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ABSTRACT

Strong gravitational lenses with measured time delays between the multiple images and models of
the lens mass distribution allow a one-step determination of the time-delay distance, and thus a mea-
sure of cosmological parameters. We present a blind analysis of the gravitational lens RXJ1131−1231
incorporating (1) the newly measured time delays from COSMOGRAIL, the COSmological MOnitor-
ing of GRAvItational Lenses, (2) archival Hubble Space Telescope imaging of the lens system, (3) a new
velocity-dispersion measurement of the lens galaxy of 323±20 km s−1 based on Keck spectroscopy, and
(4) a characterization of the line-of-sight structures via observations of the lens’ environment and ray
tracing through the Millennium Simulation. Our blind analysis is designed to prevent experimenter
bias. The joint analysis of the data sets allows a time-delay distance measurement to 6% precision that
takes into account all known systematic uncertainties. In combination with the Wilkinson Microwave
Anisotropy Probe seven-year (WMAP7) data set in flat wCDM cosmology, our unblinded cosmological
constraints for RXJ1131−1231 are: H0 = 80.0+5.8

−5.7 km s−1 Mpc−1, Ωde = 0.79± 0.03, w = −1.25+0.17
−0.21.

We find the results to be statistically consistent with those from the analysis of the gravitational lens
B1608+656, permitting us to combine the inferences from these two lenses. The joint constraints from
the two lenses and WMAP7 are H0 = 75.2+4.4

−4.2 km s−1 Mpc−1, Ωde = 0.76+0.02
−0.03 and w = −1.14+0.17

−0.20 in

flat wCDM, and H0 = 73.1+2.4
−3.6 km s−1Mpc−1, ΩΛ = 0.75+0.01

−0.02 and Ωk = 0.003+0.005
−0.006 in open ΛCDM.

Time-delay lenses constrain especially tightly the Hubble constant H0 (5.7% and 4.0% respectively in
wCDM and open ΛCDM) and curvature of the universe. The overall information content is similar
to that of Baryon Acoustic Oscillation experiments. Thus, they complement well other cosmological
probes, and provide an independent check of unknown systematics. Our measurement of the Hubble
constant is completely independent of those based on the local distance ladder method, providing an
important consistency check of the standard cosmological model and of general relativity.
Subject headings: galaxies: individual (RXJ1131−1231) — gravitational lensing: strong — methods:

data analysis — distance scale

1. INTRODUCTION

In the past century precise astrophysical measurements
of the geometry and content of the universe (hereafter
cosmography) have led to some of the most remarkable
discoveries in all of physics. These include the expansion
and acceleration of the Universe, its large scale structure,
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and the existence of non-baryonic dark matter (see re-
view by Freedman & Turner 2003). These observations
form the empirical foundations of the standard cosmo-
logical model, which is based on general relativity and
the standard model of particle physics but requires addi-
tional non-standard features such as non-baryonic dark
matter and dark energy.
Even in the present era of so-called precision cosmogra-

phy, many profound questions about the Universe remain
unanswered. What is the nature of dark energy? What
are the properties of the dark matter particle? How many
families of relativistic particles are there? What are the
masses of the neutrinos? Is general relativity the correct
theory of gravity? Did the Universe undergo an infla-
tionary phase in its early stages?
From an empirical point of view, the way to address

these questions is to increase the accuracy and precision
of cosmographic experiments. For example, clues about
the nature of dark energy can be gathered by measur-
ing the expansion history of the Universe to very high
precision, and modeling the expansion as being due to
a dark energy component having an equation of state
parametrized by w that evolves with cosmic time (e.g.,
Frieman et al. 2008, and references therein). Likewise,
competing inflationary models can be tested by measur-
ing the curvature of the Universe to very high precision.

http://arxiv.org/abs/1208.6010v2
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Given the high stakes involved, it is essential to develop
multiple independent methods as a way to control for
known systematic uncertainties, uncover new ones, and
ultimately discover discrepancies that may reveal new
fundamental physics. For example, a proven inconsis-
tency between inferences at high redshift from the study
of the cosmic microwave background, with inferences at
lower redshift from galaxy redshift surveys would chal-
lenge the standard description of the evolution of the
Universe over this redshift interval, and possibly lead to
revisions of either our theory of gravity or of our assump-
tions about the nature of dark matter and dark energy.
In this paper we present new results from an obser-

vational program aimed at precision cosmography using
gravitational lens time delays. The idea of doing cos-
mography with time-delay lenses goes back fifty years
and it is a simple one (Refsdal 1964). When a source
is observed through a strong gravitational lens, multiple
images form at the extrema of the time-delay surface, ac-
cording to Fermat’s principle (e.g., Schneider et al. 1992;
Falco 2005; Schneider et al. 2006). If the source is vari-
able, the time delays between the images can be mea-
sured by careful monitoring of the image light curves
(see, e.g., Courbin 2003). With an accurate model
of the gravitational lens, the absolute time delays can
be used to convert angles on the sky into an abso-
lute distance, the so-called time-delay distance, which
can be compared with predictions from the cosmolog-
ical model given the lens and source redshifts (e.g.,
Blandford & Narayan 1992; Jackson 2007; Treu 2010,
and references therein). This distance is a combination
of three angular diameter distances, and so is primarily
sensitive to the Hubble constant (H0), with some higher
order dependence on the other cosmological parameters
(Coe & Moustakas 2009; Linder 2011). Gravitational
time delays are a one-step cosmological method to de-
termine the Hubble constant that is completely indepen-
dent of the local cosmic distance ladder (Freedman et al.
2001; Riess et al. 2011; Freedman et al. 2012; Reid et al.
2012). Knowledge of the Hubble constant is currently
the key limiting factor in measuring parameters like the
dark energy equation of state, curvature, or neutrino
mass, in combination with other probes like the cos-
mic microwave background (Freedman & Madore 2010;
Riess et al. 2011; Freedman et al. 2012; Weinberg et al.
2012; Suyu et al. 2012). These features make strong
gravitational time delays a very attractive probe of cos-
mology.
Like most high-precision measurements, however, a

good idea is only the starting point. A substantial
amount of effort and observational resources needs to be
invested to control the systematic errors. In the case of
gravitational time delays, this has required several ob-
servational and modeling breakthroughs. Accurate, long
duration, and well-sampled light curves are necessary to
obtain accurate time delays in the presence of microlens-
ing. Modern light curves have much higher photometric
precision, sampling and duration (Fassnacht et al. 2002;
Courbin et al. 2011) compared to the early pioneering
light curves (e.g., Lehar et al. 1992). High resolution im-
ages of extended features in the source, and stellar kine-
matics of the main deflector, provide hundreds to thou-
sands of data points to constrain the mass model of the
main deflector, thus reducing the degeneracy between the

distance and the gravitational potential of the lens that
affected previous models constrained only by the posi-
tions of the lensed quasars (e.g., Schechter et al. 1997).
Finally, cosmological numerical simulations can now be
used to characterize the distribution of mass along the
line of sight (LOS) (Hilbert et al. 2009), which was usu-
ally neglected in early studies that were not aiming for
precisions of a few percent. The advances in the use of
gravitational time delays as a cosmographic probe are
summarized in the analysis of the gravitational lens sys-
tem B1608+656 by Suyu et al. (2010). In that paper,
we demonstrated that, with sufficient ancillary data, a
single gravitational lens can yield a time-delay distance
measured to 5% precision, and the Hubble constant to
7% precision. In combination with the Wilkinson Mi-
crowave Anisotropy Probe 5-year (WMAP5) results, the
B1608+656 time-delay distance constrained w to 18%
precision and the curvature parameter to ±0.02 preci-
sion, comparable to contemporary Baryon Acoustic Os-
cillation experiments (Percival et al. 2007) and observa-
tions of the growth of massive galaxy clusters (on w con-
straints; Mantz et al. 2010).
Building on these recent developments in the analysis,

and on the state-of-the-art monitoring campaigns carried
out by the COSMOGRAIL (COSmological MOnitoring
of GRAvItational Lenses; e.g., Vuissoz et al. 2008;
Courbin et al. 2011; Tewes et al. 2012b) and
Kochanek et al. (2006) teams, it is now possible to
take gravitational time delay lens cosmography to the
next level and achieve precision comparable to current
measurements of the Hubble constant, flatness, w
and other cosmological parameters (Riess et al. 2011;
Freedman et al. 2012; Komatsu et al. 2011). To this end
we have recently initiated a program to obtain data and
model four additional gravitational lens systems with the
same quality as that of B1608+656. These four lenses
are selected from the COSMOGRAIL sample with the
smallest uncertainties in the delays between the images
of ≤6%. They cover various image configurations: (1)
four lensed images with three of them merging, a.k.a. the
“cusp” configuration, (2) four lensed images with two of
them merging, a.k.a. the “fold” configuration, (3) four
images that are nearly symmetric about the lens center,
a.k.a. the “cross” configuration, and (4) two images on
opposite sides of the lens galaxy. This sample will allow
us to probe the optimal lens configuration for time-delay
cosmography and also investigate potential selection
effects.
We present here the results for the first of these sys-

tems, RXJ1131−1231, based on new time delays mea-
sured by the COSMOGRAIL collaboration (Tewes et al.
2012b), new spectroscopic data from the Keck Tele-
scope, a new analysis of archival Hubble Space Telescope
(HST ) images, and a characterization of the LOS ef-
fects through numerical simulations, the observed galaxy
number counts in the field, and the modeled external
shear. We carry out a self-consistent modeling of all
the available data sets in a Bayesian framework, and in-
fer (1) a likelihood function for the time-delay distance
that can be combined with any other independent probe
of cosmology, and (2) in combination with our previ-
ous measurement of B1608+656 and the WMAP 7-year
(WMAP7) results, the posterior probability density func-
tion (PDF) for the Hubble constant, curvature density
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parameter and dark energy equation-of-state parameter
w.
Three additional lens systems are scheduled to be ob-

served with HST in cycle 20 (GO 12889; PI Suyu) and
will be published in forthcoming papers. An integral part
of this program is the use of blind analysis, to uncover
unknown systematic errors and to avoid unconscious ex-
perimenter bias. Only when each system’s analysis has
been judged to be complete and final by its authors, are
the implications for cosmology revealed. These results
are then published without any further modification. In
this way, we can assess whether the results are mutually
consistent within the estimated errors or whether un-
known systematics are adding significantly to the total
error budget.
This paper is organized as follows. After a brief re-

cap of the theory behind time-delay lens cosmography in
Section 2, we summarize our strategy in Section 3 and de-
scribe our observational data in Section 4. In Section 5,
we write out the probability theory used in the data
modeling and describe the procedure for carrying out the
blind analysis. The lensing and time-delay analysis are
presented in Section 6, and a description of our treatment
of the LOS mass structure in the RXJ1131−1231 field
is in Section 7. We present measurements of the time-
delay distance, and discuss the sources of uncertainties in
Section 8. We show our unblinded cosmological parame-
ter inferences in Section 9, which includes joint analysis
with our previous lens data set and with WMAP7. Fi-
nally, we conclude in Section 10. Throughout this paper,
each quoted parameter estimate is the median of the ap-
propriate one-dimensional marginalized posterior PDF,
with the quoted uncertainties showing, unless otherwise
stated, the 16th and 84th percentiles (that is, the bounds
of a 68% credible interval).

