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ABSTRACT

NIFTy, “Numerical Information Field Theory”, is a software package designed to enable the development of signal
inference algorithms that operate regardless of the underlying spatial grid and its resolution. Its object-oriented frame-
work is written in Python, although it accesses libraries written in Cython, C++, and C for efficiency. NIFTy offers
a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting
on fields into classes. Thereby, the correct normalization of operations on fields is taken care of automatically without
concerning the user. This allows for an abstract formulation and programming of inference algorithms, including those
derived within information field theory. Thus, NIFTy permits its user to rapidly prototype algorithms in 1D, and then
apply the developed code in higher-dimensional settings of real world problems. The set of spaces on which NIFTy
operates comprises point sets, n-dimensional regular grids, spherical spaces, their harmonic counterparts, and product
spaces constructed as combinations of those. The functionality and diversity of the package is demonstrated by a Wiener
filter code example that successfully runs without modification regardless of the space on which the inference problem
is defined.
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1. Introduction

In many signal inference problems, one tries to reconstruct
a continuous signal field from a finite set of experimen-
tal data. The finiteness of data sets is due to their incom-
pleteness, resolution, and the sheer duration of the experi-
ment. A further complication is the inevitability of experi-
mental noise, which can arise from various origins. Numer-
ous methodological approaches to such inference problems
are known in modern information theory founded by Cox
(1946); Shannon (1948); Wiener (1949).

Signal inference methods are commonly formulated in
an abstract, mathematical way to be applicable in various
scenarios; i.e., the method itself is independent, or at least
partially independent, of resolution, geometry, physical size,
or even dimensionality of the inference problem. It then is
up to the user to apply the appropriate method correctly
to the problem at hand.

In practice, signal inference problems are solved numeri-
cally, rather than analytically. Numerical algorithms should
try to preserve as much of the universality of the under-
lying inference method as possible, given the limitations
of a computer environment, so that the code is reuseable.
For example, an inference algorithm developed in astro-
physics that reconstructs the photon flux on the sky from

? NIFTy homepage http://www.mpa-garching.mpg.de/
ift/nifty/; Excerpts of this paper are part of the NIFTy
source code and documentation.

high energy photon counts might also serve the purpose
of reconstructing two- or three-dimensional medical images
obtained from tomographical X-rays. The desire for multi-
purpose, problem-independent inference algorithms is one
motivation for the NIFTy package presented here. Another
is to facilitate the implementation of problem specific algo-
rithms by providing many of the essential operations in a
convenient way.

NIFTy stands for “Numerical Information Field The-
ory”. It is a software package written in Python12, how-
ever, it also incorporates Cython3 (Behnel et al. 2009; Sel-
jebotn 2009), C++, and C libraries for efficient computing.

The purpose of the NIFTy library is to provide a toolkit
that enables users to implement their algorithms as ab-
stractly as they are formulated mathematically. NIFTy’s
field of application is kept broad and not bound to one
specific methodology. The implementation of maximum en-
tropy (Jaynes 1957, 1989), likelihood-free, maximum like-
lihood, or full Bayesian inference methods (Bayes 1763;
Laplace 1795/1951; Cox 1946) are feasible, as well as the
implementation of posterior sampling procedures based on
Markov chain Monte Carlo procedures (Metropolis & Ulam
1949; Metropolis et al. 1953).
1 Python homepage http://www.python.org/
2 NIFTy is written in Python 2 which is supported by all
platforms and compatible to existing third party packages. A
Python 3 compliant version is left for a future upgrade.
3 Cython homepage http://cython.org/
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Although NIFTy is versatile, the original intention was
the implementation of inference algorithms that are formu-
lated methodically in the language of information field the-
ory4 (IFT). The idea of IFT is to apply information theory
to the problem of signal field inference, where “field” is the
physicist’s term for a continuous function over a continuous
space. The recovery of a field that has an infinite number
of degrees of freedom from finite data can be achieved by
exploiting the spatial continuity of fields and their internal
correlation structures. The framework of IFT is detailed
in the work by Enßlin et al. (2009) where the focus lies
on a field theoretical approach to inference problems based
on Feynman diagrams. An alternative approach using en-
tropic matching based on the formalism of the Gibbs free
energy can be found in the work by Enßlin & Weig (2010).
IFT based methods have been developed to reconstruct sig-
nal fields without a priori knowledge of signal and noise
correlation structures (Enßlin & Frommert 2011; Opper-
mann et al. 2011). Furthermore, IFT has been applied to a
number of problems in astrophysics, namely to recover the
large scale structure in the cosmic matter distribution us-
ing galaxy counts (Kitaura et al. 2009; Jasche et al. 2010b;
Jasche & Kitaura 2010; Jasche et al. 2010a; Weig & Enßlin
2010), and to reconstruct the Faraday rotation of the Milky
Way (Oppermann et al. 2012a). A more abstract applica-
tion has been shown to improve stochastic estimates such
as the calculation of matrix diagonals by sample averages
(Selig et al. 2012).

