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ABSTRACT

We present an analysis ofPlanck satellite data on the Coma Cluster observed via the Sunyaev-Zeldovich effect. Thanks to its great sensitivity,
Planck is able, for the first time, to detect SZ emission up tor ≈ 3 × R500. We test previously proposed spherically symmetric modelsfor the
pressure distribution in clusters against the azimuthallyaveraged data. In particular, we find that the Arnaud et al. (2010) “universal” pressure
profile does not fit Coma, and that their pressure profile for merging systems provides a reasonable fit to the data only atr < R500; by r = 2×R500 it
underestimates the observedy profile by a factor of≃ 2. This may indicate that at these larger radii either: i) thecluster SZ emission is contaminated
by unresolved SZ sources along the line of sight; or ii) the pressure profile of Coma is higher atr > R500 than the mean pressure profile predicted
by the simulations used to constrain the models. ThePlanck image shows significant local steepening of they profile in two regions about half
a degree to the west and to the south-east of the cluster centre. These features are consistent with the presence of shock fronts at these radii, and
indeed the western feature was previously noticed in theROSAT PSPC mosaic as well as in the radio. UsingPlanck y profiles extracted from
corresponding sectors we find pressure jumps of 4.9+0.4

−0.2 and 5.0+1.3
−0.1 in the west and south-east, respectively. Assuming Rankine-Hugoniot pressure

jump conditions, we deduce that the shock waves should propagate with Mach numberMw = 2.03+0.09
−0.04 and Mse = 2.05+0.25

−0.02 in the west and
south-east, respectively. Finally, we find that they and radio-synchrotron signals are quasi-linearly correlated on Mpc scales, with small intrinsic
scatter. This implies either that the energy density of cosmic-ray electrons is relatively constant throughout the cluster, or that the magnetic fields
fall off much more slowly with radius than previously thought.

Key words. Cosmology: observations− Galaxies: clusters: general− Galaxies: clusters: intracluster medium− Cosmic background radiation,
X-rays: galaxies: clusters

1. Introduction

The Coma cluster is the most spectacular Sunyaev-Zeldovich
(SZ) source in thePlanck sky. It is a low-redshift, massive, and

⋆ Corresponding author: P. Mazzotta,
mazzotta@roma2.infn.it

hot cluster, and is sufficiently extended thatPlanck can resolve
it well spatially. Its intracluster medium (ICM) was observed in
SZ for the first time with the 5.5m OVRO telescope (Herbig
et al. 1992, 1995). Later, it was also observed withMSAM1
(Silverberg et al. 1997), MITO (De Petris et al. 2002), VSA
(Lancaster et al. 2005) andWMAP (Komatsu et al. 2011) which
detected the cluster with signal-to-noise ratio ofS/N = 3.6.
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As reported in the all-sky early Sunyaev-Zeldovich clusterpa-
per,Planck detected the Coma cluster with aS/N > 22 (Planck
Collaboration VIII 2011).

Coma has also been extensively observed in the X-rays from
theROSAT all-sky survey and pointed observations (Briel et al.
1992; White et al. 1993), as well as via a huge mosaic byXMM-
Newton (e.g.Neumann et al. 2001, 2003; Schuecker et al. 2004).
The X-ray emission reveals many spatial features indicating in-
falling sub-clusters such as NGC4839 (Dow & White 1995;
Vikhlinin et al. 1997; Neumann et al. 2001, 2003) , turbulence
(e.g.Schuecker et al. 2004; Churazov et al. 2012) and further
signs of accretion and strong dynamical activity.

Moreover, the Coma cluster hosts a remarkable giant ra-
dio halo extending over 1 Mpc, which traces the non-thermal
emission from relativistic electrons and magnetic fields (e.g.
Giovannini et al. 1993; Brown & Rudnick 2011). The radio
halo’s spectrum and extent require an ongoing, distributedmech-
anism for acceleration of the relativistic electrons, since their ra-
diative lifetimes against synchrotron and inverse Comptonlosses
are short, even compared to their diffusion time across the clus-
ter (e.g.Sarazin 1999; Brunetti et al. 2001). The radio halo also
appears to exhibit a shock front in the west, also seen in the X-
ray image, and is connected at larger scales with a huge radio
relic in the south-west (Ensslin et al. 1998; Brown & Rudnick
2011).

In this paper we present a detailed radial and sector anal-
ysis of the Coma cluster as observed byPlanck. These results
are compared with X-ray and radio observations obtained with
XMM-Newton and the Westerbork Synthesis Radio Telescope.

We useH0 = 70km s−1Mpc−1, Ωm = 0.3 andΩΛ = 0.7,
which imply a linear scale of 27.7 kpc arcmin−1 at the distance
of the Coma cluster (z = 0.023). All the maps are in Equatorial
J2000 coordinates.

2. The Planck frequency maps

Planck1 (Tauber et al. 2010; Planck Collaboration I 2011) is the
third-generation space mission to measure the anisotropy of the
cosmic microwave background (CMB). It observes the sky in
nine frequency bands covering 30–857GHz with high sensitiv-
ity and angular resolution from 31′ to 5′. The Low Frequency
Instrument (LFI;Mandolesi et al. 2010; Bersanelli et al. 2010;
Mennella et al. 2011) covers the 30, 44, and 70 GHz bands with
amplifiers cooled to 20 K. The High Frequency Instrument (HFI;
Lamarre et al. 2010; Planck HFI Core Team 2011a) covers the
100, 143, 217, 353, 545, and 857 GHz bands with bolometers
cooled to 0.1 K. Polarisation is measured in all but the highest
two bands (Leahy et al. 2010; Rosset et al. 2010). A combina-
tion of radiative cooling and three mechanical coolers produces
the temperatures needed for the detectors and optics (Planck
Collaboration II 2011). Two data processing centres (DPCs)
check and calibrate the data and make maps of the sky (Planck
HFI Core Team 2011b; Zacchei et al. 2011). Planck’s sensitivity,
angular resolution, and frequency coverage make it a powerful
instrument for Galactic and extragalactic astrophysics aswell
as for cosmology. Early astrophysics results are given in Planck
Collaboration VIII-XXVI 2011, based on data taken between 13
August 2009 and 7 June 2010.

1 Planck (http://www.esa.int/planck) is a project of the European
Space Agency (ESA) with instruments provided by two scientific con-
sortia funded by ESA member states (in particular the lead countries:
France and Italy) with contributions from NASA (USA), and telescope
reflectors provided in a collaboration between ESA and a scientific con-
sortium led and funded by Denmark.

Fig. 1:Upper panel: Radial profile ofy in a set of circular annuli
centred on Coma. The blue curve is the best fitting simple model
to the profile over the radial range from 85 arcmin to 300 arcmin.
The model consists of a power law plus a constantyoff . The best
fitting value ofyoff is shown with the dashed horizontal line. Two
vertical lines indicate the range of radii used for fitting.Lower
panel: The probability of finding an observed value ofy > yComa
in a given annulus. The probability was estimated by measuring
y in a set of annuli with random centres in any part of the image
outside 5× R500, whereR500 = 47 arcmin.

This paper is based on thePlanck nominal survey of 14
months, i.e. taken between 13 August 2009 and 27 November
2010. The whole sky has been covered two times. We refer to
Planck HFI Core Team(2011b) andZacchei et al.(2011) for the
generic scheme of time ordered information (TOI) processing
and map making, as well as for the technical characteristicsof
the maps used. We adopt a circular Gaussian beam pattern for
each frequency as described in these papers. We use the full-sky
maps in the ninePlanck frequency bands provided in HEALPix
(Górski et al. 2005) Nside = 2048 resolution. An error map is
associated with each frequency band and is obtained from the
difference of the first half and second half of thePlanck rings
for a given position of the satellite, but are basically freefrom
astrophysical emission. However, they are a good representa-
tion of the statistical instrumental noise and systematic errors.
Uncertainties in flux measurements due to beam corrections,
map calibrations and uncertainties in bandpasses are expected to
be small, as discussed extensively inPlanck Collaboration VIII
(2011); Planck Collaboration IX(2011); Planck Collaboration X
(2011).

3. Reconstruction and analysis of the y map

The Comptonisation parametery maps used in this work have
been obtained using the MILCA (Modified Internal Linear
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Combination Algorithm) method (Hurier et al. 2010) on the
Planck frequency maps from 100 GHz to 857 GHz in a region
centred on the Coma cluster. MILCA is a component separa-
tion approach aimed at extracting a chosen component (in our
case the thermal Sunyaev Zeldovich, tSZ, signal) from a multi-
channel set of input maps. It is based mainly on the well known
ILC approach (see for exampleEriksen et al. 2004), which
searches for the linear combination of input maps that minimises
the variance of the final reconstructed map while imposing spec-
tral constraints. For this work, we apply MILCA using two con-
straints, the first to preserve they signal and the second to re-
move CMB contamination in the finaly map. Furthermore, we
correct for the bias induced by the instrumental noise, and we si-
multaneously use the extra degrees of freedom (dof) to minimise
residuals from other components (2 dof) and from the instrumen-
tal noise (2 dof). These would otherwise increase the variance of
the final reconstructedy map. The noise covariance matrix is es-
timated from jack-knife maps. To improve the efficiency of the
algorithm we perform our separation independently on several
bins in the spatial-frequency plane. The finaly map has an effec-
tive point spread function (PSF) with a resolution of 10′ FWHM.
Finally, to characterise the noise properties, such as correlation
and inhomogeneities, we use jack-knife and redundancy maps
for each frequency and apply the same linear transformationas
used to compute the MILCAy map. The MILCA procedure pro-
vides us with a data mapy together with random realisations of
an additive noise modeldy, which is Gaussian, correlated, and
may present some non-stationary behaviour across the field of
view. These maps are used to derive radial profiles and to per-
form the image analysis, as described below.