2. COSMOGRAPHY FROM GRAVITATIONAL LENS TIME
DELAYS

In this section, we give a brief overview of the use
of gravitational lens time delays to study cosmology.
More details on the subject can be found in, e.g.,
Schneider et al. (2006), Jackson (2007), Treu (2010) and
Suyu et al. (2010). Readers familiar with time-delay
lenses may wish to proceed directly to Section 3.
In a gravitational lens system, the time it takes the

light from the source to reach us depends on both the
path of the light ray and also the gravitational potential
of the lens. The excess time delay of an image at angular
position θ = (θ1, θ2) with corresponding source position
β = (β1, β2) relative to the case of no lensing is

t(θ,β) =
D∆t

c

[

(θ − β)2

2
− ψ(θ)

]

, (1)

where D∆t is the so-called time-delay distance, c is the
speed of light, and ψ(θ) is the lens potential. The time-
delay distance is a combination of the angular diameter
distance to the lens (or deflector) (Dd) at redshift zd,
to the source (Ds), and between the lens and the source
(Dds):

D∆t ≡ (1 + zd)
DdDs

Dds
. (2)

The lens potential ψ(θ) is related to the dimensionless

surface mass density of the lens, κ(θ), via

∇2ψ(θ) = 2κ(θ), (3)

where

κ(θ) =
Σ(Ddθ)

Σcrit
, (4)

Σ(Ddθ) is the surface mass density of the lens (the pro-
jection of the three dimensional density ρ along the LOS),
Σcrit is the critical surface mass density defined by

Σcrit =
c2

4πG

Ds

DdDds
, (5)

and G is the gravitational constant.
For lens systems whose sources vary in time (as do ac-

tive galactic nuclei, AGNs), one can monitor the bright-
nesses of the lensed images over time and hence measure
the time delay, ∆tij , between the images at positions θi

and θj :

∆tij ≡ t(θi,β)− t(θj ,β)

=
D∆t

c

[

(θi − β)2

2
− ψ(θi)−

(θj − β)2

2
+ ψ(θj)

]

.(6)

By using the image configuration and morphology, one
can model the mass distribution of the lens to determine
the lens potential ψ(θ) and the unlensed source position
β. Lens systems with time delays can therefore be used
to measure D∆t via Equation (6), and constrain cosmo-
logical models via the distance-redshift test (e.g., Refsdal
1964, 1966; Fadely et al. 2010; Suyu et al. 2010). Having
dimensions of distance, D∆t is inversely proportional to
H0, and being a combination of three angular diameter
distances, it depends weakly on the other cosmological
parameters as well.
The radial slope of the lens mass distribution and the

time-delay distance both have direct influence on the ob-
servables: for a given time delay, a galaxy with a steep
radial profile leads to a lower D∆t than that of a galaxy
with a shallow profile (e.g., Witt et al. 2000; Wucknitz
2002; Kochanek 2002). Therefore, to measure D∆t, it
is necessary to determine the radial slope of the lens
galaxy. Several authors have shown that the spatially
extended sources (such as the host galaxy of the AGN
in time-delay lenses) can be used to measure the ra-
dial slope at the image positions, where it matters (e.g.,
Dye & Warren 2005; Dye et al. 2008; Suyu et al. 2010;
Vegetti et al. 2010; Suyu 2012).
In addition to the mass distribution associated with

the lens galaxy, structures along the LOS also affect the
observed time delays. The external masses and voids
cause additional focussing and defocussing of the light
rays respectively, and therefore affect the time delays and
D∆t inferences. We follow Keeton (2003), Suyu et al.
(2010) and many others and suppose that the effect of
the LOS structures can be characterized by a single pa-
rameter, the external convergence κext, with positive val-
ues associated with overdense LOS and negative values
with underdense LOS. Except for galaxies very nearby
to the strong lens system, the κext contribution of the
LOS structures to the lens is effectively constant across
the scale of the lens system.
Given the measured delays between the images of a

strong lens, a mass model that does not account for the
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external convergence leads to an under/overprediction of
D∆t for over/underdense LOS. In particular, the true
D∆t is related to the modeled one by

D∆t =
Dmodel

∆t

1− κext
. (7)

Two practical approaches to overcome this degener-
acy are (1) to use the stellar kinematics of the lens
galaxy (e.g., Treu & Koopmans 2002; Koopmans & Treu
2003; Treu & Koopmans 2004; Barnabè et al. 2009;
Auger et al. 2010; Suyu et al. 2010; Sonnenfeld et al.
2012) to make an independent estimate of the lens mass
and (2) to study the environment of the lens system
(e.g., Keeton & Zabludoff 2004; Fassnacht et al. 2006;
Momcheva et al. 2006; Suyu et al. 2010; Wong et al.
2011; Fassnacht et al. 2011) in order to estimate κext di-
rectly. In Section 7, we combine both approaches to infer
κext.

3. ACCURATE AND PRECISE DISTANCE
MEASUREMENTS

We summarize our strategy for accurate and precise
cosmography with all known sources of systematic un-
certainty taken into account. We assemble the following
key ingredients for obtaining D∆t via Equation (6)

• observed time delays: dedicated and long-duration
monitoring, particularly from COSMOGRAIL,
yields delays with uncertainties of only a few per-
cent (Tewes et al. 2012a,b).

• lens mass model: deep and high-resolution imag-
ings of the lensed arcs, together with our flexible
modeling techniques that use as data the thousands
of surface brightness pixels of the lensed source, al-
low constraints of the potential difference between
the lensed images (in Equation (6)) at the few per-
cent level (e.g., Suyu et al. 2010).

• external convergence: the stellar velocity disper-
sion of the lens galaxy provides constraints on both
the lens mass distribution and external conver-
gence. We further calibrate observations of galaxy
counts in the fields of lenses (Fassnacht et al. 2011)
with ray tracing through numerical simulations of
large-scale structure (e.g., Hilbert et al. 2007) to
constrain directly and statistically κext at the ∼5%
level (Suyu et al. 2010).

With all these data sets for the time-delay lenses, we
can measure D∆t for each lens with ∼ 5 − 8% precision
(including all sources of known uncertainty). A com-
parison of a sample of lenses will allow us to test for
residual systematic effects, if they are present. With sys-
tematics under control, we can combine the individual
distance measurements to infer global properties of cos-
mology since the gravitational lenses are independent of
one another.

4. OBSERVATIONS OF RXJ1131−1231

The gravitational lens RXJ1131−1231 (J2000:

11h31m52s, −12
◦

31′59′′) was discovered by Sluse et al.
(2003) during polarimetric imaging of a sample of radio
quasars. The spectroscopic redshifts of the lens and the

A

B

C

D

G

S

1’’

N

E
Fig. 1.— HST ACS F814W image of the gravitational lens

RXJ1131−1231. The lensed AGN images of the spiral source
galaxy are marked by A, B, C and D, and the star forming re-
gions of the spiral galaxy form the spectacular lensed structures.
The primary lens galaxy and the satellite lens galaxy are indicated
by G and S, respectively.

quasar source are zd = 0.295 and zs = 0.658, respectively
(Sluse et al. 2003). We present the archival HST images
in Section 4.1, the time delays from COSMOGRAIL in
Section 4.2, the lens velocity dispersion in Section 4.3
and information on the lens environment in Section 4.4.

4.1. Archival HST imaging

HSTAdvanced Camera for Surveys (ACS) images were
obtained for RXJ1131−1231 in two filters, F814W and
F555W (ID 9744; PI Kochanek). In each filter, five expo-
sures were taken with a total exposure time of 1980s. We
show in Figure 1 the F814W image of the lens system.
The background quasar source is lensed into four images
denoted by A, B, C, and D, and the spectacular features
surrounding the quasar images are the lensed images of
the quasar host that is a spiral galaxy (Claeskens et al.
2006). The primary lens galaxy is marked by G, and
the object marked by S is most likely a satellite of G
(Claeskens et al. 2006). Henceforth, we refer to S as the
satellite.
We reduce the images using MultiDrizzle12 with

charge transfer inefficiency taken into account (e.g.,
Anderson & Bedin 2010; Massey et al. 2010). The im-
ages are drizzled to a final pixel scale of 0.′′05 pix−1 and
the uncertainty on the flux in each pixel is estimated from
the science and the weight image by adding in quadra-
ture the Poisson noise from the source and the back-
ground noise due to the sky and detector readout. We
note that in some of the exposures the central regions of
the two brightest AGN images are slightly saturated and
are masked during the drizzling process.
To model the lens system using the spatially extended

Einstein ring of the host galaxy, we focus on the F814W

12 MultiDrizzle is a product of the Space Telescope Science
Institute, which is operated by AURA for NASA.
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image since the contrast between the ring and the AGN
is more favorable in F814W. In particular, the bright
AGNs in F555W have diffraction spikes extending into
the Einstein ring that are difficult to model and are thus
prone to systematics effects. The detailed modeling of
the F814W image is in Section 6.

4.2. Time delays

We use the new time-delay measurements of
RXJ1131−1231 presented in Tewes et al. (2012b). The
COSMOGRAIL and Kochanek et al. teams have moni-
tored RXJ1131−1231 since December 2003 using several
optical 1–1.5m telescopes. Resolved light curves of the
four AGN images are extracted from these observations
by “deconvolution photometry”, following Magain et al.
(1998). These curves presently span 9 years with over
700 epochs, and display a typical sampling of 2–3 days
within the observation seasons. The time delays are mea-
sured through several new and independent techniques
(detailed in Tewes et al. 2012a), all specifically developed
to handle microlensing variability due to stars in the lens
galaxy. All these techniques yield consistent results, at-
tributed to both the long light curves and the comprehen-
sive uncertainty estimation. For our analysis we select
the time-delay measurements from the regression differ-
ence technique as recommended by Tewes et al. (2012b)
who showed that this technique yielded the smallest bias
and variance in their error analysis when applied to syn-
thetic curves mimicking the microlensing variability in
RXJ1131−1231. In particular we use the time delays
relative to image B, namely: ∆tAB = 0.7 ± 1.4 days,
∆tCB = −0.4 ± 2.0 days, and ∆tDB = 91.4 ± 1.5 days,
where the uncertainties are conservative and direct sums
of the estimated statistical and systematic contributions
from Tewes et al. (2012b).

