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We develop a method to infer log-normal random fields from measurement data affected by
Gaussian noise. The log-normal model is well suited to describe strictly positive signals with fluctu-
ations whose amplitude varies over several orders of magnitude. We use the formalism of minimum
Gibbs free energy to derive an algorithm that uses the signal’s correlation structure to regularize
the reconstruction. The correlation structure, described by the signal’s power spectrum, is thereby
reconstructed from the same data set. We further introduce a prior for the power spectrum that
enforces spectral smoothness. The appropriateness of this prior in different scenarios is discussed
and its effects on the reconstruction’s results are demonstrated. We validate the performance of our
reconstruction algorithm in a series of one- and two-dimensional test cases with varying degrees of
non-linearity and different noise levels.
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I. INTRODUCTION

Reconstructing continuous fields from a finite and
noisy data set is a problem encountered often in all
branches of physics and the geo-sciences. In this paper
we develop a method to reconstruct a log-normal field,
i.e. a field whose logarithm can be modeled as a Gaussian
random field, defined on an arbitrary manifold. We show
simple one-dimensional examples as well as planar and
spherical two-dimensional cases.

The log-normal model is well suited to describe many
physical fields. Its main features are that the field values
are guaranteed to be positive, that they may vary across
many orders of magnitude, and that spatial correlations
may exist. One prominent example from the discipline
of astrophysics that exhibits these three features and is
therefore often modeled as a log-normal field is the mat-
ter density in today’s universe [see e.g. 5]. The simplest
way to observationally estimate the matter density is to
count the galaxies per volume. The relationship between
the matter density and the galaxy number counts can
be approximated as a Poisson process [e.g. 12, 14], thus
making the data likelihood Poissonian as well with the
expected number of galaxies per volume element given
as a function of the underlying log-normal density field.
In the statistical literature, such a combination of a log-
normal field with Poissonian statistics is known as a log
Gaussian Cox process [17]. This model has been applied
in fields as diverse as finance [1], agriculture [3], atmo-
spheric studies [22], and epidemiology [2, 4].

The main motivation for our work, however, comes
from astronomical observations of radiative processes.
The intensity of radiation coming from different direc-
tions in such observations can vary over many orders of
magnitude while being spatially correlated. Thus ap-
plying a log-normal model for its statistical description
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seems natural. While photon counts bring with them a
Poissonian likelihood, the observational uncertainty can
be approximatively regarded to be Gaussian in the limit
of large photon numbers. Therefore, we restrict ourselves
to cases in which the measurement noise can be assumed
to be additive and Gaussian.

Apart from the noise contribution, we will assume a
deterministic linear relationship between the log-normal
field and the data. This model is general enough to ac-
comodate a large variety of observational settings, such
as targeted point-wise observations across limited areas,
convolutions of the log-normal field, interferometric ob-
servations leading to a Fourier transformed version of the
log-normal field, or any combination of these effects.

The inclusion of spatial correlations in the field model
is necessary for an accurate statistical description and
will aid in the reconstruction. If the spatial correlation
structure is known, knowledge of the field values at some
locations can be used to extrapolate the field into re-
gions where the field value has not been measured or
the observations have a higher uncertainty. However, in
general it is not known a priori how strongly the field is
correlated across a given distance. In the case of a sta-
tistically homogeneous field, the correlation structure is
described by the field’s power spectrum. So if one wants
to make use of the spatial correlations during the recon-
struction, one needs to simultaneously infer the power
spectrum. Several techniques have been developed to
solve this problem for Gaussian fields [e.g 13, 26]. One
such technique was derived within the framework of in-
formation field theory [7, 16] in [6] and later rederived in
[8], where the formalism of minimum Gibbs free energy
was introduced and employed to tackle this problem. In
the same paper, the problem of inferring a log-normal
field with unknown power spectrum in the presence of
Poissonian noise was briefly discussed.

Here, we use the formalism of minimum Gibbs free
energy to derive filter equations for the estimation of a
log-normal field from data including a Gaussian noise
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component. The filter we present results in an estimate
of the field, its power spectrum, and the respective un-
certainties.

A problem that often arises when reconstructing power
spectra is that the reconstructed power spectra do not
turn out smooth, especially on scales with little redun-
dancy, despite the true underlying spectra being smooth.
One reason why this is not desirable is that sharp kinks
and drop-offs in the power-spectrum can lead to ring-
ing effects in the reconstructed field estimate. Another
reason is that many of the fields occuring in nature are
actually expected to have smoothly varying power over
different scales since neighboring scales interact. One
prominent example is the power spectrum of a viscous
turbulent fluid [15]. Smoothness of the power spectrum is
often enforced by an ad-hoc smoothing step in the power
spectrum reconstruction [18–20]. Here, we follow an idea
presented in [6] and show how to enforce spectral smooth-
ness by introducing an appropriate prior for the power
spectrum that punishes non-smooth spectra. We demon-
strate the feasibility of this approach using one specific
example for such a smoothness prior both for the recon-
struction of Gaussian and log-normal fields and discuss
the range of applicability of the chosen spectral smooth-
ness prior. Our approach also allows for the estimation
of a complete uncertainty matrix for the estimated power
spectrum.

We first develop the formalism of the spectral smooth-
ness prior for the case of Gaussian signal fields in Sec. II,
where we show how to derive the filter formulas of [6]
and [8] in a different way that easily accomodates an
additional smoothness prior. After demonstrating the
workings of the spectral smoothness prior, we use the
Gibbs free energy formalism to derive filter formulas for
the log-normal case and transfer the spectral smoothness
results to this case in Sec. III. We demonstrate the per-
formance of our log-normal reconstruction algorithm in a
variety of test cases in Sec. III B and conclude in Sec. IV.