One natural requirement of signal inference algorithms
is their independence of the choice of a particular grid and
a specific resolution, so that the code is easily transferable
to problems that are similar in terms of the necessary in-
ference methodology but might differ in terms of geometry
or dimensionality. In response to this requirement, NIFTy
comprises several commonly used pixelization schemes and
their corresponding harmonic bases in an object-oriented
framework. Furthermore, NIFTy preserves the continuous
limit by taking care of the correct normalization of oper-
ations like scalar products, matrix-vector multiplications,
and grid transformations; i.e., all operations involving po-
sition integrals over continuous domains.

The remainder of this paper is structured as follows. In
Sec. 2 an introduction to signal inference is given, with the
focus on the representation of continuous information fields
in the discrete computer environment. Sec. 3 provides an
overview of the class hierarchy and features of the NIFTy
package. The implementation of a Wiener filter algorithm
demonstrates the basic functionality of NIFTy in Sec. 4.
We conclude in Sec. 5.

2. Concepts of Signal Inference

2.1. Fundamental Problem

Many signal inference problems can be reduced to a single
model equation,

d = f(s, . . . ), (1)

where the data set d is the outcome of some function f be-
ing applied to a set of unknowns.5 Some of the unknowns
4 IFT homepage http://www.mpa-garching.mpg.de/ift/
5 An alternative notation commonly found in the literature is
y = f [x]. We do not use this notation in order to avoid confu-

are of interest and form the signal s, whereas the remain-
ing are considered as nuisance parameters. The goal of any
inference algorithm is to obtain an approximation for the
signal that is “best” supported by the data. Which criteria
define this “best” is answered differently by different infer-
ence methodologies.

There is in general no chance of a direct inversion of
Eq. (1). Any realistic measurement involves random pro-
cesses summarized as noise and, even for deterministic or
noiseless measurement processes, the number of degrees of
freedom of a signal typically outnumbers those of a finite
data set measured from it, because the signal of interest
might be a continuous field; e.g., some physical flux or den-
sity distribution.

In order to clarify the concept of measuring a continuous
signal field, let us consider a linear measurement by some
response R with additive and signal independent noise n,

d = Rs+ n, (2)

which reads for the individual data points,

di =

∫
Ω

dx Ri(x)s(x) + ni. (3)

Here we introduced the discrete index i ∈ {1, . . . , N} ⊂ N
and the continuous position x ∈ Ω of some abstract position
space Ω. For example, in the context of image reconstruc-
tion, i could label the N image pixels and x would describe
real space positions.

The model given by Eq. (2) already poses a full inference
problem since it involves an additive random process and a
non-invertible signal response. As a consequence, there are
many possible field configurations in the signal phase space
that could explain a given data set. The approach used to
single out the “best” estimate of the signal field from the
data at hand is up to the choice of inference methodology.
However, the implementation of any derived inference al-
gorithm needs a proper discretization scheme for the fields
defined on Ω. Since one might want to extend the domain
of application of a successful algorithm, it is worthwhile to
keep the implementation flexible with respect to the char-
acteristics of Ω.

2.2. Discretized Continuum

The representation of fields that are mathematically defined
on a continuous space in a finite computer environment is a
common necessity. The goal hereby is to preserve the con-
tinuum limit in the calculus in order to ensure a resolution
independent discretization.

Any partition of the continuous position space Ω (with
volume V ) into a set of Q disjoint, proper subsets Ωq (with
volumes Vq) defines a pixelization,

Ω =
⋃̇
q

Ωq with q ∈ {1, . . . , Q} ⊂ N, (4)

V =

∫
Ω

dx =

Q∑
q=1

∫
Ωq

dx =

Q∑
q=1

Vq. (5)

Here the number Q characterizes the resolution of the pix-
elization, and the continuum limit is described by Q → ∞
sion with coordinate variables, which in physics are commonly
denoted by x and y.
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Table 1. Overview of derivatives of the NIFTy space class, the corresponding grids, and conjugate space classes.

NIFTy subclass corresponding grid conjugate space class
point_space unstructured list of points (none)

rg_space n-dimensional regular Euclidean grid over T n rg_space
lm_space spherical harmonics gl_space or hp_space
gl_space Gauss-Legendre grid on the S2 sphere lm_space
hp_space HEALPix grid on the S2 sphere lm_space

nested_space (arbitrary product of grids) (partial conjugation)

and Vq → 0 for all q ∈ {1, . . . , Q} simultaneously. More-
over, Eq. (5) defines a discretization of continuous integrals,∫

Ω
dx 7→

∑
q Vq.