4.3. Lens velocity dispersion

We observed RXJ1131−1231 with the Low-Resolution
Imaging Spectrometer (LRIS; Oke et al. 1995) on Keck 1
on 4–5 January 2011. The data were obtained from the
red side of the spectrograph using the 600/7500 grat-
ing with the D500 dichroic in place. A slit mask was
employed to obtain simultaneously spectra for galaxies
near the lens system. The night was clear with a nomi-
nal seeing of 0.′′7, and we use 4 exposures of 1200s for a
total exposure time of 4800s.
We follow Auger et al. (2008) to reduce each exposure

by performing a single resampling of the spectra onto a
constant wavelength grid. We use the same wavelength
grid for all exposures to avoid resampling the spectra
when combining them. An output pixel scale of 0.8 Å
pix−1 was used to match the dispersion of the 600/7500
grating. Individual spectra are extracted from an aper-
ture 0.′′81 wide (corresponding to 4 pixels on the LRIS red
side) centered on the lens galaxy. The size of the aperture
was chosen to avoid contamination from the spectrum of
the lensed AGNs. We combine the extracted spectra
by clipping the extreme points at each wavelength and
taking the variance-weighted sum of the remaining data
points. We repeat the same extraction and coaddition
scheme for a sky aperture to determine the resolution of
the output co-added spectrum: R = 2300, corresponding
to σobs = 56 km s−1. The typical signal-to-noise ratio per
pixel of the final spectrum is ∼20.
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Fig. 2.— Top panel: The LRIS spectrum of RXJ1131−1231
(black line) with a model generated from 9 INDO-US templates
and a 5th order continuum overplotted (red line, with green show-
ing the continuum). The gray shaded areas were not included in
the fit. Bottom panel: the residuals of the model fit. From the
spectrum and model, we measure a central velocity dispersion of
σ = 323 ± 20 km s−1, including systematic uncertainties.

The stellar velocity dispersion is determined in the
same manner as Suyu et al. (2010). Briefly, we use a
suite of stellar templates of K and G giants, augmented
with one A and one F star template, from the INDO-US
library (Valdes et al. 2004) to fit directly to the observed
spectrum, after convolving each template with a kernel to
bring them to the same spectral resolution as the data.
First and second velocity moments are proposed by a
Markov chain Monte Carlo (MCMC) simulation and the
templates are shifted and broadened to these moments.
We then fit the model templates to the data in a lin-
ear least squares sense, including a fifth order polyno-
mial to account for any emission from the background
source (e.g., Suyu et al. 2010). The observed and mod-
eled spectra are shown in Figure 2. Our estimate for the
central line-of-sight velocity dispersion from this infer-
ence is σ = 323± 20 km s−1, including systematics from
changing the polynomial order and choosing different fit-
ting regions.

4.4. Galaxy counts in the field

Fassnacht et al. (2011) counted the number of galax-
ies with F814W magnitudes between 18.5 and 24.5 that
lie within 45′′ from the lens system. Compared to the
aperture counts in random lines of sight in pure-parallel
fields13, RXJ1131−1231 has 1.4 times the average num-
ber of galaxy counts (Fassnacht et al. 2011). We use this
relative galaxy count in Section 7.2 to estimate statisti-
cally the external convergence.

5. PROBABILITY THEORY FOR COMBINING MULTIPLE
DATA SETS

We now present the mathematical framework for the
inference of cosmological parameters from the combina-
tion of the data sets described in the previous section.
In order to test for the presence of any unknown sys-
tematic uncertainty, we describe a procedure for blind-
ing the results during the analysis phase in Section 5.2.

13 The “pure-parallel fields” consist of 20 points in the ACS
F814W filter selected from a pure-parallel program that searched
for emission line galaxies in random fields (GO 9468; PI Yan).
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This procedure is designed to ensure against unconscious
experimenter bias towards “acceptable” results.

5.1. Joint analysis

The analysis performed here is similar to the one pre-
sented in Suyu et al. (2010), with a few improvements.
We briefly describe the procedure below.
The data sets are denoted by dACS for the ACS im-

age (packaged into a vector of 1602 surface brightness
values), ∆t for the delays between the images, σ for
the lens velocity dispersion, and denv for properties of
the lens environment such as the relative galaxy count
nr = ngal/〈ngal〉. We are interested in obtaining the pos-
terior PDF of the model parameters ξ given all available
data,

P (ξ|dACS,∆t, σ,denv) ∝ P (dACS,∆t, σ,denv|ξ)P (ξ)
(8)

where the proportionality follows from Bayes’ Theorem.
The first term on the right-hand side is known as the
likelihood, and the second is the prior PDF. Since the
data sets are independent, the likelihood is separable,

P (dACS,∆t, σ,denv|ξ)=P (dACS|ξ)P (∆t|ξ)
P (σ|ξ)P (denv|ξ). (9)

Some of the parameters influence all the predicted
data sets, while other parameters affect the fitting
of particular data sets only. Specifically, ξ =
{π, γ′, θE, γext,η, rani, κext}, where π are the cosmologi-
cal parameters (e.g., H0, w, Ωde), γ

′ is the radial profile

slope of the main lens galaxy (where ρ ∝ r−γ′

), θE is the
Einstein radius of the main lens (that characterizes the
normalization of the lens mass profile), γext is the exter-
nal shear strength at the lens, η denotes the remaining
lens model parameters for the ACS data,14 rani is the
anisotropy radius for the stellar orbits of the lens galaxy,
and κext is the external convergence. For the lensing and
time delays, we subsume the cosmological dependence
into the time-delay distance D∆t = D∆t(π). Keeping
only the direct dependencies in each of the likelihoods,
we obtain

P (ξ|dACS,∆t, σ,denv) ∝ P (dACS,∆t|D∆t, γ
′, θE, γext,

η, κext)P (σ|π, γ′, θE, rani, κext)P (denv|κext, γext)
P (π)P (γ′)P (θE)P (γext)P (η)P (rani)P (κext). (10)

For cosmography, we are interested in the cosmological
parameters π after marginalizing over all other parame-
ters

P (π|dACS,∆t, σ,denv) =
∫

dγ′ dθE dγext dη drani
dκext P (ξ|dACS,∆t, σ,denv) (11)

We describe the forms of the partially marginalized lens-
ing and time-delay likelihood in Section 6, the kinemat-
ics likelihood in Section 7.1 and the external convergence
likelihood in Section 7.2. For marginalizing the param-
eters that are common to the data sets, we importance
sample the priors following Lewis & Bridle (2002) and
Suyu et al. (2010) (a procedure sometimes referred to as
“simple Monte Carlo”).

14 excluding the source surface brightness parameters s that can
be marginalized analytically

5.2. Blind analysis

We blind the analysis to avoid experimenter bias, al-
lowing us to test for the presence of residual systemat-
ics in our analysis technique by comparing the final un-
blinded results from RXJ1131−1231 with the constraints
from the previous analysis of B1608+656. As described
by Conley et al. (2006), the blinding is not meant to hide
all information from the experimenter; rather, we blind
only the parameters that concern the cosmological infer-
ence.
We define two analysis phases. During the initial

“blind” phase, we compute likelihoods and priors, and
sample the posterior PDF, as given above, taking care
to only make parameter-space plots using one plotting
code. This piece of software adds offsets to the cos-
mological parameters (D∆t and the components of π)
before displaying the PDFs, such that we always see the
marginalized distributions with centroids at exactly zero.
We can therefore still see, and measure, the precision of
the blinded parameters, and visualize the correlations be-
tween these parameters, but without being able to see if
we have “the right answer” based on our expectations.
Both the parameter uncertainties and degeneracies serve
as useful checks during this blind phase: the plotting
routine can overlay the constraints from different models
to investigate sources of statistical and systematic uncer-
tainties.
During the blind phase we performed a number of tests

on the modeling to quantify the sources of uncertain-
ties, and to check the robustness of the results. These
are described in Sections 4–8. At the end of the tests,
the collaboration convened a telecon to unblind the re-
sults. The authors SHS, MWA, SH, PJM, MT, TT, CDF,
LVEK, DS, and FC discussed in detail the analysis and
the blinded results, over a summary website. After all
agreeing that the blind analysis was complete, and that
we would publish without modification the results once
unblinded, a script was run to update automatically the
same website with plots and tables containing cosmolog-
ical constraints no longer offset to zero. These are the
results presented in Sections 8 and 9.1.

6. LENS MODELING

In this section, we simultaneously model the ACS im-
ages and the time delays to measure the lens model pa-
rameters, particularly D∆t, γ

′, θE, and γext.

6.1. A comprehensive mass and light model

The ACS image in Figure 1 shows the light from the
source as lensed by the galaxies G and S. To predict the
surface brightness of the pixels on the image, we need
a model for the lens mass distribution (that deflects the
light of the source), the lens light distribution, the source
light distribution and the point spread function (PSF) of
the telescope.

6.1.1. Lens mass profiles

We use elliptically-symmetric distributions with
power-law profiles to model the dimensionless surface
mass density of the lens galaxies,

κpl(θ1, θ2) =
3− γ′

2

(

θE
√

qθ21 + θ22/q

)γ′
−1

, (12)



Cosmological constraints from time-delay lenses 7

where γ′ is the radial power-law slope (with γ′ = 2
corresponding to isothermal), θE is the Einstein radius,
and q is the axis ratio of the elliptical isodensity con-
tours. Various studies have shown that the power-
law profile provides accurate descriptions of lens galax-
ies (e.g., Gavazzi et al. 2007; Humphrey & Buote 2010;
Koopmans et al. 2009; Auger et al. 2010; Barnabè et al.
2011). In particular, Suyu et al. (2009) found that
the grid-based lens potential corrections from power-law
models were only ∼ 2% for B1608+656 with interact-
ing lens galaxies, thus validating the use of the sim-
ple power-law models even for complicated lenses. We
note that the surface brightness of the main deflector
in RXJ1131−1231 shows no signs of interaction (Section
6.1.2) and it is therefore much simpler than the case of
B1608+656, further justifying the use of a simple power-
law model to describe the mass distribution within the
multiple images.
The Einstein radius in Equation (12) corresponds to

the geometric radius of the critical curve,15 and the mass
enclosed within the isodensity contour with the geometric
Einstein radius is

ME = πθ2ED
2
dΣcrit (13)

that depends only on θE, a robust quantity in lensing.
The deflection angle and lens potential of the power-

law profile are computed following Barkana (1998). For
each lens galaxy, the distribution is suitably translated
to the position of the lens galaxy and rotated by the
position angle φ of the lens galaxy (where φ is a free
parameter, measured counterclockwise from θ2). Since
the satellite galaxy is small in extent, we approximate
its mass distribution as a spherical isothermal mass dis-
tribution with γ′S = 2 and qS = 1 in Equation (12). The
(very small) impact of the satellite on cosmographic in-
ferences is discussed in Section 8.5.
Our coordinate system is defined such that θ1 and θ2

point to the west and north, respectively. The origin of
the coordinates is at the bottom-left corner of the ACS
image containing 160×160 pixels.
In addition to the lens galaxies, we include a constant

external shear of the following form in polar coordinates
θ and ϕ:

ψext(θ, ϕ) =
1

2
γextθ

2 cos 2(ϕ− φext), (14)

where γext is the shear strength and φext is the shear
angle. The shear position angle of φext = 0◦ corresponds
to a shearing along the θ1 direction whereas φext = 90◦

corresponds to a shearing in the θ2 direction.
We do not include the external convergence κext at this

stage, since this parameter is completely degenerate with
D∆t in the ACS and time-delay modeling. Rather, we
useDmodel

∆t ≡ (1−κext)D∆t for the lensing and time-delay
data, and information on κext will come from kinematics
and lens environment in Section 7 to allow us to infer
D∆t.