II. RECONSTRUCTING GAUSSIAN FIELDS
WITH SPECTRAL SMOOTHNESS

First, we need to introduce some basic assumptions
and notation. We mainly follow the notation that is used
throughout the literature on information field theory [e.g.
7].

Throughout the paper, we assume that we are analyz-
ing a set of data d = (d1, . . . , dr) ∈ Rr that depends on an
underlying signal field s : M −→ R, subject to additive
noise n = (n1, . . . , nr) ∈ Rr,

d = f(s) + n. (1)

Here, M is the discrete or continuous space or manifold
that the signal is defined on. In Sec. III we will discuss
the examples M = S1, S2, and T 2. In this section, we
assume the relationship between signal field and data to

be linear, described by a response operator R, so that

d = Rs+ n. (2)

In most applications, the response operator will include
some instrumental or observational effects such as obser-
vations in specific locations ofM, convolutions of s with
an instrumental response function, or a Fourier transform
of the signal field. The only restriction that we make
here is that the operation that generates the data from
the signal has to be linear in the signal. Finally, we re-
strict ourselves to real-valued signals only in the interest
of notational simplicity. All our results can be straight-
forwardly generalized to complex-valued signal fields.

For the noise n, we assume Gaussian statistics,

n←↩ G(n,N), (3)

described by a not necessarily diagonal covariance ma-
trix N . Here, G(φ,Φ) denotes a multi-variate Gaussian
probability distribution function with covariance Φ,

G(φ,Φ) =
1

|2πΦ|1/2
exp

(
−1

2
φ†Φ−1φ

)
. (4)

We use the †-symbol to denote a transposed (and in gen-
eral complex conjugated) quantity and take the limit of
an infinite-dimensional Gaussian whenever the argument
is a continuous field, with the appropriate limit of the
scalar product

φ†ψ =

∫
M

dxφ(x)ψ(x) ∀ φ, ψ : M−→ R. (5)

In this section we will deal with the case that the signal
field s can also be regarded – or at least approximated
– as a zero-mean Gaussian random field with covariance
S,

s←↩ G(s, S). (6)

It can be straightforwardly shown [e.g. 7] that the poste-
rior mean m of the signal field under these assumptions
is given by

m =

∫
Ds sP(s|d) = Dj. (7)

Here,
∫
Ds denotes an integral over the configuration

space of all possible signal realizations. The operator

D =
(
S−1 +R†N−1R

)−1
(8)

is known as the information propagator and the field

j = R†N−1d (9)

is called information source.
In these formulas, the presence of the Gaussian sig-

nal prior described by the signal covariance serves as a
means of regularization of the sought continuous signal
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field reconstruction which otherwise is under-determined
when only constrained by the finite and noisy data set.
However, in most physical applications, the signal covari-
ance is not known a priori. The problem of reconstructing
Gaussian fields with unknown signal covariances has in
principle been solved [6, 8, 13, 26], and even an unknown
noise covariance can be overcome [21].

Enßlin & Weig [8] use the formalism of minimum Gibbs
free energy to derive filter formulas to be applied to the
data set when the signal’s covariance is unknown. We
will recapture this formalism briefly in Sec. III, where we
employ it to reconstruct log-normal signal fields.

Under the assumption of statistical homogeneity and
isotropy, the unknown signal covariance becomes diago-
nal in the harmonic eigenbasis, i.e. the Fourier basis for
signals defined on Euclidean space and the spherical har-
monics basis for signals defined on the sphere. In the

following, we denote as ~k the vector of parameters de-
termining one mode in the harmonic decomposition, i.e.
~k = (k1, . . . , kn) for n-dimensional Euclidean space and
~k = (`,m) for the two-sphere, where ` is the angular
momentum quantum number and m the azimuthal one.
Furthermore, k shall stand for the scale of the harmonic
component, i.e. k =

√
k21 + · · ·+ k2n and k = ` for Rn

and S2, respectively.
Due to the isotropy assumption, the diagonal of the

signal covariance matrix, the signal’s power spectrum Pk,
depends only on the scale k and not on the specific mode
~k, i.e.

S~k~k′ = δ~k~k′Pk. (10)

Under these symmetry assumptions, the filter formulas
derived by Enßlin & Weig [8] can be written as

m = Dj, (11)

Pk =
1

αk − 1 + ρk
2

qk +
1

2

∑
{~k′|k′=k}

(∣∣m~k′

∣∣2 +D~k′~k′

) .

(12)

Note that the first of these equations is the same as in the
case of a known signal covariance, Eq. (7), a generalized
Wiener filter [7]. Here, αk and qk are parameters used to
determine the priors for the spectral coefficients Pk (see
Sec. III for details) and

ρk =
∑

{~k′|k′=k}
1 (13)

is the number of degrees of freedom on the scale k.
This formalism has been successfully applied for as-

trophysical reconstructions [19, 20] and in a more ab-
stract computational setting [24]. In these applications,
Eqs. (11) and (12) were simply iterated. However, they
were supplemented with an additional ad-hoc smoothing
step for the power spectrum as part of each iteration.
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FIG. 1. Power spectra of the one-dimensional test-case. The
black solid line shows the theoretical power spectrum, the blue
dashed line the power in the randomly drawn signal realiza-
tion studied here, and the green dotted line shows the power
spectrum reconstructed without smoothing. The horizontal
dotted line indicates the noise power, given by σ2

n/100.