We verified that the reconstruction methods GMCA (Bobin
et al. 2008) and NILC (Remazeilles et al. 2011) give results that
are consistent within the errors with the MILCA method (see
Planck Collaboration V 2012).

3.1. Analysis of radial profiles

In this paper, we present various radial profilesy(r) of the 2D
distribution of the Comptonisation parametery. These allow us
to study the underlying pressure distribution of the intracluster
medium of Coma. They parameter is proportional to the gas
pressureP = nekT integrated along the line of sight:

y =
σT

mec2

∫

P(l)dl, (1)

wherene and T are the gas electron density and temperature,
σT is the Thomson cross-section,k the Boltzmann constant,me
the mass of the electron andc the speed of light. All the ra-
dial profilesy(r) are extracted from they map after masking out
bright radio sources. In this work we model the observedy(r)
projected profiles using the forward approach described in detail
by e.g.Bourdin & Mazzotta(2008). We assume that the three-
dimensional pressure profiles can be adequately represented by
some analytic functions that have the freedom to describe a wide
range of possible profiles. The 3D model is projected along the
line of sight, assuming spherical symmetry and convolved with
the Planck PSF to produce a projected model functionf (r).
Finally we fit f (r) to the data using aχ2 minimisation of its
distance from the radial profilesy(r) + dy(r) derived from the
MILCA map (y(r)) and 1000 realization of its additive noise
model (dy(r)). Theχ2 is calculated in the principal component
basis of these noise realisations. This procedure uses an orthog-

onal transformation to diagonalise the noise covariance matrix
which, thus, decorrelates the additive noise fluctuation.

It is important to say that, as the parameters of the fitting
functions are highly degenerate, we adopt two techniques to
quantify the uncertainties, i) for each individaul parameter, and
ii) for the overall model (that is, the global model envelope).

More specifically, the confidence intervals on each parame-
ter are calculated using the percentile method; i.e., we rank the
fitted values and select the value corresponding to the chosen
percentile. Suppose that our 1000 realizations for a specific pa-
rameterζ are already ranked from bottom to top, the percentile
confidence interval at 68.4% corresponds to [ζ158th , ζ842th ]. Notice
that in this work the confidence intervals are reported with re-
spect to the best-fit value obtained by fitting the model to the
initial data set.

The envelope of the profiles shown in Figs.5, 6, 7, 11, 12, 13,
and14 delimit, instead, the first 684 out of the 1000 model pro-
files with the lowestχ2. Note that, by design, the forward ap-
proach tests the capability of a specific functional to globally
reproduce the observed data. For this reason, the error estimates
represent the uncertainties on the parameters of the fittingfunc-
tion rather than the local uncertainties of the deprojectedquan-
tity. This technique has been fully tested on hydrodynamic sim-
ulations (e.g.Nagai et al. 2007; Meneghetti et al. 2010).

3.2. Zero level of the y map and the maximum detection
radius

As a result of the extraction algorithm,Planck y maps contain
an arbitrary additive constantyoff which is a free parameter in
all oury-map models. This constant can be determined using the
Planck patch by simply setting to zero they value measured at
very large radii, where we expect to have small or no contribu-
tion to the signal from the Cluster itself. In particular, inthe case
of the 13.6◦ × 13.6◦ MILCA-based patch of the image centred
on Coma, this constant is negative, as illustrated in Fig.1. The
radial profile ofy was extracted from they map in a set of circu-
lar annuli centred at (RA, DEC)= (12h59m47s,+27◦55′53′′). The
errors assigned to the points are crudely estimated by calculat-
ing the variance of they map blocked to a pixel size much larger
than the size of thePlanck PSF. The variance is then rescaled
for each annulus, assuming that the correlation of the noisecan
be neglected on these spatial scales. For a model consistingof a
power law plus a constant (over the radial range from 85 arcmin
to 300 arcmin) we findyoff = −6.3× 10−7 ± 0.9× 10−7. We note
that the precise value ofyoff depends weakly on the particular
model used, and on the range of radii involved in the fitting.

To determine the maximum radius at whichPlanck detects
a significant excess ofy compared to the rest of the image,
we adopted the following procedure. For every annulus around
Coma with measuredy = yComa we have calculated the distri-
bution of y = yrandom measured in 300 annuli of a similar size,
but with the centres randomly placed in any part of the image
outside the 5×R500 circle around Coma, whereR500 is the radius
at which the cluster density contrast is∆ = 500. When calculat-
ing yrandomthe parts of the annuli within 5×R500 were excluded.
The comparison ofyComa with the distribution ofyrandom is used
to conservatively estimate the probability of gettingy > yComa
by chance in an annulus of a given size at a random position
in the image (see Fig.1, lower panel). For the annulus between
2.6 and 3.1R500 (122 arcmin to 147 arcmin) the probability of
gettingyComa by chance is≈ 3 × 10−3 (a crude estimate, given
N = 300 random positions). For smaller radii the probability
is much lower, while at larger radii the probability of getting y

3
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Fig. 2: The Planck y map of the Coma cluster obtained by combining the HFI channels from 100 GHz to 857 GHz. North is up and west is to
the right. The map is corrected for the additive constantyoff . The final map bin corresponds to FWHM= 10′. The image is about 130arcminute×
130arcminute. The contour levels are logarithmically spaced by 21/4 (every 4 lines,y increases by a factor 2). The outermost contour corresponds
to y = 2×σnoise= 4.6× 10−6. The green circle indicatesR500. White and black crosses indicate the position of the brightest galaxies in Coma. The
white sectors indicate two regions where they map shows a local steepening of the radial gradient (see Sect. 7 and Fig.6).

in excess ofyComa is ∼10% or higher. We conclude thatPlanck
detects the signal from Coma in narrow annuli∆R/R = 0.2 at
least up toRmax ∼ 3 × R500. This is a conservative and model-
independent estimate. In the rest of the paper we use paramet-
ric models which cover the entire range of radii to fully exploit
Planck data even beyondRmax.

4. XMM-Newton data analysis

TheXMM-Newton results presented in this paper have been de-
rived from analysis of the mosaic obtained by combining 27
XMM-Newton pointings of the Coma cluster available in the
archive. TheXMM-Newton data have been prepared and anal-
ysed using the procedure described in detail inBourdin et al.
(2011), andBourdin & Mazzotta(2008). We estimated theYX =

Mgas× T parameter of Coma iteratively using theYX − M500
scaling relation calibrated from hydrostatic mass estimates in
a nearby cluster sample observed withXMM-Newton (Arnaud
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et al. 2010); we findR500 ≈ (47± 1)arcmin≈ (1.31± 0.03) Mpc
and we use this value throughout the paper. To study the sur-
face brightness and temperature radial profiles we use the for-
ward approach described inBourdin et al.(2011) taking care to
project the temperature profile using the formula appropriate for
spectroscopy; i.e., we use the spectroscopic-like temperature in-
troduced byMazzotta et al. 2004.

5. The Coma y maps

The main goal of this paper is to present the radial and sectoral
properties of the SZ signal from the Coma cluster. Here we de-
scribe some general properties of the image; the full image anal-
ysis will be presented in a forthcoming paper that will make use
of all thePlanck data, including the extended surveys.

Fig. 2 shows thePlanck y map of the Coma cluster obtained
by combining the HFI channels from 100 GHz to 857 GHz. The
effective point spread function (PSF) of this map corresponds to
FWHM = 10′ and its noise level isσnoise= 2.3× 10−6.

To highlight the spatial structure of they map, in Fig.2 we
overlay the contour levels of they signal. We notice that at this
resolution, they signal observed byPlanck traces the pressure
distribution of the ICM up toR500. As is already known from
X-ray observations (e.g.Briel et al. 1992; White et al. 1993;
Neumann et al. 2003), thePlanck y map shows that the gas in
Coma is elongated towards the west and extends in the south-
west direction toward the NGC4839 subgroup. Fig.2 shows that
the SZ signal from this subgroup is clearly detected byPlanck
(see the white cross to the south-west).