6.1.2. Lens light

15 The critical curve of κpl in Equation (12) is symmetric about

θ1 and θ2, and the geometric radius is
√

θlongθshort, where θlong
(θshort) is the distance of the furthest (closest) point on the critical
curve from the origin.

For the light distribution of the lens galaxies, we use
elliptical Sérsic profiles,

I(θ1, θ2) = A exp



−k





(

√

θ21 + θ22/q
2
L

Reff

)1/nsersic

− 1







 ,

(15)
where A is the amplitude, k is a constant such that Reff

is the effective (half-light) radius, qL is the axis ratio, and
nsersic is the Sérsic index (Sérsic 1968). The distribution
is suitably rotated by positions angle φL and translated
to the galaxy positions (θ1,L, θ2,L). We find that a single
Sérsic profile for the primary lens galaxy leads to signif-
icant residuals, as was found by Claeskens et al. (2006).
Instead, we use two Sérsic profiles with common cen-
troids and position angles to describe the lens galaxy G.
For the small satellite galaxy that illuminates only a few
pixels, we use a circular Sérsic profile with nsersic = 1.
This simplifying assumption has no effect on the mass
modeling since the light of the satellite is central and
compact, and thus does not affect the light or mass of
the other components.

6.1.3. Source light

To describe the surface brightness distribution of the
lensed source, we follow Suyu (2012) and use a hybrid
model comprised of (1) point images for the lensed AGNs
on the image plane, and (2) a regular grid of source sur-
face brightness pixels for the spatially extended AGN
host galaxy. Modeling the AGN point images inde-
pendently accommodates variations in the fluxes arising
from microlensing, time delays and substructures. Each
AGN image therefore has three parameters: a position in
θ1 and θ2 and an amplitude. We collectively denote these
AGN parameters as ν. The extended source on a grid
is modeled following Suyu et al. (2006), with curvature
regularization.

6.1.4. PSF

A PSF is needed to model the light of the lens galax-
ies and the lensed source. We use stars in the field to
approximate the PSF, which has been shown to work
sufficiently well in modeling galaxy-scale strong lenses
(e.g., Marshall et al. 2007; Suyu et al. 2009; Suyu 2012).
In particular, we adopt the star that is located at 2.′4
northwest of the lens system as the model of the PSF.

6.1.5. Image pixel uncertainties

The comprehensive mass and light model described
above captures the large-scale features of the data very
well. However, small-scale features in the image might
cause misfits which, if not taken into account, may lead
to an underestimation of parameter uncertainties and
biased parameter estimates. Suyu (2012) found that
by boosting the pixel uncertainty of the image surface
brightness, the lens model parameters can be faithfully
recovered with realistic estimation of uncertainties.
Following this study, we introduce two terms to de-

scribe the variance of the intensity at pixel i of the ACS
image dACS,

σ2
pix,i = σ2

bkgd + fdACS,i, (16)

where σbkgd is the background uncertainty, f is a scal-
ing factor, and dACS,i is the image intensity. The second
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term, fdACS,i, corresponds to a scaled version of Poisson
noise for the astrophysical sources. We measure σbkgd
from a blank region in the image without astrophysical
sources. We set the value of f such that the reduced
χ2 is ∼1 for the lensed image reconstruction (see, e.g.,
Suyu et al. 2006, for details on the computation of the
reduced χ2 that takes into account the regularization on
the source pixels). Equation (16) by design downweights
regions of high intensities where the residuals are typ-
ically most prominent. This allows the lens model to
fit to the overall structure of the data instead of reduc-
ing high residuals at a few locations at the expense of
poorer fits to the large-scale lensing features. The resid-
uals near the AGN image positions are particularly high
due to the high intensities and slight saturations in some
of the images. Therefore, we set the uncertainty on the
inner pixels of the AGN images to a very large number
that effectively leads to these pixels being discarded. We
discard only a small region in fitting the AGN light, and
increase the region to minimize AGN residuals when us-
ing the extended source features to constrain the lens
mass parameters.

6.2. Likelihoods

The model-predicted image pixel surface brightness
can be written as a vector

dP

ACS
= Bg + BLs+

NAGN
∑

i=1

ai(ν), (17)

where B is a blurring operator that accounts for the PSF
convolution, g is a vector of image pixel intensities of the
Sérsic profiles for the lens galaxy light, L is the lensing
operator that maps source intensity to the image plane
based on the deflection angles computed from the param-
eters of the lens mass distributions (such as γ′, θE, γext),
s is a vector of source-plane pixel intensities, NAGN(= 4)
is the number of AGN images, and ai(ν) is the vector of
image pixel intensities for PSF-convolved image i of the
AGN.
The likelihood of the ACS data with Nd image pixels

is

P (dACS|γ′, θE, γext,η)

=

∫

dsP (dACS|γ′, θE, γext,η, s)P (s), (18)

where

P (dACS|γ′, θE, γext,η, s) =
1

Zd
exp

Nd
∑

i=1

[

−
(

dACS,i − dPACS,i

)2

2σ2
pix,i

]

·
NAGN
∏

i

1√
2πσi

exp

[

−|θi − θP
i |2

2σ2
i

]

. (19)

In the first term of this likelihood function, Zd is just the
normalization

Zd = (2π)Nd/2
Nd
∏

i=1

σpix,i, (20)

dACS,i is the surface brightness of pixel i,
dPACS,i(γ

′, θE, γext,η, s) is the corresponding predicted

value given by Equation (17) (recall that η are the
remaining lens model parameters to which the ACS data
are sensitive), and σ2

pix,i is the pixel uncertainty given

by Equation (16). The second term in the likelihood
accounts for the positions of the AGN images, modeled
as independent points (i.e. non-pixelated sources) in
the image. In this term, θi is the measured image
position (listed in Table 1), σi is the estimated posi-

tional uncertainty of 0.005′′, and θP
i (γ

′, θE, γext,η) is
the predicted image position given the lens parameters.
(Notice that this second term does not contribute to
the marginalization integral of Equation (18).) The
form of P (s) for the source intensity pixels and the
resulting analytic expression for the marginalization in
Equation (18) are detailed in Suyu et al. (2006).
The likelihood for the time delays is given by

P (∆t|Dmodel
∆t , γ′, θE, γext,η) =

∏

i

(

1√
2πσ∆t,i

exp

[

(∆ti −∆tPi )
2

2σ2
∆t,i

])

, (21)

where ∆ti is the measured time delay with uncer-
tainty σ∆t,i for image pair i=AB, CB, or DB, and
∆tPi (D

model
∆t , γ′, θE, γext,η) is the corresponding pre-

dicted time delay computed via Equation (6) given the
lens mass model parameters.
The joint likelihood for the ACS and time

delay data that appears in Equation (10),
P (dACS,∆t|D∆t, γ

′, θE, γext,η, κext), is just the
product of the likelihoods in Equations (18) and (21).
We assign uniform priors over reasonable linear ranges

for all the lens parameters: Dmodel
∆t , γ′, θE, γext and η. In

particular, for the first four lens parameters, the linear
ranges for the priors are Dmodel

∆t ∈ [0, 10000]Mpc, γ′ ∈
[1.5, 2.5], θE ∈ [0, 5]′′, and γext ∈ [0, 1].

6.3. MCMC sampling

We model the ACS image and time delays with Glee,
a software package developed by Suyu & Halkola (2010)
based on Suyu et al. (2006) and Halkola et al. (2008).
The ACS image has 160×160 surface brightness pixels
as constraints. There are a total of 39 lens model pa-
rameters that are summarized in Table 1. This is the
most comprehensive lens model of RXJ1131−1231 to
date. The list of parameters excludes the source sur-
face brightness pixel parameters, s, which are analyti-
cally marginalized in computing the likelihood (see, e.g.,
Suyu & Halkola 2010, for details). With such a large pa-
rameter space, we sequentially sample individual parts of
the parameter space first to get good starting positions
near the peak of the PDF before sampling the full pa-
rameter space. The aim is to obtain a robust PDF for
the key lens parameters for cosmography: Dmodel

∆t , γ′, θE,
and γext.
For an initial model of the lens light, we create an an-

nular mask for the lensed arc and use the image pixels
outside the annular mask to optimize the lens Sérsic pro-
files. The parameters for the light of the satellite is fixed
to these optimized values for the remainder of the analy-
sis since the satellite light has negligible effect on Dmodel

∆t
and other lens parameters. Furthermore, we fix the cen-
troid of the satellite’s mass distribution to its observed
light centroid. We obtain an initial mass model for the
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Fig. 3.— Posterior of the key lens model parameters for the lensing and time-delay data. Each color represents a particular source
resolution that is the dominant systematic uncertainty in the modeling of the ACS data. The solid curves are a Gaussian fit to the PDF
by weighting each source resolution chain equally. The contours/shades mark the 68.3%, 95.4%, 99.7% credible regions.

lenses using the image positions of the multiple knots in
the source that are identified following Brewer & Lewis
(2008). Specifically, we optimize for the parameters that
minimize the separation between the identified image po-
sitions and the predicted image positions from the mass
model. We then optimize the AGN light together with
the light of the extended source while keeping the lens
light and lens mass model fixed. The AGN light parame-
ters are then held fixed to these optimized values. Having
obtained initial values for all the lens model parameters
to describe the ACS data, we then proceed to sample the
lens parameters listed in Table 1 using a MCMC method.
In particular, we simultaneously vary the following pa-
rameters: modeled time-delay distance, all mass param-
eters of G, the Einstein radius of S, external shear, the
extended source intensity distribution, and the lens light
profile of G. Glee employs several of the methods of
Dunkley et al. (2005) for efficient MCMC sampling and
for assessing chain convergence.

