. This is seen in both the ΛCDM as well as wCDM models, and
arises due to the asymmetric distribution of the posterior likelihoods, especially so in the
plane of these two parameters. Table 7 shows a comparison of 1-σ, 2-σ and 3-σ limits on
the marginalized parameter constraints obtained using MCMC and Fisher analysis Planck
SZ survey for the wCDM model.

It is worth emphasizing again at this point that the surveys considered in this work give
rise to very different degeneracy directions in the parameter space. If these degeneracies could
be broken through a joint analysis of various cluster datasets, we would obtain significantly
tighter cosmological constraints using clusters alone. We now give a few examples to show
how, and also to indicate the extent to which this could be possible. A detailed report of
such improvements in the constraints from such a joint analysis will be reported in a future
work.
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Figure 11. The dark(light) regions indicate the projected 1-σ (2-σ) confidence regions obtained from
the analysis of mock cluster data using MCMC methods for a waCDM model. The cyan (red) regions
correspond to constraints from the Planck (eROSITA) survey.
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The degeneracy directions of the parameters in the Ωm − w and Ωm − σ8 planes for
Planck and eROSITA surveys are parallel, however the posterior likelihood distributions are
seen to be asymmetric with the tails being exactly in opposite directions, see figure 11. Each
of these surveys individually shows large degeneracy, however the overlap region is much
smaller.

Next, the optical survey DES and the SZ survey Planck seem to be exactly complimen-
tary. As seen before, the DES is expected to give only weak constraints on the parameter
σ8 due to a large scatter, but at the same time gives relatively strong constraints on both
Ωm as well as the dark energy parameter w. It turns out that Planck would have an almost
orthogonal degeneracy with DES, see figure 12, which could kill the degeneracy to give much
better joint constraints.

Finally, we consider the benefits of a joint WFXT and DES analysis. Again, we find
that degeneracy directions are almost orthogonal between the two surveys, see figure 13. The
WFXT survey gives somewhat extended posterior distribution for the dark energy parameter
w, beyond the 1-σ region. Using these surveys in combination would produce better 2-σ
constraints on the parameter w0.

10 Discussions

In our assumptions made to model future galaxy cluster surveys, we followed a simple recipe
for self-calibration using a mass follow-up. The parameter degeneracies and also the con-
straints certainly depend on the self-calibration methods used to improve upon the cosmo-
logical constraints. In another work [70], we examine the dependence of degeneracies for SZ
surveys like ACT/SPT in the Ωm-w0 and w0-wa plane with various choices of calibration
(see Fig. 2) such as distance measurements from supernovae type Ia, distances from joint
X-ray+SZ observations of clusters and mass follow-up’s with different errors on mass mea-
surements. In [41] we propose a different method of self-calibration, using a combination of
deep and wide SZ surveys to obtain significantly tighter cosmological constraints. Here we
use the fact that the deep and wide surveys have slightly different degeneracies, and we show
that it is possible to get competitive constraints without the need for a costly mass follow-up.

While estimating the parameter constraints ∆θi from the Fisher technique it is impor-
tant to check for numerical stability. Numerical instability may arise from - the numerical
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derivatives not having converged; or the Fisher matrix F being unstable under inversion.
The later occurs especially when the eigenvalues of F span a large range of values (This may
be avoided to some extent in practice by re-parametrizing θi so that ∆θi for different param-
eters are not too different in magnitude.). For a near-singular F , methods of singular value
decomposition should be used for the inversion. It is preferable to compute the numerical
derivative symmetrically about a given value, i.e. for small h, ∂f

∂θ ≅
f(θ+h/2)−f(θ+h/2)

h . At the
same time h should not be chosen to be too small, such that the changes in the numerator
∆f become comparable to the accuracy in computing the function f . This may give rise to
artificially inflated values in the parameter constraints.

In our analysis we find that the degeneracies of the parameter wa with other parameters
often shows different directions in Fisher and MCMC analysis, for e.g. see Fig. 2 and 4. In
our view the discrepancy may be explained in the following manner: The direction of the
Fisher ellipse is related to the ratio of the marginalized errors on the parameters. Since the
discrepancy between Fisher and MCMC (marginalized) constraints on the parameter wa are
very different, it should not be surprising that the degeneracy directions are also different.
For example, in the case of eROSITA Fisher, the errors from Fisher and MCMC differ by
factors of 2.2 and 4.2 for the parameters w0 and wa respectively. This causes the conflict
when comparing with the degeneracy as seen from MCMC.