Any valid discretization scheme for a field s can be de-
scribed by a mapping,

s(x ∈ Ωq) 7→ sq =

∫
Ωq

dx wq(x)s(x), (6)

if the weighting function wq(x) is chosen appropriately. In
order for the discretized version of the field to converge
to the actual field in the continuum limit, the weighting
functions need to be normalized in each subset; i.e., ∀q :∫

Ωq
dx wq(x) = 1. Choosing such a weighting function that

is constant with respect to x yields

sq =

∫
Ωq

dx s(x)∫
Ωq

dx
= 〈s(x)〉Ωq

, (7)

which corresponds to a discretization of the field by spa-
tial averaging. Another common and equally valid choice
is wq(x) = δ(x − xq), which distinguishes some position
xq ∈ Ωq, and evaluates the continuous field at this posi-
tion,

sq =

∫
Ωq

dx δ(x− xq)s(x) = s(xq). (8)

In practice, one often makes use of the spatially averaged
pixel position, xq = 〈x〉Ωq

; cf. Eq. (7). If the resolution
is high enough to resolve all features of the signal field
s, both of these discretization schemes approximate each
other, 〈s(x)〉Ωq

≈ s(〈x〉Ωq
), since they approximate the con-

tinuum limit by construction.6
All operations involving position integrals can be nor-

malized in accordance with Eqs. (5) and (7). For example,
the scalar product between two fields s and u is defined as

s†u =

∫
Ω

dx s∗(x)u(x) ≈
Q∑

q=1

Vq s
∗
quq , (9)

where † denotes adjunction and ∗ complex conjugation.
Since the approximation in Eq. (9) becomes an equality
in the continuum limit, the scalar product is independent
of the pixelization scheme and resolution, if the latter is
sufficiently high.

6 The approximation of 〈s(x)〉Ωq
≈ s(xq ∈ Ωq) marks a resolu-

tion threshold beyond which further refinement of the discretiza-
tion reveals no new features; i.e., no new information content of
the field s.

The above line of argumentation analogously applies to
the discretization of operators. For a linear operator A act-
ing on some field s as As =

∫
Ω

dyA(x, y)s(y), a matrix
representation discretized in analogy to Eq. (7) is given by

A(x ∈ Ωp, y ∈ Ωq) 7→ Apq =

∫∫
ΩpΩq

dxdy A(x, y)∫∫
ΩpΩq

dxdy

=
〈〈
A(x, y)

〉
Ωp

〉
Ωq
. (10)

Consequential subtleties regarding operators are addressed
in App. A.

The proper discretization of spaces, fields, and opera-
tors, as well as the normalization of position integrals, is
essential for the conservation of the continuum limit. Their
consistent implementation in NIFTy allows a pixelization
independent coding of algorithms.

3. Class and Feature Overview

The NIFTy library features three main classes: spaces that
represent certain grids, fields that are defined on spaces,
and operators that apply to fields. In the following, we will
introduce the concept of these classes and comment on fur-
ther NIFTy features such as operator probing.

3.1. Spaces

The space class is an abstract class from which all other
specific space subclasses are derived. Each subclass repre-
sents a grid type and replaces some of the inherited methods
with its own methods that are unique to the respective grid.
This framework ensures an abstract handling of spaces in-
dependent of the underlying geometrical grid and the grid’s
resolution.

An instance of a space subclass represents a geometri-
cal space approximated by a specific grid in the computer
environment. Therefore, each subclass needs to capture all
structural and dimensional specifics of the grid and all com-
putationally relevant quantities such as the data type of as-
sociated field values. These parameters are stored as proper-
ties of an instance of the class at its initialization, and they
do not need to be accessed explicitly by the user thereafter.
This prevents the writing of grid or resolution dependent
code.

Spatial symmetries of a system can be exploited by cor-
responding coordinate transformations. Often, transforma-
tions from one basis to its harmonic counterpart can greatly
reduce the computational complexity of algorithms. The
harmonic basis is defined by the eigenbasis of the Laplace
operator; e.g., for a flat position space it is the Fourier ba-
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sis.7 This conjugation of bases is implemented in NIFTy
by distinguishing conjugate space classes, which can be ob-
tained by the instance method get_codomain (and checked
for by check_codomain). Moreover, transformations be-
tween conjugate spaces are performed automatically if re-
quired.

Thus far, NIFTy has six classes that are derived from
the abstract space class. These subclasses are described
here, and an overview can be found in Tab. 1.

