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Information field dynamics (IFD) is introduced here as a framework to derive numerical schemes
for the simulation of physical and other fields without assuming a particular sub-grid structure
as many schemes do. IFD constructs an ensemble of non-parametric sub-grid field configurations
from the combination of the data in computer memory, representing constraints on possible field
configurations, and prior assumptions on the sub-grid field statistics. Each of these field configu-
rations can formally be evolved to a later moment since any differential operator of the dynamics
can act on fields living in continuous space. However, these virtually evolved fields need again a
representation by data in computer memory. The maximum entropy principle of information theory
guides the construction of updated datasets via entropic matching, optimally representing these
field configurations at the later time. The field dynamics thereby become represented by a finite
set of evolution equations for the data that can be solved numerically. The sub-grid dynamics is
thereby treated within auxiliary analytic considerations. The resulting scheme acts solely on the
data space. It should provide a more accurate description of the physical field dynamics than sim-
ulation schemes constructed ad-hoc, due to the more rigorous accounting of sub-grid physics and
the space discretization process. Assimilation of measurement data into an IFD simulation is con-
ceptually straightforward since measurement and simulation data can just be merged. The IFD
approach is illustrated using the example of a coarsely discretized representation of a thermally
excited classical Klein-Gordon field. This should pave the way towards the construction of schemes
for more complex systems like turbulent hydrodynamics.
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I. INTRODUCTION

A. Motivation

Computer simulations of fields play a major role in
science, engineering, economics, and many other ar-
eas of modern life. Computer limitations require that
the infinite number of degrees of freedom of a field
are represented by a finite data set that fits into com-
puter memory. For example in hydrodynamics with
mesh codes, the average density, pressure, and veloc-
ities of the fluid within grid cells form the data. The
data makes statements about the field properties, and
the simulation scheme describes how the present data
determines the future data. This dynamics is usu-
ally set up such that the continuum limit of an infi-
nite number of infinitesimal dense grid points recovers
the partial differential equations governing the physi-
cal field dynamics. However, there are many possible
schemes to discretize the differential operators of the
field equations. Which one gives good results already
at finite resolution? Which one takes the influence
of processes on sub-grid scales best into account? To
address these questions, a rigorous approach to con-
struct accurate simulation schemes, information field
dynamics (IFD), is presented here. IFD rests on in-
formation field theory (IFT), the theory of Bayesian
inference on fields [1, 2]. In the ideal case, IFD and
IFT provide identical results, since both can be used
to make statements about fields at later times given
some initial data. However, in real world applications
of simulation schemes, compromises with respect to
accuracy and computational complexity are often un-
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avoidable. Thus IFD can be regarded as a particular
approximation scheme within IFT, which may or may
not provide optimal results from an information the-
oretical point of view.

The basic idea is that IFT turns the data in com-
puter memory into an ensemble of field configurations
which are consistent with the data and the knowl-
edge on the sub-grid physics and field statistics. The
differential operators of the field dynamics can then
formally operate on these field configurations without
the usual discretization approximation. An unavoid-
able approximation finally happens when these time
evolved fields get recast into the finite data represen-
tation in computer memory. The information theo-
retical guideline of the Maximum Entropy Principle
(MEP) is used in order to ensure maximal fidelity of
this operation, which we call in the following entropic
matching. The sub-grid dynamics is thereby treated
within an auxiliary analytic consideration. In the end,
an IFD simulation scheme for the time evolution of a
field is a pure data updating operation in computer
memory, and therefore an implementable algorithm.
Although this algorithm does not explicitly deal with
a field living in continuous space any more, it was,
however, derived with the continuous space version of
the original problem being very present in the math-
ematical reasoning. The sub-grid information, which
IFT used to construct the virtual continuous space
field configurations, is encapsulated implicitly in the
resulting IFD scheme. Therefore IFD schemes act
solely on the data in computer memory without using
any explicit sub-grid field representation.

When constructing a computational simulation
scheme for field dynamics, whether using IFD or not,
one is facing two bottlenecks: finite computer mem-
ory and finite computational time. This work deals
only with the first issue, and explains how to con-
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struct schemes which optimally use the data stored in
computer memory. Optimizing with respect to only
one objective, memory in this case, very often results
in solutions which are ineffective with respect to an-
other aim, computational simplicity here. Thus we
do not expect the resulting IFD schemes necessarily
to be the optimal solution for a concrete computa-
tional problem. Deriving practically usable schemes
will often require additional approximations in order
to reduce the computational complexity. The IFD
framework can, however, help to clarify the nature
of the approximations made and guide the design of
simulation schemes.

The concrete problem of how to discretize a ther-
mally excited Klein-Gordon (KG) field in position
space will illustrate the usage of the theoretical IFD
framework.

B. Previous work

Our main motivation is to aid the construction of
simulation schemes, for example in hydrodynamics,
for which a very rich body of previous work exists. Ap-
pendix A discusses briefly the relevant concepts of par-
tial differential equation discretization, sub-grid mod-
eling, and information theoretical concepts in simula-
tion schemes and their relation to IFD.

C. Structure of this work

In Sect. II we introduce the necessary concepts of
IFT, MEP, and IFD. In Sect. III IFD is developed in
detail on an abstract level, as well as for the illustra-
tive example of a KG field. The fidelity of IFD and a
typical ad-hoc scheme for the KG field are compared
numerically and against an exact solution in Sect. IV.
Section V contains our conclusion and outlook.

II. CONCEPTS

A. Information field theory

The idea of this work is that the data stored in a
computer is only a constraint on possible field con-
figurations, but does not to fully determine a unique
sub-grid field configuration. Instead, the ensemble of
possible field configurations is constructed using IFT.
IFT blends the information in the data and any prior
knowledge on the field behavior into a single probabil-
ity density function (PDF) over the space of all field
configurations.

IFT is information theory applied to fields, proba-
bilistic reasoning for an infinite set of unknowns, the
field values at all space positions. It provides field
reconstructions from finite data. For this IFT needs
data, a data model describing how the data are deter-
mined by the field, and a prior PDF summarizing the
statistical knowledge on the field degrees of freedom
prior to the data. How this works in our case will be

shown in the following. A general introduction to IFT
can be found in [2] and in the references therein.

IFT exploits mathematical methods from quantum
and statistical field theory. The unknown field φ is
regarded as a signal, a hidden message to be revealed
from the data d. A prior PDF P(φ) describes the
knowledge about the signal field prior to the data,
and a likelihood PDF P(d|φ) describes the probability
of the data given a specific signal field configuration.
Bayes’ theorem allows one to construct the posterior
PDF

P(φ|d) =
P(d|φ)P(φ)

P(d)
, (1)

which summarizes the a posteriori (after the data is
taken) knowledge on the signal field. The connection
to statistical field theory becomes apparent, when one
realizes that Bayes theorem can also be written as

P(φ|d) =
e−H(d,φ)

Z(d)
, (2)

with the information Hamiltonian

H(d, φ) = − logP(d, φ) = − logP(d|φ)− logP(φ),
(3)

and the partition function

Z(d) = P(d) =

ˆ
DφP(d, φ) =

ˆ
Dφ e−H(d,φ). (4)

Here,
´
Dφ denotes a phase space integral over all pos-

sible field configurations of φ, a so called path integral.
The information Hamiltonian combines prior and

likelihood into a signal energy, which determines the
signal posterior according to the usual Boltzmann
statistics. This Hamiltonian therefore contains all
available information on the signal field.

The simplest IFT case is that of a free theory. This
emerges in case three conditions are met:

(i) The a priori distribution of the field is a
multivariate Gaussian,

P(φ) = G(φ,Φ) =
1√
|2πΦ|

exp

(
−1

2
φ†Φ−1φ

)
, (5)

with signal covariance Φ = 〈φφ†〉(φ) =´
DφP(φ)φφ†, its determinant |Φ| =

detΦ, and φ†ψ =
´
dx φx ψx denoting the

scalar product.

(ii) The data depends linearly on the signal
field,

d = Rφ+ n, (6)

with a known response operator R.

(iii) The noise n = d − Rφ is signal-
independent with Gaussian statistics

P(n|φ) = G(n,N), (7)

where N = 〈nn†〉(n|φ) =´
DnP(n|φ)nn†.
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In this case, the likelihood P(d|φ) = P(n = d −
Rφ|φ) = G(d−Rφ,N) and the prior P(φ) contribute
terms to the Hamiltonian that are at most quadratical
in the signal. Thus, the Hamiltonian is also quadrat-
ical, which is the mark of a free theory. In this spe-
cific case, the information Hamiltonian states that the
posterior field is also Gaussian, but with shifted mean
m = 〈φ〉(φ|d) =

´
DφφP(φ|d) and uncertainty vari-

ance D, which can be read off from

H(d, φ) =̂
1

2
(d−Rφ)

†
N−1 (d−Rφ) +

1

2
φ†Φ−1φ†

=̂
1

2
[φ† (Φ−1 +R†N−1R)︸ ︷︷ ︸

D−1

φ+ φ†R†N−1d︸ ︷︷ ︸
j

+j†φ]

=
1

2

(
φ†D−1φ+ φ†j + j†φ

)
=̂

1

2
(φ−m)

†
D−1 (φ−m) , (8)

with

m = D j =
(
Φ−1 +R†N−1R

)−1
R†N−1︸ ︷︷ ︸

W

d = Wd.

(9)
Here and later “=̂” means equality up to irrelevant
constants.1 In analogy to the quantum field theory,
an information propagator D = (Φ−1 + R†N−1R)−1

and an information source j = R†N−1d can be iden-
tified. The information source j is given by the data
d, weighted by the inverse noise covariance N−1 and
back-projected with the hermitian adjoint responseR†

into the signal space. The a posteriori mean field mx

at some location x of the signal space is constructed by
transporting the information jy sourced by the data
at some location y to x with the help of the informa-
tion propagator Dxy. This happens by applying this
as a linear operator to the information source field
mx =

´
dy Dxy jy. The resulting posterior mean field

depends linearly on the data, m = Wd. The corre-
sponding linear filter operation W is well known in
signal reconstruction as the (generalized) Wiener fil-
ter [3]. The information propagator D is also identical
to the a posteriori uncertainty variance,

D = 〈(φ−m) (φ−m)†〉(φ|d), (10)

also known under the term Wiener variance. To
conclude, in free IFT the posterior is Gaussian with
Wiener mean and variance,

P(φ|d) = G(φ−m,D). (11)

Although the field mean m is a continuous function
in the signal space, a full field with an apparently in-
finite number of field values, it has strictly speaking

1 This is of course a context dependent convention, since it
depends on what is regarded to be relevant. In the context
of this work, any field dependent quantity is relevant. Field
independent normalization constants of PDFs are not. The
sign “=̂” is here used as the logarithmic partner of the sign
“∝”, since normalization constants become constant additive
terms after taking the logarithms. Later on, we will also
regard terms of higher order in the time step δt as irrelevant,
since they can be made to vanish by taking the limit δt→ 0.

only effectively a finite number of degrees of freedom
due to its construction. Since the mean field is a deter-
ministic function of the data, m = m(d) = W d, the
phase space of possible mean fields can have at most as
many dimensions as the data has degrees of freedom.
This sets a limit to the maximal possible accuracy a
simulation scheme can achieve with finite data repre-
sentation of the field. However, in this work, we do
not only evolve the mean field, but the full distribu-
tion of plausible fields around this as characterized by
P(φ|d).

