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ABSTRACT

We present the clustering of galaxy clusters as a usefutiaddo the common set of cosmo-
logical observables. The clustering of clusters probetatiye-scale structure of the Universe,
extending galaxy clustering analysis to the high-pealqi@gs regime. Clustering of galaxy
clusters complements the traditional cluster number coamd observable-mass relation anal-
yses, significantly improving their constraining power logdking existing calibration degen-
eracies. We use the maxBCG galaxy clusters catalogue téraomsosmological parameters
and cross-calibrate the mass-observable relation, usirsgec abundances in richness bins
and weak-lensing mass estimates. We then add the redghadepower spectrum of the sam-
ple, including an effective modelling of the weakly nondar contribution and allowing for
an arbitrary photometric redshift smoothing. The inclusibthe power spectrum data allows
for an improved self-calibration of the scaling relatiore ¥d that the inclusion of the power
spectrum typically brings a 50% improvement in the errors on the fluctuation amplitorgde
and the matter densit®.,. Finally, we apply this method to constrain models of thdyear
universe through the amount of primordial non-Gaussiaofityre local type, using both the
variation in the halo mass function and in the cluster biasfi a constraint on the amount
of skewnesdy. = 12+ 157 (1o) from the cluster data alone.

Key words. galaxies: clusters: general — cosmology: cosmologicamaters — methods:
statistical

1 INTRODUCTION [Borgani & Kravtsoll 2009, for a review). Nonetheless galakse

Galaxy clusters are the most massive bound svstems in the Uni ters form at a comoving scale ef 10h~*Mpc, allowing for a sim-
y cu v u y ' pler theoretical description than is possible for smaltencgures

verse which trace the evolution of the large-scale strec(L6S) ) ' L
. L such as galaxies. Due to their scale, clusters reside iraihaf the
(see the recent review by Allen etlal. 2011). The initial digryaer- halo mass function and thus their numbers are exponensiatigi-

turbations are thought to have formed in the early universmf . ‘o : ; Yard 1 :
inflationary physics|(Lyth & Liddle_2009). In the simplestesc t]lvgegmt(? Bvarlatlol = |n| c]ogsgr;;)logy (see elg.. Evrard 1989; Ketral

nario, the perturbations can be modelled as Gaussian rafielois

@6), which evolve gravitationally. Théads to Clusters are detected across multiple wavelengths with var
the formation of bound dark matter structures — the haloésse ing degrees of success. A few dozens have been found in
abundance is described by the halo mass function. The smple the millimeter by the Atacama Cosmology Telescope (ACT)
infall formation model [(Press & Schechter 1074) is complida  (Menanteau et al._2012), hundreds with the South Pole Tele-
by dynamical effects, meaning that accurate modelling & th scope (SPT)|(Reichardtetldl. 2012) and the Planck satellite
mass function requires partial calibration (Sheth & Tori€89; (Planck Collaboration et &l. 2011); also a few hundreds wstelrs
IMaggiore & Riotto 2010;_Corasaniti & Achitollv 2011) or fulti have been found in the X-ray (REFLEX, BCS, eBCS catalogues
ting (Jenkins et all_2001; Tinker etlal. 2008) kbody simula- by [Bohringer et al. 2004; Ebeling etlal. 1998, 2000) usirey tthe
tions. Halo mergers and internal processes such as galaxy fo ROSAT satellite All-Sky Surve-99) the Cdiran
mation further complicate the picture at small scales (esge Cluster Cosmology Project_(Burenin et al. 20
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2009h), and by Mehrtens et dl. (2D12) using X-ray Multi-Mirr  tionary models|(Bartolo et Bl. 2004; Suyama éf al. 2010). [he
Mission Newton m%). Many tens of thousands ha est constraints on the local PNG paraméfgrfrom the bispectrum
been found in the optical using Sloan Digital Sky Survey (SPS  of the cosmic microwave background (CMB) as measured by the
data to construct the maxBCG_(Koester étal. 2007b) and GM- WMAP satellite are-3 < fy. < 77 at 95 % c.|.[(Hinshaw et hl.
BCG (Hao et dl. 2010) catalogues, based on the selectionighftbr  [2012]Bennett et &l 20112); comparable bounds have beenneuta
est cluster galaxies (BCG) to identify the clusters’ cestrand from the LSS using multiple galaxy catalogu
by|Gladders & Yee (2005) using the Canada-France-Hawaiéi-Te  |Afshordi & Tolley [2008;[ Xia et all 20103, Ih._Zdlh.._S_eiusalla&
scope and Cerro Tololo Inter-American Observatory. 12012;| Ross et al. 2013; Giannantonio etal. 2013); futurevgal
While detectable in large numbers, the main obstacle with us surveys such as Euclid are expected to reach an accurady,of

ing optical clusters as probes of cosmology is the diffichbice 3 (Giannantonio et al. 2012). Oguri (2009) suggested thaisore

of a low-scatter mass proxy. Efforts on this front have beshiy ing the variance of cluster counts can yield significant taiirsts
Rozo et al.[(2010) arld Zu etldl. (2012), who derived cosmotdgi ~ on PNG, while Sartoris et hl. (210) showed in principle hoats
constraints from the maxBCG cluster sample. The tightesitrag constraints can be improved by using the cluster power spact

relation between observable and cluster mass comes froay X-r Here we constrain PNG with the combined cluster data.
data & 10% scattef, Allen et &l. 2008). Constraints on dark energy The paper is organised as follows. In Sec{idn 2 we describe
with ~ 20% uncertainty were obtained from X-ray cluster samples measurements of the cluster abundances, weak lensing sass e
studied by Mantz et all (2008, 2010) and Vikhlinin et &l (201 timates and power spectrum of the maxBCG catalogue. In Sec-
Data on the cluster masses obtained from weak-lensing sesly  tion[3 we introduce the theoretical framework including rnem
of background galaxies have also been combined with the num- counts and total mass determination from the mass funatiass-
ber counts to improve the constraining power of the clustassn  observable relation, bias and power spectrum definitiond,the
function [Johnston et &l. 2007; Sheldon €t al. 2009; Mahefal. effects of non-Gaussian initial conditions. Sectidn 4 enés our
[2007). The statistics of rare events in the high-peak, higiss limit Monte Carlo Markov Chain (MCMC) analysis, the cosmological
has also been used by Hotchkiss (2011), Hoylelet al. (201t2sto  constraints and the relevant degeneracies. We draw oulusiorcs
cosmology. in Sectior[b. We assume that the Universe is spatially flatiogel