• The point_space class merely embodies a geometrically
unstructured list of points. This simplest possible kind
of grid has only one parameter, the total number of
points. This space is thought to be used as a default data
space and neither has a conjugate space nor matches any
continuum limit.
• The rg_space class comprises all regular Euclidean

grids of arbitrary dimension and periodic boundary con-
ditions. Such a grid is described by the number of
grid points per dimension, the edge lengths of one n-
dimensional pixel and a few flags specifying the ori-
gin of ordinates, internal symmetry, and basis type; i.e.,
whether the grid represents a position or Fourier basis.
The conjugate space of a rg_space is another rg_space
that is obtained by a fast Fourier transformation of the
position basis yielding a Fourier basis or vice versa by
an inverse fast Fourier transformation.
• The spherical harmonics basis is represented by the
lm_space class which is defined by the maximum of
the angular and azimuthal quantum numbers, and
m, where mmax ≤ max and equality is the default. It
serves as the harmonic basis for the instance of both
the gl_space and the hp_space class.
• The gl_space class describes a Gauss-Legendre grid on
an S2 sphere, where the pixels are centered at the roots
of Gauss-Legendre polynomials. A grid representation
is defined by the number of latitudinal and longitudinal
bins, nlat and nlon.
• The hierarchical equal area isolatitude pixelization of an
S2 sphere (abbreviated as HEALPix8) is represented
by the hp_space class. The grid is characterized by
twelve basis pixels and the nside parameter that specifies
how often each of them is quartered.
• The nested_space class is designed to comprise all pos-

sible product spaces constructed out of those described
above. Therefore, it is defined by an ordered list of space
instances that are meant to be multiplied by an outer
product. Conjugation of this space is conducted sepa-
rately for each subspace.
For example, a 2D regular grid can be cast to a nesting of
two 1D regular grids that would then allow for separate
Fourier transformations along one of the two axes.

3.2. Fields

The second fundamental NIFTy class is the field class
whose purpose is to represent discretized fields. Each field
instance has not only a property referencing an array of
field values, but also domain and target properties. The
7 The covariance of a Gaussian random field that is statisti-
cally homogeneous in position space becomes diagonal in the
harmonic basis.
8 HEALPix homepage http://sourceforge.net/projects/
healpix/

domain needs to be stated during initialization to clarify in
which space the field is defined. Optionally, one can specify
a target space as codomain for transformations; by default
the conjugate space of the domain is used as the target
space.

In this way, a field is not only implemented as a simple
array, but as a class instance carrying an array of values and
information about the geometry of its domain. Calling field
methods then invokes the appropriate methods of the re-
spective space without any additional input from the user.
For example, the scalar product, computed by field.dot,
applies the correct weighting with volume factors as ad-
dressed in Sec. 2.2 and performs basis transformations if
the two fields to be scalar-multiplied are defined on differ-
ent but conjugate domains.9 The same is true for all other
methods applicable to fields; see Tab. 2 for a selection of
those instance methods.

Furthermore, NIFTy overloads standard operations for
fields in order to support a transparent implementation of
algorithms. Thus, it is possible to combine field instances
by +,−, ∗, /, . . . and to apply trigonometric, exponential,
and logarithmic functions componentwise to fields in their
current domain.

3.3. Operators

Up to this point, we abstracted fields and their domains
leaving us with a toolkit capable of performing normaliza-
tions, field-field operations, and harmonic transformations.
Now, we introduce the generic operator class from which
other, concrete operators can be derived.

In order to have a blueprint for operators capable of
handling fields, any application of operators is split into a
general and a concrete part. The general part comprises the
correct involvement of normalizations and transformations,
necessary for any operator type, while the concrete part is
unique for each operator subclass. In analogy to the field
class, any operator instance has a set of properties that
specify its domain and target as well as some additional
flags.

For example, the application of an operator A to a field
s is coded as A(s), or equivalently A.times(s). The in-
stance method times then invokes _briefing, _multiply
and _debriefing consecutively. The briefing and debriefing
are generic methods in which in- and output are checked;
e.g., the input field might be transformed automatically
during the briefing to match the operators domain. The
_multiply method, being the concrete part, is the only
contribution coded by the user. This can be done both ex-
plicitly by multiplication with a complete matrix or implic-
itly by a computer routine.

There are a number of basic operators that often appear
in inference algorithms and are therefore preimplemented in
NIFTy. An overview of preimplemented derivatives of the
operator class can be found in Tab. 3.