Fig. 2 also shows clear compression of the isocontour lines
in a number of cluster regions. We notice that, in most cases,
the extent of the compression is of the order of they map cor-
relation length (≈ 10′): it is likely that most of these are image
artifacts induced by correlated noise in the y map. Nevertheless,
we also notice at least two regions where the compression of the
isocontour lines extends over angular scales significantlylarger
than the noise correlation length. These two regions, located to
the west and to the southeast of cluster centre, may indicate
real steepenings of the radial gradient. Such steepenings suggest
the presence of a discontinuities in the cluster pressure profile,
which may be produced by a thermal shocks, as we discuss in
Sect.7. For convenience, in Fig.2 we outline the regions from
which we extract they profiles used in Sect.7 with white sec-
tors. It is worth noting that the western steepening extendsover
a much larger angular scale than indicated by the white sector.
In Sect.7 we explain why we prefer a narrower sector for our
quantitative analysis.

In Fig. 3 we show thePlanck y map of the Coma cluster
obtained by adding the 70 GHz channel of LFI to the HFI chan-
nels and smoothing to a lower resolution. The PSF of this map
corresponds to FWHM= 30′, which lowers the noise level by
approximately one order of magnitude with respect to the 10′

resolution map:σnoise30 = 3.35× 10−7. As for Fig. 2 the out-
ermost contour level indicatesy = 2 × σnoise30 = 6.7 × 10−7.
Due to the larger smoothing, this map shows less structure in
the cluster centre, but clearly highlights thatPlanck can trace the
pressure profile of the ICM well beyondR200 ≈ 2×R500 (see the
outermost circle in Fig.3).

6. Azimuthally averaged profile

Before studying the azimuthally averaged SZ profile of the
Coma cluster in detail, we first show a very simple performance

Fig. 3: ThePlanck y map of the Coma cluster obtained by combining
the 70 GHz channel of LFI and the HFI channels from 100 GHz to
857 GHz. The map has been smoothed to have a PSF with FWHM=

30′. The image is about 266arcminarcmin. The outermost contourcor-
responds toy = 2×σnoise30= 6.7×10−7. The green circles indicateR500

and 2× R500 ≈ R200.

test. In Fig.4 we compare the SZ effect toward the Coma clus-
ter, in units of the Rayleigh-Jeans equivalent temperature, mea-
sured byPlanck and byWMAP using the optimal V and W bands
(from Fig. 14 ofKomatsu et al. 2011). This figure shows that, in
addition to its greatly improved angular resolution,Planck fre-
quency coverage results in errors on the profile which are≈ 20
times smaller than those fromWMAP. Thanks to this higher sen-
sitivity Planck allows us to study, for the first time, the SZ signal
of the Coma Cluster to its very outermost regions. We do this by
extracting the radial profile in concentric annuli centred on the
cluster centroid (RA, Dec)=(12h59m47s,+27◦55′53′′).

We fit the observedy profile using the pressure formula pro-
posed byArnaud et al.(2010):

P(x) =
P0

(c500x)γ [1 + (c500x)α](β−γ)/α , (2)

where,x = (R/R500). This is done by fixingR500 at the best-fit
value obtained from the X-ray analysis (R500 = 1.31Mpc, see
Sect.4) and using three different combinations of parameters
which we itemise below:

– a “universal” pressure model (which we will refer to as
Model A) for which we leave onlyP0 as a free parameter
and fix c500 = 1.177,γ = 0.3081,α = 1.0510,β = 5.4905
(Arnaud et al. 2010);

– a pressure profile appropriate for clusters with disturbed X-
ray morphology (Model B) for which we leaveP0 as a free
parameter and fixc500 = 1.083, γ = 0.3798,α = 1.406,
β = 5.4905 (Arnaud et al. 2010);

– a modified pressure profile (Model C) for which we let all
the parameters vary (exceptR500).
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Fig. 4: Comparison of the radial profile of the SZ effect towards the
Coma cluster, in units of the Rayleigh-Jeans equivalent temperature
measured byPlanck (crosses) with the one obtained byWMAP (open
squares) using the optimal V and W band data (from figure 14 of
Komatsu et al. 2011). The plottedPlanck errors are the square root of
the diagonal elements of the covariance matrix. Notice thatprofiles have
been extracted from SZ maps with 10′ and 30′ angular resolution from
Planck andWMAP, respectively.

The best-fit parameters, together with their 68.4% confi-
dence level errors, are reported in Table1. The resulting best-fit
models, together with the envelopes corresponding to the 68.4%
of models with the lowestχ2, are overlaid in the upper left, up-
per right and lower left panels of Fig.5, for models A, B, and
C, respectively. We find that Eq. (2) fits the observedy profile
only if all the parameters (exceptR500) are left free to vary (i.e.,
Model C).

We also fit the observed radialy profile using a fitting for-
mula (Model D) derived from the density and temperature func-
tionals introduced byVikhlinin et al. (2006):

P = ne× kT, (3)

where,

n2
e(r) = n2

0
(r/rc)−α

[1 + (r/rc)2]3β−α/2
1

[1 + (r/rs)3]ǫ/3

+
n2

02

[1 + (r/rc2)2]3β2
, (4)

and

T (r) = T0
(r/rt)−a

[1 + (r/rt)b]c/b
. (5)

Notice that, for our purpose, Eq. (3) is only used to fit the
cluster pressure profile. For this reason, it is unlikely that, when
considered separately, the best-fit parameters of Eqs. (4) and (5)
reproduce the actual cluster density and temperature profiles.
The best-fit parameters, together with their 68.4% confidence
level errors, are reported in Table2.

The resulting model, with the 68.4% envelope is overlaid in
the lower-right panel of Fig.5. The above temperature and den-
sity functions contain many more free parameters than Eq. (2).

All these parameters have been specifically introduced to ade-
quately fit all the observed surface brightness and temperature
profiles of X-ray clusters of galaxies. This function, thus,is
capable, in principle, of providing a better fit to any observed
SZ profile. Despite this, we find that compared with Model C,
Model D does not improve the quality of the fit. The reducedχ2

of model D is slightly higher (∆χ2 = 0.3) than for model C.

7. Pressure jumps

Fig. 2 shows at least two cluster regions where they isocontour
lines appear to be compressed on angular scales larger than the
correlation length of the noise map. This indicate a local steep-
ening of they signal. The most prominent feature is located at
about 0.5 degrees from the cluster centre to the west. Its position
angle is quite large and extends from 340 deg to 45 deg. The
second, less prominent feature, is located at 0.5 degrees from
the cluster center to the south-east.

Both features suggest the presence of discontinuities in the
underlying cluster pressure profiles. To test this hypothesis and
to try to estimate the amplitude and the position of the pressure
jumps we use the following simplified approach: i) we select
two sectors; ii) we extract they profiles using circular annuli;
and iii) assuming spherical symmetry, we fit them to a 3D pres-
sure model with a pressure jump. This test requires that the ex-
traction sectors are carefully selected. Ideally one wouldlike to
follow, as close as possible, the curvature of they signal around
the possible pressure jumps. It is clear, however, that thisproce-
dure cannot be done exactly but it may be somewhat arbitrary.
The pressure jumps are unlikely to be perfectly sphericallysym-
metric, thus, the sector selection depends also on what is ini-
tially thought to be the leading edge of the underlying pressure
jump. Despite of this arbitrariness, our approach remain valid
for the purpose of testing for the presence of a shock. As matter
of fact, even if we choose a sector that does not properly sam-
ple the pressure jump, our action goes in the direction of mixing
the signal from the pre- and post-pressure jump regions. This
will simply result is a smoother profile which, when fitted with
the 3D pressure model, will returns a smaller amplitude for the
pressure jump itself. Thus, in the worst scenario, the measured
pressure jumps would, in any case, represent a lower estimate of
the jumps at the leading edges.

In order to minimise the mixing of pre- and post-shock sig-
nals, one can reduce the width of the analysis sector to the
limit allowed by signal statistics. Indeed, for very high signal-
to-noise, one could, in principle, extract the y signal along a line
perpendicular to the leading edge of the shock. This would limit
mixing of pre- and post shock signals to line-of-sight and beam
effects. In the specific case of the Coma cluster we notice that
the west feature is located in a higher signal-to-noise region than
the south-east one. For this reason we decide to extract the west
profile using a sector with an angular aperture smaller than the
actual angular extent of this feature in they map.

Following the above considerations, we set the centres and
orientations of the west and the south-east sectors to the values
reported in the first three columns of Table3 and indicated in
Fig. 2. In Sect.9.3 below we demonstrate that, within the se-
lected sectors, the SZ and the X-ray analyses give consistent re-
sults. This indicates that, despite the apparent arbitrariness in
sector selection,: i) these SZ-selected sectors are representative
of the features under study and; ii) that the hypothesis of spher-
ical symmetry is a good approximation, at least within the se-
lected sectors.
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Fig. 5: Comparison between the azimuthally averagedy profile of the Coma cluster and various models. From left to right, top to bottom, we
show the best-fity models corresponding to the Arnaud et al. (2010) “universal” profile (A), the “universal” profile for merger systems (B),the
modified “universal” profile (C, see1), and the Vikhlinin et al. fitting formula (D, see.2). For each panel we show in theUpper subpanel the points
indicating the Comay profile extracted in circular annuli centred at (RA,DEC)= (12h59m47s,+27◦55′53′′). The plotted errors are the square root
of the diagonal elements of the covariance matrix. Continuous and dotted lines are the best-fit projectedy model after and before the convolution
with the Planck PSF, respectively. The gray shaded region indicates the envelope derived from the 68.4% of models with the lowestχ2. In the
Lower subpanel we show the ratio between the observed and the best-fit model of the projectedy profile in units of the relative error. The gray
shaded region indicates the envelope derived from the 68.4%of models with the lowestχ2.