The uncertainty in the scaling relation is one of the biggest scales throughout.
obstacles in using galaxy clusters as cosmological proass,
pointed out byl Haiman et’hl!l (2001), Battye & Wellér (2003).
Majumdar & Mohr (2008) suggested to use the clustering aé-clu
ters as a complementary probe. So far, only limited effostgeh 2 DATA
been dedicated to the measurement of the clustering pirepert
of galaxy cluster-s@hO) measured the power specof 21 ThemaxBCG cluster catalog
maxBCG clusters resultlng in weak detection of baryon acous The maxBCG catalogue_(Koester et al. 2007a) is a sample of
tic oscillations (BAO), Estrada et! @09) measured thees 13,823 galaxy clusters compiled from SDSS photometric. ddta
lation function for the same, adm_ej al. (2012) measured catalogue is assembled by selecting the brightest cluatexgand
the correlation function of extended versions of maxBC@aly applying a red-sequence method to identify cluster memibéts
[Balaguera-Antolinez et l. (2011) measured the powertspa®f neighbourhood. In this way clusters with richness (numlberem-
the REFLEX X-ray cluster catalogue. The goal of this papéois  ber galaxies) ranging from 10 to 190 are selected. The lowsmas

fully include the clustering information in the cosmolagi@nal- limit of this sample isMji, ~ 7- 10%h~*M,, which evolves weakly
ysis of cluster data: we show that its inclusion significarith- with redshift. This relatively low mass limit results in ansple that
proves the cosmological constraints, and also reducestenéra- is significantly larger than other current galaxy clusteatzgues.
cies between the scaling relation nuisance parametersr&gemnt The clusters are chosen in an approximately volume-limitesgt
the improved cosmological results obtained in this way fithie from a 500 Mpé region, covering-7500 deg of sky with a photo-
maxBCG data. metric redshift (photo-z) range of D< z < 0.3. The photo-z errors

As an interesting application, we present the constraining are small and of the order @fz = 0.01. An analysis of mock sam-
power of these data on the amount of primordial non-Gauggian ples shows that the maxBCG algorithm results in more than 90%

(PNG) of the initial density perturbations, which is exgetto be purity and more than 85% completeness, for clusters wittsesas
produced in some models of the early universe. Briefly, wirite M > 10“M, (Koester et dl. 2007a).
simplest single-field slow-roll inflation produces nea@gussian We define the richnesbly, as the number of red galaxies

initial conditions ((Maldacena 2008; Acquaviva etlal. 200Bjre within the radiusRgo from the cluster centreRyq is the radius
exist alternatives, such as multi-field models, which can- pr  within which the average overdensity is 200 times the measitde
duce large non-Gaussianities (see e.g. the recent revi@ of the Universe. The catalogue is divided into nine richrigss in
). These would have multiple observable consequemdes, the range 11< Ngy < 120, which approximately corresponds to
which we here consider two: the halo mass function changes 7-108h-M, < M < 1.2- 10"h 1M, (Rozo et all. 2010). We found
as a function of the non-zero skewness (Matarresel et al.l; 2000 that adding the five remaining high-mass clusters of the nsxB
ILoVerde et all 2008 Pillepich etlal. 2010; Achitouv & Coraisia with richnessNg, > 120 has a negligible impact on the cosmolog-
Mb) and in the local and orthogonal cases the halo biasical analysis, so we do not include them. We also use an additi
becomes strongly scale-dependent due to the coupling @f lon bin at 9 < Ngy < 11 (Rozo, private communication), although
and short-wavelength modes (Dalal € al. 2008; Matarrese®®/  we checked the results are not affected by this. For the dogro
12008 Slosar et &l. 2008; Afshordi & Tolley 2008; Desjacgeesl. cal analysis we include Poisson errors and sample variamedod
|2009;| Giannantonio & Porciani 2010; Desjacques & SEljak(201  large-scale structure_(Hu & Kravtsov 2003). Furthermore, ag-

Schmidt & Kamionkowskil 2010 Desjacques etal. 2011). Mea- sume 100% purity and completeness, including a 5% uncéytain
surements of PNG can potentially rule out entire classesftd-i (Rozo et all 2010), which we add in quadrature. We found tiet t
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Figure 1. Top panel:MaxBCG cluster counts data (black points) and the- Figure?2. The observed power spectrum of maxBGC clusters (black oint
oretical predictions according to the prescriptions oft®af3 for a choice compared with the full theoretical modelliiRf*Sdescribed in Sectidd 3 for
of different cosmologies (without primordial non-Gausstig). The red line our best-fit model (red solid line), and for two other modealssuming no
represents the best-fit model to our full data set (countal tbasses and primordial non-Gaussianity. The dotted linekat 0.15h Mpc™! represents
power spectrum)Bottom panelMean masses of maxBCG clusters (black  our choice ofkyax, Which is the smallest scale we use in the analysis.
points) and theoretical predictions for different cosngids, as above.