3.4. Operator Probing

While properties of a linear operator, such as its diagonal,
are directely accessible in case of an explicitly given matrix,

9 Since the scalar product by discrete summation approximates
the integration in its continuum limit, it does not matter in
which basis it is computed.
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Table 2. Selection of instance methods of the NIFTy field class.

method name description
cast_domain alters the field’s domain without altering the field values or the codomain.

conjugate complex conjugates the field values.
dot applies the scalar product between two fields, returns a scalar.

tensor_dot applies a tensor product between two fields, returns a field defined in the product space.
pseudo_dot applies a scalar product between two fields on a certain subspace of a product space, returns a

scalar or a field, depending on the subspace.
dim returns the dimensionality of the field.

norm returns the L2-norm of the field.
plot draws a figure illustrating the field.

set_target alters the field’s codomain without altering the domain or the field values.
set_val alters the field values without altering the domain or codomain.
smooth smoothes the field values in position space by convolution with a Gaussian kernel.

transform applies a transformation from the field’s domain to some codomain.
weight multiplies the field with the grid’s volume factors (to a given power).

(and more)

Table 3. Overview of derivatives of the NIFTy operator class.

NIFTy subclass description
operator
↪→ diagonal_operator representing diagonal matrices in a specified space.

↪→ power_operator representing covariance matrices that are defined by a power spectrum of a statistically
homogeneous and isotropic random field.

↪→ projection_operator representing projections onto subsets of the basis of a specified space.
↪→ vecvec_operator representing matrices of the form A = aa†, where a is a field.
↪→ response_operator representing an exemplary response including a convolution, masking and projection.

there is no direct approach for implicitly stated operators.
Even a brute force approach to calculate the diagonal ele-
ments one by one may be prohibited in such cases by the
high dimensionality of the problem.

That is why the NIFTy library features a generic
probing class. The basic idea of probing (Hutchinson 1989)
is to approximate properties of implicit operators that are
only accessible at a high computational expense by using
sample averages. Individual samples are generated by a ran-
dom process constructed to project the quantity of interest.
For example, an approximation of the trace or diagonal of a
linear operator A (neglecting the discretization subtleties)
can be obtained by

tr[A] ≈
〈
ξ†Aξ

〉
{ξ}

=
∑
pq

Apq 〈ξpξq〉{ξ} →
∑
p

App,

(11)(
diag[A]

)
p
≈
(
〈ξ ∗Aξ〉{ξ}

)
p

=
∑
q

Apq 〈ξpξq〉{ξ} → App,

(12)

where 〈 · 〉{ξ} is the sample average of a sample of random
fields ξ with the property 〈ξpξq〉{ξ} → δpq for |{ξ}| → ∞
and ∗ denotes componentwise multiplication, cf. (Selig et al.
2012, and references therein). One of many possible choices
for the random values of ξ are equally probable values of
±1 as originally suggested by Hutchinson (1989). Since the
residual error of the approximation decreases with the num-
ber of used samples, one obtains the exact result in the limit
of infinitely many samples. In practice, however, one has to
find a tradeoff between acceptable numerical accuracy and
affordable computational cost.

The NIFTy probing class allows for the implemen-
tation of arbitrary probing schemes. Because each sam-
ple can be computed independently, all probing operations
take advantage of parallel processing for reasons of effi-
ciency, by default. There are two derivatives of the prob-
ing class implemented in NIFTy, the trace_probing and
diagonal_probing subclasses, which enable the probing of
traces and diagonals of operators, respectively.

An extension to improve the probing of continuous op-
erators by exploiting their internal correlation structure as
suggested in the work by Selig et al. (2012) is planned for
a future version of NIFTy.

3.5. Parallelization

The parallelization of computational tasks is supported.
NIFTy itself uses a shared memory parallelization pro-
vided by the Python standard library multiprocessing10

for probing. If parallelization within NIFTy is not desired
or needed, it can be turned off by the global setting flag
about.multiprocessing.

Nested parallelization is not supported by Python; i.e.,
the user has to decide between the useage of parallel pro-
cessing either within NIFTy or within dependent libraries
such as HEALPix.

10 Python documentation http://docs.python.org/2/
library/multiprocessing.html
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Illustration of the Wiener filter code example showing (left to right) a Gaussian random signal (a,d,g), the data including
noise (b,e,h), and the reconstructed map (c,f,i). The additive Gaussian white noise has a variance σ2

n that sets a signal-to-noise
ratio 〈σs〉Ω /σn of roughly 2. The same code has been applied to three different spaces (top to bottom), namely a 1D regular grid
with 512 pixels (a,b,c), a 2D regular grid with 256 × 256 pixels (d,e,f), and a HEALPix grid with nside = 128 corresponding to
196, 608 pixels on the S2 sphere (g,h,i). (All figures have been created by NIFTy using the field.plot method.)

4. Demonstration

An established and widely used inference algorithm is
the Wiener filter (Wiener 1949) whose implementation in
NIFTy shall serve as a demonstration example.