We fit the profiles using a 3D pressure model composed of
two power laws with indexη1 andη2 and a jump by a factor
DJ at radiusrJ. It is important to note that, even if irrelevant for
the estimate of the jump amplitude, the value of both the slope
η2 and the absolute normalization of the 3D pressure at a given
radius depends on the slope and extension of the ICM along the
line of sight. To take this into account we assume that outside
the fitting region (i.e. atr > rs, with rs = 2Mpc) the slope of the
pressure profile follows the asymptotic average pressure profile

corresponding to model C (i.e.η3 = β = 3.1; see Sect.6 and
Table1). The 3D pressure profile is thus given by:

P = P0 ×



















DJ(r/rJ)−η1 r < rJ;
(r/rJ)−η2 rJ < r < rs;
(rs/rJ)−η2(r/rs)−η3, r > rs.

(6)

We project the above 3D pressure model, integrating along the
line of sight forr < 10Mpc.

The best-fit parameters, together with their 68.4% errors,
are reported in Table3. Note, that the error bars onrJ are
smaller than the angular resolution ofPlanck. As explained in
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Table 1: Best-fit parameters for theArnaud et al.(2010) pressure model (Eqs.4 and5).

Model P0 c500 γ α β R500

(Mpc) (10−2cm−3 keV) (Mpc)

A (“Universal”) 2.57+0.04
−0.04 1.17 0.308 1.051 5.4905 1.31

B (“Universal” merger) 1.08+0.02
−0.02 1.083 0.3798 1.406 5.49 1.31

C (“Universal” all free) 2.2+0.3
−0.4 2.9+0.3

−0.2 < 0.001 1.8+0.5
−0.2 3.1+0.5

−0.2 1.31

Table 2: Best-fit parameters for pressure model D (Eq.3, Vikhlinin et al. 2006). As this model is used to fit the pressure, the best-fit
density and temperature profiles are highly correlated and are unlikely to describe the actual cluster density and temperature profiles
(see text).

Density Temperature

n0 (10−3cm−3) 2.7+0.1
−0.3 | T0 (KeV) 6.9+0.1

−0.8

rc (Mpc) 0.4+0.2
−0.02 | rt (Mpc) 0.26+0.05

−0.07

rs (Mpc) 0.7+0.2
−0.2 | a 0

α < 10−6 | b 3.4+5.0
−0.2

β 0.57+0.02
−0.3 | c 0.6+0.7

−0.1

γ 3 |
ǫ 2.1+0.7

−0.7 |
n02 (cm−3) 0a |

a The fit returnsn02 = 0 thusrc2 andβ2 are arbitrary.

Fig. 6: Comparison between the projectedy radial profile and the best-fit shock model of the west (left) and south-east (right) pressure jumps.
Upper panels: The points indicate the Comay profile extracted from the respective sectors, whose centres and position angles are reported in
Table3. The plotted errors are the square root of the diagonal elements of the covariance matrix. Continuous and dotted lines are the best-fit
projectedy model reported in Table3 after and before the convolution with thePlanck PSF, respectively. The two vertical lines mark the±1σ
position range of the jump. The gray shaded region indicatesthe envelope derived from the 68.4% of models with the lowestχ2. Lower panels:
Ratio between the observed and the best-fit model of the projectedy profile in units of the relative error. The gray shaded regionindicates the
envelope derived from the 68.4% of models with the lowestχ2.

AppendixA, this is not surprising and is simply due to projec-
tion effects.

In the left and right panels of Fig.7 we show with a grey
shadow the corresponding 3D pressure jump models with their
errors for the west and south-east sectors, respectively. For con-
venience in Fig.6 we overlay the data points with the best-fit
projectedy models after and before the convolution with the
Planck PSF. As shaded region, we report the envelope derived
from the 68.4% of models with the lowestχ2. In the lower pan-

els we show the ratio between the data and the best-fit model
of the projectedy profile in units of the relative error. This fig-
ure clearly shows that the pressure jump model provides a good
fit to the observed profiles for both the west and south-east sec-
tors. Furthermore the comparison of the projected model before
and after the convolution with the PSF clearly shows that, for
the Coma cluster, the effect of thePlanck PSF smoothing is
secondary with respect to projection effects. This indicates that
there is only a modest gain, from the detection point of view,in
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Fig. 7:68.4% confidence level range of the 3D-pressure model for thewest (left panel) and south-east (right panel) sectors in Fig. 6. Grey shaded
regions are the profiles derived from thePlanck data. Red regions are the profiles derived from theXMM-Newton data.

Fig. 8:Westerbork Synthesis Radio Telescope 352 MHz total intensity
image of the Coma Cluster from figure 3 ofBrown & Rudnick(2011)
overlaid with they contour levels from Fig.2. Most of the radio flux
from compact sources has been subtracted; the resolution is133arcsec×
68arcsec at−1.5 degrees (W of N). The white circle indicatesR500.

observing this specific feature using an instrument with a much
better angular resolution thanPlanck (for a full discussion, see
AppendixA).

As reported in Table3 the pressure jumps corresponding to
the observed profiles areDJ = 4.9+0.4

−0.2 andDJ = 5.0+1.3
−0.1 for the

west and south-east sectors, respectively.

Fig. 9:Scatter plot between the radio map after smoothing to FWHM=
10′ and they signal for the Coma cluster. To make the plot clearer, we
show errors only for some points.

8. SZ-Radio comparison

In Fig. 8 we overlay they contour levels from Fig.2 with the
352 MHz Westerbork Synthesis Radio Telescope diffuse total
intensity image of the Coma cluster from figure 3 ofBrown
& Rudnick (2011). Most of the emission from compact radio
sources both in and behind the cluster has been automatically
subtracted. This image clearly shows a correlation betweenthe
diffuse radio emission and they signal.

To provide a more quantitative comparison of the observed
correlation, we first removed the remaining compact source
emission in the radio image using the multiresolution filtering
technique ofRudnick(2002). This removed 99.9% of the flux
of unresolved sources, although residual emission likely associ-
ated with the tailed radio galaxy NGC 4874 blends in to the halo

9
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Table 3: Best-fit parameters of the pressure jump model of Eq.(6).

Sector aRA aDec aPosition angle P0 rJ DJ η1 η2

(J2000) (J2000) (deg:deg) (10−4cm−3 keV) (Mpc)

West 13 00 25.6 +27 54 44.00 340:364 8.8+0.2
−0.5 1.13+0.03

−0.01 4.9+0.4
−0.2 0.0+0.2

−0.0 1.2+0.2
−0.2

South-east 12 59 48.9 +28 00 14.39 195:240 3.6+0.1
−0.5 0.92+0.02

−0.01 5.0+1.3
−0.1 1.5+0.2

−0.2 1.00+0.3
−0.5

a The RA and Dec indicate the centre of curvature of the sectorsfrom which the profiles have been extracted.
b We fixedrs = 2 Mpc andη3 = 3.1 (see text).

Fig. 10:Comparison of they (black) and diffuse radio (red) global ra-
dio profiles in Coma. The radio profile has been convolved to 10arcmin
resolution to match thePlanck FWHM and simply rescaled by the mul-
tiplication factor derived from the linear regression shown in Fig. 9.
The radio errors are dominated by uncertainties in the zero level due
to a weak bowling effect resulting from the lack of short interferometer
spacings.

emission and contributes to the observed brightness withinthe
central∼ 300 kpc. After filtering, we convolve the the diffuse ra-
dio emission to 10 arcmin resolution to match thePlanck y map.
We then extract the radio andy signals from ther < 50 arcmin
region of the cluster and plot the results in Fig.9. This is the
first quantitative surface-brightness comparison of radioand SZ
brightnesses2. We fit the data in the log-log plane using the
Bayesian linear regression algorithm proposed byKelly (2007),
which accounts for errors in both abscissa and ordinate. Thera-
dio errors of 50 mJy/10′ beam are estimated from the off-source
scatter, which is dominated by emission over several degree
scales which is incompletely sampled by the interferometer. We
find a quasi-linear relation between the radio emission and they
signal:

y

10−5
= 10(0.86±0.02)F(0.92±0.04)

R , (7)

whereFR is the radio brightness in Jy beam−1 (10 arcmin beam
FWHM).