6.4. Constraints on the lens model parameters

We explore various parameter values for the AGN light
and the satellite Sérsic light, try different PSF mod-
els, and consider different masks for the lensed arcs and
the AGNs (which are fixed in the MCMC sampling).
These variations have negligible effect on the sampling

of the other lens parameters. The only attribute that
changes the PDF of the parameters significantly is the
number of source pixels, or equivalently, the source pixel
size. We try a series of source resolution from coarse
to fine, and the parameter constraints stabilize start-
ing at ∼50×50 source pixels, corresponding to source
pixel sizes of ∼0.′′05. Nonetheless, the parameter con-
straints for different source resolutions are shifted sig-
nificantly from one another. Different source pixeliza-
tions minimize the image residuals in different manners,
and predict different relative thickness of the arcs that
provides information on the lens profile slope γ′ (e.g.,
Suyu 2012). To quantify this systematic uncertainty, we
consider the following set of source resolutions: 50×50,
52×52, 54×54, 56×56, 58×58, 60×60, and 64×64. The
likelihood P (dACS,∆t|Dmodel

∆t , γ′, θE, γext), which is pro-
portional to the marginalized posterior of these parame-
ters P (Dmodel

∆t , γ′, θE, γext|dACS,∆t) since the priors are
uniform, is plotted in Figure 3 for each of these source
resolutions. The scatter in constraints among the vari-
ous source resolutions allows us to quantify the system-
atic uncertainty. In particular, we weight each choice of
the source resolution equally, and combine the Markov
chains together. In Table 1, we list the marginalized pa-
rameters from the combined samples.
We show the most probable image and source recon-
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Fig. 4.— ACS image reconstruction of the most probable model with a source grid of 64×64 pixels. Top left: observed ACS F814W
image. Top middle: predicted lensed image of the background AGN host galaxy. Top right: predicted light of the lensed AGNs and the
lens galaxies. Bottom left: predicted image from all components, which is a sum of the top-middle and top-right panels. Bottom middle:
image residual, normalized by the estimated 1σ uncertainty of each pixel. Bottom right: the reconstructed host galaxy of the AGN in the
source plane. Our lens model reproduces the global features of the data.

struction for the 64×64 resolution in Figure 4. Only the
image intensity pixels within the annular mask shown in
the top-middle panel are used to reconstruct the source
that is shown in the bottom-right panel. A comparison
of the top-left and bottom-left panels shows that our lens
model reproduces the global features of the ACS image.
The time delays are also reproduced by the model: for
the various source resolutions, the χ2 (not reduced) is ∼2
for the three delays relative to image B. There are some
small residual features in the bottom-middle panel of Fig-
ure 4, and these cause the shifts in the parameter con-
straints seen in Figure 3 for different source pixel sizes.
The reconstructed host galaxy of the AGN in the bottom-
right panel shows a compact central peak, which is prob-
ably the bulge of the spiral source galaxy, embedded in
a more diffuse patch of light (the disk) with knots/spiral
features. The bulge and disk have half-light radii of ∼0.′′1
and ∼0.′′8, respectively. Given the source redshift, this
implies a bulge size of ∼0.7 kpc and a disk size of ∼5 kpc,
which are typical for disk galaxies at these redshifts (e.g.,
Barden et al. 2005; MacArthur et al. 2008) and are com-
parable to the largest sources in the lens systems of the
Sloan Lens ACS survey (Newton et al. 2011).

6.5. Understanding the external shear

The inferred external shear is γext = 0.089 ± 0.006
(marginalizing over all other model parameters) from
modeling the ACS image and the time delays. The ex-
ternal shear may provide information on the amount of
external convergence, since they originate from the same

external structures. However, the high γext found in our
model could potentially be attributed to deviations of
the primary lens from its elliptical power-law descrip-
tion; if this were the case, some of γext would in fact
be internal shear. To gauge whether the modeled shear
is truly external, we also considered a model that in-
cludes a constant external convergence gradient. This
introduces two additional parameters: κ′ (gradient) and
φκ (the position angle of the gradient, where φκ = 0
corresponds to positive κ gradient along the positive θ2
direction, i.e., north). The ACS data allow us to con-
strain κ′ = (5.1+0.4

−0.3) × 10−3 arcsec−1 and φκ = 87 ± 2◦.
The convergence gradient is aligned along the same di-
rection as the external shear within 5◦ and has a sensible
magnitude, suggesting that the shear is in fact truly ex-
ternal, and is likely due to mass structures to the east of
the lens.
To investigate the origin of the external shear, we

construct a wide-field R-band image from the COSMO-
GRAIL monitoring images that is shown in Figure 5.
The lens system is indicated by the box, and the galax-
ies (stars) in the field are marked by solid (dashed)
circles, identified using SExtractor (Bertin & Arnouts
1996). Overlaid on the image within the dashed box are
the X-ray contours from Chartas et al. (2009), showing
the presence of a galaxy cluster that is located at 158′′

northeast of the lens (Morgan et al. 2006; Chartas et al.
2009). The cluster is at z = 0.1 based on the red-
shift measurements of two of the red-sequence clus-
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Fig. 5.— 11.5′×10.5′ R-band image obtained from stacking 60 hours of the best-quality images in the COSMOGRAIL monitoring. The
lens system is marked by the box near the center. Galaxies (stars) in the field are indicated by solid (dashed) circles. The radius of the
solid circle is proportional to the flux of the galaxy. X-ray map from Chartas et al. (2009) are overlaid on the image within the dashed
box. The concentrations of mass structures to the east of the lens are consistent with the modeled external shear and convergence gradient
directions.

ter galaxies from the Las Campanas Redshift Survey
(Shectman et al. 1996; Williams et al. 2006). Using the
measured 2−10keV luminosity of 1.7× 1042 ergs s−1, X-
ray temperature of 1.2 keV and core radius of a β model
of 4.2′′ for the cluster (Chartas et al. 2009), we estimate
that the contribution of the cluster to the external shear
at the lens is only a few percent. Nonetheless, large-scale
structures associated with the cluster and the plethora
of mass structures to the east of the lens could gener-
ate additional shear. The fact that our modeled external
shear and convergence gradients both point toward mass
structures in the east that are visible in Figure 5 is a
further indication that the modeled shear is indeed ex-
ternal. We will use this external shear in Section 7.2 to
constrain the external convergence.

6.6. Propagating the lens model forward

To facilitate the sampling and marginalization of the
posterior of the cosmological parameters in Equations

(10) and (11), we approximate the overall likelihood of
dACS and∆t from the multiple source resolutions in Fig-
ure 3 with a multivariate Gaussian distribution for the
interesting parameters γ′, θE, γext and D

model
∆t , marginal-

izing over the nuisance parameters η. This approxima-
tion allows the value of P (dACS,∆t|γ′, θE, γext, Dmodel

∆t )
to be computed at any position in this 4-dimensional pa-
rameter space. Note that in contrast to the other param-
eters, the Einstein radius of the primary lens galaxy, θE,
is well determined, with minimal degeneracy with other
parameters. This robust quantity is used in the dynam-
ics modeling of the lens galaxy. The approximated Gaus-
sian likelihood provides an easy way to combine with the
stellar kinematics and lens environment information for
measuring D∆t.

7. CONSTRAINING THE EXTERNAL CONVERGENCE κext

In this section, we fold in additional information on
the lens galaxy stellar kinematics and density environ-
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TABLE 1
Lens model parameters

Marginalized
Description Parameter or optimized

constraints

Time-delay distance (Mpc) Dmodel
∆t

1883+89
−85

Lens mass distribution

Centroid of G in θ1 (arcsec) θ1,G 4.420+0.003
−0.002

Centroid of G in θ2 (arcsec) θ2,G 3.932+0.004
−0.003

Axis ratio of G qG 0.763+0.005
−0.008

Position angle of G (◦) φG 115.8+0.5
−0.5

Einstein radius of G (arcsec) θE 1.64+0.01
−0.02

Radial slope of G γ′ 1.95+0.05
−0.04

Centroid of S in θ1 (arcsec) θ1,S 4.323
Centroid of S in θ2 (arcsec) θ2,S 4.546
Einstein radius of S (arcsec) θE,S 0.20+0.01

−0.01

External shear strength γext 0.089+0.006
−0.006

External shear angle (◦) φext 92+1
−2

Lens light as Sérsic profiles

Centroid of G in θ1 (arcsec) θ1,GL 4.411+0.001
−0.001

Centroid of G in θ2 (arcsec) θ2,GL 4.011+0.001
+0.001

Position angle of G (◦) φGL 121.6+0.5
−0.5

Axis ratio of G1 qGL1 0.878+0.004
−0.003

Amplitude of G1 AGL1 0.091+0.001
−0.001

Effective radius of G1 (arcsec) Reff,GL1 2.49+0.01
−0.01

Index of G1 nsersic,GL1 0.93+0.03
−0.03

Axis ratio of G2 qGL2 0.849+0.004
−0.004

Amplitude of G2 AGL2 0.89+0.03
−0.03

Effective radius of G2 (arcsec) Reff,GL2 0.362+0.009
−0.009

Index of G2 nsersic,GL2 1.59+0.03
−0.03

Centroid of S in θ1 (arcsec) θ1,SL 4.323
Centroid of S in θ2 (arcsec) θ2,SL 4.546
Axis ratio of S qSL ≡ 1
Amplitude of S ASL 34.11
Effective radius of S (arcsec) Reff,SL 0.01
Index of S nsersic,SL ≡ 1

Lensed AGN light

Position of image A in θ1 (arcsec) θ1,A 2.383
Position of image A in θ2 (arcsec) θ2,A 3.412
Amplitude of image A aA 1466
Position of image B in θ1 (arcsec) θ1,B 2.344
Position of image B in θ2 (arcsec) θ2,B 4.594
Amplitude of image B aB 1220
Position of image C in θ1 (arcsec) θ1,C 2.960
Position of image C in θ2 (arcsec) θ2,C 2.300
Amplitude of image C aC 502
Position of image D in θ1 (arcsec) θ1,D 5.494
Position of image D in θ2 (arcsec) θ2,D 4.288
Amplitude of image D aD 129

Notes. There are a total of 39 parameters that are optimized or
sampled. Parameters that are optimized are held fixed in the sam-
pling of the full parameter space and have no uncertainties tabu-
lated. Changes in these optimized parameters have little effect on
the key parameters for cosmology (such as Dmodel

∆t
). The tabulated

values for the sampled parameters are the marginalized constraints
with uncertainties given by the 16th and 84th percentiles (to indi-
cate the 68% credible interval). For the lens light, two Sérsic pro-
files with common centroid and position angle are used to describe
the primary lens galaxy G. They are denoted as G1 and G2 above.
The position angles are measured counterclockwise from positive
θ2 (north). The source surface brightness of the AGN host is mod-
eled on a grid of pixels; these pixel parameters (s) are analytically
marginalized and are thus not listed.

ment to constrain the nuisance parameter κext (which

characterizes the effects of LOS structures).

7.1. Stellar kinematics

We follow Suyu et al. (2010) and model the velocity
dispersion of the stars in the primary lens galaxy G,
highlighting the main steps. The three-dimensional mass
density distribution of the lens galaxy can be expressed
as

ρG(r) = (κext − 1)Σcritθ
γ′

−1
E Dγ′

−1
d

Γ(γ
′

2 )

π1/2Γ(γ
′−3
2 )

1

rγ′
.

(22)
Note that the projected mass of the lens galaxy en-
closed within θE is (1 − κext)ME, while the projected
mass associated with the external convergence is κextME;
the sum of the two is the Einstein mass ME that was
given in Equation (13). We employ spherical Jean’s
modeling to infer the line-of-sight velocity dispersion,
σP(π, γ′, θE, rani, κext), from ρG by assuming the Hern-
quist profile (Hernquist 1990) for the stellar distribution
(e.g., Binney & Tremaine 1987; Suyu et al. 2010).16 An
anisotropy radius of rani = 0 corresponds to pure radial
stellar orbits, while rani → ∞ corresponds to isotropic
orbits with equal radial and tangential velocity disper-
sions. We note that σP is independent of H0, but is
dependent on the other cosmological parameters (e.g.,w
and Ωde) through Σcrit and the physical scale radius of
the stellar distribution.
The likelihood for the velocity dispersion is

P (σ|π, γ′, θE, rani, κext)

=
1

√

2πσ2
σ

exp

[

− (σ − σP(π, γ′, θE, rani, κext))
2

2σ2
σ

]

,(23)

where σ = 323 km s−1 and σσ = 20 km s−1 from Sec-
tion 4.3. Recall that the priors on γ′ and θE were assigned
to be uniform in the lens modeling. We also impose a
uniform prior on rani in the range of [0.5, 5]Reff for the
kinematics modeling, where the effective radius based on
the two-component Sérsic profiles in Table 1 is 1.′′85 from
the photometry.17 The uncertainty in Reff has negligible
impact on the predicted velocity dispersion. The prior
PDF for π is discussed in Section 8.1, while the PDF for
κext is described in the next section.