The underlying inference problem is the reconstruction
of a signal, s, from a data set, d, that is the outcome of a
measurement process (2), where the signal response, R s,
is linear in the signal and the noise, n, is additive. The
statistical properties of signal and noise are both assumed
to be Gaussian,
sx G(s,S) ∝ exp

(
− 1

2s
†S−1s

)
, (13)

nx G(n,N). (14)
Here, the signal and noise covariances, S andN , are known
a priori. The a posteriori solution for this inference problem
can be found in the expectation value for the signal m =
〈s〉(s|d) weighted by the posterior P (s|d) . This map can
be calculated with the Wiener filter equation,

m =
(
S−1 +R†N−1R

)−1

︸ ︷︷ ︸
D

(
R†N−1d

)
︸ ︷︷ ︸

j

, (15)

which is linear in the data. In the IFT framework, this sce-
nario corresponds to a free theory as discussed in the work
by Enßlin et al. (2009), where a derivation of Eq. (15) can
be found. In analogy to quantum field theory, the posterior
covariance, D, is referred to as the information propagator
and the data dependent term, j, as the information source.

The NIFTy based implementation is given in App. C,
where a unit response and noise covariance are used.11 This
implementation is not only easily readable, but it also solves
for m regardless of the chosen signal space; i.e., regardless
of the underlying grid and its resolution. The functionality
of the code for different signal spaces is illustrated in Fig. 1.
The performance of this implementation is exemplified in
Fig. 2 for different signal spaces and sizes of data sets. A
qualitative power law behavior is apparent, but the quanti-
tative performance depends strongly on the used machine.

The confidence in the quality of the reconstruction can
be expressed in terms of a 1σ-confidence interval that is

11 The Wiener filter demonstration is also part of the NIFTy
package; see nifty/demos/demo_excaliwir.py for an extended
version.
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(a) (b) (c)

Fig. 3. Illustration of the 1D reconstruction results. Panel (a) summarizes the results from Fig. 1 by showing the original signal
(red dashed line), the reconstructed map (green solid line), and the 1σ-confidence interval (gray contour) obtained from the square
root of the diagonal of the posterior covariance D that has been computed using probing; cf. Eq. (12). Panel (b) shows the 1D
data set from Fig. 1 with a blinded region in the interval [0.5, 0.7]. Panel (c) shows again the original signal (red, dashed line),
the map reconstructed from the partially blinded data (green solid line), and the corresponding 1σ-interval (gray contour) which
is significantly enlarged in the blinded region indicating the uncertainty of the interpolation therein.
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Fig. 2. Illustration of the performance of the Wiener filter code
given in App. C showing computation time against the size of
the data set (ranging from 512 to 256× 256× 256 data points)
for different signal spaces (see legend). The markers show the
average runtime of multiple runs, and the error bars indicate
their variation. (Related markers are solely connected to guide
the eye.)

related to the diagonal of D as follows,

σ(m) =
√

diag[D]. (16)

The operator D defined in Eq. (15) may involve inversions
in different bases and thus is accessible explicitly only with
major computational effort. However, its diagonal can be
approximated efficiently by applying operator probing (12).
Fig. 3 illustrates the 1D reconstruction results in order to
visualize the estimates obtained with probing and to em-
phasize the importance of a posteriori uncertainties.

The Wiener filter code example given in App. C can eas-
ily be modified to handle more complex inference problems.
In Fig. 4, this is demonstrated for the image reconstruction
problem of the classic “Moon Surface” image12. During the
data generation (2), the signal is convolved with a Gaussian
kernel, multiplied with some structured mask, and finally,
contaminated by inhomogeneous Gaussian noise. Despite
12 Source taken from the USC-SIPI image database at http:
//sipi.usc.edu/database/

these complications, the Wiener filter is able to recover most
of the original signal field.

NIFTy can also be applied to non-linear inference prob-
lems, as has been demonstrated in the reconstruction of log-
normal fields with a priori unknown covariance and spec-
tral smoothness (Oppermann et al. 2012b). Further applica-
tions reconstructing three-dimensional maps from column
densities (Greiner et al. 2013) and non-Gaussianity param-
eters from the cosmic microwave background (Dorn et al.
2013) are currently in preparation.

5. Conclusions & Summary

The NIFTy library enables the programming of grid and
resolution independent algorithms. In particular for signal
inference algorithms, where a continuous signal field is to be
recovered, this freedom is desirable. This is achieved with
an object-oriented infrastructure that comprises, among
others, abstract classes for spaces, fields, and operators.
NIFTy supports a consistent discretization scheme that
preserves the continuum limit. Proper normalizations are
applied automatically, which makes considerations by the
user concerning this matter (almost) superfluous. NIFTy
offers a straightforward transition from formulas to imple-
mented algorithms thereby speeding up the development
cycle. Inference algorithms that have been coded using
NIFTy are reusable for similar inference problems even
though the underlying geometrical space may differ.