2 see e.g.Ferrari et al.(2011) andMalu & Subrahmanyan(2012) for
a morphological comparison between radio and SZ brightnesses

Furthermore, using the same algorithm, we find that the in-
trinsic scatter between the two observables is only (9.6± 0.2)%.
The quasi-linear relation between the radio emission andy sig-
nal, and its small scatter, are also clear from the good matchof
the radio andy profiles shown in Fig.10, obtained by simply
rescaling the 10′ FWHM convolved radio profile by 100.86×105.
An approximate linear relationship between the radio halo and
SZ total powers for a sample of clusters was also found byBasu
(2012), for the case that the signals are calculated over the vol-
ume of the radio halos.

There are several sources of scatter contributing to the point-
by-point correlation in Fig.9 and the radial radio profile in
Fig. 10. First is the random noise in the measurements, which
is ∼2–3mJy/135′′ beam. Even after convolving to a 10′ beam,
however, this is insignificant with respect to the other sources
of scatter. A second issue is the proper zero-level of the radio
map, based on the incomplete sampling of the largest scale struc-
tures by the interferometer. After making our best estimateof the
zero-level correction, the remaining uncertainty is∼ 25 mJy/10′

beam, which is indicated as error bars in Fig.10.
Note that the radio profile is significantly flatter at large radii

than presented byDeiss et al.(1997). However, their image,
made with the Effelsberg 100m telescope at 1.4 GHz, appears
to have set the zero level too high; they do not detect the faint
Coma related emission mapped byBrown & Rudnick(2011) on
the Green Bank Telescope, also at 1.4 GHz, and byKronberg
et al.(2007) at 0.4 GHz using Arecibo and DRAO. The addition
of a zero level flux to theDeiss et al.(1997) measurements at
their lowest contour level flattens out their profile to be consis-
tent with ours at their furthest radial sample at 900 kpc.

Finally, there are azimuthal variations in the shape of the ra-
dial profile, both for the radio and Y images. This is seen most
clearly in Fig.6, comparing the west and southeast sectors. In
the radio, the radial profiles in 90 degree wide sectors differ by
up to a factor of 1.6 from the average; it is therefore important to
understand Fig.10as an average profile, not one that applies uni-
versally at all azimuths. These azimuthal variations can also con-
tribute to the scatter in the point-by-point correlation inFig. 9,
but only to the extent that the behavior differs between radio and
Y.

9. Discussion

So far In this paper we have presented the data analysis of the
Coma cluster observed in its SZ effect by thePlanck satellite.
In Sect.5 and Sect.6 we showed that, thanks to its great sen-
sitivity, Planck is capable of detecting significant SZ emission
above the zero level of they map up to at least 4 Mpc which
corresponds toR ≈ 3× R500. This allows, for the first time, the
study of the ICM pressure distribution in the outermost clus-
ter regions. Furthermore, we performed a comparison with radio
synchrotron emission. Here we discuss our results in more detail.

10



Planck Collaboration: The physics of the Coma cluster

Fig. 11:Comparison of the pressure slopes of the best-fit models shown
in Fig. 5. The red, green, blue and grey lines correspond to Models A,
B, C, and D, respectively.

Fig. 12:Scaled Coma pressure profile with relative errors (black line
and gray shaded region) overplotted on the scaled pressure profiles de-
rived from numerical simulations of B04+N07+P08 (blue line and vio-
let shaded region),Battaglia et al.(2011) (red line and shaded region),
and Dolag et al. (in preparation, green line and light green shaded re-
gion).

9.1. Global pressure profile

To study the 3D pressure distribution of the ICM up tor =3–
4×R500, we fit the observedy profile using four analytic models
summarised in Tables1 and2 (see Sect.6).

From the ratio plot shown in Fig.5 we immediately see that
the “universal” pressure profile (Model A) is too steep both in the

cluster centre and in the outskirts. The fit to the data thus results
in an overestimation and underestimation of the observed SZsig-
nal at smaller and larger radii, respectively. The overestimation
of the observed profile at lower radii is consistent withWMAP
(Komatsu et al. 2011). This is expected, since merging systems,
such as Coma, have a flatter central pressure profile than the
“universal” model (Arnaud et al. 2010). For merging systems,
Model B should provide a better fit, as it has been specifically
calibrated, atr < R500, to reproduce the average X-ray profiles
of such systems (Arnaud et al. 2010). Fig.5 shows that this latter
model indeed reproduces the data well atr < R500. Nevertheless,
as for Model A, it still underestimates the observedy signal at
larger radii. The observed profile clearly requires a shallower
pressure profile in the cluster outskirts, as evident in Models C
and D. This is important, as the external pressure slopes of both
Model A and B are tuned to reproduce the mean slope predicted
by the hydrodynamic simulations ofBorgani et al.(2004), Nagai
et al. (2007), andPiffaretti & Valdarnini (2008, from now on,
B04+N07+P08). ThePlanck observation shows that the pres-
sure slope for Coma is flatter than this value. This is also illus-
trated in Fig.11where we report the pressure slope as a function
of the radius in our models: we find that while atR = 3 × R500
the mean predicted pressure slope is> 4.5 for Models A and B,
the observed pressure slope of Coma is≈ 3.1 as seen in Model
C and Model D.

In Fig. 12 we compare the scaled pressure profile of Coma
with the pressure profiles derived from the numerical simula-
tions of B04+N07+P08 and with the numerical simulations of
Dolag et al. (in preparation) andBattaglia et al.(2011). We note
that the simulations agree within their respective dispersions
across the whole radial range. The Dolag et al. (in preparation)
andBattaglia et al.(2011) profiles best agree within the central
part, and are flatter than the B04+N07+P08 profile. This is likely
due to the implementation of AGN feedback, which triggers en-
ergy injection at cluster centre, balancing radiative cooling and
thus stopping the gas cooling. In the outer parts where cooling is
negligible, the B04+N07+P08 and Dolag et al. (in preparation)
profiles are in perfect agreement. TheBattaglia et al.(2011) pro-
file is slightly higher, but still compatible within its dispersion
with the two other sets. Here again, differences are probably due
to the specific implementation of the simulations.

We find that the Coma pressure profile at 2× R500 is al-
ready 2 times higher than the average profile predicted by the
B04+N07+P08 and Dolag et al. (in preparation) simulations, al-
though still within the overall profile distribution which has quite
a large scatter. The pressure profile ofBattaglia et al.(2011) ap-
pears to be more consistent with the Coma profile and, in gen-
eral, with thePlanck SZ pressure profile obtained by stacking
62 nearby massive clusters (Planck Collaboration V 2012). Still
Fig.12 indicates that the Coma pressure profile lies on the upper
envelope of the pressure profile distribution derived from all the
above simulations.

It is beyond the scope of this paper to discuss in detail the
comparison between theoretical predictions. Here we just stress
that, at such large radii, there is the possibility that the observed
SZ signal could be significantly contaminated by SZ sources
along the line of sight. This signal could be generated by: i)
unresolved and undetected clusters; and ii) hot-warm gas fila-
ments. Contamination would produce an apparent flattening of
the pressure profile. We tested for possible contamination by un-
resolved clusters by re-extracting they profile, excluding circu-
lar regions ofr = 5′ centred on all NED identified clusters of
galaxies present in the Coma cluster region. We find that the
new y profile is consistent within the errors with the previous
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Fig. 13: Comparison between thePlanck and XMM-Newton derived
deprojected total pressure profiles.Upper panel: Blue line and light
blue shaded region are the deprojected pressure profile, with its 68.4%
confidence level errors, obtained from the X-ray analysis oftheXMM-
Newton data (see text). The black line and grey shaded regions are
the best-fit and 68.4% confidence level errors from the Model Cpres-
sure profile resulting from the fit shown in Fig.5. Lower panel: Ratio
between theXMM-Newton and Planck derived pressure profiles. The
black line and the grey shading indicate the best-fit and the 68.4% con-
fidence level errors, respectively.

one, which implies that this kind of contamination is negligible
in the Coma region. Thus, if there is SZ contamination it is prob-
ably related to the filamentary structures surrounding the cluster.
We note that from the re-analysis of theROSAT all-sky survey,
Bonamente et al.(2009) andBonamente et al.(2003) report the
detection of extended soft X-ray emission in the Coma cluster re-
gion up to 5 Mpc from the cluster centre. They propose that this
emission is related to filaments that converge toward Coma and
is generated either by non-thermal radiation caused by accretion
shocks or by thermal emission from the filaments themselves.

9.2. X-ray and SZ pressure profile comparison

We can compare the 3D pressure profile derived from the SZ ob-
servations to that obtained by multiplying the 3D electron den-
sity and the gas temperature profiles derived from the data anal-
ysis of theXMM-Newton mosaic of Coma.

In Fig.13we compare the 3D X-ray pressure profile with the
3D SZ profile of our reference Model C. We point the reader’s
attention to the very large dynamical range shown in the figure:
the radius extends up tor = 4 Mpc, probing approximately four
orders of magnitude in pressure. In contrast, due to a combi-
nation of relatively high background level and available mosaic
observations,XMM-Newton can probe the ICM pressure profile
of Coma only up to∼ 1 Mpc. This is a four times smaller radius
thanPlanck, probing only∼ one order of magnitude in pressure.