To illustrate the usefulness of a smoothing step, we
set up a simple one-dimensional test-case. Here, we as-
sume that our signal field is defined on the one-sphere S1,
i.e. the interval [0, 1) with periodic boundary conditions,
which we discretize into 100 pixels. We make up a power
spectrum for the signal of the form

Pk = P0

(
1 +

(
k

k0

)2
)−γ/2

, (14)

where we choose P0 = 0.2, k0 = 5, and γ = 4. Figures 1
and 2 show the power spectrum and the signal realization
randomly drawn from it, respectively.

Furthermore, we assume that we have measured the
signal field in each of the 100 pixels once, subject to ho-
mogeneous and uncorrelated Gaussian noise with vari-
ance σ2

n = 0.1. In the formalism of Eq. (2), this corre-
sponds to R = 1 and N = σ2

n1. The data realization is
also shown in Fig. 2.

We overplot in Figs. 1 and 2 the power spectrum
and map reconstruction, respectively, obtained by iter-
ating Eqs. (11) and (12) without smoothing. While the
signal reconstruction suffers from some too pronounced
small-scale fluctuations, the reconstructed power spec-
trum fluctuates wildly for k > 10 and is therefore not
trustworthy at all on these scales. The scales on which
the reconstructed power by chance peaks above the noise
level are the ones that are especially misrepresented in
the reconstructed signal field.

This example should serve to illustrate that some kind
of spectral smoothing is necessary, especially in cases
where one is interested in the power spectrum itself. In
Fig. 2 we also show a comparison to the Wiener filter
reconstruction, i.e. Eq. (7), using the true power spec-
trum. In the bottom panel of Fig. 2 it can be seen that
the residuals, i.e. the differences between the true signal
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FIG. 2. Signal reconstruction in the one-dimensional test-
case. The blue solid line shows the randomly drawn signal
realization, the crosses are noisy data points used to do the
reconstruction, the green dashed line shows the signal recon-
struction obtained without spectral smoothing and the red
dotted line is the Wiener filter reconstruction. The lower
panel shows the same with the true signal substracted.

and its reconstruction, are reduced if a power spectrum
is used that is closer to the true one. Smoothness is one
aspect of the true power spectrum that can be used to
constrain its reconstruction.

The two-point correlation function of the signal pro-
vides another way of looking at the smoothness property
of its power spectrum. For a statistically homogeneous
signal, the power spectrum is the Fourier transform of
the correlation function and vice versa. Thus, a power
spectrum that exhibits fluctuations on arbitrarily small
scales in k-space corresponds to a signal that exhibits
correlations over arbitrarily large scales in position space.
Turning this argument around, any signal with correla-
tions only over a finite range in position space or at least
correlations that are decreasing rapidly with distance will
have a power spectrum that does not exhibit any features
on arbitrarily small scales in k-space. Thus, the power
spectrum can be expected to be smooth on the reciprocal
scale of the typical correlation length scale.

In the remainder of this section, we will show how to
incorporate a prior enforcing spectral smoothness into
the formalism presented thus far.

A. Reconstruction as a combination of posterior
mean and maximum a posteriori

Before incorporating a spectral smoothness prior into
the derivation of Eqs. (11) and (12), we will rederive them
in a way different from the one presented in [6, 8].

As was already mentioned, Eq. (11) corresponds to the
posterior mean of the signal under the assumption of a
known covariance matrix, i.e. a known power spectrum.
Since the posterior probability distribution is Gaussian in
this case, its mean also maximizes the probability, so that
m is the posterior mean and the maximum a posteriori
solution at the same time,

m =

∫
Ds sP(s|d, P ) = argmax

s
{P(s|d, P )} . (15)

Here, we will show that Eq. (12) can be written as a
maximum a posteriori solution as well, considering the
signal-marginalized posterior

P(P |d) =

∫
DsP(s, P |d). (16)

In order to do this, we first have to define a prior for
the power spectrum P . In accordance with [6, 8], we
choose independent inverse-gamma distributions for each
spectral component Pk,

P(P ) =
∏
k

PIG(Pk)

=
∏
k

1

qkΓ(αk − 1)

(
Pk
qk

)−αk
exp

(
− qk
Pk

)
. (17)

Here, Γ(·) denotes the gamma function, qk is a parame-
ter defining the location of an exponential cut-off at low
values of Pk, and αk defines the slope of a power-law for
large values of Pk. By tuning these parameters, the prior
can be narrowed or widened according to the a priori
knowledge about the power spectrum. Taking the limit
qk → 0 and αk → 1 turns the inverse-gamma distribution
into Jeffreys prior which is flat on a logarithmic scale. In
the examples presented in this paper we always take this
limit in the final filter formulas.

In the following, we will work with the logarithmic
spectral components

pk = logPk. (18)

The corresponding prior for these can be straightfor-
wardly derived from the conservation of probability un-
der variable transformations and reads

P(p) = P(P )

∣∣∣∣dPdp
∣∣∣∣

=
∏
k

qαk−1k

Γ(αk − 1)
e−(αk−1)pk exp

(
−qke−pk

)
. (19)
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Using this prior, we can calculate the signal-marginalized
probability of data and power spectrum, P(d, p), and its
negative logarithm, the Hamiltonian

H(d, p) = − logP(d, p)

= − log

∫
DsG(d−Rs,N)G(s, S)P(p)

=
1

2
tr (logS)− 1

2
tr (logD)− 1

2
j†Dj

+
∑
k

(
(αk − 1) pk + qke−pk

)
+ const., (20)

where we have made use of the definitions (8) and (9) and
have collected all terms that do not depend on the power
spectrum into an unimportant additive constant. Using
the spectral dependence of the signal covariance ma-
trix in a statistically homogeneous and isotropic setting,
Eq. (10), we can take the derivative of the Hamiltonian
with respect to one pk and equate it to zero, thus maxi-
mizing the posterior probability of the logarithmic power
spectrum. The resulting equation is exactly Eq. (12) for
Pk = epk if one makes the identification m = Dj.