7.2. Lens environment

We combine the relative galaxy counts from Sec-
tion 4.4, the measured external shear in Section 6.4, and
the Millennium Simulation (MS; Springel et al. 2005) to
obtain an estimate of P (κext|denv, γext,MS). This builds
on the approach presented in Suyu et al. (2010) that used
only the relative galaxy counts.
Tracing rays through the Millennium Simulation (see

Hilbert et al. 2009, for details of the method), we create
64 simulated survey fields, each of solid angle 4×4 deg2.
In each field we map the convergence and shear to
the source redshift zs, and catalog the galaxy content,

16 Suyu et al. (2010) found that Hernquist (1990) and Jaffe
(1983) stellar distribution functions led to nearly identical cosmo-
logical constraints.

17 Before unblinding, we used an effective radius of 3.′′2 based
on a single Sérsic fit. The larger Reff changes the inference of D∆t

at the < 0.5% level.
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which we derive from the galaxy model by Guo et al.
(2010). For each line of sight in each simulated field,
we record the convergence, shear, and relative galaxy
counts in a 45′′ aperture having I-band magnitudes be-
tween 18.5 and 24.5. These provide samples for the PDF
P (κext, γext,denv|MS). We assume that the constructed
PDF is applicable to strong-lens lines of sight, following
Suyu et al. (2010) who showed that the distribution of
κext for strong lens lines of sight are very similar to that
for all lines of sight.
Structures in front of the lens distort the time delays

and the images of the lens/source, while structures be-
hind the lens further affect the time delays and images of
the source. However, to model simultaneously the mass
distributions of the strong lens galaxies and all struc-
tures along the line of sight is well beyond current ca-
pabilities. In practice, the modeling of the strong lens
galaxies is performed separately from the description of
line-of-sight structures, and we approximate the effects
of the lines-of-sight structures into the single correction
term κext, whose statistical properties we estimate from
the Millennium Simulation.
By selecting the lines of sight in the Millennium Sim-

ulation that match the properties of RXJ1131−1231, we
can obtain P (denv|κext, γext,MS)P (κext) and simultane-
ously marginalize over γext in Equation (10). We as-
sumed a uniform prior for γext in the lensing analysis,
such that P (γext) is a constant. The lensing likelihood is
the only other term that depends on γext, and from Sec-
tion 6.4, the lensing likelihood provides a tight constraint
on γext that is approximately Gaussian: 0.089 ± 0.006.
We can therefore simplify part of Equation (10) to

∫

dγextP (dACS,∆t|D∆t, γ
′, θE, γext, κext)

·P (denv|κext, γext,MS)

≃ P (dACS,∆t|D∆t, γ
′, θE, κext)

·P (denv|κext, γext = 0.089± 0.006,MS), (24)

where the above approximation, i.e., neglecting the co-
variance between γext and the other parameters in the
lensing likelihood and then marginalizing γext separately,
is conservative since we would gain in precision by includ-
ing the covariances with other parameters. Furthermore,
by Bayes’ rule,

P (denv|κext, γext = 0.089± 0.006,MS)P (κext)

∝ P (κext|denv, γext = 0.089± 0.006,MS), (25)

which is precisely the PDF of κext by selecting the sam-
ples in P (κext, γext,denv|MS) that satisfies denv with a
relative galaxy count within 1.4±0.05, and subsequently
weighting these samples by the Gaussian likelihood for
γext. This effective prior PDF for κext that is con-
structed from the weighted samples, P (κext|denv, γext =
0.089 ± 0.006,MS), is shown by the solid line in Figure
6.

8. TIME-DELAY DISTANCE OF RXJ1131−1231

We combine all the PDFs obtained in the previous sec-
tions to infer the time-delay distance D∆t.

8.1. Cosmological priors

As written above, we could infer the time delay dis-
tance D∆t directly, given a uniform prior. However, we
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Fig. 6.— The effective prior probability distribution for the ex-
ternal convergence κext from combining ray tracing through the
Millennium Simulation with (1) the galaxy count around the lens
system relative to the average number of galaxy counts, and/or
(2) the modeled external shear of 0.089 ± 0.006. Dashed line: the
convergence distribution for all lines of sight; Dot-dashed line: the
convergence distribution for lines of sight with relative galaxy count
nr = 1.4 ± 0.05; Dotted line: the convergence distribution for all
lines of sight weighted by the likelihood for γext from the lens
model; Solid line: the γext-weighted convergence distribution for
lines of sight with nr = 1.4±0.05. The effective prior for κext used
in the final cosmological parameter inference is described by this,
most informative, distribution.

are primarily interested in the cosmological information
contained in such a distance measurement, so prefer to
infer these directly. The posterior probability distribu-
tion on D∆t can then be obtained by first calculating the
posterior PDF of the cosmological parameters π through
the marginalizations in Equations (11) and (10), and
then changing variables to D∆t. Such transformations
are of course straightforward when working with sam-
pled PDFs.
As described in Table 2, we consider the follow-

ing five cosmological world models, each with its own
prior PDF P (π): UH0, UwCDM, WMAP7wCDM,
WMAP7oΛCDM, and WMAP7owCDM.

8.2. Posterior sampling

We sample the posterior PDF by weighting samples
drawn from the prior PDF with the joint likelihood func-
tion evaluated at those points (Suyu et al. 2010). We
generate samples of the cosmological parameters π from
the priors listed in Table 2. We then join these to sam-
ples of κext drawn from P (κext) from Section 7.2 and
shown in Figure 6, and to uniformly distributed samples
of γ′ within [1.5, 2.5] and rani within [0.5, 5]Reff. Rather
than generating samples of θE from the uniform prior, we
obtain samples of θE directly from the Gaussian approx-
imation to the lensing and time-delay likelihood since
θE is quite independent of other model parameters (as
shown in Figure 3). This boosts sampling efficiency, and
the θE samples are only used to evaluate the kinematics
likelihood.
For each sample of {π, κext, γ′, rani, θE}, we obtain the

weight (or importance) as follows: (1) we determine D∆t

from π via Equation (2), (2) we calculate Dmodel
∆t via

Equation (7), (3) we evaluate P (dACS,∆t|Dmodel
∆t , γ′)

based on the Gaussian approximation shown in Figure 3
for Dmodel

∆t and γ′, (4) we compute P (σ|π, γ′, κext, θE,
rani) via Equation (23), and (5) we weight the sam-
ple by the product of P (dACS,∆t|Dmodel

∆t , γ′) and
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TABLE 2
Priors on cosmological parameters

Prior Description

UH0 Flat ΛCDM with:
uniform H0 in [0, 150] km s−1 Mpc−1,
Ωm = 0.27, ΩΛ = 0.73, w = −1.
This is similar to the typical priors that
were assumed in most of the early lensing
studies, which sought to constrain H0 at
fixed cosmology.

UwCDM Flat wCDM with:
uniform H0 in [0, 150] km s−1 Mpc−1,
uniform Ωde = 1− Ωm in [0, 1],
uniform w in [−2.5, 0.5].

WMAP7wCDM† WMAP7 for {H0, Ωde, w} in wCDM
with flatness and time-independent w.

WMAP7oΛCDM† WMAP7 for {H0, ΩΛ, Ωm} in open
(or rather, non-flat) ΛCDM with w = −1
and Ωk = 1−ΩΛ − Ωm as the curvature
parameter.

WMAP7owCDM† WMAP7 for {H0, Ωde, w, Ωk} in open
wCDM with time-independent w and
curvature parameter Ωk = 1− Ωde −Ωm.

†The prior PDF for the cosmological parameters are taken to be the
posterior PDF from the WMAP 7-year data set (Komatsu et al.
2011).

P (σ|π, γ′, κext, θE, rani) from the previous two steps.
The projection of these weighted samples onto π or D∆t

effectively marginalizes over the other parameters.

8.3. Blind analysis in action

As a brief illustration of our blind analysis approach,
we show in the left panel of Figure 7 the blinded plot of
the time-delay distance measurement. For all cosmolog-
ical parameters such as D∆t, D

model
∆t , H0, w, Ωm, etc.,

we always plotted their probability distribution with re-
spect to the median during the blind analysis. Therefore,
we could use the shape of the PDFs to check our anal-
ysis and avoid introducing experimenter bias by blind-
ing the absolute parameter values. When we marginal-
ized the parameters during the blind phase, our analysis
code also returned the constraints with respect to the
median. For example, the blinded time-delay distance
for the WMAP7wCDM cosmology would be 0+130

−120 Mpc.
We used this particular cosmology as our fiducial world
model during the blind analysis. In the remainder of the
paper, we show the unblinded results of RXJ1131−1231.
The comparison with the gravitational lens B1608+656
and other cosmological probes was performed after we
unblinded the analysis of RXJ1131−1231; otherwise, the
blind analysis would be spoiled by such a comparison
since the results of these previous studies were already
known.

8.4. Posterior PDF for D∆t

We show in the right-hand panel of Figure 7 the un-
blinded probability distribution of the time-delay dis-
tance for the first three cosmological models in Table 2.
The priors, shown in dotted lines, are broad and rather
uninformative. When including information from dACS,

∆t, σ, and κext, we obtain posterior PDFs of D∆t

for RXJ1131−1231 that are nearly independent of the
prior, demonstrating that time-delay lenses provide ro-
bust measurements of D∆t. We find that the data con-
strain the D∆t to RXJ1131−1231 with ∼6% precision.
We can compress these results by approximating the

posterior PDF for D∆t as a shifted log normal distribu-
tion:

P (D∆t|H0,Ωde, w,Ωm) ≃
1√

2π(x− λD)σD
exp

[

− (log(x− λD)− µD)
2

2σ2
D

]

, (26)

where x = D∆t/(1Mpc), λD = 1425.6, µD = 6.4993
and σD = 0.19377. This approximation accurately re-
produces the cosmological inference, in that H0 is recov-
ered within < 1% in terms of its median, 16th and 84th

percentile values for the WMAP7 cosmologies we have
considered. The robust constraint on D∆t serves as the
basis for cosmological inferences in Section 9.