It should be noted that there exist two equivalent
formulations of the Wiener filter operator

W =
(
Φ−1 +R†N−1R

)−1
R†N−1

= ΦR†
(
RΦR† +N

)−1
. (12)

The first one is called the signal space and the second
one the data space representation, since the operator
inversions happen in signal and data space, respec-
tively. They are fully equivalent as long as Φ and N
are regular matrices.2

The data space representation of the Wiener fil-

ter W = ΦR
(
RΦR† +N

)−1
can cope with the

here relevant case of negligible noise, N → 0, lead-

ing to W = ΦR
(
RΦR†

)−1
. This is possible only if

Φ̃ = RΦR†, the data space image of the signal field
covariance, is (pseudo)-invertible, which is very often
the case. If not, the data contains redundancies that
could be used to tailor the data space until Φ̃ is in-
vertible.

This noiseless limit might be a desirable assumption
for dealing with the data of a numerical simulation,
since one might define the data to represent a state-
ment about the field like d = Rφ exactly, without any
uncertainty in data space. However, in the course of
a field dynamical simulation, the knowledge of the ex-
act field configuration φ might not be present at later
times due to unavoidable discretization errors. There-
fore, a mismatch of the data d in computer memory
and the correct discretized statement Rφ for the true
field might develop and this can be regarded as noise
n = d − Rφ. Furthermore, a full error propagation
of initial value uncertainties in a simulation might be
of interest in case the initial data resulted from a real
measurement with instrumental noise. For these rea-
sons, we will keep the noise term in the formalism.

The Wiener filter theory described so far gives us a
sufficient IFT background for this initial work on IFD.
It should be noted, however, that in case of non-linear
relations between data and signal, or non-Gaussian
signal or noise statistics, IFT becomes an interacting

2 The equivalence of the two Wiener filter representations is
easily verified via the following equivalence transformations:(

Φ−1 +R†N−1R
)−1

R†N−1 = ΦR†
(
RΦR† +N

)−1

⇔ R†N−1
(
RΦR† +N

)
=
(

Φ−1 +R†N−1R
)

ΦR†

⇔ R†N−1RΦR† +R† = R† +R†N−1RΦR†.
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field theory, and the resulting operations on the data
to calculate a posteriori mean and variance become
nonlinear. Such operations can be constructed using
diagrammatic perturbation series, re-summation and
re-normalization techniques [2, 4], or by the construc-
tion and minimization of an effective action, the Gibbs
free energy [5, 6]. In many cases, the posterior is well
approximated by a multivariate Gaussian, which we
assume in the following.

B. Entropic matching

We assume now that an ensemble of field configu-
rations for a time t has been constructed with IFT,
those being consistent with the data d = dt and any
background information at that time. It has to be
specified now how those evolve, and how this can be
represented by an updated dataset d′ = dt′ at a later
time t′.

Each of the possible field configurations is assumed
to evolve for a short period according to the exact
physical field dynamics. In order to recast this evolved
ensemble of field configurations back into the data rep-
resentation of the computational scheme, an updated
data set has to be constructed. The field ensemble im-
plied by the updated data should resemble the evolved
field ensemble of the original data as close as possible.
We will use entropic matching for this, the usage of the
MEP without any additional constrains. The MEP is
the principle of our choice since it derives from very
generic and desirable first principles on how to update
a probability without introducing spurious knowledge.

For the MEP, entropy is just regarded as an ab-
stract quantity that can be used to rank various pos-
sible PDFs according to how well they are suited to
represent a knowledge state. A large entropy resem-
bles an uninformed or ignorance state. MEP aims
therefore for the least informed state that is still con-
sistent with all known constraints. This should be the
state with the least spurious assumptions.

A number of intuitively obvious requirements on the
internal logic of such a ranking fully determines the
functional form of this entropy [7–10]. These require-
ments are that local information should have only lo-
cal effects, that the ranking should be independent
of the coordinate system used, and that independent
systems lead to separable PDFs. These requirements
are further detailed in Appendix B. The only function
on the space of PDFs that is consistent with these
principles is the entropy

S(P|Q) = −
ˆ
Dφ P(φ) log

(
P(φ)

Q(φ)

)
, (13)

where P(φ) denotes a PDF for some field φ to be
ranked for its ignorance, and Q(φ) an a priori igno-
rance state. This entropy is the relative entropy of
information theory, the Kullback-Leibler divergence
of P to Q [10]. It is in general also equivalent (up to
some constant) to the Gibbs energy of thermodynam-
ics [5], and to the Boltzmann-Shannon entropy in case
the ignorance knowledge state Q does not favor any
region of physical phase-space, i.e. Q(φ) = const.

Since the information entropy is equivalent to the
Kullback-Leibler distance of information theory, it can
also be used to match one PDF optimally to another
one. This entropic matching will be needed in this
work in order to find the data constrained represen-
tation of the field PDF at a later instant that best
matches the time evolved PDF of an earlier instant.
In case P(φ) can be changed at any phase-space point
φ, maximizing S(P|Q) will reproduce the ignorance
prior P → Q. If there are, however, constraints limit-
ing the flexibility of P(φ) to adapt to Q(φ), the MEP
solution will be different. Such constraints can be im-
posed with the help of Lagrange multipliers, respec-
tive thermodynamical potentials, which can be used
to imprint certain expectation values onto P as it is
shown in Appendix B. In this work, constraints arise
due to the fact that the degrees of freedom to repre-
sent functions and PDFs in computers are limited by
the size of the computer memory.

To be concrete, we write φ′ = φt′ and assume for
definiteness only that the short time step δt = t′ − t
permits a deterministic and invertible functional re-
lation between φ′ and the earlier φ = φt, so that
P(φ′|φ) = δ(φ′ − φ′(φ)) as well as P(φ|φ′) = δ(φ −
φ(φ′)). 3

Here and later, we assume further that the target
knowledge stateQ in our case is given by the Gaussian
signal field posterior P(φ|d, t) = G(φ−m,D) at time
t as specified by the data d = dt and the background
knowledge at this time, however evolved according to
the dynamical laws to a later time t′, so that

Q(φ′) = P(φ′|d) =

ˆ
DφP(φ′|φ)P(φ|d)

= G(φ(φ′)−m,D)

∣∣∣∣ ∂φ∂φ′
∣∣∣∣ . (14)

The state P ′ we want to match to this using the
MEP is one that can be represented by a new set
of data d′ = dt′ at this later time via the IFT pos-
terior P ′(φ′) = P(φ′|d′) = G(φ′ − m′, D′). Since
the data degrees of freedom are finite, the PDF im-
plied by this new data (via m′ = W ′d′ and D′ =
(Φ′−1 + R′†N ′−1R′)−1) will be of a parametric form,
with the new data being the parameters. However,
the evolved PDF will in general have a different func-
tional form. Therefore, a matching between the PDFs
P ′(φ′|d′) and Q(φ′) is needed and using the MEP for
this ensures that the least amount of spurious informa-
tion is introduced in this unavoidable approximative
step.

C. Simulation schemes construction

The IFD methodology to discretize the dynamics of
a field can be summarized with the following recipe:

3 Stochastic terms could easily be incorporated into the dy-
namics, e.g. by setting P(φ′|φ) = G(φ′ − φ′(φ), δtΞ) in case
of additive Gaussian and temporally white noise ξt with co-

variance 〈ξt ξ†t′ 〉(ξ) = δ(t − t′) Ξ. This is a straightforward
extension of the scheme presented here [11].
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1. Field dynamics: The field dynamics equations
have to be specified. The KG equation, which
can be derived from a suitable Hamiltonian, will
serve as an example in this work.

2. Prior knowledge: The ignorance knowledge
state in case of the absence of data has to be
specified. In our example the field will be as-
sumed to be initially excited by contact with
a thermal bath of known temperature. The
Hamiltonian determining the field dynamics will
therefore also determine the background knowl-
edge on the initial state in our example.

3. Data constraints: The relation of data and
the ensemble of field configurations being con-
sistent with data and background knowledge
has to be established using IFT. Assimilation of
external measurement data into the simulation
scheme is naturally done during this step.

4. Field evolution: The evolution of the field en-
semble over a short time interval has to be de-
scribed. This either involves the evolution of the
mean and spread of the ensemble, or — as we
will use here — the analytical description of the
evolution of all possible field configurations.

5. Prior update: The background knowledge for
the later time has to be constructed. In the
chosen example, energy and phase-space conser-
vation of the Hamiltonian dynamics guarantee
that the same thermal ignorance state also holds
at later times.

6. Data update: The relation of data and field
ensemble has to be invoked again to construct
the data of the later time using entropic match-
ing based on the MEP. Thereby a transforma-
tion rule is constructed that describes how the
initial data determines the later data. This
transformation forms the desired numerical sim-
ulation scheme. It has incorporated the physics
of the sub-grid degrees of freedom into opera-
tions solely in data space.

An IFD simulation scheme resulting from this recipe
acts only on the data space. Any sub-grid dynamics is
encapsulated implicitly. This is ensured by the auxil-
iary analytic considerations that construct the ensem-
ble of possible field configurations, evolve them ana-
lytically in time, and map them back onto the data
representation using entropic matching.

III. INFORMATION FIELD DYNAMICS

The IFD program outlined above shall now be dis-
cussed in detail and by following the recipe of Sect.
II C step by step. The discussion will only deal
with linear dynamics and Gaussian knowledge states.
Many interesting problems involve nonlinear dynam-
ics, and consequently should lead to non-Gaussian
knowledge states. However, the construction of a non-
linear IFD theory will have its foundation in linear
theory, which therefore needs to be developed first.

I In order to illustrate the IFD methodology, the
problem of how to discretize the dynamics of a ther-
mally excited Klein-Gordon field in one-dimensional
position space is chosen as an example. Since exact
solutions of the field dynamics can easily be given in
Fourier-space representation, an exact, sub-grid field
model exists in this case to which numerical solutions
using IFD and other discretization schemes can be
compared. Passages dealing specifically with this ex-
ample are marked as this paragraph and might be
skimmed over on a first reading. J

A. Field dynamics

The linear dynamics of a field φ can in general be
written as

∂tφ = c+ Lφ, (15)

where L is a linear operator acting on the field vec-
tor of a time instance, thereby determining the field’s
time derivative. L can be a differential operator, it
can include integro-differential operations, and it can
depend on time. A dependence on earlier field values
is excluded from L, which is therefore assumed here
to be local in time. The field independent, but poten-
tially time and position dependent additive term c is
a source term of the field.