Due to the good statistics of bothPlanck andXMM-Newton
data, we see that the pressure profile derived fromPlanck ap-
pears significantly lower than that ofXMM-Newton, even if they
differ by only 10− 15%. This discrepancy may be related to the
fact that we are applying spherical models to a cluster that has a

Fig. 14:Same as Fig.13but from profiles extracted in four 90◦ sectors.
From left to right, top to bottom we report the west (−45◦,45◦), north
(45◦, 135◦), east (135◦,225◦) and south (225◦,3155◦) sectors, respec-
tively.

much more complex morphology, with a number of substruc-
tures. A detailed structural analysis exploring these apparent
pressure profile discrepancies is beyond the scope of this paper
and will be presented in a forthcoming study. Here we just show
a comparison of the 3D pressure profiles obtained fromPlanck
and XMM-Newton in four 90◦ sectors centred on the cluster
and oriented towards the four cardinal points (see Fig.14). This
shows that the pressure discrepancy depends strongly on thesec-
tor considered. In particular, we find that while in the northsec-
tor thePlanck andXMM-Newton pressure profiles agree within
the errors, in the west sector we find discrepancies, up to 25–
30%. As known from X-ray observations (see e.g.,Neumann
et al. 2003) the north sector is the one that is most regular, while
the west sector is the one in which the ICM is strongly elongated,
with the presence of major structures.

9.3. Shocks

In Sect.7 we show that Coma exhibits a localised steepening
of its y profile in at least two directions, to the west and to the
south-east. These suggest the presence of discontinuitiesin the
underlying 3D pressure profile of the cluster. Using two sectors
designed to follow the curvature of they signal around the pres-
sure jumps we estimate their amplitudes. This represents the first
attempt to identify and estimate the amplitude of possible pres-
sure jumps in the cluster atmosphere directly from the SZ sig-
nal. Interestingly, we find that similar features are observed at
the same locations in the X-ray and radio bands.

In Fig. 15we compare the X-ray and radio cluster properties
from the west and south-east sectors selected from the SZ im-
age. The X-ray surface brightness and temperature profiles have
been derived from theXMM-Newton mosaic while the radio pro-
file is extracted from the 352 MHz Westerbork observations at
2arcmin resolution. To guide the reader’s eye, we mark, for each
profile in the figure, the position of the pressure jump as derived
from the analysis of they signal (See Table3). For both sectors
we find that the X-ray surface brightness and radio profiles show
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Fig. 15: Comparison of the X-ray and radio properties in the west (left panels) and south-east (right panels) sectors.Upper panels: Surface
brightness and temperature profiles of theXMM-Newton mosaic. The continuous histograms show the best-fit models.The 3D pressure model
is overplotted in Fig.7. Lower panels: Radial profiles of 352 MHz radio emission at 2arcmin resolution in the west (left) and south-east (right)
sectors after subtraction of radio emission from compact sources (seeBrown & Rudnick 2011). The two vertical lines mark the position range of
the inferred jumps.

relatively sharp features at the same position as the steepening
of the Planck y profiles. This is also the case for the tempera-
ture profile of the west sector. For the south-east sector, how-
ever, this evidence is less clear. Because it is located in a much
lower signal-to-noise region of the cluster, the error of the out-
ermost temperature bin is too large to be able to put a stringent
constraint on a possible temperature jump.

To check if the X-ray features are also consistent with the
hypothesized presence of a discontinuity in the cluster pressure
profile we simultaneously fit the observed X-ray surface bright-
ness and temperature profiles using the following discontinuous
3D density and temperature models:

n = n0 ×
{

Dn(r/rX)−ξ1 r < rX

(r/rX)−ξ2 r > rX ; (8)
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Table 4: Main parameters of the fit of the temperature and density models to theXMM-Newton data (see Eqs.8 and 9). The symbols
Mn, MT, MnT, andMSZ represent the Mach numbers derived from the X-ray density, temperature, and pressure (n × T ), and SZ
pressure jumps, respectively (see text).

Sector rx Dn Mn DT MT Dn × DT MnT MSZ

(Mpc)

West 1.173+0.0003
−0.003 2.00+0.03

−0.03 1.73+0.03
−0.03 3.0+0.7

−0.6 2.6+0.4
−0.4 6.0+1.4

−1.1 2.3+0.2
−0.2 2.03+0.09

−0.04

South-east 0.9778+0.0002
−0 2.43+0.02

−0.02 2.10+0.01
−0.01 1.3+1.8

−0.6 1.3+1.3
−1.3 3.1+1.6

−1.1 1.6+0.3
−0.1 2.05+0.25

−0.02

and

T = T0 ×
{

DT(r/rX)−ζ1 r < rX

(r/rX)−ζ2 r > rX .
(9)

HererX is the position of the X-ray jump andDn andDT are am-
plitudes of the density and temperature discontinuities, respec-
tively. The above models are projected along the line of sight for
r < 10Mpc using a temperature function appropriate for spec-
troscopic data (Mazzotta et al. 2004). Notice that due to the poor
statistics of the temperature in the south-east sector, forthis pro-
file we fix ξ1 = ξ1 = 0. This choice does not affect the deter-
mination of the jump positionrX which is mainly driven by the
surface brightness rather than by the temperature profile.

The best-fit position, density, and temperature jumps, to-
gether with their 68.4% confidence level errors are reportedin
Table4. To make a direct comparison with the pressure jump
measured from the SZ signal, in the same table we add the am-
plitude of the X-ray pressure jump derived by multiplying the
X-ray density and temperature models (i.e.,Px = nekT ).

The best-fit surface brightness and projected temperature
models are shown as histograms in Fig.15. The best-fit 3D
Px model and its 68.4% confidence level errors are overlaid in
Fig. 7.

From Table4 we see that the X-ray data from the west sector
are consistent with the presence of a discontinuity, both inthe 3D
density and 3D temperature profiles. Both jumps are detectedat
> 5σ confidence and the pressure jumps derived from X-ray and
from SZ are consistent within the 68.4% confidence level errors
(Table3 and Table4 ). This agreement near the discontinuity is
also seen in Fig.7 which, in addition, shows that the 3D pressure
profiles for the west sector derived from the SZ and the X-ray
data are consistent not only near the jump, but also over a much
wider radial range.

These results indicate that the feature seen byPlanck is pro-
duced by a shock induced by supersonic motions in the cluster’s
hot gas atmosphere. Assuming Rankine-Hugoniot pressure jump
conditions across the fronts (§85 of Landau & Lifshitz 1959),
the discontinuity in the density, temperature and pressurepro-
files are uniquely linked to the shock Mach number.

Table4 shows that the Mach number obtained from the SZ
and X-ray pressure profiles are also consistent within the±1σ
confidence level errors. Furthermore, the Mach number derived
from the X-ray density and temperature profiles agree within
the ±2σ confidence level errors. This agreement supports the
hypothesis that the west feature observed byPlanck is a shock
front.

For the south-east sector Table4shows that the X-ray surface
brightness profile is consistent with the presence of a significant
discontinuity in the 3D density profile. Due to the modest statis-
tics, the temperature model returns large errors andDT is not
constrained (see Table4). Thus, although consistent, we cannot
confirm the presence of a temperature jump. Despite this we find

that, as for the west sector, the pressure jumps and the pressure
profiles derived from X-ray and from SZ are consistent within
the 68.4% confidence level errors (see Fig.7 and Tables3 and4).
Finally, Table4 shows that the Mach numbers derived from the
amplitudes of the different 3D models are all consistent within
the 68.4% uncertainty levels. We would like to stress that this is
true not only forMT andMnT which, being directly connected to
DT, have relatively large errors, but also forMn andMSZ which
do not depends onDT at all. As for the west sector, this agree-
ment supports the initial hypothesis that the south-east feature
observed byPlanck is also a shock front.

Notice that the good agreement between the 3D pressure
models derived from the X-ray and SZ data, both in the west
and south-east sectors, indicate that, within the selectedregions,
spherical symmetry is a good approximation to the underlying
pressure distribution.

We conclude this section by pointing the reader’s attention
to the fact that, even though the radio and X-ray observations
have a much better PSF thanPlanck, Fig. 15 shows that the re-
spective jumps in these observations appear smooth on a scale
of ≈ 200kpc≈ 7′. As explained in detail in AppendixA this is
simply a projection effect (see also Fig.7 and Sect.7). Despite
its relatively large PSF,Planck is able to measure pressure jumps
in the atmosphere of the Coma cluster.