Thus we have shown that the filter formulas, Eqs. (11)
and (12), can be derived as a combination of posterior
mean for the signal reconstruction and maximum a pos-
teriori for the power spectrum. This effectively means
that we have made the approximation

m =

∫
Ds sP(s|d)

=

∫
Ds
∫
Dp sP(s|d, p)P(p|d)

≈
∫
Ds
∫
Dp sP(s|d, p) δ

(
p− p(MAP)

)
, (21)

i.e. we have approximated the posterior probability dis-
tribution for the power spectrum with a delta distribu-
tion centered on its maximum.

It may be worth noting that in the formalism of the
maximum a posteriori solution for the power spectrum,
it is straightforward to derive a rough uncertainty esti-
mate as well. The Hessian of the Hamiltonian gives the
curvature of the posterior probability distribution and its
inverse can thus be regarded as an uncertainty matrix.
For the Hamiltonian given in Eq. (20) we obtain

∂2H(d, p)

∂pk∂pk′

∣∣∣∣
p=p(MAP)

=
(
αk − 1 +

ρk
2

)
δkk′

−1

2
e−pk−pk′

∑
{~q|q=k}
{~q′|q′=k′}

(
2<
(
m~qm

∗
~q′D~q~q′

)
+ |D~q~q′ |2

)∣∣∣∣∣∣∣∣
p=p(MAP)

,

(22)

where <(·) denotes the real part of a complex number.

B. Spectral smoothness priors

Here, we show how to incorporate a spectral smooth-
ness prior into the formalism developed in the previous
section. We do this by augmenting the inverse-gamma
distributions previously assumed as the spectral prior
with a probability distribution that enforces smoothness
of the power spectrum, so that

P(p) = Psm(p)
∏
k

PIG(pk). (23)

As an example, we choose a smoothness-enforcing prior
of the shape

Psm(p) ∝ exp

− 1

2σ2
p

∫
d(log k)

(
∂2 logPk

∂ (log k)
2

)2
 . (24)

This prior is maximized by any power-law power spec-
trum and punishes deviations from such a shape. The
strength of the punishment is determined by the param-
eter σp. Other useful shapes for a smoothness prior could
contain the first logarithmic derivative, punishing steep
spectra, or simple derivatives with respect to k, punishing
abrupt changes in the power spectrum. To illustrate the
meaning of such smoothness priors and point out possible
caveats, we discuss a few specific cases in App. A.

The spectral smoothness prior, Eq. (24), can be written
as a Gaussian in p = logP ,

Psm(p) ∝ exp

(
−1

2
p†Tp

)
, (25)

where the linear operator T includes both the second
derivative and the scaling constant σ2

p. The detailed form
of the operator T that we use in our calculations can be
found in App. B.

Introducing this prior corresponds to adding the term
1
2p
†Tp to the Hamiltonian in Eq. (20). Taking its deriva-

tive with respect to one pk and equating the result with
zero, we now get

epk =
qk + 1

2

∑
{~k′|k′=k}

(∣∣m~k′

∣∣2 +D~k′~k′

)
αk − 1 + ρk

2 + (Tp)k
. (26)

The only point in which this equation differs from
Eq. (12) is the extra term Tp in the denominator.
As before, we can calculate the inverse Hessian of the
Hamiltonian as an approximate uncertainty matrix. The
Hessian is

∂2H(d, p)

∂pk∂pk′

∣∣∣∣
p=p(MAP)

=
(
αk − 1 +

ρk
2

+ (Tp)k

)
δkk′ + Tkk′

−1

2
e−pk−pk′

∑
{~q|q=k}
{~q′|q′=k′}

(
2<
(
m~qm

∗
~q′D~q~q′

)
+ |D~q~q′ |2

)∣∣∣∣∣∣∣∣
p=p(MAP)

.

(27)
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FIG. 3. Power spectra of the one-dimensional test-case with
smoothness prior. The black solid line shows the theoretical
power spectrum, the blue dashed line the power spectrum re-
constructed with a smoothness prior with σ2

p = 1000, and the
green dotted line the reconstruction with a stiffer smooth-
ness prior with σ2

p = 10. The hatched regions around the
dashed and dotted lines are the corresponding one-sigma un-
certainty regions estimated from the inverse Hessian of the
Hamiltonian. The horizontal dotted line indicates the noise
level.

C. Test-cases

Using the same one-dimensional test-case as shown in
Figs. 1 and 2, we perform a reconstruction using the
spectral smoothness prior given in Eq. (24). The re-
sulting power spectra using a moderate strength for the
prior with σ2

p = 1000 and a strict smoothness prior with

σ2
p = 10 are shown in Fig. 3. Clearly, the new recon-

structions are a much better approximation to the shape
of the theoretical power spectrum than the one shown
in Fig. 1. Also, as expected, the power spectrum ob-
tained when using the strict smoothness prior turns out
smoother and more closely resembles a power law.