Nonlinear dynamics of the form

∂tχ = F (χ) (16)

can often be cast approximatively into the form (15)
via a Fréchet-Taylor expansion around a sufficiently
good and known approximation ψ for χ = ψ + φ:

∂tφ = F (ψ)− ∂tψ︸ ︷︷ ︸
c

+ ∂ψF (ψ)︸ ︷︷ ︸
L

φ+O(φ2). (17)

One obvious choice of such an approximation would
be to use a static function ψt = χt0 for some short
period [t0, t1] and afterwards ψt = χt1 for the next
such period, always ensuring φ to be small and second
order effects to be negligible.

Stochastic terms in the evolution equations can also
be included into the formalism, however, here we re-
frain from such complications and assume fully deter-
ministic dynamics. If higher time derivatives are part
of the linear or linearized evolution equation, these
can be included as further components of φ.

I For example, the one dimensional Klein-Gordon
(KG) equation for a real scalar field with mass µ

∂2
t ϕ = (∂2

x − µ2)ϕ, (18)

which will serve as a concrete example in this work,
can be cast into the form (15) by setting φ = (ϕ†, π†)†

and

∂t

(
ϕ
π

)
= Lφ =

(
0 1

(∂2
x − µ2) 0

)(
ϕ
π

)
=

(
π

(∂2
x − µ2)ϕ

)
. (19)
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Here, π = ∂tϕ is the canonical momentum field of the
KG field ϕ, which can be discriminated by context
from the number π. The dagger denotes transposing
and complex conjugation of functional vectors so that
ϕ†j =

´
dx ϕ̄xjx =

´
dk ϕ̄kjk/(2π) in real and Fourier

space, respectively. The scalar product of two compo-
nent fields φ = (φ(ϕ)†, φ(π)†)† and ψ = (ψ(ϕ)†, ψ(π)†)†

is

φ†ψ =

ˆ
dx
(
φ

(ϕ)
x ψ(ϕ)

x + φ
(π)
x ψ(π)

x

)
,

=

ˆ
dk

2π

(
φ

(ϕ)
k ψ

(ϕ)
k + φ

(π)
k ψ

(π)
k

)
(20)

in real and Fourier space, respectively.
The KG field dynamics can be derived from the

quadratic Hamiltonian of the dynamical system

H(φ) =
1

2
φ†E φ (21)

=

ˆ
dx

1

2

(
π2
x + (∂xϕx)2 + µ2ϕ2

x

)
=

ˆ
dk

4π

(
|πk|2 + (µ2 + k2)|ϕk|2

)
in abstract, position space and Fourier space nota-
tion, respectively. Here and in the following, x and y
are coordinates in position space, k and q coordinates
in continuous or discrete Fourier space, t is a time
coordinate, and coordinate labels determine in which
functional basis a component of a field is to be read
out. The kernel E of the Hamiltonian reads, in the
Fourier basis,

Ekq = 2πδ(k − q)
(
µ2 + k2 0

0 1

)
. (22)

This determines the KG dynamics via

∂tφ = S ∂φH(φ) = S E φ, (23)

with the symplectic matrix

S =

(
0 1
−1 0

)
. (24)

Therefore, the linear time evolution operator is L =
S E and the temporal source is c = 0 in our example.

The Fourier space representation of the KG dynam-
ics, (∂2

t + k2 + µ2)ϕk = 0, has the solution

ϕk = ake
ιωt + a−ke

−ιωt

πk = ιω
(
ake

ιωt − a−ke−ιωt
)

(25)

with ω =
√
k2 + µ2, ι =

√
−1, and ak ∈ C. With

respect to the remaining degrees of freedom, the com-
plex amplitudes ak, the Hamiltonian becomes

H(a) =

ˆ ∞
0

dk

π
|ak|2

(
k2 + µ2

)
(26)

which implies that these variables are stationary,
∂tak = 0. Therefore, an exact high resolution solution
can be specified for the KG example for all times. This
will be compared to approximative low resolution so-
lutions provided by simulation schemes derived from
IFD and by the usual discretization of differential op-
erators as described in Appendix (A 1). J

B. Prior knowledge

The signal field prior P(φ) has to be specified. The
prior should summarize the data-independent knowl-
edge on the field configuration at current time t. For
practical reasons, one will typically approximate it by
a Gaussian

P(φ) = G(φ− ψ,Φ) (27)

with properly chosen mean field ψ = 〈φ〉(φ) and prior

uncertainty variance Φ =
〈
(φ− ψ) (φ− ψ)†

〉
(φ)

. Such

an approximation is often possible, since even non-
Gaussian knowledge states are typically sufficiently
well approximated by Gaussians. Any sophisticated
treatment of the otherwise resulting non-linear, inter-
acting IFT is beyond the scope of this paper.

The Gaussian prior can also be justified from a pure
information theoretical point of view. In case only the
prior mean ψ and variance Φ are known from physical
considerations, the MEP distribution of the field φ
representing exactly this knowledge is given by the
Gaussian (27) with this mean and variance, as shown
in Appendix B.

Any known mean field ψ can easily be absorbed by
the redefinitions φ→ φ′ = φ−ψ and c→ c′ = c+Lψ.
This, however, might create a c-term even if none ex-
isted initially in the dynamical equation. Therefore
we keep the possibility of a prior mean in the formal-
ism, but note that there is some freedom to trade a
prior mean ψ against a field independent c-term and
vice versa.

I For our illustrative example of a KG field, we as-
sume that the field was initially in contact and equi-
librium with a thermal reservoir at temperature β−1

and became decoupled from it at some time t0 = 0.
The initial probability function of the field is therefore
thermal,

P(φ|β) =
1

Zβ
e−βH(φ) =

∏
k

1

zk
e−2β |ak|2(k2+µ2).

(28)
It separates into independently excited modes, which
do not exchange energy at later times because the am-
plitudes are stationary. Thus, an initially established
thermal state stays thermal and at the same temper-
ature for all times. The partition function is given by
a complex Gaussian integral for each mode and is

Zβ ≡
ˆ
Dφ e−βH(φ) =

∏
k

π

2β (k2 + µ2)︸ ︷︷ ︸
zk

, (29)

where the product goes over all accessible positive
wave vectors.

Since the energy Hamiltonian H(φ) = 1
2φ
†E φ is

quadratic in φ, the prior information Hamiltonian
H(φ|β) = βH(φ) = β

2φ
†E φ is quadratic as well. The

prior is simply a Gaussian P(φ|β) = G(φ,Φ) with zero
mean ψ = 0 and covariance Φ = (β E)−1. In Fourier
space this reads

Φkq =
2π

β
δ(k − q)

((
µ2 + k2

)−1
0

0 1

)
(30)
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Figure 1. (Color online) A realization of a thermally exited KG field ϕx (a) and its momentum distribution πx (b) is
shown for β = 1 and µ = 1 at t = 0 with a resolution of 2048 pixels with black lines passing through the diamond
symbols. The low resolution data with N = 64 data points describing the same fields are shown with yellow diamonds.
The field configuration at t = 0.1 is also shown in panel (a) with a thin brown (grey) line. The KG field ϕx shows a
correlated structure due to the suppression of small scale power by the gradient term in the Hamiltonian, whereas its
momentum field πx is just white noise. The loss of small-scale structure information in the low resolution sampling is
especially apparent for the momentum data.

and in position space it is

Φxy =
1

β

(
1

2µ e
−µ |x−y| 0

0 δ(x− y)

)
. (31)

A KG field realization drawn from (28) for β = 1 and
µ = 1 is displayed in Fig. (1). There, the different
spatial correlation structures of the field values with
〈ϕxϕy〉(φ) = (2µβ)−1e−µ|x−y| and field momenta with

〈πxπy〉(φ) = β−1δ(x−y), as given by (31), can be seen.
J

C. Data constraints

In addition to the relatively vague prior knowledge,
the field is constrained by the finite dimensional data
vector d = (di)i in computer memory. The data is
assumed to represent linear statements on the field
of the form d = Rs + n, c.f. Eq. (6). In typical
numerical simulation schemes, the response operator
might just express an averaging of the field within
some environment Ωi of a grid point xi ∈ Ωi, i.e.

Rix =
1

|Ωi|
θ(x ∈ Ωi), (32)

where the logical theta function

θ(x ∈ Ωi) = P(x ∈ Ωi|x,Ωi) =

{
1 x ∈ Ωi
0 x /∈ Ωi

(33)

is one, if the condition in its argument is true, oth-
erwise it is zero. In schemes based on grid cells or
space tessellations, the grid point volumes are dis-
joint, Ωi ∩ Ωj = ∅ for i 6= j. In case a conserved
quantity should be conserved as accurately as possi-
ble, the total amount of the quantity within the cells
of a space tessellation as well as the currents of the

quantity through the surfaces of the tessellation cells
might be used as data. In smoothed particle hydro-
dynamics, the volumes overlap and are usually also
structured by radially declining kernel functions that
have evolving locations and sizes.

For the moment, we only have to deal with the data
at one instant, and need only to know that it depends
linearly on the underlying field by a known relation of
the form d = Rφ + n. This relation might or might
not be the same at the next instant, depending on
the design choices for R = Rt (stationary grid or La-
grangian moving mesh). Rt could even be determined
by the IFD formalism itself by requiring minimal in-
formation loss of the scheme, as we will do later for
the KG field example in Sect. (III F).

The simulation data vector d can even be extended
also to contain measurement data on the system to
be simulated (e.g. the weather) obtained for the cur-
rent simulation time. If this auxiliary data d resulted
from a linear measurement d = Rφ+ n with response
R and Gaussian noise n with covariance N, only the
replacements

d→
(
d
d

)
, R→

(
R
R

)
, and N →

(
N 0
0 N

)
(34)

are needed.4 This way, the measurement information
is assimilated into the simulation scheme and can be

4 The block diagonal structure of the extended noise covari-
ance matrix assumes that the measurement error and the
simulation error are uncorrelated. This assumption would be
improper in case repeated measurements with the same in-
correctly calibrated instrument are assimilated into the sim-
ulation. In that case, correlations among the simulation
and measurement data errors could exist since the correlated
measurement errors are partly imprinted onto the simulation
data.
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evolved into the future (or into the past, if the simula-
tion is backward in time). The added data could be-
come simulation degrees of freedom, or they could be
discarded at the next simulation time step after their
information was transferred to the simulation data via
the entropic matching operation. The former option
would certainly conserve more information, the latter
is somehow similar to what is done in particle filter
methods as described in Appendix A 3.

The ensemble of field configurations constrained by
the data via (6) and by the prior via (27) is then

P(φ|d) = G(φ−m, D), (35)

where

D =
(
Φ−1 +R†N−1R

)−1
and

m = ψ +W (d−Rψ) = D
(
R†N−1d+ Φ−1ψ

)
.(36)

The mean is shifted here with respect to (9) due to
the non-vanishing prior mean ψ.