9.4. Quasi-linear SZ-radio relation

In Sect.8 we show that for the Coma cluster the radio bright-
ness andy emission scale approximately linearly with a small
scatter between the radio emission and thermal pressure. Due
to the near-linear correlation, where line-of-sight projection ef-
fects cancel out, we work here with volume-averaged emis-
sivities. We first express the monochromatic radio emissivity
[erg s−1 cm−3 sr−1 Hz−1] as:

ǫr ∼ nCRe B1+α ∼ QCRe
B1+α

B2 + B2
CMB

, (10)

whereα is the spectral index,B is the magnetic field,BCMB ≈
3(1+ z) µG is the equivalent magnetic field of the CMB, and
nCRe andQCRe are the density and injection rate of cosmic-ray
electrons (CRe) , respectively. In general,QCRecan be a function
of position and electron energy, and will depend on the modelof
cosmic-ray acceleration assumed. Insecondary (hadronic) ac-
celeration models (Dennison 1980; Vestrand 1982), the relativis-
tic electrons are produced in collisions of long-lived cosmic ray
protons with the thermal electrons, resulting inQCRe ∝ ne nCRp,
where nCRp and ne is the density of cosmic-ray protons and
thermal electrons, respectively. Recent models in this category
(Keshet & Loeb 2010; Keshet et al. 2010) require that, in con-
trast tone, nCRp should be constant over the cluster volume in or-
der to match the cluster radio brightness profiles.Pfrommer et al.

14



Planck Collaboration: The physics of the Coma cluster

(2008) show that there is strong cosmic-ray proton injection even
in the cluster peripheries, due to the stronger shock waves there.
Strong radio cosmic-ray proton diffusion and streaming within
the ICM could also lead to a completely flat cosmic-ray proton
profile (Enßlin et al. 2011). In the limit whereB ≫ BCMB and
assumingα ≈ 1 (e.g.Giovannini et al. 1993; Deiss et al. 1997),
this would lead toǫr ∝ ne ∝ y/T . This is consistent with our
observations3, especially since ne(r) varies much more thanT (r)
in the Coma cluster (see e.g.Arnaud et al. 2001; Snowden et al.
2008). Jeltema & Profumo(2011) derive a lower limit for the
average field in Coma of 1.7µG, from limits on theFermi γ-ray
flux. Theγ-ray analysis thus leaves open the question of whether
Coma could be in the strong-field limit.

However, the rotation measure observations ofBonafede
et al. (2010) provide characteristic values of 4–5µG for the
combined contributions of the central diffuse cluster field and
contributions local to each radio source (e.g.Guidetti et al. 2011;
Rudnick & Blundell 2003). The majority of Coma’s volume,
which is outside of the cluster core, is thus in the weak-field
limit, which leads toǫr ∝ y B2/T . To remain consistent with
the linear correlation found here, the magnetic field would thus
need to be nearly independent of thermal density. The non-ideal
MHD simulations ofBonafede et al.(2011) show a typical
scaling ofB ∝ n0.6

e , which would yieldǫr ∝ y2.2/T 2.2. This could
make the secondary model inconsistent with the observations in
the weak-field limit.

Primary (re-)acceleration models assume that relativistic
electrons are accelerated directly from shocks and/or turbu-
lence generated in cluster mergers. The turbulent re-acceleration
model (Schlickeiser et al. 1987; Brunetti et al. 2001; Petrosian
2001) leads to a scaling ofǫr ∝ ne T 1.5 ∝ y

√
T in theB < BCMB

limit (Cassano et al. 2007) if one assumesB2 ∝ ne which is
close to the simulation scaling results ofBonafede et al.(2011).
Such a scaling relation is consistent with the observed correla-
tion. However, in order to connect the cosmic-ray electron den-
sity to ne, primary models depend on a large number of free
parameters, which are generally fit to match the observations.
Recent attempts to reduce the number of assumptions by in-
troducing secondary cosmic ray electrons and protons as seed
particles (Brunetti & Lazarian 2011, see above) fail to repro-
duce the linear correlation in the weak-field limit. This is another
manifestation of the problem all simple models have in explain-
ing the large extent of cluster radio profiles when compared to
the X-rays and inferred magnetic fields (e.g.,Dolag & Enßlin
2000; Govoni et al. 2001; Donnert et al. 2010; Brown & Rudnick
2011). In future, robust measurements of the cluster’s magnetic
field profile, coupled with high-resolution radio/X-ray/SZ corre-
lations, will be needed to rule out these naive models.

9.5. Pressure jumps and radio emission

Shocks play an important role in the production of radio emis-
sion. We expect that shocks created during cluster mergers will
compress magnetic fields and accelerate relativistic particles.
However, the radiating electrons will quickly lose their energy

3 In the case thatα = 1+ δ, the relationship would beǫr ∝ (y/T )1+δ/2,
if we assumeB ∝ √ne. E.g., if we useα = 1.2 (Giovannini et al.
1993), we would expecty ∝ T ǫ0.91

r , which is approximately our mea-
sured value. However, we continue to use the term “linear relationship”,
with the understanding that the difference between our measured slope
and linearity is consistent for our simple assumption aboutthe spectral
index.

post-shock, and may not be visible for more than∼ 100kpc
behind the shock (e.g.,Markevitch et al. 2005), given char-
acteristic shock velocities and magnetic fields atµG levels.
These shock-accelerated electrons, in shock-compressed mag-
netic fields, have been proposed as the explanation for the ob-
served polarised radio synchrotron radiation from clusterpe-
ripheral relic sources (Ensslin et al. 1998). Lower fields do not
increase the electron lifetimes, and can even decrease themat
fixed observing frequency, because of inverse Compton losses
against the CMB. Recent simulations show that the presence of
cluster-wide turbulence following a major merger is maintained
for a few Gyr at a few percent thermal pressure (e.g.,Dolag et al.
2005; Vazza et al. 2006; Kang et al. 2007; Paul et al. 2011). This
turbulence can re-accelerate mildly relativistic seed electrons,
and is potentially responsible for the large-scale halo emission
(see above). In addition, an extensive population of low Mach
number shocks is also seen in simulations (e.g.,Miniati et al.
2000; Pfrommer et al. 2006) and could play an important role in
particle re-acceleration.

Shocks will also induce turbulence in the post-shock re-
gion (∼200–300kpc). There are hints from the small-scale X-
ray residuals (figure 3 ofSchuecker et al. 2004) that such turbu-
lence may exist interior to the possible shocks seen in the west
and south-east. For the western region, the combination of the
SZ/X-ray pressure jump, X-ray suggested turbulence, and ex-
cess synchrotron emission, points toward a connection between
turbulence and diffuse synchrotron emission. The details of that
connection, however, are not clear. In addition to direct acceler-
ation by turbulence, the post-shock synchrotron emission could
be a result of a population of weaker, as yet undetected shocks,
or freshly accelerated cosmic-ray protons interacting with the
ICM in a region where turbulence has amplified the magnetic
field (e.g.,Dolag et al. 2005; Ryu et al. 2008; Kushnir et al.
2009; Keshet 2010). Synchrotron spectral indices and magnetic
field measurements, in combination with reliable measurements
of weaker shocks and turbulence, would be needed to discrimi-
nate between potential models.

The expected rapid loss of radio emissivity post-shock
can also help us understand why shocks are sometimes easily
detected in the radio, but other times are not. In the clearest
cases, radio shocks are seen beyond any central halo as relatively
thin structures known as “peripheral relics” (van Weeren et al.
2010), where they can accelerate relativistic electrons. Radio
shocks may also be found at or near the edge of the halo, and
would be characterised by a sharp, but low contrast, rise in
brightness, while the post-shock emission blends in with the
halo instead of falling off. The western shock described here
in Coma, as well as suggested shocks at the edges of halos in
Abell clusters 521 and 754 (Giacintucci et al. 2008; Markevitch
2010; Macario et al. 2011) are likely examples of this case.
Contrast effects will camouflage the appearance of shocks that
are projected against any radio halo emission. This is probably
the case for they shock in the south-east, where the radio halo
extends far beyond the shock. The Coma cluster thus hosts all
three types of “radio shocks”: a) the classicperipheral relic at
a distance of 1.7Mpc from the centre (whichEnsslin et al. 1998
and Brown & Rudnick 2011suggest is an “infall” shock); b)
the western shock at theedge of the halo; and c) the south-east
shockprojected against the fading radio halo.
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10. Conclusions

We present the SZ observations of the Coma cluster based on the
Planck nominal survey of 14 months. The excellent sensitivity of
Planck allows, for the first time, the detection of SZ emission out
to at leastR ≈ 3× R500. We limit our investigation to the radial
and sectoral properties of the intracluster medium, and we study
the pressure distribution to the outermost cluster regions. Our
three main results can be summarised as follows:

– the Coma pressure profile is flatter than the mean pressure
profile predicted by the B04+N07+P08 numerical simula-
tions and lies on the upper envelope of the simulated profile
distribution. This effect has also been found in the pressure
profile derived by stacking 62 nearby clusters of galaxies ob-
served withPlanck (Planck Collaboration V 2012).

– Planck detects a localised steepening of they profile about
half a degree to the west and also to the south-east of the
cluster centre. Features in the X-ray and radio synchrotron
profiles at similar locations suggest the presence of shock
waves that propagate with Mach numberMw = 2.03+0.09

−0.04
and Mse = 2.05+0.25

−0.02 in the west and south-east directions,
respectively.