8.5. Sources of uncertainty

Our D∆t measurement accounts for all known sources
of uncertainty that we have summarized in Table 3. The
dominant sources are the first three items. The precision
for the time delay is the 1σ uncertainty as a fraction of
the measured value for the longest delay, ∆tDB. For the
lens mass model and line-of-sight contributions, we de-
fine the precision as half the difference between the 16th

and 84th percentiles of the PDF for Dmodel
∆t from Sec-

tion 6.4 in fractions of its median value and for κext from
Section 7.2 in fractions of 1, respectively. The remaining
sources of uncertainty are collectively denoted by “other
sources”, and the two main contributors to this category
are the peculiar velocity of the lens and the impact of
the satellite.
Spectroscopic studies of the field of RXJ1131−1231

indicate that the lens is in a galaxy group with a ve-
locity dispersion of 429+119

−93 km s−1 (Wong et al. 2011).
RXJ1131−1231 is the brightest red sequence galaxy in
this group, and is thus likely to be near the center of
mass of the group halo with a small peculiar veloc-
ity relative to the group (Zabludoff & Mulchaey 1998;
Williams et al. 2006; George et al. 2012). However, the
group could be moving relative to the Hubble flow due to
nearby large-scale structures. The one-dimensional rms
galaxy peculiar velocity is typically . 300km s−1 (e.g.,
Mosquera & Kochanek 2011; Peebles 1993). A peculiar
velocity of 300 km s−1 for RXJ1131−1231 would cause
D∆t to change by 0.8%.18 A similar peculiar velocity
for the lensed source has a much smaller impact on D∆t,
changing it by only 0.2%. We note that the peculiar
velocities of lenses are stochastic, and this source of un-
certainty should average out in a sample of lenses.
We have explicitly included the satellite in our lens

mass model in Section 6. However, there is some de-
generacy in apportioning the mass between the satellite
and the primary lens galaxy since lensing is mostly sensi-
tive to the total mass enclosed within the lensing critical
curves (approximately traced by the arcs). The more
massive the satellite, the less massive the primary lens

18 The change in redshift due to peculiar velocities is described
in, e.g., Harrison (1974).
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Fig. 7.— Blinded (left) and unblinded (right) PDFs for D∆t, showing the RXJ1131−1231 posterior constraints on D∆t (solid) given
assorted priors for the cosmological parameters (dotted, labeled). See Table 2 for a full description of the various priors. RXJ1131−1231
provides tight constraints on D∆t, which translates into information about Ωm, Ωde, w and particularly H0.

galaxy. Owing to its central location and the degener-
acy with the mass of the main deflector, we expect the
impact of the satellite on the difference in gravitational
potential between the multiple images to be very small.
To assess the effect of the mass of the satellite on our

D∆t inference, we consider an extreme model where the
satellite has zero mass. In this case, we require a more
massive primary lens galaxy with higher θE to fit the
lensing features, as expected. The resulting Dmodel

∆t and
γ′ from this model are consistent with that of the orig-
inal model, but with larger parameter uncertainties due
to poorer fits without the satellite. Even if we use the
overestimated θE of the primary lens from this extreme
model for the kinematics, we find that the effect on the
inferred D∆t is at the < 1% level.
In Table 3, we list the total uncertainty of 6.7% based

on a simple Gaussian approximation where we add up the
uncertainties of each contribution in quadrature. This is
close to the more accurate 6.0% based on proper sam-
pling that takes into account the non-Gaussian distribu-
tion (e.g., of κext) and the inclusion of the stellar velocity
dispersion. We note that the sampling does not include
explicitly the other sources that contribute at the <1%
level; however, they are practically insignificant in the
overall error budget. Most of the uncertainty in D∆t

comes from the lens mass model and the line-of-sight con-
tribution. Reducing the uncertainty on RXJ1131−1231’s
D∆t would require a better model of the source intensity
distribution that depends less sensitively on the source
pixel size (possibly via an adaptive source pixelization
scheme (e.g., Vegetti & Koopmans 2009)), and a better
characterization of κext by using more observational in-
formation from the field. Investigations are in progress
to improve κext constraints (Greene et al., submitted;
Collett et al., submitted).

9. COSMOLOGICAL INFERENCE

We now present our inference on the parameters of the
expanding Universe and compare our results to other cos-

TABLE 3
Error budget on time-delay distance of RXJ1131−1231

Description uncertainty

time delays 1.6%
lens mass model 4.6%
line-of-sight contribution 4.6%
other sources <1%

Total (Gaussian approximation) 6.7%
Total (full sampling) 6.0%

Notes. The other sources of uncertainty that contribute at the
<1% include the peculiar velocity of the lens and the impact of the
satellite. Details are in Section 8.5. The Gaussian approximation
simply adds the uncertainties in quadrature, providing a crude es-
timate for the total uncertainty based on the full sampling of the
non-Gaussian PDFs.

mographic probes. Specifically, our D∆t measurement
for RXJ1131−1231 provides information on cosmology
that is illustrated in Section 9.1. We compare the re-
sults to that of B1608+656 to check for consistency in
Section 9.2, before combining the two lenses together in
Section 9.3. We then compare the constraints from the
two time-delay lenses to a few other cosmological probes
in Section 9.4.

9.1. Constraints from RXJ1131−1231

We have seen that the RXJ1131−1231 D∆t measure-
ment is nearly independent of assumptions about the
background cosmology. While D∆t is primarily sensitive
to H0, information from D∆t must be shared with other
cosmological parameters via the combination of angular
diameter distances. Therefore, cosmological parameter
constraints will depend somewhat on our assumptions
for the background cosmology. In this section we con-
sider the first three cosmologies listed in Table 2: UH0,
UwCDM, and WMAP7wCDM.
With all other parameters fixed in the UH0 cosmol-

ogy except for H0, all our knowledge of D∆t is con-
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Fig. 8.— RXJ1131−1231 marginalized posterior PDF for H0,
Ωde and w in flat wCDM cosmological models. Contours/shades
mark the 68.3%, 95.4%, 99.7% credible regions. The three sets of
contours/shades correspond to three different prior/data set com-
binations. Shaded red: RXJ1131−1231 constraints given by the
UwCDM prior; dashed blue: the prior provided by the WMAP7
data set alone; solid black: the joint constraints from combining
WMAP7 and RXJ1131−1231.

verted to information on H0. We therefore obtain a
precise measurement of H0 = 78.7+4.3

−4.5 km s−1Mpc−1 for
RXJ1131−1231 with a 5.5% uncertainty.
Next, we relax our assumptions on Ωde, Ωm and w,

and consider the UwCDM and WMAP7wCDM cosmolo-
gies in a flat Universe. Figure 8 shows the result-
ing constraints. The contours for the UwCDM cos-
mology with vertical bands in the H0 panels illustrates
that the time-delay distance is mostly sensitive to H0.
The constraint on H0 breaks the parameter degeneracies
in the WMAP7 data set, and we obtain the following
joint parameter constraints for RXJ1131−1231 in com-
bination with WMAP7: H0 = 80.0+5.8

−5.7 km s−1Mpc−1,

Ωde = 0.79± 0.03, and w = −1.25+0.17
−0.21.

9.2. Comparison between RXJ1131−1231 and
B1608+656

How do the results of RXJ1131−1231 compare with
that of B1608+656? We show in Figure 9 the overlay
of the cosmological constraints of RXJ1131−1231 and
B1608+656 in UH0 (top panel) and UwCDM (bottom
panel). To investigate the consistency of the two data
sets, we need to consider their likelihood functions in
the multi-dimensional cosmological parameter space: in-
consistency is defined by insufficient overlap between the
two likelihoods. We follow Marshall et al. (2006), and
compute the Bayes Factor F in favor of a single set of
cosmological parameters and a simultaneous fit:

F =
〈LRLB〉
〈LR〉〈LB〉 , (27)

TABLE 4
Cosmological constraints from RXJ1131−1231 and

B1608+656 in combination with WMAP7

Cosmology Parameter Marginalized Precision
Value (68% CI)

H0 75.2+4.4
−4.2 5.7%

wCDM Ωde 0.76+0.02
−0.03 2.5%

w −1.14+0.17
−0.20 18%

H0 73.1+2.4
−3.6 4.0%

oΛCDM ΩΛ 0.75+0.01
−0.02 1.9%

Ωk 0.003+0.005
−0.006 0.6%

Notes. The H0 values are in units of km s−1 Mpc−1. The “preci-
sion” in the fourth column is defined as half the 68% confidence
interval, as a percentage of 75 for H0, 1 for Ωde, ΩΛ, and Ωk, and
−1.0 for w.

where LR and LB are the likelihoods of the
RXJ1131−1231 and B1608+656 data respectively, com-
puted at each prior sample point. See the Appendix for
the derivation of this result.
For the cosmology UH0, the Bayes Factor is 3.2; for

UwCDM, it takes the value 3.8. For comparison, with
two one-dimensional Gaussian PDFs, F takes the value
of 1 when the two distributions overlap at their 2σ
points, and is about 3.6 when they overlap at their 1σ
point. From this we conclude that the results from
RXJ1131−1231 and B1608+656 are consistent with each
other. We do not detect any significant residual sys-
tematics given the current uncertainties in our measure-
ments.

9.3. RXJ1131−1231 and B1608+656 in unison

Having shown that RXJ1131−1231 and B1608+656
yield consistent results with each other, we proceed to
combine the results from these two lenses for cosmologi-
cal inferences. In particular, we consider the constraints
in the WMAP7wCDM andWMAP7oΛCDM cosmologies
in Table 2.
We show in Figure 10 the cosmological constraints from

individual lenses in combination with WMAP7, and the
combination of both lenses and WMAP7. By combining
the two lenses, we tighten the constraints on H0, Ωde and
Ωk. The precision on w does not improve appreciably.
With its low lens redshift, RXJ1131−1231 provide very
little information to w in addition to that obtained from
B1608+656. In Table 4, we summarize the constraints
from the two lenses.

9.4. Comparison of lenses and other cosmographic
probes

How do the robust time-delay distances from the strong
lenses compare to the distance measures of other probes?
We show in Figure 11 a comparison of the cosmologi-
cal constraints of the two lenses, Baryon Acoustic Os-
cillations (BAO; e.g., Percival et al. 2010; Blake et al.
2011; Mehta et al. 2012), and supernovae (SN; e.g.,
Hicken et al. 2009; Suzuki et al. 2012), when each is com-
bined with WMAP7 in the owCDM cosmology. The
figures are qualitative since the samples for WMAP7
chain in the owCDM cosmology are sparse and we
have smoothed the contours after importance sampling.
Nonetheless, we see that the sizes of the contours are
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Fig. 9.— Comparison of RXJ1131−1231 (solid red) with
B1608+656 (dotted blue) in UH0 (top) and UwCDM (bottom)
cosmologies. The two distributions overlap within 2σ. The cosmo-
logical constraints from the two lenses are statistically consistent
with each other: the ratio of the probability that the two lenses
share global cosmological parameters to the probability that the
lenses require independent cosmologies is 3.2 in UH0 and 3.8 in
UwCDM.

comparable, suggesting that even a small sample of time-
delay lenses is a powerful probe of cosmology. Both the
lenses and BAO are strong in constraining the curvature
of the Universe, while SN provides more information on
the dark energy equation of state. Lenses are thus highly
complementary to other cosmographic probes, partic-
ularly the CMB and SN (see also, e.g., Linder 2011;
Das & Linder 2012). Each probe is consistent with flat
ΛCDM: Ωk = 0 and w = −1 are within the 95% credible
regions.
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Fig. 12.— Precision of cosmological constraints on Ωk and w
for five probes each in combination with WMAP in an owCDM
cosmology: SDSS BAO (Percival et al. 2010), the two time-
delay lenses RXJ1131−1231 and B1608+656 (this work), SN
(Suzuki et al. 2012), Cepheids (Riess et al. 2011), and recon-
structed BAO (Mehta et al. 2012). Precision for Ωk and w is de-
fined as half the 68% CI as a percentage of 1 and −1, respectively.