300, plus another extra bin atONgy, < 12 (Rozo, private commu-

photo-z errors have a negligible impact on the number ccamat nication).
ysis presented here, so we neglect their effect on the nucobeits Anindependent weak lensing analysis of the maxBCG sample
covariance matrix. was performed by Mandelbaum et al. (2008a), who found a mean

We show in the top panel of Fifll 1 the counts data, together mass difference of approximately 6% with respect to Joimstal.
with the predicted counts for a selection of different cokigi@s, (2007). We follow Rozo et &l[ (2010) and include this disaregy
modelled as described in Sect[dn 3. by introducing an offset factgs with a suitable chosen prior as

described in Sectidn 3.3.
The bottom panel of Fig.]1 shows the mean WL mass esti-
2.2 Galaxy cluster masses from weak lensing observations mates data, together with the theoretical mean masses e s

tion of different cosmologies, modelled as described irtiSed.
Sheldon et &l (2009) measured the weak lensing (WL) effeat f g 2
clusters in the maxBCG catalogue. By stacking the clusiteesn
cluster surface density profiles were created for diffehemtinos- 2.3 MaxBCG power spectrum

ity and richness bins. The stacking of clusters in a giveh-ric ) )
ness bin improves the signal-to-noise considerably coetparthe We consider the redshift-space power spectrum of the maxBCG

measurement of the profile of an individual cluster. Johmstcal. sample, as measured by Hiifsi (2010). For the full detailthef

(2007) used these profiles and reconstructed mean 3D ctiester ~ POWer Spectrum measurement, along with systematics vests-
sity and mass profiles, which allows one to estimate the mass fer the reader to Hitsi (2006a(b, 2D10). The direct Fouriethod

(and concentration) of clusters in a given redshift bin. s re- by|Feldman et al. (1994) (FKP) was used, with the differena t
construction a Navarro-Frenk-White (NFW) profm. fast Fourier transforms (FFTs) were used instead of dingtinsa-
@) for the cluster density was assu G072 tion. This method actually yields the pseudo-spectrumtiemea-

were then able to construct a mean mass-richness relatioingj surement products are convolved with the window functiothef
for the whole sample of groups and clusters survey. We take this into account when modelling the thézakt

spectra in our analysis. To implement the modified FKP method
Maoo(Nga)) = 8.8 x 108h™*M, (Nga/20)+28, (1) the following steps were followed:

where Mgy is the mass contained within the radiBsy. Due (i) The survey selection function (footprint) was represerus-
to photometric redshift bias these masses are correctedrdpw  ing a random (unclustered) catalogue with 100 times moretpoi
by a factor of 1.18 as described |in_Mandelbaum Etlal. (4008b), than maxBCG sample;

.|_(2_Q:I|O). For the cosmological analysis presehézd (i) The overdensity field was calculated on a regular griggis
we foIIowI.O) and fit simultaneously for the mas  the triangular shaped cloud method (Hockney & Eastivood 1988
richness relation using the Johnston étlal. (2007) datatesider- mass assignment scheme — it was checked that the aliasaugseff
rors. We use five richness bins for this, in the range<lRg, < due to the finite grid size were negligible for the measuremen
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and were nonetheless corrected with the iterative methm
(2005);

(iii) The gridded overdensity field was transformed to Feuri
space using the FFT;

(iv) The raw 3D power spectrum was estimated by taking the

modulus squared of the FFT;
(v) The shot noise contribution was subtracted.

The uncertainties on the power spectrum measurements were

estimated with three different methods: with the originglPRthe-
oretical prescription, which assumes Gaussian errors tasmic
variance plus a shot noise contribution; with a jackknifethmd,
implemented by dividing the survey into a total of 75 regicssd
with a Monte Carlo (MC) method, based on the fiduciaDM
cosmology, in which 1000 mock realisations of the maxBCG sur
vey were generated, including redshift-space distortiomsphoto-

z errors. These three methods were shown to be comparaliés in
work we use the MC covariance matrix.

The power spectrum measurements are shown in[Fig. 2. To

take into account data in the quasi-linear regime only, vetrict
ourselves to scales larger than (wavenumbers smaller kyany
0.15hMpc™.

2.4 Thecounts-clustering off-diagonal covariance

The diagonal blocks of the data covariance matrix for cqunts

0 [deg]

15.8

39.8
N

100.
gal

Figure 3. The off-diagonal elements of the normalised covarianceimat
of the correlation functiorw(d) and the histogram distribution @fN, as
calculated using the jackknife technique.

masses and the power spectrum have been described above: We e

timate the off-diagonal terms of the covariance matrix leetwthe
clustering and the binned number distributias of the maxBCG
clusters. For simplicity, instead of the power spectrum sehere,
as a clustering estimator, the projected correlation fanoiv(6),
which is defined as

W(6) = (5n(P) Gn(11)) , @)

whered () is the halo (cluster) projected overdensity in a direction
f, and the average is carried over all pairs at an angulamtista
We use the jackknife technique as follows: we split the
maxBCG footprint into 100 equal-area jackknife regionsngsi
HEALPleS) and populate the full footprint with
50 random points for each maxBCG cluster, to reduce shoenois
We use the correlation estimator|by Landy & Szalay (1993pte ¢
culate the correlation function, and bin the number of ersst
within six equal-width bins in log, space. We iteratively remove
and replace each jackknife region and calculate the numiser h
togram and correlation function at each iteration. The danae
matrix C;x between measured statistics= x(a) andy = y(8) can
be estimated fronN jackknifes using (see elgE}SZ):

N
RS0 -0 0 -3 @)
k=1

wherex_; (y-j) is the statistic with jackknife region(j) removed,
andx (y) is the average value of atl; (y_;). We note that typically,
but not necessaril, andy are the same statistic.

[CJK(Xi,yj)]aﬁ =

we show the off-diagonal terms of the normalisegi[AN, w(6)],
and note that the average value and drror of the off-diagonal
terms are-0.06 + 0.10, which is consistent with zero. We observe
that as the number of jackknifes increases, the mean antbéthe
average value of the off-diagonal terms approaches andifitet
around zero.

We compare the magnitude of the off-diagonal terms
obtained from the maxBCG clusters with simulated clus-
ters from the Millennium Simulation| (Springel et al. 2bo5;
Lemson & Virgo Consortiuin 2006). Specifically, we join thgHt-
cone table ofHenri ques2012a. wmapl. BCO3_Al | Sky_00
(Henriques et al. 2012; Guo et al. 2011) with the halo-trdseta
MPAHal oTr ees. . MHal 0. We apply the same redshift and sur-
vey footprint constraints to mimic the maxBCG sample andwal
late the correlation function and histogram distributiém\d. We
find the data and simulations agree closely: e.g., for 1Kkjates
the mean and & error of the off-diagonal terms are0® + 0.12
from the simulations.