The application areas of NIFTy are widespread and in-
clude inference algorithms derived within both information
field theory and other frameworks. The successful applica-
tion of a Wiener filter to non-trivial inference problems il-
lustrates the flexibility of NIFTy. The very same code runs
successfully whether the signal domain is an n-dimensional
regular or a spherical grid. Moreover, NIFTy has already
been applied to the reconstruction of Gaussian and log-
normal fields (Oppermann et al. 2012b).
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Fig. 4. Application of a Wiener filter to the classic “Moon Surface” image on a 2D regular grid with 256×256 pixels showing (top,
left to right) the original “Moon Surface” signal (a), the data including noise (b), and the reconstructed map (c). The response
operator involves a convolution with a Gaussian kernel (d) and a masking (e). The additive noise is Gaussian white noise with an
inhomogeneous standard deviation (f) that approximates an overall signal-to-noise ratio 〈σs〉Ω / 〈σn〉Ω of roughly 1. (All figures
have been created by NIFTy using the field.plot method.)

The Prospects of Low-Frequency Radio Observations. Mar-
tin Reinecke is supported by the German Aeronautics Cen-
ter and Space Agency (DLR), under program 50-OP-0901,
funded by the Federal Ministry of Economics and Technol-
ogy.

Some of the results in this paper have been derived using
the HEALPix package (Górski et al. 2005). This research
has made use of NASA’s Astrophysics Data System.

References
Bayes, T. 1763, Philosophical Transactions of the Royal Society, 35,

370
Behnel, S., Bradshaw, R. W., & Seljebotn, D. S. 2009, in Proceedings

of the 8th Python in Science Conference, Pasadena, CA USA, 4 –
14

Cox, R. T. 1946, American Journal of Physics, 14, 1
Dorn et al. 2013, in prep.
Enßlin, T. A. & Frommert, M. 2011, Phys. Rev. D, 83, 105014
Enßlin, T. A., Frommert, M., & Kitaura, F. S. 2009, Phys. Rev. D,

80, 105005
Enßlin, T. A. & Weig, C. 2010, Phys. Rev. E, 82, 051112
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Greiner et al. 2013, in prep.
Hutchinson, M. F. 1989, Communications in Statistics - Simulation

and Computation, 18, 1059
Jasche, J. & Kitaura, F. S. 2010, MNRAS, 407, 29
Jasche, J., Kitaura, F. S., Li, C., & Enßlin, T. A. 2010a, MNRAS,

409, 355
Jasche, J., Kitaura, F. S., Wandelt, B. D., & Enßlin, T. A. 2010b,

MNRAS, 406, 60

Jaynes, E. T. 1957, Physical Reviews, 106 and 108, 620
Jaynes, E. T. 1989, in Maximum Entropy and Bayesian Methods, ed.

J. Skilling (Dordrecht: Kluwer)
Kitaura, F. S., Jasche, J., Li, C., et al. 2009, MNRAS, 400, 183
Laplace, P. S. 1795/1951, A philosophical essay on probabilities (New

York: Dover)
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,

& Teller, E. 1953, J. Chem. Phys., 21, 1087
Metropolis, N. & Ulam, S. 1949, J. Am. Stat. Assoc., 44, 335
Oliphant, T. 2006, A Guide to NumPy (Trelgol Publishing)
Oppermann, N., Junklewitz, H., Robbers, G., et al. 2012a, A&A, 542,

A93
Oppermann, N., Robbers, G., & Enßlin, T. A. 2011, Phys. Rev. E,

84, 041118
Oppermann, N., Selig, M., Bell, M. R., & Enßlin, T. A. 2012b
Reinecke, M. 2011, A&A, 526, A108
Reinecke, M. & Seljebotn, D. S. 2013, ArXiv e-prints
Selig, M., Oppermann, N., & Enßlin, T. A. 2012, Phys. Rev. E, 85,

021134
Seljebotn, D. S. 2009, in Proceedings of the 8th Python in Science

Conference, Pasadena, CA USA, 15 – 22
Shannon, C. E. 1948, Bell System Technical Journal, 27, 379
Weig, C. & Enßlin, T. A. 2010, MNRAS, 409, 1393
Wiener, N. 1949, Extrapolation, Interpolation and Smoothing of Sta-

tionary Time Series, with Engineering Applications (New York:
Technology Press and Wiley), note: Originally issued in Feb 1942
as a classified Nat. Defense Res. Council Rep.