In case that external data d is to be as-
similated into the simulation, applying replace-
ments of (34) to (36) and expanding this yields

D =
(
Φ−1 +R†N−1R+ R†N−1R

)−1
and d =

D
(
R†N−1d+ R†N−1d + Φ−1ψ

)
. Thus, data assim-

ilation is very naturally done in IFD since simula-
tion and measurement data shape the field posterior
P(φ|d) = G(φ−m, D) in a similar way.
I In our example of the KG field we want to

deal with the simplest possible data as given by (6)
and (32) that lives on a regular grid, with equidis-
tant, space filling and disjoint pixel volumes Ωi =
[i∆, (i + 1) ∆), with ∆ > 0 being the grid spacings.
Since on a computer one can only deal with finite do-
mains, we assume periodic boundary conditions for
the interval Ω = ∪iΩi = [0, 2π] and require that the
number of grid points N = 2π/∆ ∈ N. The Fourier
transformed field is then

φk =

ˆ 2π

0

dx eιkxφx, with (37)

φx =

∞∑
k=−∞

1

2π
e−ιkxφk. (38)

Here the following substitution with respect to the
infinitely extended case have been made:

´
dx →´ 2π

0
dx and

´
dk
2π →

∑∞
k=−∞

1
2π , which are the appro-

priately weighted sums of the scalar products in posi-
tion and Fourier space, respectively. Furthermore, we
note that δ(k− q)→ δkq in this case, so that the unit
operator is 1kq = 2πδkq and the field covariance (30)
reads

Φkq =
2π

β
δkq

((
µ2 + k2

)−1
0

0 1

)
. (39)

Since the data space is finite, its Fourier space is
also finite, where

dk =

N−1∑
i=0

∆ eιki∆di, with (40)

di =

N−1∑
k=0

1

2π
e−ιki∆dk, (41)

and k ∈ {0, . . . N − 1}. Higher or negative Fourier
modes do not carry any additional information due to
the Nyquist theorem.5

The Fourier transformed response,

Rkq = 2π θ(q − k ∈ N Z)
1− e−ιq∆

ιq∆
(42)

= 2π θ(q − k ∈ N Z) e−
1
2 ιq∆sinc

(
1

2
q∆

)
,(43)

is block diagonal in the reduced Fourier space of the
data with k ∈ {0, . . . N − 1}. Note, however, that
higher Fourier modes of the field φq with q ∈ k +
N Z, which carry information on sub-grid structure,
imprint also onto the data and blend with the lower
Fourier modes k ∈ {0, . . . N −1}. Therefore a unique
reconstruction of the individual Fourier modes from
the data alone is impossible even within the range
q ∈ {0, . . . N − 1}.

The individual terms in (42) can easily be under-
stood. The exp(− 1

2 ιq∆) term stems from the fact
that the centers of the pixel volumes are shifted by
1
2∆ from the pixel positions i∆ used in the definition
of the Fourier transformation. The sinc-function is the
Fourier space transform of the pixel window. It en-
codes how well a given Fourier mode is represented in
the data, and therefore how well it is protected from
noise and confusion with other modes imprinted onto
the same data mode.

The data space signal covariance, which is needed
by the Wiener filter, is6

Φ̃kq =
(
RΦR†

)
kq

=

(
Φ̃

(ϕ)
kq 0

0 Φ̃
(π)
kq

)
, with (44)

Φ̃
(ϕ)
kq =

Φ̃
(π)
kq

µ2

{
1 k = 0[
1− 2

µ∆

sinh(µ∆) sin2( 1
2k∆)

cosh(µ∆)−cos(k∆)

]
k 6= 0

,

Φ̃
(π)
kq =

2πδkq
β

{
1 k = 0
1−cos(k∆)

2 sin2( 1
2k∆)

k 6= 0
.

Since the field covariance and response are transla-
tionally invariant we have every reason to believe that
the noise statistics, which are fed only by approxima-
tion errors depending on these latter two quantities,

5 These conventions for the discrete Fourier transformation
might appear a bit unusual, but they have the advantage
that they match best the continuous space Fourier conven-
tion used in physics. They permit us to use all derived Fourier
space equations for the KG field without changing normaliza-
tion constants and with the intuitive identifications dx→ ∆,
x→ i∆ and k → k.

6 Here, we used the following identities:∑
i∈Z

1

(a+ i)2
=

π2

sin2(πa)

and ∑
i∈Z

1

(a+ i)2((a+ i)2 + b2)
=

π

b3

[
bπ

sin2(πa)
−

sinh(2πb)

cosh(2πb)− cos(2πa)

]
.
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will also be translationally invariant in data space.
Therefore its covariance will also be diagonal in dis-
crete Fourier space:

Nkq = 2πδkq

(
η

(ϕ)
k η

(c)
k

η
(c)
k η

(π)
k

)
, (45)

where η(ϕ), η(π), and η(c) are the noise spectra of
the field value data, the field momenta data, and the
cross-spectra of those, respectively. However, in Sect.
(III F) we will show that the ideal IFD scheme stays
noiseless if it was initially noiseless. Therefore we can
set N → 0 for all times and use the η-parameters to
ensure consistency of all formula. They will be set to
zero at the end of the calculation if this is a permitted
limit.

Taking the noiseless case as granted for the moment,
the Wiener filter becomes

Wkq =
(

ΦR†Φ̃−1
)
kq

(46)

= 2πθ(q = kmodN ) e
1
2 ιk∆sinc

(
1

2
k∆

)
×

2 sin2
(

1
2q∆

)
1− cos(q∆)

×(
µ2

µ2+k2

[
1− 2

µ∆

sinh(µ∆) sin2( 1
2k∆)

cosh(µ∆)−cos(k∆)

]−1

0

0 1

)
.

For a reconstructed signal image generated by this
Wiener filter, any image Fourier mode k ∈ Z gets
exited by its first Brillouin zone data space mode q =
kmodN ∈ {0, . . .N − 1}. Thereby, all Fourier modes
k ∈ Z of the mean field m = W d get some non-trivial
value if the corresponding data mode kmodN was
non-zero. J

D. Field evolution

A Gaussian knowledge state P(φ|t) = P(φ| d =
d(t)) = G(φ − m, D) at some initial time t is repre-
sented by the data d = dt, which determinesthe mean
field via m = W d. The field uncertainty variance
D is data- and time-independent in our example, but
not in general. The knowledge state P(φ|t) has to be
evolved to a infinitesimally later time t′ = t + δt via
the evolution of the individual field configurations.

An individual field configuration φ = φt at initial
time t becomes φ′ = φt′ =̂φt+δtφ̇t = φt+δt (Lφt+c),
where the time derivative is given by (15). Here,
and in the following, we drop non-essential terms of
O(δt2), as indicated by “=̂”. The time-evolved knowl-
edge state therefore becomes

P(φ′| d) = P(φ| d)

∣∣∣∣ ∂φ∂φ′
∣∣∣∣ (47)

by conservation of probability density. We need to
calculate the Jacobian up to linear order in δt. This
is most simply done from the inverse Jacobian,∣∣∣∣∂φ′∂φ

∣∣∣∣ = |1 + δt L| = exp log |1 + δt L|

=̂ exp Tr (δt L) =̂ 1 + δt Tr (L) . (48)

In case of a linear Hamiltonian dynamics ∂tφ =
S ∂φH(φ), with dynamical Hamiltonian of the from
H(φ) = 1

2φ
†E φ + b†φ and E being block diagonal in

the field value ϕ and field momentum π eigenspaces,
we have L = S E and c = S b. The Jacobian is then
unity, since

Tr (L) = Tr (S E) = Tr

((
0 1
−1 0

) (
E(φ) 0

0 E(π)

))
= Tr

(
0 −E(π)

E(φ) 0

)
= 0. (49)

This is not surprising, since it is well known that sym-
plectic Hamiltonian systems conserve the phase space
density, so that the unity of the Jacobian is also valid
for non-infinitesimal time steps δt in such cases.

In general, for non-Hamiltonian systems, the Jaco-
bian can be different from one. It can be larger for
systems with dynamical attractors or with dissipation
(Navier-Stokes equations) and it can be smaller for
systems with diverging phase-space flows, like chaotic
inflation in cosmology or driven hydrodynamical tur-
bulence (without significant dissipation).

The evolved knowledge state, or the knowledge
state on the evolved field, is therefore

P(φ′| d)=̂P(φ = φ′ − δt φ̇| d) |∂φ/∂φ′| (50)

=̂G(φ′ − δt (Lφ′ + c)−m, D) (1− δt Tr (L))

=̂G(φ′ −m∗, D∗),

with7

m∗=̂m+ δt(c+ Lm) (51)

=̂(1 + δt L) (ψ +W (d−Rψ)) + δt c,

D∗=̂D + δt (LD +DL†).

D∗−1=̂D−1 − δt (D−1L+ L†D−1).

I In case of our KG field, we have Tr (L) = 0 due
to the symplectic dynamics with L = S E and c = 0,
as well as m∗ =̂ m + δt S Em. Furthermore, using
L = S E, S† = −S , D−1 = Φ−1 + R†N−1R, and
Φ−1 = β E, we get D∗−1 =̂D−1 − δt (R†N−1RS E −
E S R†N−1R).

7 The key to understand this result is a short rearrangement
in the exponent of the Gaussian,

((1− δt L)φ′ −m− δt c)†D−1((1− δt L)φ′ −m− δt c)
= (φ′ −

(
(1− δt L)−1m+ δt c

)︸ ︷︷ ︸
m∗

)† (1− δt L)†D−1(1− δt L)︸ ︷︷ ︸
D∗−1

(φ′ −m′)

the δt-expansion of the new mean field

m∗=̂(1 + δt L)m+ δt c,

that of the new uncertainty variance

D∗=̂(1 + δt L)D (1 + δt L)†

=̂D + δt (LD +DL†),

and its determinant

|D∗| =̂ (1 + 2δt Tr (L)) |D|.
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The evolved mean field still can be regarded to be
parametrized by the data, however, in a different way,
m∗ = (1 + δt S E)W d. It is not clear in general
whether a new dataset d′ can be found that expresses
this new mean field via the original parametrization
m′ = W d′ (or with the appropriate W ′, in case that
also D′ changed). This is because the functional
forms of the two parametrizations differ since W and
L = S E operate on completely different vector spaces,
the discrete data space and the continuous field space,
respectively.

Therefore entropic matching will be used to choose
a d′ that determines P ′(φ′| d′) such that it captures
most of the information content of P(φ′| d). J

E. Prior update

The field prior for time t′ has to be updated since
the sub-grid statistics might have changed. For exam-
ple some of the energy contained in sub-grid modes
might dissipate, leading to a different P(φ′) = G(φ′ −
ψ′,Φ′) as parametrized via the updated prior mean ψ′

and variance Φ′.
I In case of our KG field, energy conservation of the

dynamics leads to an unchanged prior for the evolved
field P(φ′) = G(φ′,Φ), still with Φ = (β E)−1. J

F. Data update

The new data has to be determined from its relation
to the updated field. Again, we assume the new data
to depend linearly on the evolved field

d′ = R′ φ′ + n′.