Also shown in Fig. 3 is an uncertainty estimate for the
reconstructed power spectra, obtained from the Hessian
of the Hamiltonian. Taking a one-sigma uncertainty es-
timate for the logarithmic power spectrum components,

∆p =

diag

( δ2H(d, p)

δp δp†

∣∣∣∣
p=p(MAP)

)−11/2

, (28)

we plot the uncertainty interval for the power spectra

as Pk = exp
(
p
(MAP)
k ±∆p

)
. The uncertainty interval of

the power spectrum estimates calculated in this way can,
however, be misleading. It should be noted that the un-
certainty of the power on the different k-modes is corre-
lated. To illustrate this, we plot the complete uncertainty
matrix, i.e. the inverse Hessian of the Hamiltonian, for
the case with σ2

p = 1000 in Fig. 4. It can be seen from this
figure that the correlation of the uncertainty on different
k-modes is especially large for small scales. Furthermore,

0 10 20 30 40 50
k
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10

20

30

40

50

k

0 1 2 3

FIG. 4. Inverse Hessian of the Hamiltonian with a smoothness
prior with σ2

p = 1000. Plotted is the full matrix given by the

inverse of Eq. (27), evaluated at p = p(MAP). The diagonal
of this matrix can be translated into the uncertainty interval
plotted in Fig. 3, however, that does not take into account the
correlations across different k-modes that are visible in this
plot.

the inverse Hessian is only a rough approximation to the
uncertainties in the power spectrum estimation, which
typically underestimates these.

In all following examples we will use a spectral smooth-
ness prior with an intermediate stiffness, given by σ2

p =
100.

To study the improvement that the spectral smooth-
ness prior brings for the reconstruction of the signal field,
we draw 100 different signal realizations from the same
power spectrum and add 100 different noise realizations.
For each of these data sets, we perform the full recon-
struction and then calculate the power of the difference
between the reconstructed field m and the true signal
field s. In Fig. 5 we plot this power, averaged over the 100
realizations, for different reconstruction schemes. Under
the assumption that the correct power spectrum is known
a priori, the residual power is essentially given by the
noise level on scales for which the signal is dominating
and by the signal power on scales for which the noise is
dominating. As can be seen from the plot, reconstruct-
ing the power spectrum without any spectral smoothing
leads to a significantly increased residual power on the
noise-dominated scales, while the quality of the recon-
structions including the smoothness prior is close to the
one of the Wiener filter reconstructions, showing only a
slight excess in residual power on the smallest scales. We
also plot the average residual power for reconstructions in
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FIG. 5. Residual power between true signals and their recon-
structions averaged over 100 different realizations. The black
solid line shows the theoretical power spectrum of the signals,
given by Eq. (14) with P0 = 0.2, k0 = 5, and γ = 4. The dot-
ted horizontal line indicates the noise level, corresponding to
σ2
n = 0.1. The remaining lines show the residual power for

different reconstruction schemes. From top to bottom, these
are a reconstruction without any spectral smoothing (green
dotted line), with an ad-hoc convolution of the power spec-
trum (magenta dash-dotted line), with the smoothness prior
given by Eq. (24) with σ2

p = 100 (red short-dashed line), and
using the correct power spectrum (blue long-dashed line).

which an ad-hoc smoothing step is applied to the power
spectrum after each iteration of Eq. (12). This is imple-
mented as a simple convolution with a Blackman window
of width ∆k = 9. As can be seen in Fig. 5, this ad-hoc
smoothing partly alleviates the problems of the power
spectrum reconstruction but is clearly outperformed by
the rigorous application of a smoothness prior.

Finally, we consider signal fields of the types discussed
in App. A 2 and A 3, i.e. signals with Gaussian and trian-
gular correlation functions given by Eqs. (A4) and (A6),
respectively. As discussed in the appendix, these cor-
relation functions lead to theoretical power spectra that
are strongly suppressed by our spectral smoothness prior.
Here, we investigate how serious this unwanted effect is
in practice.

Shown in Figs. 6 and 7 are the results of the reconstruc-
tion for the power spectra and signal fields, respectively.
We again use signals defined on an interval of length one,
which we divide into 100 pixels, and choose σ = 0.2 and
C0 = 1/(4

√
2π) for the Gaussian correlation function,

Eq. (A4), and L = 0.2 and C0 = 0.25 for the triangular
correlation function, Eq. (A6). In both cases, the noise
variance is σ2

n = 0.1.

As expected, the features in the power spectra that are
discouraged by the spectral smoothness prior are not well
reconstructed. From Fig. 6 it is obvious that in the case
with a Gaussian correlation function, the reconstructed
and true power spectra deviate quite strongly on small
scales. While the true power spectrum drops off rapidly,
the reconstructed one stays comparatively flat. In the

10−10

10−8

10−6

10−4

10−2

100

P
k

10−6

10−5

10−4

10−3

10−2

10−1

1 10

P
k

k

FIG. 6. Power spectra of signals with correlation functions
given by Eq. (A4) (top panel) and Eq. (A6) (bottom panel).
The black solid lines show the theoretical power spectra,
the blue dashed lines the power in the random field real-
ization drawn from the theoretical power spectra, and the
green dotted lines the reconstructed power spectra using the
spectral smoothness prior given in Eq. (24) with σ2

p = 100.
The parameters substituted into Eq. (A4) are σ = 0.2 and
C0 = 1/(4

√
2π) and the ones used in Eq. (A6) are L = 0.2 and

C0 = 0.25. The noise variance in both cases is σ2
n = 0.1. The

hatched area indicates the uncertainty of the reconstructed
power spectrum estimated from the inverse Hessian and the
horizontal dotted line the noise level.

case of a triangular correlation function, the same can be
said about the finite k-value where the true power spec-
trum drops to zero. While the drop is indeed represented
by the signal realization, as can be seen from the dashed
line in the lower panel, the reconstructed power spectrum
stays relatively level.