– the y and radio-synchrotron signals are quasi-linearly cor-
related on Mpc-scales with only small intrinsic scatter.
This implies either that, unlike the thermal plasma, the en-
ergy density of cosmic-ray electrons is relatively constant
throughout the cluster, or that the magnetic fields fall off
much more slowly with radius than previously thought. We
detect a correspondence between the westerny shock and a
previously reported radio/X-ray edge, and we argue that ei-
ther the magnetic fields are strong in the cluster outskirts,
which would permit the hadronic model to explain the ra-
dio emission, or some sort of re-acceleration by turbulence
or additional shock waves must operate in the region behind
the detected outer shock structures.

Even though this analysis is based on only about half of the data
collected byPlanck, our results represent a substantial step for-
ward in the study of the physics of the Coma cluster. The full
set of data collected byPlanck, will not only improve the signal-
to-noise by another factor∼

√
(2) but also significantly improve

our understanding of instrumental effects. Thus, we will be able
to generate more accuratey maps, and more thoroughly unveil
Coma’s two-dimensional SZ structure and its filamentary envi-
ronment.
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Appendix A: Pressure profile discontinuities as
seen by Planck

In this section we show that the 10 arcmin angular resolution
of Planck is still sufficient to detect and measure 3D pressure
jump features in the Coma cluster. This is because at the clus-
ter redshift, 10 arcmin≈ 280 kpc, which is of the order of the
smoothing induced by projection. To show this, we assume a dis-
continuous 3D pressure profile described by Eq. (6). We project
this profile along the line of sight and we calculate the corre-
spondingy profile as observed with an instrument with:

i) infinite angular resolution;
ii) a 10′ FWHM angular resolution, as forPlanck.

The results of this exercise are illustrated in Fig. A.1, where
we compare four different cases with and without pressure
jumps. In the upper section of each panel of Fig. A.1 we show
the input 3D pressure profiles. In the middle sections we show
the projected pressure profiles without any smoothing (as black
histograms). The lower sections show deviations from a single
power law fit. The panel on the left shows that, due to simple pro-
jection effects, they profile appears smoothed with an equivalent
smoothing scale of≈200–250kpc. For Coma, this corresponds
to an angular scale of 7–9 arcmin. In the same panel we overplot,
as a red histogram, they profile convolved with thePlanck PSF.
This illustrates that the effect of the PSF smoothing is secondary
with respect to projection effects. This indicates that there is only
a modest gain, from the detection point of view, in observingthis
specific feature using an instrument with a much better angular
resolution thanPlanck. Notice that the fact that the projection of
the 3D pressure distribution onto a plane converts the sharpjump
into a curved surface brightness profile allows us to recoverthe
position ofrJ with an accuracy higher than the angular resolution
of Planck.

Fig. A.2 clearly shows that the range of radii affected by the
rJ value is of the order ofrJ itself. SincerJ > 10′, many indepen-
dent data points with large signal-to-noise ratio are contributing
to the determination ofrJ, driving the uncertainty well below the

Fig. A .2: Comparison of the 3D pressure model (green line) and the
corresponding projectedy profile, smoothed with the 10′ beam. The
dotted black line shows the expectedy profile due to the inner power
component, while the dashed line shows the contribution of the outer
power law component. The black solid line is the sum of these two
components. For comparison, the blue line shows the same model, but
not convolved with the 10′ beam. In this plotrJ ∼ 30′. Due to projection
effects, the range of radii affected by the value ofrJ is of orderrJ itself.
SincerJ exceeds 10′, many independent data points with large signal-
to-noise ratio contributes to the determination ofrJ, allowing rJ to be
estimated with an uncertainty below the nominal angular resolution of
the telescope.

nominal angular resolution of the telescope. Of course the value
of rJ is still subject to systematic uncertainties, e.g. from ouras-
sumption of spherical symmetry.

We use the above exercise to illustrate two practical ways to
identify the presence of a possible underlying 3D discontinuous
pressure profile, hidden behind some observed projected profile
extracted in a specific cluster sector. The first way is to search
for the actual pressure jump in the observed pressure profile. As
projection smooths the profile, this needs to be done by looking
at the profile extremes. We first notice that the outermost bins of
the profile are practically unaffected by PSF smoothing. This is
clear in the middle sections of Fig. A.1, where the red and back
histograms are similar in the outermost 3 or 4 bins. At this point,
if we fit a line to either the 3 or 4 outermost bins, this will give
an indication of the un-convolvedy profile slope at large radii. If
we extrapolate this line to the centre, we can easily highlight the
presence of a pressure jump. This procedure is shown in the mid-
dle section of Fig. A.1, using black straight lines. From Fig. A.1
we can see that this procedure highlights the intensity variation
due to a pressure jump (see first and third panels). In the case
where we have no pressure jump (second and forth panels) the
best-fit line to the outermost bins tends to closely follow the en-
tire profile.
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Fig. A .1: Histogram of the effects of projection andPlanck PSF on they radial profile produced by an underlying broken power law pressure
profile with and without a pressure discontinuity. In this figure we fixP0 = 10. × 10−4cm−3 keV, rJ = 1.1 Mpc and, from left to right we consider
four different cases: i)η1 = 0 , η2 = 2, DJ = 4; ii) η1 = 0 , η2 = 2, DJ = 1; iii) η1 = 2 , η2 = 0, DJ = 4; and iv)η1 = 2 , η2 = 0, DJ = 1. Upper
Panels: The underlying 3D pressure profile.Middle Panels: The black and red histograms are the projectedy profiles observed by an instrument
with infinite angular resolution and with a PSF of 10 arcmin, respectively. The red line represents the best-fit of a simplepower law to the entire
convolved profile (red histogram). The black line is the sameas the red line, but considering only the three outermost projected profile bins.Lower
Panels: Ratio between the PSF-convolved and projectedy profile and its best-fit power law model (red histogram and lines in middle panel) in
units of a relative error, which, for this illustration, we set to 10%.

Fig. A .3:Results of the fit of they profile extracted from three cluster sectors with a simple power law.Left Panel: sector with the same angular
size and extension as the west shock but pointing to the north, where there are no visible shock features.Middle Panel: profile of the west shock.
Right Panel: profile of the south-east shock. In the lower panel of each figure we report the ratio between the observed and the best-fit model of
the projectedy profile in units of the relative error. The figure clearly illustrates that while the power law gives a good fit for the north sector where
no shock is present, it returns a poor fit in the west and south-east sectors. These two cluster regions require a discontinuity in the pressure jump,
as shown in Fig.6.

The second way to highlight the presence of a pressure jump
is to fit a line to the entire observed profile and to examine the
residuals. This procedure is illustrated in the middle and lower
sections of Fig. A.1. The red lines in the middle section are the
best-fit power law relations to the entire observed profile (red
histogram). The crosses in the lower panels indicate the differ-
ences, in units of the relative errors, between the PSF convolved
projectedy profile and its best-fit power law model. This figure
shows that a 3D pressure jump induces a characteristic signature
in the residuals.

In Fig. A.3we apply this second technique to the Coma clus-
ter by showing the fit of they profile extracted from three cluster

sectors with a simple power law. The figure clearly illustrates
that while the power law gives a good fit for the north sector
where no shock is present, it returns a poor fit in the west and
south-east sectors. These two cluster regions require a disconti-
nuity in the pressure jump, as shown in Fig.6.
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Helsinki, Helsinki, Finland

27 Department of Physics, Princeton University, Princeton, New
Jersey, U.S.A.

28 Department of Physics, University of California, Berkeley,
California, U.S.A.

29 Department of Physics, University of California, One Shields
Avenue, Davis, California, U.S.A.

30 Department of Physics, University of California, Santa Barbara,
California, U.S.A.

31 Department of Physics, University of Illinois at
Urbana-Champaign, 1110 West Green Street, Urbana, Illinois,
U.S.A.

32 Department of Statistics, Purdue University, 250 N. University
Street, West Lafayette, Indiana, U.S.A.

33 Dipartimento di Fisica e Astronomia G. Galilei, Universit`a degli
Studi di Padova, via Marzolo 8, 35131 Padova, Italy

34 Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2,
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Ricerca Scientifica, 1, Roma, Italy

39 Dipartimento di Matematica, Università di Roma Tor Vergata, Via
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of Helsinki, Helsinki, Finland

47 INAF - Osservatorio Astrofisico di Catania, Via S. Sofia 78,
Catania, Italy

48 INAF - Osservatorio Astronomico di Padova, Vicolo
dell’Osservatorio 5, Padova, Italy

49 INAF - Osservatorio Astronomico di Roma, via di Frascati 33,
Monte Porzio Catone, Italy

50 INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11,
Trieste, Italy

51 INAF Istituto di Radioastronomia, Via P. Gobetti 101, 40129
Bologna, Italy

52 INAF/IASF Bologna, Via Gobetti 101, Bologna, Italy
53 INAF/IASF Milano, Via E. Bassini 15, Milano, Italy
54 INFN, Sezione di Roma 1, Universit‘a di Roma Sapienza, Piazzale

Aldo Moro 2, 00185, Roma, Italy
55 INRIA, Laboratoire de Recherche en Informatique, Université
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100 Université Denis Diderot (Paris 7), 75205 Paris Cedex 13, France
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