From these tests we conclude that ignoring the off-diagonal
covariance matrix between clustering and number countgés-a
sonable approximation.

3 THEORETICAL MODELLING OF CLUSTER
STATISTICS

We compare the square root of the diagonal elements of the 31 Thecluster mass function

covariance matrixCyk[w(0), w(d)] with the error expected from
Poisson counting statistics and find agreement with therétieal
expectations (as described by dma] 2009), aadiatl
that the diagonal elements Gfx (AN, AN) are approximately Pois-
sonian, independently of the number of jackknifes used.ign®

1 http://healpix.jpl.nasa.gov/

[Press & Schechiel (1974) first calculated the expected nunfbe
dark matter haloes of a given mass and redshift. This wasriut
scribed by the excursion set approl991) and g
eralised to non-spherical model by Sheth & Tormen (1999)% wh
calibrated their mass function witi-body simulations. Even more
accurate estimations are achieved with a full fittind\tdody sim-
ulation (i.e. 01). The current state-efdht halo
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mass function has been estimated by Tinker et al. {2008))2016
mass function is valid over wide redshift and mass ranges.

The expected number density of virialised dark matter fwloe
as a function of mass and redshift can be expressed as

dn(M, 2) ding?
dinM dMm

where p, is the mean matter density of the Universe, =
Sc/(M, 2), 6. = 1.686 is the threshold linear overdensity for spher-
ical collapse in a matter dominated Universe, artdM, 2) is the
variance of the linear matter density fieldMt= 47R%p,,,/3. In this
work we use the mass function given Mt @010) for
cluster mass aR,qo, With an overdensity oA = 200 in units of the
mean mass density of the Universe:

= Pm

f(). 4)

fr(v) = 0.368[1 + ([;v)’zd’] Pig PPl )
where the parameters evolve in redshift as
B =0589(1+2)°%, §=-0.729 (1+ 2)°%8,
=-0243(1+ 2%, 5=0.864(1+2 ", (6)

3.2 Themassrichness scaling relation

In order to perform a cosmological analysis, we need to makees
assumptions on the scaling relation between the true masslo$-

ter and its observed richnei$®. We first consider the probability
of observingN(‘;’glS member galaxies &,q, for a given true masM
of the cluster. We can write this probability as the producthe
probability of a cluster having true richnelsis, given the mas$/
and the probability of observmglObS member galaxies given the

true richnesdNg,;:

PINSEIM; 2) = P(NZ2INga) P(Ngal M) . @)

Here p(N ﬁ a.) is assumed to follow a lognormal distribution as
suggested by Lima & H4 (2005)

1
P(NGaINga) = ———= exp[-X*(N3))] , (8)
2
\lszln Ngal
where
In N90S _ |n Ny,
X(N gal gal ©)

gal/ —
[20°2
In Nga|

andonn,, iS the scatter in the mass-richness relation (Lima & Hu
[2005; Battye & Weller 2003). Following Johnston et al. (2paid
[Rozo et al. 0), we assume the scaling relation to be ampowe
law in mass, i.e.

INM = In '\7'20(120 + an |n(Nga|/20) s (10)

with Mzoqzo the mass of a cluster with 20 member galaxies within
a radius ofRygp anday the slope of the scaling relation. We fit this
relation by fixing two pivot points in maddl; = 1.3- 10 M, and
M, = 1.3-10'® M, while the corresponding richness valueslin=
In NgalM1 and InN, = In Nga| M, are kept as free parameters.

The statistical scatter around this relation is assumedeto b
constant with redshift and mass for individual clusters. ged
an estimate of this quantity is not trivial; however Rozolét a
M) used weak lensing and X-ray observations togethdr wi
the maxBCG richness to have three different mass proxiesleBy

manding consistency between the X-ray and weak lensing mea-

= 0.45'%20 which is

surement 020,

MOQ) fouorg, MINgal

© 2013 RAS, MNRASO00, [1H12

the scatter in mass given the richness. For our cosmologiy/-

sis described in Sectidd 4 we need to place a prior on the cemve
scatteroin N, m- The two quantities can be readily related to each
other by invoking the scaling relation of E.{10), whichuks in

TINMINgg = AN * TInNggIM -

3.3 Modelling galaxy cluster countsand total masses

In order to predict the number of observed galaxy clustersaifo
observed nchnesl!sié,’bS we can use the probability distribution and
scaling relation defined in the previous section. The ciusterage
number density within a richness biNJey . NS23 ,1is given by

gal
gal i+1

n = f
Nobs

gali

din Ngglsfd In Ngaldl P(Nggfl Ngal) =

dn 1
- [ dinNg g 5 ferfeto) —erfee)] . (1)
wherex; = x(N2%%),
dn dn dinM dn
dinNgy _ dInM dinNgy  NdinM’ (12)

and we have employed the scaling relation of Eq] (10). Tha tot
number of predicted galaxy clusters within a richness bim loa
calculated as

d>v

oo™

Zmax
AN; = AQ f z
Zmin
whereAQ is the survey sky coverage addV/dz/dQ the volume
element. The cosmology dependence is driven by the mastsdanc
and by the comoving volume element.

We can write similar expressions to Eqs.J(11) and (13) for
the total mass of clusters. The average total mas$; contained
within the same richness bin can be obtained as in [Ed. (11) by
weighting the integrand by the mass, estimated via the mass-
observable relation. The total mass of clusters within hréss
bin is then

(13)

(ANM). = 5 AQ fm 022 (o).

Zmin

whereg is an additional nuisance parameter introduced to account
for possible mismatch with the WL masses, as discussed ame

in[Rozo et al.[(2010).