However, the features in the power spectra that the fil-
ter fails to reconstruct are below the noise level, whereas
the rise of the power spectrum in the bottom panel of
Fig. 6 on the smallest scales, which is above the noise
level, is indeed represented in the reconstructed power
spectrum as well. Thus, the signal reconstruction does
not suffer significantly, as can be seen in Fig. 7. An accu-
rate reconstruction of the power spectrum is important
mainly at the scales on which the signal-response and
noise are of comparable magnitude. If the signal power is
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FIG. 7. Signal fields corresponding to the power spectra
shown in Fig. 6. The top panel shows a signal with a Gaussian
two-point correlation function, Eq. (A4), the bottom panel
shows one with a triangular correlation function, Eq. (A6).
Shown in each plot are the signal realization s (blue solid
line), the data d (crosses), the signal reconstruction m (green
dashed line), and an estimate of the local one-sigma uncer-

tainty of the reconstruction, given by m±diag(D)1/2 (hatched
area). At the bottom of each panel, the same is plotted with
the true signal subtracted.

dominant, the reconstruction will follow the data closely,
while it will smooth the data heavily in the opposite case
of dominating noise, irrespective of the exact shape of
the power spectrum. Thus, the reconstruction algorithm

will in general perform well even in cases in which cer-
tain features in the power spectra are not allowed by the
spectral smoothness prior. However, if the objective is an
accurate reconstruction of the power spectrum and any
such features are suspected to be present, the spectral
smoothness prior needs to be adapted to this situation.

III. RECONSTRUCTING LOG-NORMAL
FIELDS

Now we turn to the problem of reconstructing a log-
normal field. We define our signal field s to be the loga-
rithm of this log-normal field, so that the prior probabil-
ity distribution for s is again a Gaussian, described by a
mean and a covariance S. For simplicity, we assume the
prior mean to be zero. The data model then becomes

d = Res + n, (29)

where we have again included additive Gaussian noise n
and the application of the exponential function to the
signal field is to be interpreted pointwise. Due to the
non-linearity of the exponential function, the posterior
of s,

P(s|d, S) ∝ G(d−Res, N)G(s, S), (30)

is highly non-Gaussian, even when the signal covariance
S is known. Adding a prior for S and marginalizing over
it only makes the problem more complex,

P(s|d) ∝ G(d−Res, N)

∫
DS G(s, S)P(S). (31)

The path we pursue here is to treat this probability dis-
tribution approximatively. In order to do so, we employ
the formalism of minimum Gibbs free energy presented
in [8]. The basic idea is to approximate the posterior
P(s|d) with a Gaussian, described by a mean m and a
covariance D. An approximate Gibbs free energy can be
calculated as a function of these quantities and it was
shown in [8] that the optimal Gaussian approximation –
in the sense of minimum Kullback-Leibler divergence –
can be obtained by minimizing the approximate Gibbs
free energy with respect to m and D.

The approximate Gibbs free energy is defined as

G̃(m,D) = Ũ(m,D)− TSB(D). (32)

The last term in this definition is the Boltzmann entropy

SB(D) =
1

2
tr(1 + log (2πD)), (33)

which depends only on the covariance D. The other term
in the approximate Gibbs free energy is the approximate
internal energy

Ũ(m,D) = 〈H(s, d)〉G(s−m,D) . (34)
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Here, 〈·〉G(s−m,D) denotes an expectation value calculated

with respect to the Gaussian posterior approximation
and H(s, d) = − logP(s, d) is the Hamiltonian of the
problem. Finally, the temperature T can be regarded as
a tuning parameter that regulates the importance that
is given to the region around the maximum of the full
posterior and regions removed from the maximum. The
limiting value T = 0 leads to the maximum a posteriori
solution for the signal field. In the following, we choose
the default value of T = 1 and refer the reader to [8, 9, 11]
for an in-depth discussion of the temperature parameter.

Assuming independent inverse-gamma distributions as
priors for the power spectrum components Pk, as we
had already done in Eq. (17), the calculation of the
Hamiltonian yields

H(s, d) = − log (P(d|s)P(s|P )P(P ))

= − log

(
G(d−Res, N)G(s, S)

∏
k

PIG(Pk)

)

= −j†es +
1

2
(es)

†
Mes

+
∑
k

(
αk − 1 +

ρk
2

)
log

qk +
1

2

∑
{~k′|k′=k}

∣∣s~k′ ∣∣2


+ const. (35)

Here, we have again collected s-independent terms in an
additive constant and introduced the abbreviation

M = R†N−1R. (36)

In order to calculate the Gaussian expectation value of
this Hamiltonian analytically, we expand the logarithm
appearing in this expression in a power series around its
expectation value

q̃k =

〈
qk +

1

2

∑
{~k′|k′=k}

∣∣s~k′ ∣∣2
〉
G(s−m,D)

= qk +
1

2

∑
{~k′|k′=k}

(∣∣m~k′

∣∣2 +D~k′~k′

)
(37)

as

log

qk +
1

2

∑
{~k′|k′=k}

∣∣s~k′ ∣∣2


≈ log (q̃k)

−
imax∑
i=1

(−1)i

iq̃ik

qk +
1

2

 ∑
{~k′|k′=k}

∣∣s~k′∣∣2
− q̃k


i

.

(38)

We truncate this expansion after the first order, i.e.
imax = 1. Note that our choice of q̃k ensures that the
first-order term itself vanishes.