Note that we could chose a different pixilation at t′,
leading to a different response R′, propagator D′, and
Wiener filter W ′. This is needed e.g. in case a simula-
tion with moving or adaptive mesh is to be developed.
It can even be considered that the response operator
determination becomes a part of the entropic match-
ing step, leading to an information optimal moving
mesh.

Furthermore, we have to allow for a changed noise
level, with new covariance N ′, since the meaning of
the data values could have changed with changed pix-
ilation and since we might have to allow for additional
uncertainty in order to capture any mismatch between
the new parametrized posterior and the evolved field
posterior.

According to (35) and (36) the relation of new pos-
terior and new data is

P(φ′|d′) = G(φ′ −m′, D′), (52)

where

D′ =
(
Φ′−1 +R′†N ′−1R′

)−1
,

m′ = ψ′ +W ′ (d′ −R′ ψ′)
= D′

(
R′†N ′−1d′ + Φ′−1ψ′

)
, and

W ′ = D′R′†N ′−1 = Φ′R′†(R′ Φ′R′†︸ ︷︷ ︸
Φ̃′

+N ′)−1. (53)

Now, the new posterior P ′ = P(φ′|d′) should match
the evolved posterior P = P(φ′|d) as well as possible.
According to (13) the cross entropy of the former with
the latter is

S(P ′|P) = −1

2
Tr
[(
δm δm† +D′

)
D∗−1+

1 + log(D′D∗−1)
]

(54)

with δm = m′ −m∗.
Maximizing this entropy with respect to the new

data d′ yields

−∂d′S = (∂d′m
′)†D∗−1δm

= W ′†D∗−1(W ′ (d′ −R′ ψ′) + ψ′ −m∗) = 0

⇒ d′ = R′ ψ′ + (55)(
W ′†D∗−1W ′

)−1
W ′†D∗−1 (m∗ − ψ′) .

This is the general formula to update the data. It
should be expanded up to linear order in all the rele-
vant changes in response R′ = R + δR, noise covari-
ance N ′ = N+δN , and prior parameters Φ′ = Φ+δΦ
and ψ′ = ψ + δψ, as well as in time t′ = t + δt. The
resulting general formula is lengthy and not directly
instructive8, therefore we concentrate here more on
special cases.

The update of the uncertainty variance is also ob-
tained by maximizing the entropy with respect to the
degrees of freedom of D′ = (Φ′+R′†N ′−1R′)−1. These
could be the location of the new pixel positions, which
influence R′, or an updated noise level, influencing N ′,
or properties of the field prior expressed via Φ′ and ψ′.

We combine these degrees of freedom into the sin-
gle vector η, irrespective of whether they determine
R′, N ′, Φ′, ψ′, or combinations thereof. The en-
tropic matching of the updated uncertainty variance
D′ = D(η + δη) = D(η) +

∑
i δηiΓi + O(δη2), with

Γi = ∂ηiD(η) the linear changes due to changes in the
degrees of freedom, is then given by

−∂ηS =
1

2
Tr
[
(∂ηD

′)
(
D∗−1 −D′−1

)]
= 0

⇒ δη = C−1b, with (56)

bi = Tr
[
Γi
(
D∗−1 −D−1

)]
and

Cij = Tr
[
ΓiD

−1 Γj D
−1
]
.

8 A few useful identities, when dealing with (55) might be in
order. A short calculation shows that up to linear order in δt(
W ′†D∗−1W ′

)−1
W ′†

= (Φ̃′ +N ′) (R′Φ′D∗−1Φ′R†)−1R′Φ′

=̂ (Φ̃′ +N ′) (R′Φ′
(
D−1 − δt (D−1L+ L†D−1)

)
Φ′R′†)−1 R′Φ′

=̂ (Φ̃′ +N ′) (D̃ + δt D̃ R′Φ′(D−1L+ L†D−1)Φ′R′† D̃ )R′Φ′,

with D̃ = (R′Φ′D−1Φ′R†)−1and that

D∗−1
(
m∗ − ψ′

)
=̂
(
D−1 − δt (D−1L+ L†D−1)

)
((1 + δt L) (ψ +W (d−Rψ)) + δt c) .

=̂D−1ψ +R†N−1(d−Rψ)

+δt
[
D−1c− L†

(
D−1ψ +R†N−1 (d−Rψ)

)]
.
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From the first line it is already apparent, that if D′ is
able to match D∗ exactly, then it will do so. The de-
tailed formula for updating response, noise, and prior
can be complex, since operator inversions are involved.
In general, approximations might be necessary here
in order to proceed with a reasonable computational
complexity.

The formula (55) and (56) form the desired sim-
ulation scheme. The scheme deals optimally with
time dependent pixilation, non-Hamiltonian dynam-
ics, sub-grid processes, as well as with the accumu-
lation of discretization errors. The price of this gen-
erality is a higher complexity of the detailed formula
compared to many ad-hoc schemes. These formula
have to be analyzed case by case to identify the op-
timal numerical implementation strategy. In order to
show this in a simple example, we turn again to the
KG field.

I Assuming that we have all freedom to chose R′,
N ′, and Φ′ to match D′−1 = Φ′−1+R′†N ′−1R′ exactly
with

D∗−1=̂Φ−1 + (57)

R†N−1R− δt (R†N−1RS E − E S R†N−1R)

as derived in Sect. III D, we would immediately use
Φ′ = Φ and try to accommodate the change in vari-
ance in a changed response or noise. Thus the un-
changed signal covariance also results from the data
update via the MEP. The considerations to update
the prior in Sect. III E were therefore superfluous in
this case. The updated prior mean ψ′ could also be
derived by maximizing the entropy with respect to it.
It is not surprising that it turns out to be ψ′ = ψ = 0.

Writing R′ = R+ δR and N ′ = N + δN we find

D′−1=̂Φ +R†N−1R+ δR†N−1R+

R†N−1δR−R†N−1δN N−1R. (58)

Comparing the terms of the last two equations, we
conclude that the best match is found by the identifi-
cation

δR = −δtRS E,
δN = 0. (59)

Thus, the noise should stay unchanged and can be
assumed to be zero for all times it was zero initially,
which we will assume in the following. The response
of an optimal scheme should however evolve accord-
ing to ∂tRt = −Rt S E. This can actually be solved
analytically, providing

Rt = RT−t, (60)

with the time translation operator

(Tt)k q =
(
eS E t

)
k q

= (61)

1k q

[
cos(ωkt)

(
1 0
0 1

)
+ sin(ωkt)

(
0 ω−1

k
−ωk 0

)]
.

In case we insist on using the original response R for
all later times, the change in the uncertainty variance
D∗ would have been needed to be captured by either
Φ′ or by N ′. Neither is optimal for this, which is

why the resulting schemes would lose information in
the course of the simulation. As we will see in Sect.
III G, our scheme with evolving response is lossless
with respect to information.

For the data update from d = dt to d′ = dt′ at
t′ = t+ δt we need only to expand (55) to first order
in δt. In our ideal case with N → 0 we have W ′ =
ΦR†t′(Rt′ΦR

†
t′)
−1 = ΦR†t′(RΦR†)−1 = ΦR†t′Φ̃

−1 =

W −Φ(Rt−Rt′)†Φ̃−1 =̂W −δtΦL†R†t Φ̃
−1, as a short

calculation verifies. The data evolution is then

d′ =
(
W ′†D∗−1W ′

)−1
W ′†D∗−1m∗

=̂
(
W ′†D∗−1W ′

)−1
W ′†D∗−1(1 + δt L)W d

=̂
(
W ′†D∗−1W ′

)−1 ×[
W ′†D∗−1W ′ +W ′†D∗−1(W −W ′ + δt LW )

]
d

=̂ d+
(
W ′†D∗−1W ′

)−1
W ′†D∗−1δt ×

(ΦL† + LΦ︸ ︷︷ ︸
0

)R†t Φ̃−1d

= d, (62)

since ΦL† = β−1E−1E S† = −S E β−1E−1 = −LΦ.
Thus ∂tdt = 0, the data should not be changed, and
the evolution is completely captured by the response
evolution. This scheme is optimal from an IFT point
of view as we will see in the following. Note, that
the scheme is completely specified in the data space,
since (62) does not require any sub-grid calculations
as it does not require any calculations at all. It will be
shown in the next section that the evolution of binned
field values is also completely specified in data space
and that the sub-grid field configuration predictions
require the usage of a finer grid only at the very end
of the calculation.

This simple data (non-)evolution equation ∂tdt = 0
is a consequence of our KG example having a lin-
ear symplectic evolution, as determined by H(φ) =
1
2φ
†E φ and a thermal prior distribution, as charac-

terized by H(φ|β) = βH(φ), both depending on the
same energy matrix E. In general, ∂tdt 6= 0 can be
expected as soon as the prior and dynamics are more
orthogonal in their eigenvector sets. J

G. Information field theoretical solution

I The KG problem is exactly solvable and the later
time field can be obtained from applying a time trans-
lation operator, as given by (61), to an earlier time
field. This operator depends only on the time differ-
ence, φt′ = Tt′−tφt, and is even invertible, so that
the earlier field can be calculated from the later one.
With this, the time invariance of the field covariance
can easily be verified,

Φt = 〈φtφ†t〉(φ) = TtΦt=0T
†
t = Φ0 ≡ Φ, (63)

where the last identity requires a few lines of straight-
forward matrix multiplications using (30) and (61).

Since we want to infer the future field φt from the
initial data d = dt=0, we have to specify how the initial
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data depends on the future field. This backward-in-
time response is simply given by

d = Rφ0 = RT−t︸ ︷︷ ︸
Rt

φt ≡ Rtφt. (64)

Since we now have the response of the initial data
d = d0 to the field φt as well its variance Φt at a later
time, we can simply write down the Wiener filter mean
field at time t that is

mt = 〈φt〉(φt|d) = Wtd = ΦR†t Φ̃
−1d. (65)

Here we used the identity RtΦR
†
t = RT−tΦT

†
−tR

† =

RΦR† = Φ̃ that follows from (63). Therefore, any fu-
ture mean field can be calculated directly from the
original data, which therefore does not need to be
evolved in time. The response Rt and Wiener filter Wt

operators connecting the field at time t to the static
data d = dt=0 are exactly the ones which were found
for the ideal IFD scheme. Thus, IFD reproduces IFT
if the parameters of the future instances are able to
capture all details of the evolved PDF.9 The sub-grid
representation of the evolved field as given by (65)
only requires complex operations in data space, since
Φ̃ is fully specified there. Solely the back-projection

into continuous signal space by R†t and the subsequent

spectral weighting by Φ̃ require sub-grid operations.
One might therefore ask how the virtual data d̃t =

Rφt of the original response R applied to later field
configurations would evolve and if this requires a sub-
grid field resolution. This is of importance to us, since
we want to compare the IFD/IFT scheme with ad-hoc
schemes, which do not need to have a notion of a sub-
grid structure. Since the future field is not precisely
known, the correct data at later times can not be spec-
ified. The best we can do is to calculate the a posteri-
ori expectation value of this hypothetical future data.
This ideal data at later time, ďt ≡ 〈d̃t〉 = 〈Rφt〉(φt|d),

is therefore

ďt = RΦR†t (RΦR†)−1︸ ︷︷ ︸
T̃t

d ≡ T̃td. (66)

Note that the time translation operator of the data
T̃t is not unity in general, basically it is only T̃t = 1
for t = 0, since one of the response operators contains
a time translation of the field:(
T̃t

)
kq

=
(
RΦT †−tR

†Φ̃−1
)
kq

(67)

=
∑

k′∈k+NZ

2 (1− cos(k′∆))

k′2∆2
×(

ω−2
k′ cos(ωk′t) −ω−1

k′ sin(ωk′t)
ω−1
k′ sin(ωk′t) cos(ωk′t)

)
Φ̃−1
kq .