(14)

3.4 Clusteringof clusters

Galaxy clusters can be studied as tracers of the etal.
), corresponding to the highest-density regions ofdiue
matter overdensity fieldl(x, 2). If we assume linear theory and a lo-
cal deterministic halo bias (Fry & Gaztankiga 1993), therddmr-
matter haloes overdensityds(X, M, 2) = by + bn(M, 2) 6(X, 2). The
local bias assumption breaks down in the case of primordiat n
Gaussianity (see SectibnB.5). As the effect of baryonsgkgible

for the clustering properties of the clusters, in the follogwe use

the naming ‘cluster’ and ‘halo’ interchangeably.

Halo bias

The halo bias can be derived from a theory of the mass func-

tion via the peak-background split formalism (Cole & Kal$689:
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Mo & Whitel[1996). This method gives a prediction for the haitasb
in Lagrangian spads-(M, z), which can be evolved into the observ-
able Eulerian space &s= 1+ b- ), considering
linear perturbation only, spherical collapse and no lacme ve-
locity bias. We assume the bias is scale-independent (excep
the modifications in the presence of PNG). At linear orde,Lth-
grangian bias is

f'(v)
f(v)o’

where the derivative of the mass function is taken with respe
v, and the mass and redshift dependencesaido are implicit.
When using the Tinker mass function and keeping the leaditero

terms, the Eulerian bias ilO):

~ 2 A ~
- yve = (1+29) 2¢/5¢
br(M,2) ~1+ 5 + ” [Bv]z@ R

b"(M,2) = -

(15)

(16)

where all parameters are defined as in Ely. (6). We show il Fig. 4

the Tinker halo biakr (M) as a function of halo magdd atz= 0.2,
which is the mean redshift of the maxBCG clusters, compaiitd w
thelPress & Schechter (1974) (PS) chse= 1—1/6. +6/02, and
with the scale-independent part of the bias in the presehE& G
described below, for our combined best-fit model.

We obtain the average cluster bia®ver the mass range of

our data by weighting with the mass functi 005):

— 1 (Mmax dn(M, Z
b(Z)ZML. dinM (;‘an)

br(M.2) , 17)
where the normalisation factaN is the full integral of the mass
function in the observed range.

Power spectra

We then define the observable clustering statistics in Eogpace
(denoted by a tilde). As we consider linear scales only, #ile-h
halo power spectrur®,, can be related to the linear matter power
spectrumPy, as

Phi(k, M, 2) = b*(M, 2) Pin(k. 2) = b*(M,2) D*(2) Pin(k, 0), (18)

whereD(2) is the linear growth function. We integrate the mass
dependence by weighting the bias as described in[EY. (17Avand
compute all quantities at the mean redshift of our clustermse,

z ~ 0.2. This is further justified by observing that the growth of
b(z) is compensated by a similar drop (z); we have checked
that for our fiducial cosmology, in the observed range<z < 0.3

the variation ot(2) D(2) is at the percent level.

Before fitting models to the data, the following four effects
have to be taken into account, following the description kijtsH
): the photo-z errors, which are responsible for a diagnpf
the spectrum on small scales; the convolution with the suwia-
dow, which suppresses the power on large scales; the neariiies
which add power on small scales, and the redshift-spacerticsts.
The total observed power spectri®®sis modelled as

PObs(K) = f diIn«® Py (k) K(x, K) (19)
whereK(«, k) is the kernel accounting for the effect of the finite
survey area, given in Eqs. (9-11)lof Hlifsi (2010), &g contains
the remaining corrections and the effect of non-lineasitia our
analysis we only use data upk@ax = 0.15h Mpc* and we follow
Hiitsj m), modelling the effect of residual weak namehrities

-
-
-

— by(M)
----- B,,(M,fy,=400)

M| L L

1018

N L L PR

M [h-1M,]

Figure 4. Mass dependence of the linear halo biazat0.2 for three mass
functions: Press-Schechter (cyan dotted), Tinker (blatik)lsand modified
LoVerde mass function in the presence of PNG (magenta dited), with
fne = 400. Cosmology is fixed to our combined best-fit model.

with a simple effective fitting function with one free paraeray, .
All these contributions lead to:

Pu(k) = (B (2 + k) S(K) Pin(K)

2 1,
1+ §ﬁz+ Eﬁz] . (20)

Here the bias is rescaled b¥° = b - B, where we include a nui-
sance parametd to represent the uncertainty on the bias derived
from the mass function. We model the photo-z smoothing with a
corrective factor

= (5 erf 09,

assuming that photo-z errors follow a Gaussian distriloutidgth
dispersionsz and corresponding spatial smoothing scale =
0z - ¢/Hp. The last term of Eq.[{20) is the correction due to
redshift space distortions (RSD), for which we assysp@) =~
Q055(2) /bebs(Z) (Kaisell 1987). We have checked that the RSD cor-
rection changes at most at the percent level if we calcutad¢ i
the limits of our redshift range. We finally take into accotim
Alcock-Paczynski effect (Alcock & Paczynski 1979): we ralgc
the full theoretical power spectrum with respect to the aasigy
used to convert redshifts to distances in the measurenusnsted
by the superscript ‘fid"), assuming a single isotropic ddatapplies

dEisenstein et al. 2005; HUtsi 20dD6c), i.e.
i pObS(L) )

Cisotr

(21)

Pk = (22)

isotr

Here oy = (c”ci)l/a, ¢ = H"/H, c, = Da/D, Dy is the an-
gular diameter distance, where all quantities are caledlat the
mean redshifz.”

We show in Fig[R the full cluster power spectri®y(k). The
different lines correspond to the theory curves for our ciowth
best-fit cosmology (red solid) and for two other models (ldne
green) chosen to be at ther2imit of the marginalised,, — og
contour, compared with the data.