Appendix A: Remark On Matrices

The discretization of an operator that is defined on a con-
tinuum is a necessity for its computational implementation
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and is analogous to the discretization of fields; cf. Sec. 2.2.
However, the involvement of volume weights can cause some
confusion concerning the interpretation of the correspond-
ing matrix elements. For example, the discretization of the
continuous identity operator, which equals a δ-distribution
δ(x− y), yields a weighted Kronecker-Delta δpq,

id ≡ δ(x− y) 7→
〈〈
δ(x− y)

〉
Ωp

〉
Ωq

=
δpq
Vq
, (A.1)

where x ∈ Ωp and y ∈ Ωq. Say a field ξ is drawn from a zero-
mean Gaussian with a covariance that equals the identity,
G(ξ, id). The intuitive assumption that the field values of ξ
have a variance of 1 is not true. The variance is given by

〈ξpξq〉{ξ} =
δpq
Vq
, (A.2)

and scales with the inverse of the volume Vq. Moreover, the
identity operator is the result of the multiplication of any
operator with its inverse, id = A−1A. It is trivial to show
that, if A(x, y) 7→ Apq and

∑
q A
−1
pq Aqr = δpr, the inverse

of A maps as follows,

A−1 7→
〈〈
A−1(x− y)

〉
Ωp

〉
Ωq

= (A−1)pq =
A−1

pq

VpVq
, (A.3)

where A−1
pq in comparison to (A−1)pq is inversely weighted

with the volumes Vp and Vq.
Since all those weightings are implemented in NIFTy,

users need to concern themself with these subtleties only if
they intend to extend the functionality of NIFTy.

Appendix B: Libraries

NIFTy depends on a number of other libraries which are
listed here for completeness and in order to give credit to
the authors.

• NumPy, SciPy13 (Oliphant 2006), and several other
Python standard libraries
• GFFT14 for generalized fast Fourier transformations on

regular and irregular grids; of which the latter are cur-
rently considered for implementation in a future version
of NIFTy
• HEALPy15 and HEALPix (Górski et al. 2005) for

spherical harmonic transformations on the HEALPix
grid which are based on the LibPSHT (Reinecke 2011)
library or its recent successor LibSHARP16 (Reinecke
& Seljebotn 2013), respectively
• Another Python wrapper17 for the performant Lib-

SHARP library supporting further spherical pixeliza-
tions and the corresponding transformations

These libraries have been selected because they have either
been established as standards or they are performant and
fairly general.
13 NumPy and SciPy homepage http://numpy.scipy.org/
14 GFFT homepage https://github.com/mrbell/gfft
15 HEALPy homepage https://github.com/healpy/healpy
16 LibSHARP homepage http://sourceforge.net/projects/
libsharp/
17 libsharp-wrapper homepage https://github.com/mselig/
libsharp-wrapper

The addition of alternative numerical libraries is most
easily done by the indroduction of new derivatives of the
space class. Replacements of libraries that are already used
in NIFTy are possible, but require detailed code knowl-
edge.
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Appendix C: Wiener Filter Code Example

from nifty import * # version 0.3.0
from scipy.sparse.linalg import LinearOperator as lo
from scipy.sparse.linalg import cg

class propagator(operator): # define propagator class

_matvec = (lambda self, x: self.inverse_times(x).val.flatten())

def _multiply(self, x):
# some numerical invertion technique; here, conjugate gradient
A = lo(shape=tuple(self.dim()), matvec=self._matvec, dtype=self.domain.datatype)
b = x.val.flatten()
x_, info = cg(A, b, M=None)
return x_

def _inverse_multiply(self, x):
S, N, R = self.para
return S.inverse_times(x) + R.adjoint_times(N.inverse_times(R.times(x)))

# some signal space; e.g., a one-dimensional regular grid
s_space = rg_space(512, zerocenter=False, dist=0.002) # define signal space
# or rg_space([256, 256])
# or hp_space(128)

k_space = s_space.get_codomain() # get conjugate space
kindex, rho = k_space.get_power_index(irreducible=True)

# some power spectrum
power = [42 / (kk + 1) ** 3 for kk in kindex]

S = power_operator(k_space, spec=power) # define signal covariance
s = S.get_random_field(domain=s_space) # generate signal

R = response_operator(s_space, sigma=0.0, mask=1.0, assign=None) # define response
d_space = R.target # get data space

# some noise variance; e.g., 1
N = diagonal_operator(d_space, diag=1, bare=True) # define noise covariance
n = N.get_random_field(domain=d_space) # generate noise

d = R(s) + n # compute data

j = R.adjoint_times(N.inverse_times(d)) # define source
D = propagator(s_space, sym=True, imp=True, para=[S,N,R]) # define propagator

m = D(j) # reconstruct map

s.plot(title="signal") # plot signal
d.cast_domain(s_space)
d.plot(title="data", vmin=s.val.min(), vmax=s.val.max()) # plot data
m.plot(title="reconstructed map", vmin=s.val.min(), vmax=s.val.max()) # plot map
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