9 The observation that an entropic matching approximation
enforced in any instance of continuous time can result in the
exact equation for a dynamical system was observed previ-
ously in an attempt to reconstruct quantum mechanics from
statistics [12].

Since this time evolution operator is fully deter-
mined in data space, and the sub-grid mode dynamics
is just captured by a sum in a pre-factor to the com-
putational expensive operator Φ̃−1

kq , we can conclude
that a data space only scheme was derived. The time
evolving data ďt = 〈d̃t〉 contains the same informa-
tion as d, since the latter can be reconstructed from
the former via d = T̃−1

t ďt. We can derive an evolu-
tion equation for ďt by simply taking the temporal
derivative of (66):

∂tďt = (∂tT̃t)d = (∂tT̃t) T̃
−1
t ďt.

It is obvious that this ideal evolution equation of the
virtual data according to the original response R is
not only more complicated than just having an evolv-
ing response Rt and stationary data, it is also a dif-
ferential equation with time dependent coefficients.
This might be surprising, since the dynamical equa-
tion of the underlying KG field is invariant under
time translation. However, this time-translational
symmetry is broken for our knowledge state on the
field, for which the time t = 0 of the initial data set
d = Rφt=0 is clearly singled out. The different Fourier
data modes are mixtures of different field modes,
which evolve with individual frequencies. Thus,
the recovery of a similar mixture d̃k = (Rφt)k =∑
i∈Z 2π e−

1
2 ιk∆sinc

(
1
2k∆ + π i

)
(Ttφ)k+N i, with the

original phases in the response works differently at
different times, due to the changed phases of the indi-
vidual modes. Therefore, the optimal IFD differential
equation for data according to the original response
becomes time dependent. Nevertheless, we would like
to have something like a (now time dependent) data
mode frequency for a comparison with ad-hoc simula-
tion schemes. An observer of the data dynamics could
estimate such a frequency in a pragmatic way by using
∂2
t ďk + ω̌2

k,tďk = 0 as an analog of ∂2
t ϕk +ω2

kϕk = 0 to
define

ω̌2
k,t = −(∂2

t d
(ϕ)
k,t )/d

(ϕ)
k,t . (68)

The resulting frequencies are best calculated numeri-
cally, since the involved formula (67) contains an in-
finite sum without a known closed forms. For t = 0,
however, a closed form can be derived,

ω̌2
k,t=0 = µ2

(
1− 2

∆µ

sinh (µ∆) sin
(

1
2 k∆

)2
cosh (µ∆)− cos (k∆)

)−1

(69)

= (k2 + µ2) (1 +
k2∆2

12
+O(∆4)),

that recovers the original continuous space KG fre-
quency ωk = (k2 + µ2)1/2 in the limit ∆ → 0, but
differs from it for finite grid spacings. The oscillation
frequency of a data mode is slightly higher than the di-
rectly corresponding continuous field mode, since the
former also contains field modes from larger k, which
have larger frequencies, due to the mode mixing of
the response operator. The advanced revolution of
the field modes at early times will be compensated
later on by a reduced oscillation speed. The initial
and later time data dispersion relation is shown in
Fig. 2 together with those of ad-hoc schemes derived
in the next section. J
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Figure 2. (Color online) (a): Fourier-data space dispersion relations ω̃k of numerical schemes for the KG field simulation
for the parameters N = 64 and µ = 1. The IFD scheme data mode frequencies ω̌k,t are shown at initial time t = 0
as given by (69) (top, blue dots), an instance later at t = 10−4 (top, blue solid line with kinks), and at time t = π/2
(strongly oscillating blue dotted line). At t = π, the IFD scheme dispersion relation looks similar to the initial one. The
spectral scheme frequencies ω̃spec

k as given by (71) (middle, black squares) follow the continuous space field-dispersion

(thin, smooth, and black line). Finally, the finite difference scheme ω̃diff
k as given by (70) has the lowest frequencies

(bottom, brick red triangles). (b): Data space representation of the numerical scheme operator L̃i j as a function of
the pixel number difference i − j for small differences. The curves are given by the discrete Fourier transformations of
ω̃2
k for the IFD scheme at t = 0 (most extreme, blue dots and line) as well as for t = π/2 (smaller light blue dots and

blue dotted line close to intermediate black line), the spectral scheme (intermediate values, black squares and line), and
for the finite difference scheme (most moderate values, brick red triangles and line). It should be noted that the IFD
operator at t = π/2 also contains some power around positions i − j = ±N/2 = ±32 (not shown in this figure) as a
consequence of the heavy oscillations of ω̌k,t at this time that are visible in panel (a).

H. Summary of the derivation

I A brief summary of the essential steps of the IFD
recipe applied to the KG problem might be instruc-
tive:

1. Field dynamics: The KG equation was con-
verted into a differential equation of first order
in time, ∂tφ = Lφ, by the introduction of the
momentum field πx = ϕ̇x as a second compo-
nent of a two component field φ = (ϕ, π)†. The
KG equation is a linear as L is independent of φ.
This simplified the derivation of an IFD scheme.
If a nonlinear equation should be simulated, the
equation has to be linearized around the current
mean field at any simulation time step.

2. Prior knowledge: The a priori KG field
statistics was specified as a thermal distribu-
tion P(φ) ∝ exp(−H(φ)/T ). The fact that in
this case the KG Hamiltonian H(φ) determines
both the dynamical operator L as well as the
a priori statistics P(φ) turns out to simplify
the resulting scheme considerably. It is, how-
ever, not a general necessity for the applicability
of IFD. The a priori distribution is a Gaussian
since the Hamiltonian is quadratically in φ. If
non-Gaussian priors are to be used it is recom-
mended to find a Gaussian approximation since
IFD is developed so far only for Gaussian priors.

3. Data constraints: As a next step, the com-
puter data space was introduced. The computer
data d needs to be related to the field φ and this

relation should be linear for practical reasons
and could be assumed to be noiseless for the
KG example, d = Rφ. The initial discretization
operator R was chosen here to perform a simple
bin average. Therefore the average field value
in each bin is known if the data is available, but
not the detailed field configuration within those.
However, not all possible sub-grid field config-
urations are equally plausible, since the prior
gives them different weights. Combining prior
and data information, the ensemble of plausible
field configurations can be specified, and char-
acterized by its mean field m = 〈φ〉(φ|d) and un-

certainty variance D = 〈(φ −m) (φ −m)†〉(φ|d)

determining a Gaussian a posteriori distribution
P(φ|d) = G(φ − m, D). This is a Gaussian
thanks to the Gaussian prior and linear data
model. The mean field and its variance are aux-
iliary mathematical objects used in the deriva-
tion of the simulation scheme that need not con-
crete representations in computer memory.

4. Field evolution: The action of the time evolu-
tion operator on the posterior distribution had
then to be worked out analytically. Since we in-
sisted on linear or linearized operators, the time
evolved posterior is again a Gaussian, P(φ′|d) =
G(φ′ − m∗, D∗), characterized by an updated
mean m∗ and uncertainty variance D∗, both
again auxiliary mathematical objects.

5. Prior update: The prior of the later time
might be different and should be updated since



14

it will be used again. However, due to energy
and phase space conservation of the KG dynam-
ics, the KG prior is unchanged. This step could
have been skipped, since the evolution of the
prior can also be determined as part of the next
step, the data update via entropic matching.
However, this requires that the field dynamical
equation captures all sub-grid physics. If this
not the case, the prior update step might per-
mit to implement sub-grid processes not being
present in the dynamical equation.

6. Data update: Finally, an update formula for
the later time data d′ in computer memory was
constructed. This was done by first specify-
ing the mathematical relationship between any
such data and the later time field a posteriori
distribution, P(φ′|d′) = G(φ′ − m′, D′), where
m′ = D′R′†d′ and R′ and D′ are response and
propagator/variance at the later time. Then
the time evolved distribution P(φ′|d) and the
one determined by the new data P(φ′|d′) were
matched entropically. The parameters used to
get an optimal match can be any of the later
time, primed quantities. In the particular KG
example it turned out to be most effective to
vary d′ and R′ in the entropic matching since
this way an information-lossless scheme could
be obtained. This scheme maps the entire field
evolution onto an evolving response operator Rt
and stationary data. We showed that the re-
sulting simulation scheme is indeed optimal by
comparison to the exact information theoreti-
cally derived solution of the future field predic-
tion problem. Since this particular KG simula-
tion scheme does not modify the data, we asked
how the binned field values (with stationary bin-
averaging) would evolve and derived their evo-
lution equation. The time translation operator
of this does also not require any explicit sub-
grid field representation, but has encodes sub-
grid physics implicitly.

The derived simulation scheme can now be imple-
mented on a computer. The resulting code performs
only data space operations and does not require any
sub-grid representation. The sub-grid physics, the
prior knowledge, and the details of the measurement
process (the data to fields relation) have all been in-
cluded in the IFD scheme.

IV. NUMERICAL VERIFICATION

A. Standard simulation schemes

I The IFD scheme for the KG field should now be
compared to more standard simulation schemes for
the KG equation as described in Appendix A 1.

The most common one is the finite difference dis-
cretization of the differential operators by setting
∂xϕx ≈ (ϕ(i+1)∆ − ϕi∆)/∆ and ∂2

xϕx ≈ (−ϕ(i+1)∆ +

2ϕi∆ − ϕ(i−1)∆)/∆2. The KG equation discretized in

this way, ∂td = L̃diff d with L̃diff
ij = ∆−2δi [j+1]N −

(2∆−2 + µ2) δij + ∆−2δi [j−1]N and [j]N = jmodN ,
becomes diagonal in Fourier space, just with the dis-
persion relation given by

ω2
k →

(
ω̃diff
k

)2
= µ2 + 2∆−2(1− cos (k∆)). (70)

This and the IFD dispersion relation are shown in
Fig. 2 in comparison to the one of the original KG
field, ω2 = µ2 + k2. Since the initial IFD frequencies
are above, and the frequencies of the difference scheme
are below the one of the KG field, it is also natural
to consider the latter as another option. Thus we also
investigate a spectral simulation scheme with:10

(ω̃spec
k )

2
=

{
µ2 + k2 for k ∈ {0, . . . N/2}
µ2 + (N − k)2 for k ∈ {N/2, . . . N}

.