3.5 Primordial non-Gaussianity

We extend our model to constrain PNG from both bias and abun-
dances of the maxBCG clusters. Briefly, following e.g. theation

of (Giannantonio & Porciahi (2010), we introduce the param-
eter to quantify the amount of PNG in the simplest local, escal
independent case as

D(x.2) = ¢(x,2) + fu [#*(x.2) - (¥D)2)] »

(23)
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where® is the Bardeen'’s potential at a primordial redshjfand¢

is an auxiliary Gaussian potential. Throughout this paperdefine

fau by writing the previous equation at early times (zex~ 1100).
The potential power spectrum can be approximated by its -Gaus
sian part,Py(k) ~ P,(K), at leading order infy. and neglecting
trispectrum corrections. The matter perturbations awged|to the
primordial potential by the Poisson equation:

5(k.2) = a(k,2) D(k,z.), (24)
with
_ 22K T(k) D(2) 9(0)
alk 2 = 30, HZ o) (25)

Here T(K) is the transfer function and(z) « (1 + 2 D(2) is the
growth function of the potential. We can then write for thetiaa
power spectruni?

P(k,2) = a®(k, 2 Po(k, 2.) = 0?(k, ) P,(k, 2.); (26)

we consider linear theory only, so we assume Pj,.
The halo mass function is modified in the presence of PNG as
it gains a dependence on the skewness. We u
) mass function (LV), which was obtained by using thgé=d
worth expansion, and is given by
-1,

fiv(v) = \/g e_é
(27)

whereS; is the skewness of the matter density field defined as in
IDesjacques et hl. (2009) (the mass dependence is implioifjn-
prove the agreement with-body simulations, and for consistency
with the rest of our analysis, we replace its Gaussian limitfthe

PS to the Tinker form, so that we use the rescaled form defisied a

F0)
os(v)

wherefps = V2/v exp(—vz/z) is the PS mass function.

We apply the peak-background split formalism and analyt-
ically derive the Lagrangian linear halo bias associatedht®
LoVerde mass function using E@.{15) as

6+ Sz0(4° — 4v) + nglmr . (29)
D+ 20(2-1)

while the Lagrangian bias associated to the rescaled massdn
of Eq. [28) is

bl (v) = b, () + b5 (v) — b5g(v).,

which is the bias we use in the following.

In the presence of PNG, the halo density perturbations dkpen
not only on the dark matter perturbatiafidut also on the potential
¢. The latter can then be related back to the density in Fospiace
by using the Poisson equation, so that the effective Euldsias
can be written at the mean redstift 0.2 as

Peir (M, K, far) = b(M, ) + Ab(M, K, fue),

T4 _ 52 g2
V+536(V 2y l)+d|n (

ﬁv = fiv(v), (28)

1
0 6v + Szo(v* — 212 —

0
bllzv(V) = O_—Cz -

dino

(30)

(31)

where the bias contains implicitly a scale-independentection
ob(fan) = b(M, fy) — b(M, 0) with respect to the Gaussian case,
following from the difference in the mass function, and tlcals-
dependent part is

2 faL 6cb-(M, )

Ab(M, K, fy) = K3

(32)

eetal

108

(k) [h-*Mpc?]

Pobs

104
Data

Best fit, fy,=—46

fy,=—200
F e fy,=+200

k [hMpc!]

Figure 5. The effect of PNG on the cluster power spectrum. We compare
the data (black points) with the predictions for the best¥fddel to our
data withfy. = —46 (red solid) and for two cases witly. = —200 (blue
dashed) andy. = 200 (green dot-dashed). The dotted lin&aix = 0.15h
Mpc! represents the smallest scale we use in the analysis.

in our catalogue following Eq[{17). In order to take into @aat
the uncertainty on our assumption of a mass function, weialso
troduce a nuisance paramet@ms in Sectiof_3]4, which rescales
the bias ab®® = b - B.

The scale-independent correctigin( fy, ) is small, easily con-
fused with other normalisation effects, and relies on treuaed
form of the mass function and the peak-background split oteth
For these reasons, it is worth ensuring that the results tdepend
on this contribution. We make sure this happens in our casause
any constant rescaling of the bias can be equally explaigesi-b
ther a change in the nuisance param@&ser a change irfy,_. But
since a model withfy. # 0 also predicts the scale-dependent bias,
it will be favoured only in case such a feature is indeed olezkr
in the data, otherwise thB # 1 model will be assigned a better
likelihood. In practice, we impose some Gaussian priorgredron
B = 1, but we have checked that the resultsfgn do not depend
significantly on this choice.

We show in Fig[b the full power spectruRi®s(k) in the pres-
ence of PNG for a choice dfy. values, compared with the data.
The scale-dependent bias induced by PNG is visible on lages
(smallk), while the smaller scale-independent contribution can be
seen on small scales (large Note that the survey window con-
volution of Eq. [I9) partially suppresses the effect of PNGtlee
largest scales, which become comparable with the surveymal

4 LIKELIHOOD ANALYSISAND RESULTS

We use cluster counts, WL masses and the cluster power spectr
to fit the richness-mass relation and constrain cosmolagylta-
neously. In particular, our observables are:

As in the Gaussian case, we average the bias over the masses (1) Cluster countdN, divided into 10 richness bins;

© 2013 RAS, MNRASO00, [1H12
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Type Symbol Definition Prior without CMB  Prior with CMB
Cosmology h Dimensionless Hubble parameter .70 [0.4,0.9]
Ns Scalar spectral index .96 [05,1.5]
Qp Baryon energy density .04397 [001,0.2]
Qc Cold dark matter energy density .100.9] [0.1,0.9]
log(10°As) Amplitude of primordial perturbations [0.6.0] [0.1,6.0]
T Optical depth ®m9 [0.01, 0.125]
L Primordial non-Gaussianity amplitude —900,900] [-900,900]
Scaling relation  IlN1 = In NgaM1 Richness aM; = 1.3- 10"*M, [1.0,4.0] [1.0,4.0]
In Nz = In Nga| M2 Richness aM, = 1.3- 10"5M [1.0,4.0] [1.0,4.0]
TIn MiNggy Scatter ®5+0.1 045+ 0.1
Nuisance B Weak lensing mass measurements bias .0 +10.06 10+0.06
B Scatter on bias derived from mass function .040.15 10+ 0.15
ONL Non-linear correction to power spectrum .0060.0] [0.0,50.0]
oy Photo-Z errors [0120] [0,120]
Asz Amplitude of CMB SZ template 1 [@]
Derived Qm Total matter energy density — —
g Amplitude of density perturbations — —

Table 1. Parameters used in the analysis and their assumed pridhe prior columns a single numbesstands for a fixed valuea[b] stands for a flat prior,

u + o means a Gaussian prior of meaand standard deviation.