With this simplification, we can calculate the approx-
imate Gibbs free energy to be

G̃(m,D) =

∫
M

dx jxemx+
1
2Dxx

+

∫
M

dx

∫
M

dy
1

2
Mxyemx+my+

1
2Dxx+

1
2Dyy+Dxy

+
∑
k

(
αk − 1 +

ρk
2

)
log (q̃k)

− 1

2
tr(1 + log (2πD)). (39)

To avoid confusion, we write out explicitly all integrals
appearing here and in the following. Taking the func-
tional derivatives with respect to m and D and equat-
ing them with zero yields two filter equations that de-
termine m and D. In these equations, the right hand
side expression of Eq. (12) appears. If we reidentify this
expression with the spectral components Pk and write
S~k~k′ = δ~k~k′Pk, the two filter equations become

mx =

∫
M

dy Sxy

[
jyemy+

1
2Dyy

−
∫
M

dzMyze
my+mz+

1
2Dyy+

1
2Dzz+Dyz

]
(40)

and(
D−1

)
xy

= −jxemx+
1
2Dxxδxy

+

∫
M

dzMxze
mx+mz+

1
2Dxx+

1
2Dzz+Dxzδxy

+Mxyemx+my+
1
2Dxx+

1
2Dyy+Dxy

+
(
S−1

)
xy
. (41)

Together with Eq. (12), the last two equations fully
determine the Gaussian approximation to the posterior.
Solving them self-consistently gives an estimate m for
the signal field and an estimate D for the correspond-
ing uncertainty matrix. The corresponding approximate
posterior mean estimate of the exponentiated field values
then is

〈esx〉P(s|d) ≈ 〈e
sx〉G(s−m,D) = emx+

1
2Dxx . (42)

Of special interest for many applications is the case in
which the matrix M = R†N−1R is diagonal, e.g. when
the noise contributions to the individual data points are
uncorrelated and the response is purely local. In this case
the filter equations simplify somewhat to

mx =

∫
M

dy Sxy

[
jyemy+

1
2Dyy −Myye2my+2Dyy

]
(43)

and(
D−1

)
xy

=
[
−jxemx+

1
2Dxx + 2Mxxe2mx+2Dxx

]
δxy

+
(
S−1

)
xy
. (44)
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A. Spectral smoothness in the log-normal case

In Sec. II A we had seen that in the Gaussian case the
full reconstruction with unknown power spectrum can be
regarded as a combination of the posterior mean recon-
struction under the assumption of a known power spec-
trum and the estimation of this power spectrum as the
one that maximizes its posterior probability. In the case
of a log-normal field, the posterior mean cannot be calcu-
lated analytically, even if the power spectrum is assumed
to be known. However, it is interesting to note that em-
ploying the formalism of minimum Gibbs free energy to
the log-normal reconstruction problem with known power
spectrum, one arrives exactly at the formulas derived in
the previous section, Eqs. (40) and (41).

Thus, the full reconstruction, consisting of Eqs. (40),
(41), and (12) can again be regarded as a combination of
the calculation of the posterior mean for the signal under
the assumption of a power spectrum and the estimation
of the power spectrum according to Eq. (12). From this
viewpoint, the inclusion of a smoothness prior for the
power spectrum is trivial. We simply replace the power
spectrum estimation step according to Eq. (12) with the
one derived in Sec. II B, i.e. with Eq. (26), just as we had
done in the Gaussian case.

B. Test cases

In this section, we present some test cases for the the-
ory developed so far on the reconstruction of log-normal
fields. We study one-dimensional tests with differing de-
grees of non-linearity and differing noise-levels, as well
as two two-dimensional test-cases. For simplicity, we as-
sume an ideal local response, R = 1, except in the last
example, where we study the effects of an observational
mask. The noise is assumed to be uncorrelated and ho-
mogeneous, N = σ2

n1. For the smoothness prior, we use
the one discussed in Sec. II B and choose σ2

p = 100.
First, we discuss again the case of a signal on the one-

sphere S1, i.e. the interval [0, 1) with periodic boundary
conditions, here discretized into 100 pixels. Shown in
Figs. 8-10 are three different cases. In each of these cases,
the signal realization is the same as in Sec. II, only with a
differing normalization of the power spectrum. In Fig. 8
we show a mildly non-linear case with P0 = 0.1 and in
Figs. 9 and 10 a highly non-linear case with P0 = 0.3.
The noise variance σ2

n is 0.1 in Fig. 8, 1 in Fig. 9, and 25
in Fig. 10. In the lower panels of these three figures, we
show the signals and their reconstructions and in the up-
per panels the exponentiated fields, es, as well as our pos-
terior mean estimate for these, 〈es〉P(s|d) ≈ em+ 1

2diag(D).

In the mildly non-linear case the reconstruction is a
reasonably good approximation to the true signal both
in regions of high signal values and regions of low signal
values. However, it is apparent that the quality of the
reconstruction is slightly higher in the former regions.
This is due to the homogeneity of the noise statistics that
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FIG. 8. One-dimensional log-normal reconstruction in a
mildly non-linear low-noise case. The power spectrum from
which the signal realization was drawn is given by Eq. (14)
with P0 = 0.1, k0 = 5, and γ = 4. The noise variance is
σ2
n = 0.1. The top panel shows the exponentiated signal field

es (blue solid line), the data d (crosses), the reconstruction

em+ 1
2
diag(D) (green dashed line), and the uncertainty inter-

val of the reconstruction, given by em+ 1
2
diag(D)±(diag(D))1/2

(hatched region). The lower panel shows the signal field s
(blue solid line), the logarithm of the data log(d) (crosses),
the reconstruction m (green dashed line), and the uncer-

tainty interval for m, given by m± (diag(D))1/2. In the lower
panel, only data points for which log d is greater than −1.5
are shown.

we have assumed. Since our signal response, given by
Res, depends non-linearly on the signal, the noise impact
is lower in regions of higher signal values and hence the
signal inference is less demanding in these regions. From
Fig. 8 it is apparent that this effect is well represented by
the point-wise uncertainty of the reconstruction, given by
diag(D). As can be seen from Fig. 9, the effect becomes
more pronounced for higher degrees of non-linearity, i.e.
larger signal variances on a logarithmic scale.