(71)
The Fourier space data evolution equation can be

solved analytically and has the solution

d
(ϕ)
k = ãke

ιω̃kt + ãN−ke
−ιω̃kt

d
(π)
k = ιω̃k

(
ãke

ιω̃kt − ãN−ke−ιω̃kt
)
, (72)

with the coefficients determined by the initial data

ãk =
d

(ϕ)
k t=0

2
+
d

(π)
k t=0

2ιω̃k
. (73)

Thus, the most efficient simulation scheme for the KG
field evolution schemes is to evolve the initial data ac-
cording to these Fourier space equations analytically
and transform the field back to position space at the
desired time.

The ad hoc simulation schemes are best imple-
mented via (72) and (73), the corresponding data ď of
the IFD scheme according to (66) and (67), whereas
the full field including the sub-grid modes can be fol-
lowed via (25). J

B. Time evolution

I To see how well the different simulation schemes
perform, we simulate a KG field by setting up its
Fourier amplitudes ak ∈ C up to |k| = Nφ/2 drawn
from P(ak) = G(ak, 1/(4β (µ2+k2))) and aNφ−k = ak
for the “negative” modes, so that (26), (28) and
φx ∈ R2 are satisfied. We use Nφ = 2048, µ = 1,
and β = 1. A resulting field realization is displayed
in Fig. 1. We time-evolve all its Fourier modes ac-
cording to (25). The initial and late time exact data

is generated via d̃t = Rφt with the response given by
(32) for N = 64 data bins. This means that there
are Nφ/N = 32 independent field modes combined
in a single datum, ensuring that there is substantial
sub-grid uncertainty, as is well observable in Fig. 1.

10 The distinctions of the cases is only necessary here, since we
use k ∈ {0, . . . N − 1} so that the negative frequencies are
represented by wave numbers in the second half of the range.
If we would use k ∈ {−N/2+1, . . . N/2} as our first Brillouin

zone, we would have
(
ω̃spec
k

)2
= µ2 + k2.
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Figure 3. (Color online) (a): Evolved field (thin, black line) and data at t = 10 of the field also shown in Fig. 1

(β = 1, µ = 1, N = 64). The exact data d̃t = Rϕt are shown as yellow diamonds. The IFD data according to (66)
and (67) (blue dots) follows the exact data closely. The data of the spectral scheme (black squares) is very close to the
IFD data. The data of the difference scheme (brick red triangles) exhibit the poorest match to the correct data of the

evolved field. The root mean square errors of the field data values σ
(ϕ)
d =

√∑N−1
i=0 (d̃(ϕ) −Rϕ)2

i /N of the three schemes

are 0.003, 0.004, and 0.020 for the IFD, spectral, and difference scheme, respectively. (b): Temporal evolution of the

data error σ
(ϕ)
d (t) for the IFD (bottom solid blue line), spectral (dashed black line slightly above the former), and finite

difference (top brick red line) scheme. The dip in the IFD and spectral scheme error at t = π is due to the nearly perfect
alignment of the mode phases at this particular time.

For the spectral and difference schemes, the data is
time evolved according to (72) and (73). For the IFD
scheme, we use (66) and (67) to calculate correspond-
ing late time data.

For time t = 10, the field is shown and the differ-
ent data sets at this time are compared in Fig. (3).
This time was chosen for that the difference scheme
already exhibits some significant but still moderate
deviations from the correct solution. The IFD and
spectral scheme are both relatively accurate. A dif-
ference between them exists, but is hard to see by
eye in this snapshot. However, a comparison of the
spatially averaged errors of the two schemes reveals a
significantly higher accuracy of the IFD scheme with
respect to the spectral scheme at basically all times.

Although the IFD scheme has the highest fidelity,
the spectral scheme is also very good for arbitrarily
large times. The reason can easily be understood. De-
spite the fact that any data Fourier mode is a mixture
of several field modes, the spectral scheme just follows
the most dominant of these modes, and treats the oth-
ers as random noise. However, since the main mode
is correctly captured, it can be followed for infinitely
large intervals, and the ignored modes just contribute
a fixed amount of uncertainty. The IFD scheme also
assigns some power to these higher modes and follows
their evolution. This is why it has a higher accuracy.

Optimally, one would have chosen an initial re-
sponse that maps the first N Fourier modes of the
field exactly into the data. Then these modes could
have been followed with absolute precision, while one
would have no information on the lower amplitude
higher Fourier modes. In this case the IFD scheme
would have been identical to the spectral scheme, but
it would not have served us well as a sufficiently com-

plex example illustrating the inner workings of the
IFD framework.J

V. CONCLUSIONS AND OUTLOOK

Information field dynamics serves as a framework to
derive numerical simulation schemes. It rests on infor-
mation field theory in order to construct continuous
space field configurations out of the finite data in com-
puter memory. It uses the maximum entropy principle
to construct updated computer memory data so that
the ensemble of time-evolved continuous space field
configurations is matched by the ensemble implied by
the updated data with minimal information loss.

The data updating operations of an IFD simulation
time step, as given by (55) and (56), are in general
complex, and might require the usage of linear alge-
bra solvers. However, for numerical stability reasons,
an implicit time step scheme might be adopted for a
simulation anyway, and the linear algebra operations
of the implicit and IFD schemes might be performed
together.

As an illustrative example, we have derived the opti-
mal IFD scheme for a thermally excited Klein-Gordon
field. It could be shown that the resulting IFD scheme
is identical to the one resulting from IFT. The scheme
is much more accurate than a simplistic real space dis-
cretization of the differential operator, and it is still
significantly more accurate than a spectral scheme. In
comparison to these two ad hoc schemes with station-
ary evolution equations for the data, the IFD scheme
exhibits a time dependent discretization of the differ-
ential equation. This is due to its ability to follow to
some level the evolution of the sub-grid scales without
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representing them explicitly in computer memory but
capturing their influence implicitly in the data update
rules.

This initial work on IFD should be regarded as a
proposal for how to incorporate information theoreti-
cal considerations into the construction of simulation
schemes. IFD permits us to state and include explic-
itly background knowledge on sub-grid behavior as
well as external measurement data in a way that hope-
fully exploits and conserves as much of the available
information as possible.

For technical reasons, one might compromise infor-
mation theoretical fidelity for reducing the numeri-
cal complexity. Also for this balance, the information
theoretical language introduced here should help to
judge the choices. Finally, the language of IFD is
already what is needed for data assimilation simula-
tion schemes, as for example used in weather forecasts.
The next goal of this research line is to develop IFD
schemes for scientifically and technologically more rel-
evant problems, like turbulent hydrodynamics. This,
however, is left for future work.
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Appendix A: Previous work

1. Discretization of differential operators

Most of the dynamical systems in physics are de-
scribed by partial differential equations. These con-
tain differential operators acting on the dynamical
fields. With the finite representation of the fields in
computer memory, these operators need a discretized
representation as well. A number of discretization
schemes have been developed, including finite differ-
ence methods, finite volume methods, finite element
methods, spectral methods, smoothed particle hydro-
dynamics and others. Most of these schemes assume
a distinct sub-grid structure for the fields, in contrast
to IFD.

Finite difference methods [14], represent differ-
entials by finite differences between the field values at
the lattice grid points. These finite difference opera-
tors are exact if the field is polynomial of the order of
the operator. Thus a finite difference gradient opera-
tor implicitly assumes the field to be piecewise linear
on sub-grid scales, a Laplace operator the field to be
quadratic and so forth. In Sect. IV we will show
numerically that the IFD operator for the KG field
evolution is superior to the finite difference operator.

Finite volume methods [15] are used when con-
served quantities are simulated, such as e.g. the fluid

mass in hydrodynamics. The space is split into pixel
volumes. The continuity equations for the conserved
quantities can be turned into balance equations for
the fluxes of the quantity through the boundaries of a
pixel’s volume. The simplest assumption for the sub-
grid field configuration is that it is constant within
the pixels, with jumps at their boundaries. The re-
sulting discontinuities have to be treated as separate
Riemann problems at the boundaries in hydrodynam-
ics. A conservative IFD scheme should also be possi-
ble, if the stored data of the scheme are the amounts
of the conserved quantity within pixel volumes, and
the fluxes between adjacent pixels.

Finite element methods [16, 17] also partition
the space into sub-volumes, the ’elements’. A set of
basis functions for the field is defined, with a support
covering only a small number of the elements/pixels.
The field is represented as a linear combination of
these basis function, and therefore with a tightly
parametrized sub-grid structure, e.g. being piecewise
linear. The partial differential equations are only re-
quired to be solved weakly, in the Sobolev function
space spanned by the chosen basis functions. This
turns spatial differential operators into linear systems
of equations, which then can be solved on a computer.

Spectral methods are also Sobolev space based,
just with the basis functions being Fourier modes. We
will compare the IFD scheme for the KG field to a
spectral method and show that IFD provides a slightly
more accurate simulation.

Smoothed particle hydrodynamics [18–20] dis-
cretizes the mass of the fluid and not the space.
Smoothed particle hydrodynamics is one example of
Lagrangian methods, in which the ’grid’ follows the
flow. Each mass element has a dynamically evolving
position and is thought to be distributed over some
finite ball according to a radially declining and adap-
tively sized kernel function determining the sub-grid
field structure.

Moving mesh codes can be regarded as a com-
promise between Eulerian schemes with fixed lattices
and Lagrangian schemes with a co-moving but particle
based fluid discretization as smoothed particle hydro-
dynamics [21, 22]. Moving mesh codes were recently
improved by using Voronoi tessellation to create flex-
ible volume cells around the moving grid points on
which finite volume methods can be used [23]. Thus
also here the sub-grid field representation is of a pre-
determined functional form.

In contrast to these approaches, IFD does not as-
sumes an a priori shape of the sub-grid field struc-
ture. It considers all possible sub-grid configurations
consistent with the constraints given by the data and
the field equations, but weights them with a priori
plausibilities. This requires knowledge on the sub-grid
dynamics.

2. Sub-grid scale modeling

IFD, as proposed here, requires prior information on
all modes of the dynamical field, in order to constrain
the unresolved degrees of freedom. The necessity to
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use information on sub-grid scales in simulations was
already realized for hydrodynamics. For this reason,
the method of large eddy simulations was devel-
oped [24–26]. This resolves the largest scale of a flow
by simulating a spatially filtered (convolved) dynam-
ics, in combination with sub-grid scale models that
try to summarize the effect of the unresolved scales
on the global dynamics [27–30]. Usually stress ten-
sors describe the sub-grid scales. These are actually
velocity fluctuation covariance matrices and there-
fore conceptually similar to the uncertainty dynam-
ical field covariances in IFD. Large eddy simulations
have recently been combined with adaptive mesh re-
finement methods that increase the resolution at lo-
cations where small scale dynamics is particularly im-
portant. This is especially important in astrophysical
applications, where a large range of scales should be
followed, as for example in galaxy clusters [31, 32].