(2) Total mass of clustessSNM, divided into 6 richness bins;
(3) Cluster power spectruf®s, divided into 18k bins.

The covariance matrix we use for the cosmological analysis i
composed by the parts discussed in Sediion 2. In additioheto t
cluster data we also use the CMB power spectra from WMAP7
(Larson et dl. 2011), in the cases specified below.

We assume a flanCDM cosmological model. When using
cluster data alone we fix the Hubble paraméter 0.7, primordial
spectral indexs = 0.96 and baryon densit®, = 0.044, as these
parameters are not easily constrained in this case; we tietme
assumptions when adding external CMB data. Note that wetaeed
fix the spectral index of scalar density perturbations bsead the
small range in scale which our mass range corresponds to.

We then perform Bayesian parameter estimation by run-
ning Monte Carlo Markov Chains (MCMCs), using Metropo-
lis sampling with a modified version of the dSmomc code
(Lewis & Bridle[2002). In Tabl€ll we list all the parameterstué
analysis, including their assumed priors. We estimate tiséepior
probability distributions in the following cases:

(i) Counts only: 6 free parametersCl;, log(10°As), In Ny,
In' Ny, UInM\Ngap,B]y without the cluster power spectrum;

(i) Countswith fy, : 7 free parameter<);, log(10°°A;), In Ny,
In' Ny, TIn MiNggy» Bs fa], without the cluster power spectrum;

(i) Counts+P(k): 9 free parameterst)., log(10°A;), In Ny,
In' Ny, TinMNgap B5 ONL, Oz B], with the cluster power spectrum;

(iv) Counts+P(k) with fy.: 10 free parameters Qf,
|Og(1010A5), INNy, InNy, on MINga B, Ons 0z, B, fNL]1 with
the cluster power spectrum;

(v) CMB only: 7 free parametersQ),, h, 7, ns, As; Qc,
log(10'°As)], with CMB data only;

(vi) CMB+clusters: 14 free parameter<d}, h, 7, ns, As;, Qc,
log(10°As), InNy, IN Ny, TinMiNga» B+ ONL» 02, B], with CMB and
all cluster data;

(vii) CMB+clusterswith fy,: 15 free parameter$y,, h, 7, ns,
ASZ, Qc, |Og(1010A5), In Nl, In N2, oa™ M|Ngal’ﬁ’ ONL, Oz, B, fNL]1 with
CMB and all cluster data.

4.1 Results

We summarise our results in Talle 2, and we show in Figs] 6, 7,
and® the 2D 68% and 95% marginalised confidence regions for
different pairs of parameters in our analysis. The colobes is

the same for all figures: blue contours refer to runs with t®@and

WL mean masses data only, green contours include in addi®n
cluster power spectrum data, while orange contours aldadac
CMB data from WMAP7.

The joint constraint in th€,, — g plane in Fig[® displays the
typical degeneracy from cluster counts: the counts ineraeh
increasingQ,, and og values, hence any increase(y, must be
balanced by a decrease dry (and viceversa), to keep the abun-
dances at the observed values. The constraints on indivieam-
eters with counts and masses only are consistent(with Ragb et
(2010), and we find2,, = 0.25 + 0.06, og = 0.80 + 0.06 (1 er-
rors throughout), while the errors are improved by a facaiween
1.5 and 3, depending on the parameter, when adding the maxBCG
power spectrum: in this case we obt&lp = 0.215+ 0.022,0g =
0.84 + 0.04. Combining then these results with the CMB data, the
constraints shrink t6,, = 0.255+ 0.014 andog = 0.790+ 0.016:
the contribution of the CMB tightens the errors by a furtrestér
of two.

In Fig.[d we show the marginalised posterior probability-con
tours of the scaling relation parametersNin and InN,. Con-
straints on individual parameters using counts and massgsre
again compatible Witalo) h = 244 + 0.11,
InN, = 4.16 + 0.15), while errors are reduced when adding the
power spectrum, even if less significantly Np = 2.49 + 0.09,
InN, = 413+ 0.13). Combining these results with the CMB data,
the constraints are almost identical, as the CMB is not seadd
the clusters scaling relation. Our constraints on the isgaklation
scattefon are in agreement with Rozo et 10), and they are
not improved by the addition of power spectrum and CMB data.

Figs[8[® show the constraints 6§ and its degeneracies with
Qm andog. First we can see that, when only counts and masses are
used, the constraints ofy. are weak as expected. The situation
improves when adding the cluster power spectrum: in thig,cas
the constraints are tighter, and we observe a positive letioe
betweenfy, and Q,, and an anti-correlation withrg. To under-
stand this behaviour, we notice that if we increase (deeje@s,
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Figure 6. Marginalised posterior probability distributions on trerameters
Qn — og for the runs usingounts only (blue), Counts+P(k) (green) and
Counts+P(k)+CMB (orange), at 68% and 95% confidence levels.
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Figure 8. Marginalised posterior probability distributions on thargme-
ters fyL — Qm for the runs usingCounts with fy (blue), Counts+P(k)
with fy (green) andCM B+clusters with fy (orange), at 68% and 95%
confidence levels.
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Figure 7. Constraints on the scaling relation parameters for the usirgy
Counts only (blue), Counts+P(k) (green) andCounts+P(k)+CMB (or-
ange), at 68% and 95% confidence levels. Notice thal I In NggMy
and InNz = In NgaM3, whereM; = 1.3 101Mg andM; = 1.3 108Mp,

the peak of the power spectrum decreases (increases) \dtlbex

ing shifted to higher (lower) values &f while og simply changes
the overall normalisation. As described above, an incrgadg,
causes a boost in the power spectrum on large scales (emsdi
thatog needs to decrease to compensate a hifethis is exactly
what is shown in Fid.]9. In addition to thi3,, should increase to
compensate a highdf, : this can be seen in Fifi] 8. We also see
that the addition of the CMB power spectrum data improves the
constraints o2, andog and only indirectly reduces the bounds

© 2013 RAS, MNRASO00, [1H12

NL

Figure 9. Marginalised posterior probability distributions on thg — og
plane for the runs includin@€ounts with fy_ (blue), Counts+P(k) with
faL (green) andCM B+clusters with fy (orange), at 68% and 95% confi-
dence levels.

on fyi, since PNG simply affects the higher-order statistics ef th
CMB.