Our MCMC analysis is based on the data collected from 6-7 independently run chains.
We use the convergence statistic R-1 = variance(chain mean)/mean(chain variance) [71],
computed for the second half of the set of seven independently evolved MCMC chains. For
the Metropolis sampling we rescale the proposal matrix further in order to get an acceptance
rate of 20-25 %. For a higher acceptance rate the chain keeps jumping around and is more
likely to land in regions of low probability, while for a low acceptance rate the chains mix
very slowly; in both the cases convergence is slow. For good convergence, R-1 . 0.03.
We find that our analysis requires between 300,000 - 10,000,000 points sampled during the
MCMC exploration of parameter space for the chains to be well converged. Sometimes, the
convergence of chains can be improved by annealing the chains, i.e. instead of sampling
from the distribution L, one uses L1/T . Here the parameter T plays the role similar to
temperature, in the sense of broadening the distribution for T > 1 and vice-versa. This
is especially helpful for exploring the tails of distributions, discovering other local minima,
and for getting more robust high-confidence error bars. The parameter likelihoods must be
adjusted accordingly (or cooled) during the analysis to get back the correct target pdf. We
find that a mild heating to T = 1.5 − 2 can boost the convergence significantly. However,
heating to higher T may cause the chains to approach the limits set by allowed values of
parameters, for e.g. 0 < Ωm < 1, which may cause an artificial cut-off in the distribution on
cooling back the chains. In addition, it is also useful to thin the chains by factors of 10-100
in order to reduce the auto-correlations in parameter values of the chains.

Finally, in our MCMC analysis we did not consider the effect of scatter in both dN
dz and

the follow-up data, as it is not possible to introduce scatter in the the simple Fisher analysis.
However, real data is always expected to contain some scatter and the best fit parameter
values are seen to move away from the fiducial values as scatter brings in some extra freedom
in the fitting of data.
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11 Conclusion

We have made a detailed study of the cosmological forecasts for upcoming cluster surveys
showing that these cluster surveys would be able to place strong constraints on cosmology
even with a simple mass follow-up of about a 100 clusters. In comparing forecasts from
Fisher estimates to those from MCMC analysis, we strongly advocate the use of full MCMC
likelihood in forecasting parameter constraints, especially on those related to dark energy.
We find that the Fisher estimates are reliable only for predicting the constraints on minimal
cosmological models. In many cases the results from the two methods are seen to diverge by
factors of 1.5 – 2. We show that the Fisher estimates can completely fail to correctly forecast
the constraints as well as the degeneracy directions for cosmological models with a dark energy
whose equation of state w(z) evolves with redshift. For some surveys we find an asymmetric
posterior distribution for the cosmological parameters. For example, the MCMC analysis
of the mock cluster data expected from the Planck survey shows a large offset compared
to the Fisher ellipses. In the case of optical cluster surveys we see that, a large unknown
scatter in the mass-proxy relation degrades the constraints on σ8. ∆σ8 further degrades if
the scatter is also allowed to be redshift dependent. This occurs due to the large degeneracy
between σ8 and scatter. The redshift dependent scatter is seen to weaken the constraints on
w0 by a factor of 2 or so. The presence of scatter, especially a redshift dependent one, is
seen to give a skewed distribution for the posterior likelihoods as well as non-Gaussian tails
in the marginalized single parameter pdf’s. Breaking the degeneracies between scatter and
σ8 would be particularly important for future cluster surveys in optical (where the scatter
is estimated to be large) in order to get competitive constraints with other probes. In the
end we show through some specific examples that even though the parameter constraints
obtained from the analysis of some of the cluster survey data are relatively weak to begin
with, a joint analysis of the datasets from two (or more) cluster datasets can be effectively
utilised to kill the near orthogonal parameter degeneracies occurring from these surveys to
obtain significantly tighter cosmological constraints.

In general we observe that the discrepancy between the two forecasting methods in-
creases with the introduction of additional parameters like wa and η1 for the redshift depen-
dence of dark energy and scatter respectively. Most of the forecasts on cluster cosmology
presented in the literature have used the Fisher matrix analysis, mainly due to its simplic-
ity. In our view, such forecasts, even though being agreeable with MCMC in many cases
need to be accepted with a fair bit of caution. This is especially important when additional
parameters relevant to cosmology or cluster physics are introduced in the analysis of data –
parameters for which we are ab initio unaware about the Gaussianity of the likelihood distri-
bution. Moreover, an accurate knowledge of parameter degeneracies, available from MCMC,
is very important for joint analysis of datasets from two or more surveys to obtain tighter
constraints on cosmological and cluster physics.
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