In astrophysical hydrodynamics, many addi-
tional processes on unresolved scales, like star forma-
tion and radiative feedback, are relevant yet cannot
be followed in detail. In simulations of galaxies us-
ing smooth particle hydrodynamics, the interstellar
medium is often described as a mixture of interacting
gas phases (molecular, ionized, ...) forming a complex
weather, with a single effective equation of state
summarizing these phases [33]. However, the trans-
lation of sub-grid physics into a concrete simulation
scheme is usually done ad-hoc without considering the
resolution dependent level of sub-grid fluctuations.

In oceanography, it has been recognized that
some information about sub-grid eddy evolution is
contained in the large scale fluid motions due to the
practical incompressibility of water and the result-
ing solenoidality of the flow patterns. Partial recon-
struction of the sub-grid eddies from a coarse res-
olution is therefore possible [34]. This has been used
to construct accurate simulation schemes for advec-
tive tracers and for vorticity transport [35, 36]. A
maximum entropy production principle was in-
troduced in this context in order to construct sub-grid
configurations that are numerically stable [35]. There,
maximum entropy was regarded merely as a numeri-
cal regularization trick, while in our work, it plays an
important role in ensuring optimal information flow
between the simulation data at different time steps.

3. Data assimilation methods

Data assimilation methods are probably most sim-
ilar in spirit to IFD. Data assimilation methods are
used in weather forecast calculations to impose con-
straints from past measurements on numerical simu-
lation of the atmosphere. A recent comparison of such
methods can be found in [37]. The gold standard of
the field is the full Bayesian posterior distribution of
the dynamical system given all data. Typically, there
are two broad classes of algorithms used to approxi-
mate this in a computationally affordable way: parti-
cle ensemble filters and variational methods.

Particle filter represent the knowledge and uncer-
tainty on the system state as an ensemble of realiza-

tions, called the particles. These evolve individually
according to the system dynamics to later times, when
new measurements are available. Then, the particles
are selected and/or re-weighted according to their in-
dividual consistency with the new data. Resampling
this distribution with a new set of particles (now with
equal weights) closes the loop and prepares for the
next simulation time step. A recent discussion of such
methods can be found in [38].

Ensemble Kalman filters represent the system
knowledge as well as an ensemble of realizations that
can be propagated by the full non-linear dynamics in
time. The data assimilation step, however, is not done
via re-weighting or re-sampling, but by Kalman fil-
tering. Kalman filtering is basically Wiener filtering,
which we introduce in Sect. II A, while using an em-
pirically determined signal covariance matrix. This is
computed from the ensemble, which is informed by
the actual external measurement data.

Variational methods for data assimilation
combine the action of a Lagrangian determining the
dynamics and a loss function describing a penalty for
any mismatch of the model prediction and the data
[39]. From this combined Lagrangian, combining dy-
namics and data constraints, a variational equation
aries that satisfies both the system dynamics and the
data constraints. Variational methods treat infor-
mation processing and field dynamics simultaneously,
similar to IFD.

A third approach to data assimilation has recently
been proposed for the simulation of cosmic structure
formation [40–42]. There the full posteriori of the
cosmic matter field as determined by galaxy catalogs
and the Gaussian initial condition statistics of cosmic
structure formation is sampled via a Hamiltonian
sampling method.

Appendix B: Maximum entropy principle

The MEP [7–10] is uniquely specified by the fol-
lowing three requirement on how probabilities should
be ranked and updated with respect to new informa-
tion. Entropy is defined to quantify how well a given
PDF represents a knowledge state. Its functional form
is determined by three requirements on the resulting
probability updating scheme:

• Locality: Local information has local effects;
information that affects only some part of the
phase space should not modify the entropy and
the implied MEP PDF in case this area is dis-
carded.

• Coordinate invariance: The system of coor-
dinates of the phase space does not carry in-
formation. Entropy should be invariant under
coordinate transformation as well as the deter-
mined MEP PDF.

• Independence: Independent systems can be
treated jointly or separately, yielding the same
entropy in both cases. The joint MEP PDF
must therefore be separable into a product of
PDFs for the individual systems.
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The unique (up to trivial rescaling) entropy functional
on PDFs that is consistent with these requirements is
given by (13) as it was shown by [7–10]. The usual way
to use this entropy in order to specify the PDF P(φ)
is to maximize it subject to some constraints imposed
on certain moments of the signal field statistics. An
obvious one is the proper normalization 〈1〉P(φ) = 1

of the PDF, but also a number of higher moments
might be known a priori, and summarized in the form
〈fi(φ)〉P(φ) = ai. Here the functions could be simple

moments like φ, φφ†, etc. or more complicated func-
tions thereof. These constraints on PDF moments are
then incorporated into the entropy via Lagrange mul-
tiplier or thermodynamical potentials µ and λ = (λi)i:

S(P, µ, λ|Q) (B1)

= S(P|Q)−
〈
µ+ λ†f(φ)

〉
= −
ˆ
Dφ P(φ)

[
log

(
P(φ)

Q(φ)

)
+ µ+ λ†f(φ)

]
.

Maximizing this entropy with respect to all compo-
nents of P(φ) yields

P(φ) =
Q(φ)

Z(λ)
e−λ

†f(φ), (B2)

where

Z(λ) =

ˆ
DφQ(φ) e−λ

†f(φ) (B3)

ensures proper normalization, and theLagrange po-
tentials λ have to be chosen to satisfy

−∂λS = ∂λ logZ =

ˆ
DφP(φ)f(φ) = 〈f(φ)〉P(φ) = a.

(B4)

In Sect. III B, it is claimed that the MEP distri-
bution for φ with known mean ψ and covariance Φ
is the Gaussian G(φ − ψ,Φ). This can now be veri-
fied by a short calculation. The entropy (B1) can be
constrained by the knowledge of zero, first, and sec-
ond moments of the field via the Lagrange-multiplier
scalar µ, field λ, and matrix Λ, respectively:

S(P, µ, λ,Λ|Q) (B5)

= S(P|Q)− µ− λ† 〈φ〉(φ) − Tr
(

Λ
〈
φφ†

〉
(φ)

)
= −

ˆ
Dφ P(φ)

[
log

(
P(φ)

Q(φ)

)
+ µ+ λ†φ+ φ†Λφ

]
.

Minimizing this with respect to all components of
P(φ) for a flat prior-prior Q(φ) = const subject to
the constraints

−∂µS = 〈1〉(φ) = 1, (B6)

−∂λS = 〈φ〉(φ) = ψ, (B7)

−∂ΛS =
〈
φφ†

〉
(φ)

= Φ + ψ ψ†, (B8)

to ensure proper PDF normalization, mean, and vari-
ance, respectively, yields P(φ|ψ,Φ) = G(φ − ψ,Φ) as
assumed in (27).
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prints (2012), arXiv:1202.5882 [astro-ph.CO]

[33] V. Springel and L. Hernquist, MNRAS 339, 289
(2003), arXiv:astro-ph/0206393

[34] A. F. Bennett, Journal of Atmospheric Sciences 41,
1881 (1984)

[35] F. Bouchet, eprint arXiv:cond-mat/0305205 (2003),
arXiv:cond-mat/0305205

[36] J. L. Sommer, F. d’Ovidio, and G. Madec, Ocean
Modelling 39, 154 (2011)

[37] K. J. H. Law and A. M. Stuart, ArXiv e-prints (2011),
arXiv:1107.4118 [physics.data-an]

[38] P. J. van Leeuwen, Quarterly Journal of the Royal
Meteorological Society 136, 1991 (2010)

[39] A. Bennett, Inverse Modeling of the Ocean And At-
mosphere (Cambridge University Press, 2002)

[40] J. Jasche and B. D. Wandelt, ArXiv e-prints (2012),
arXiv:1203.3639 [astro-ph.CO]

[41] F.-S. Kitaura, ArXiv e-prints (2012), arXiv:1203.4184
[astro-ph.CO]

[42] F. Kitaura, J. Jasche, and R. B. Metcalf, MNRAS
403, 589 (2010), arXiv:0911.1407 [astro-ph.CO]

http://dx.doi.org/ 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/ 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
http://dx.doi.org/10.1017/S0022112070000691
http://dx.doi.org/10.1017/S0022112070000691
http://dx.doi.org/10.1146/annurev.fl.28.010196.000401
http://dx.doi.org/10.1146/annurev.fl.28.010196.000401
http://dx.doi.org/10.1086/174281
http://dx.doi.org/10.1086/303772
http://dx.doi.org/10.1086/312895
http://dx.doi.org/10.1051/0004-6361/201015630
http://dx.doi.org/10.1051/0004-6361/201015630
http://arxiv.org/abs/1010.4492
http://dx.doi.org/10.1088/0004-637X/707/1/40
http://arxiv.org/abs/0909.1800
http://arxiv.org/abs/0909.1800
http://arxiv.org/abs/1202.5882
http://dx.doi.org/10.1046/j.1365-8711.2003.06206.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06206.x
http://arxiv.org/abs/arXiv:astro-ph/0206393
http://dx.doi.org/ 10.1175/1520-0469(1984)041<1881:RDLAND>2.0.CO;2
http://dx.doi.org/ 10.1175/1520-0469(1984)041<1881:RDLAND>2.0.CO;2
http://arxiv.org/abs/arXiv:cond-mat/0305205
http://dx.doi.org/10.1016/j.ocemod.2011.03.007
http://dx.doi.org/10.1016/j.ocemod.2011.03.007
http://arxiv.org/abs/1107.4118
http://dx.doi.org/10.1002/qj.699
http://dx.doi.org/10.1002/qj.699
http://books.google.de/books?id=D2PY5nhhP6MC
http://books.google.de/books?id=D2PY5nhhP6MC
http://arxiv.org/abs/1203.3639
http://arxiv.org/abs/1203.4184
http://arxiv.org/abs/1203.4184
http://dx.doi.org/10.1111/j.1365-2966.2009.16163.x
http://dx.doi.org/10.1111/j.1365-2966.2009.16163.x
http://arxiv.org/abs/0911.1407

	Information field dynamics for simulation scheme construction
	Abstract
	Introduction
	Motivation
	Previous work
	Structure of this work

	Concepts
	Information field theory
	Entropic matching
	Simulation schemes construction

	Information field dynamics
	Field dynamics
	Prior knowledge
	Data constraints
	Field evolution
	Prior update
	Data update
	Information field theoretical solution
	Summary of the derivation

	Numerical verification
	Standard simulation schemes
	Time evolution

	Conclusions and outlook
	Acknowledgements

	Previous work
	Discretization of differential operators
	Sub-grid scale modeling
	Data assimilation methods

	Maximum entropy principle
	References