In Figure 12, we compare the precisions on Ωk and
w in owCDM from the following cosmological probes
in combination with WMAP: BAO from the Sloan
Digital Sky Survey (SDSS) (Percival et al. 2010), our
two time-delay lenses, SN from the Union 2.1 sam-
ple (Suzuki et al. 2012), the Cepheids distance ladder
(Riess et al. 2011)19, and reconstructed BAO using the
SDSS galaxies (Mehta et al. 2012). We note that the pre-
cisions on the Cepheids and the time-delay lenses are only
approximates since the samples of WMAP7 are sparse in
owCDM due to the large parameter space. Nonethe-
less, the histogram plot shows that time-delay lenses are
a valuable probe, especially in constraining the spatial
curvature of the Universe.

19 To derive the constraints on Ωk and w from the combination
of Cepheids and WMAP7, we importance sample the WMAP7
chain by a Gaussian likelihood centered on H0 = 73.8− 1.475(w+
1) km s−1 Mpc−1 with a width of 2.4 kms−1 Mpc−1 (Riess et al.
2011). The −1.475(w + 1) corresponds to the tilt in the H0-w
plane shown in Figure 10 of Riess et al. (2011).

10. SUMMARY

We have performed a blind analysis of the time-delay
lens RXJ1131−1231, modeling its high precision time de-
lays from the COSMOGRAIL collaboration, deep HST
imaging, newly measured lens velocity dispersion, and
mass contribution from line-of-sight structures. The data
sets were combined probabilistically in a joint analysis,
via a comprehensive model of the lens system consisting
of the light of the source AGN and its host galaxy, the
light and mass of the lens galaxies, and structures along
the line of sight characterized by external convergence
and shear parameters. The resulting time-delay distance
measurement for the lens allows us to infer cosmologi-
cal constraints. From this study, we draw the following
conclusions:

1. Our comprehensive lens model reproduces the
global features of the HST image and the time
delays. We quantify the uncertainty due to the
deflector gravitational potential on the time-delay
distance to be at the 4.6% level.

2. Based on the external shear strength from the lens
model and the overdensity of galaxy count around
the lens, we obtained a PDF for the external con-
vergence by ray tracing through the Millennium
Simulation. This κext PDF contributes to the un-
certainty on D∆t also at the 4.6% level.

3. Our robust time-delay distance measurement of 6%
takes into account all sources of known statistical
and systematic uncertainty. We provide a fitting
formula to describe the PDF of the time-delay dis-
tance that can be used to combine with any other
independent cosmological probe.

4. The time-delay distance of RXJ1131−1231 is
mostly sensitive toH0, especially given the low red-
shift of the lens.

5. Assuming a flat ΛCDM with fixed ΩΛ = 0.73
and uniform prior on H0, our unblinded
H0 measurement from RXJ1131−1231 is
78.7+4.3

−4.5 km s−1Mpc−1.
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6. The constraint on H0 helps break parameter
degeneracies in the CMB data. In combina-
tion with WMAP7 in wCDM, we find H0 =
80.0+5.8

−5.7 km s−1Mpc−1, Ωde = 0.79 ± 0.03, and

w = −1.25+0.17
−0.21. These are statistically consis-

tent with the results from the gravitational lens
B1608+656. There are no significant residual sys-
tematics detected in our method based on this com-
bined analysis of the two systems.

7. By combining RXJ1131−1231, B1608+656 and
WMAP7, we derive the following constraints:
H0 = 75.2+4.4

−4.2 km s−1Mpc−1, Ωde = 0.76+0.02
−0.03

and w = −1.14+0.17
−0.20 in flat wCDM, and H0 =

73.1+2.4
−3.6 km s−1Mpc−1, ΩΛ = 0.75+0.01

−0.02 and Ωk =

0.003+0.005
−0.006 in open ΛCDM.

8. Our measurement of the Hubble constant is com-
pletely independent of those based on the local
distance ladder method (e.g., Riess et al. 2011;
Freedman et al. 2012), providing an important
consistency check of the standard cosmological
model and of general relativity.

9. A comparison of the lenses and other cosmological
probes that are each combined with WMAP7 shows
that the constraints from the lenses are compara-
ble in precision to various state-of-the-art probes.
Lenses are particularly powerful in measuring the
spatial curvature of the universe, and are comple-
mentary to other cosmological probes.

Thanks to the dedicated monitoring by the COSMO-
GRAIL (e.g., Vuissoz et al. 2008; Courbin et al. 2011;
Tewes et al. 2012b,a) and Kochanek et al. (2006) collab-
orations, the number of lenses with accurate and pre-
cise time delays are increasing. Deep HST imaging for
three of these lenses will be obtained in cycle 20 to allow
accurate lens mass modeling that turns the delays into
distances. Using the estimated uncertainties of the time-
delay distances of the three lenses, we expect to measure
H0 from our assembled sample of five lenses (B1608+656,
RXJ1131−1231, and the three cycle 20 lenses) to roughly
3.8% in a wCDM cosmology if no significant residual sys-
tematics are detected. Current and upcoming telescopes
and surveys including the Panoramic Survey Telescope
& Rapid Response System, Hyper-Suprime Camera on

the Subaru Telescope, and Dark Energy Survey expect
to detect hundreds of AGN lenses with dozens of de-
lays measured (Oguri & Marshall 2010). Ultimately, the
Large Synoptic Survey Telescope will discover thousands
of time-delay lenses, painting a bright future for cosmog-
raphy with gravitational lens time delays.

ACKNOWLEDGMENTS

We thank B. Brewer, C. Faure, E. Linder, and
N. Suzuki for useful discussions. We are grateful to
E. Komatsu for providing us the code to compute the
likelihoods of the BAO and SN data that were used in
the WMAP 7-year analysis. We further thank the anony-
mous referee whose detailed report and constructive com-
ments improved the presentation of this work. S.H.S. and
T.T. gratefully acknowledge support from the Packard
Foundation in the form of a Packard Research Fellow-
ship to T.T.. S.H. and R.D.B. acknowledge support
by the National Science Foundation (NSF) grant num-
ber AST-0807458. P.J.M. acknowledges support from
the Royal Society in the form of a research fellowship,
and is grateful to the Kavli Institute for Particle As-
trophysics and Cosmology for hosting him as a visitor
during part of the period of this investigation. M.T.,
F.C., and G.M. acknowledge support from the Swiss Na-
tional Science Foundation (SNSF). C.D.F. acknowledges
support from NSF-AST-0909119. L.V.E.K. is supported
in part by an NWO-VIDI program subsidy (project
No. 639.042.505). D.S. acknowledges support from the
Deutsche Forschungsgemeinschaft, reference SL172/1-1.
This paper is based in part on observations made with
the NASA/ESA Hubble Space Telescope, obtained at the
Space Telescope Science Institute, which is operated by
the Association of Universities for Research in Astron-
omy, Inc., under NASA contract NAS 5-26555. These
observations are associated with program #GO-9744.
Some of the data presented in this paper were obtained
at the W.M. Keck Observatory, which is operated as a
scientific partnership among the California Institute of
Technology, the University of California and the National
Aeronautics and Space Administration. The Observa-
tory was made possible by the generous financial support
of the W.M. Keck Foundation. The authors wish to rec-
ognize and acknowledge the very significant cultural role
and reverence that the summit of Mauna Kea has always
had within the indigenous Hawaiian community. We are
most fortunate to have the opportunity to conduct ob-
servations from this mountain.

REFERENCES

Anderson, J., & Bedin, L. R. 2010, PASP, 122, 1035
Auger, M. W., Fassnacht, C. D., Wong, K. C., et al. 2008, ApJ,

673, 778
Auger, M. W., Treu, T., Bolton, A. S., et al. 2010, ApJ, 724, 511
Barden, M., Rix, H.-W., Somerville, R. S., et al. 2005, ApJ, 635,

959
Barkana, R. 1998, ApJ, 502, 531
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APPENDIX

QUANTIFYING DATA SET CONSISTENCY VIA THE BAYES FACTOR B

Marshall et al. (2006) invite us to consider the following two hypotheses: (1) Hglobal, in which the two lenses share
a common set of cosmological parameters π = {H0,Ωde, w}, and (2) Hind, in which each of the two lenses is provided
with its own independent set of cosmological parameters, πR = {HR

0 ,Ω
R
de, w

R} and πB = {HB
0 ,Ω

B
de, w

B}, with which
to fit the data. Each set of parameters covers the same prior volume as in H

global. If the two data sets are highly
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inconsistent, only H
ind will provide a good fit to both data sets in a joint analysis. The question is, do the data require

H
ind, or is Hglobal sufficient?
We quantify the answer to this question with the evidence ratio, or Bayes Factor, in favor of Hglobal:

F =
P (dR,dB|Hglobal)

P (dR|Hind)P (dB|Hind)
. (A1)

where we have collectively denoted all the data sets of RXJ1131−1231 as d
R and of B1608+656 as dB. Each of the

terms on the right-hand side of the above equation can be written in terms of a multi-dimensional integral over the
cosmological parameters. For example, we have (starting with the simpler terms in the denominators)

P (dR|Hind) =

∫

d3πR P (dR|πR,Hind)P (πR|Hind), (A2)

where P (dR|πR,Hind) is the likelihood of the RXJ1131−1231 data sets (the weights for the cosmological samples) that
we denote by LR. Equation (A2) is then just the ensemble average of the samples’ likelihood values,

P (dR|Hind) = 〈LR〉. (A3)

For P (dB|Hind), we can rewrite the likelihood P (dB|πB,Hind) in terms of DB
∆t to make use of P (DB

∆t|dB,Hind) given
by Equation (35) of Suyu et al. (2010):

P (dB|πB,Hind) =
P (DB

∆t(π
B)|dB,Hind)P (dB|Hind)

P (DB
∆t|Hind)

. (A4)

The ratio ZB = P (dB|Hind)/P (DB
∆t|Hind) is a constant factor since the prior on DB

∆t is uniform; thus, we obtain

P (dB|Hind) = ZB〈LB〉, (A5)

where LB is given by the likelihood of the time-delay distance P (DB
∆t(π

B)|dB,Hind).
Finally, for the numerator in Equation (A1), we have

P (dR,dB|Hglobal)=

∫

d3π P (dR|π,Hglobal)P (dB|π,Hglobal)P (π|Hglobal)

=ZB〈LRLB〉, (A6)

where the constant ZB is the same as that in P (dB|Hind) since the parameterization of the cosmology for each inde-
pendent lens is identical to that of the global cosmology (i.e., πB and π are the same cosmological parameterization).
Substituting Equations (A3), (A5), and (A6) into Equation (A1), we obtain

F =
〈LRLB〉
〈LR〉〈LB〉 , (A7)

which can be readily computed given the values of LR and LB (the weights) that we have for each cosmological sample.