Our constraints on PNG arg,. = 12 + 157 (1) (without
CMB) and fy. = 194 + 128 (with CMB), which are statistically
compatible with zero and with each other. The shift in the mzz
tween the two results is clear by looking at Figd.18, 9: thetamid
of the CMB favours lower values ofg (and higher values d,),
thus shifting the favoured}, values in the process. While not com-
petitive with results from the CMB bispectrum or from comdxh
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Params Countsonly Counts+P(k) ClusterstCMB
no L +nL no fnL +nL no fnL +nL
Qm 0.25+0.06 025+0.06 0215+0.022 Q209+0.022 0255+0.014 Q248+ 0.013
og 0.80+0.06 Q77+0.07 084+ 0.04 085+ 0.05 0790+ 0.016 Q780+ 0.016
In N1 244+011 244+011 249+ 0.09 249+ 0.08 244+ 0.08 243+ 0.08
In Np 416+015 415+0.15 413+ 0.13 411+012 419+ 011 415+ 011
oM 0.38+0.06 038+0.06 036+ 0.06 037+ 0.06 0378+ 0.059 038+ 0.06
B 1.00+0.06 101+0.06 101+ 0.06 101+ 0.06 101+ 0.06 100+ 0.06
ONL - - 26+ 10 27+ 10 14+ 6 16+ 7
oy - - 46+ 12 42+ 8 43+ 10 31+5
B - - 1.07+0.13 101+0.15 119+0.11 100+ 0.14
fnL - 282+ 317 - 12+ 157 - 194+ 128

Table 2. Marginalised mean values and- &rrors on the cosmological parameters, for the @asnts only, Countswith fy, Counts+P(k), Counts+P(k)
with fy, CMB+clusters andCM B+clusterswith fy . Note thatQ),, andog are derived parameters in our analysis.

analyses of multiple galaxy surveys, it is interesting tal fauch
constraints independently and for the first time with thest@ting
of galaxy clusters.

Since we restrict our analysis to nearly-linear scales,ny i
posing the data cut &y. = 0.15h Mpc™?, we are not expect-
ing strong constraints ogy.. The constraints we found are indeed
broad and in agreement within the errors with the resul@
M), who foundyy,. = 14.2 + 2.8 when marginalising over three
parameters only: we obtagp,. = 26+ 10 andgy. = 14+ 6 when
also using CMB data.

It is also worth mentioning the results on tfBeparameter,
which was introduced to take into account the uncertaintthan
bias expression derived from the mass function. As thisrpater
allows an arbitrary constant rescaling of the bias, it alas the
desirable property of cancelling the effect of the scatiependent
bias correctiorb(fy.), as described in Sectign 8.5. To check that
the Gaussian prior we are imposiBg= 1.0 + 0.15 is large enough
for both purposes, we made an additional run replacing i wit
flat prior B € [0.0001 5]. In this way, we obtain nearly unchanged
results onfy, .

5 CONCLUSIONS

In this work we have investigated the cosmological implias

of the optically-selected SDSS maxBCG galaxy cluster daiba,
taining extended cosmological constraints with respeqbravi-
ous works. We considered the number counts of clusters Im ric
ness bins and the weak lensing mass estimations, includimg t
respective covariances, for a cross-calibration of théregaela-
tion. We then combined such data for the first time with a mea-
surement of the redshift-space power spectrum of the sanse cl
ters. In the modelling we included an effective treatmenthaf
non-linear contribution, photo-z smoothing, redshiftspalistor-
tions and Alcock-Paczynski effect. We only considered gliasar
scales ak < knax = 0.15h Mpc to be conservative. We estimated
the off-diagonal terms of the counts-clustering covaran@atrix
with a jackknife method applied on both data axébody simula-
tions, and found consistently that such contributions aggigible.

We then performed a full MCMC analysis of the posterior
probability distribution of cosmological parameters givibe full
data set. By thus combining the one- and two-point stasistie
achieved a factor 1.5 to 3 improvement on the errors on the cos
mological parameters, if compared with previous analysssgu

number counts and masses 02010), obtaining e
for the fluctuation amplituders = 0.84 + 0.04 (1o) and for the
matter contenf),, = 0.215+ 0.022 (1r). These are further tight-
ened by a factor of 2 by the addition of the CMB data. On therothe
hand, we found that the errors on the scaling relation paense
are consistent with previous works, but not significantlypioved

by the addition of the cluster power spectrum.

As an interesting application, we also tested primordial-no
Gaussianity, which is constrained through the non-Gandséo
mass function and the scale-dependent cluster bias. Asguter
viations from Gaussianity at the three-point (skewnesggllef
the local type, we obtainefy, = 12 + 157 (1) from our com-
bined data set, which shifts iy, = 194+ 128 (1) when includ-
ing the WMAP7 CMB data. While not competitive with the CMB
bispectrum and with results from combined galaxy clustgdata
sets, this result is consistent with them and was obtainkd tise
maxBCG cluster data alone. Our results can be seen as a groof o
concept towards a full joint analysis of the LSS, considyeini-
cluding both galaxies and clusters as dark matter traceesieve
the full potential of the upcoming galaxy surveys such adxhek
Energy Survey and the Euclid mission.
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