The highly nonlinear case with high noise level, de-
picted in Fig. 10, exhibits a point-wise uncertainty esti-
mate for the reconstruction that can clearly not be in-
terpreted as a 68% confidence interval. This is due to a
known problem of the filter discussed in Sec. II and by
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FIG. 9. One-dimensional log-normal reconstruction in a
highly non-linear low-noise case. The plotted quantities are
the same as in Fig. 8. The parameters describing the power
spectrum are P0 = 0.3, k0 = 5, and γ = 4 and the noise vari-
ance is σ2

n = 1. In the lower panel, only data points for which
log d is greater than −3 are shown.

extension also of the filter derived in this section. As dis-
cussed in [6], the filter exhibits a perception threshold.
This means that if the signal-response-to-noise ratio is
lower than a certain threshold on a given scale, then the
filter will not reconstruct any power on this scale. Our
usage of the spectral smoothness prior partly alleviates
this porblem in that it prevents the power of individ-
ual scales to drop to zero. However, the reconstructed
power on the noise-dominated scales will in general still
be too low. This directly affects the estimate for the re-

construction’s uncertainty, given by D =
(
S−1 +M

)−1
,

which tends toward zero in the limit of zero power on all
scales.

Furthermore, the lack of power on all but the few
signal-dominated scales can lead to ringing effects, i.e.
prominent signal-dominated features are well recon-
structed and extrapolated periodically into the noise-
dominated regions. The deep trough in the signal recon-
struction that can be seen in the lower panel of Fig. 10
around pixel number 35 is most likely due to this effect.
The high degree of non-linearity acts to reinforce this
effect. As can be seen in the top panel of Fig. 10, the ef-
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FIG. 10. One-dimensional log-normal reconstruction in a
highly non-linear high-noise case. The plotted quantities are
the same as in Fig. 8. The parameters describing the power
spectrum are P0 = 0.3, k0 = 5, and γ = 4 and the noise
variance is σ2

n = 25. In the lower panel, only data points for
which log d is greater than −3 are shown.

fect of the trough onto the exponentiated reconstruction
is almost intangible.

It is certainly mandatory to keep the potential prob-
lems of ringing and an underestimated uncertainty in
mind when reconstructing a field which is swamped by
noise in the better part of its domain. However, as can
be seen from Fig. 10, the main features of the signal field
will still be reconstructed reliably even in such an unfa-
vorable case.

In these test cases, we have chosen the one-dimensional
interval as domain of the log-normal signal field mainly
for illustrative purposes. The algorithm is, however, ver-
satile in that it can operate on virtually any space1. To
illustrate this point, we close this section with two two-
dimensional examples.

In Fig. 11, we show an example for a signal defined
on the two-torus T 2 = S1 × S1, i.e. a segment of R2

1 We are using the nifty package [23] in our implementation. This
makes changing the domain of the signal field trivial, requiring
only minuscule changes to the code.
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FIG. 11. Log-normal reconstruction example in a toroidal setting. The signal’s power spectrum is given by Eq. (14) with
P0 = 0.3, k0 = 2, and γ = 5. The noise variance is σ2

n = 10. The top row shows the data set d (left) and its logarithm (right).
In the logarithmic version, pixels with negative data values are plotted as dark blue. The middle row shows the exponentiated

signal field es (left) and its reconstruction, given by em+ 1
2
diag(D), (right). The corresponding non-exponentiated quantities s

(left) and m (right) are shown in the bottom row.
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FIG. 12. Log-normal reconstruction example on a two-sphere. The quantities plotted in the top three rows are the same as in

Fig. 11. The bottom row shows the uncertainty of the signal reconstruction given by diag(D)1/2 (left side) and the fractional

uncertainty of the reconstruction of the exponentiated field given by ediag(D)1/2−1 (right side). The power spectrum parameters
are P0 = 0.3, k0 = 5, and γ = 4 and the noise variance is σ2

n = 10. In the top row, pixels without measurements are plotted
gray.
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with periodic boundary conditions. The periodicity here
and in the earlier one-dimensional examples is a conse-
quence of our use of Fast Fourier Transform routines. It
can be approximately overcome by artificially extending
the interval or the section of R2 for more than the typi-
cal correlation length of the signal while leaving the data
unchanged when doing the reconstruction. Thus, the in-
fluence of the reconstruction on one side of the interval
or rectangle will have negligible influence on the recon-
struction on the other side.

We discretize the two-torus and its corresponding
Fourier space into 50× 50 pixels. The rectangular orien-
tation of the Fourier pixels leads to many different scales
k being represented, each, however, only by a few pix-

els, corresponding to a few different Fourier vectors ~k.
To avoid dealing with all these scales individually, we
bin the scales logarithmically into 17 bins. We replace
all summations over Fourier components with a certain
scale appearing in the filter formulas with summations
over all Fourier components whose scale falls within one
bin. Thus, we reconstruct the power for each bin instead
of for each scale that is represented in the rectangular
Fourier grid. The signal is again drawn from the power
spectrum given by Eq. (14) with P0 = 0.3, k0 = 2, and
γ = 5. The noise level is chosen as σ2

n = 10. Signal, data,
and reconstruction are shown in Fig. 11.

The toroidal example exhibits essentially the same fea-
tures that we had already seen in the one-dimensional
case. While the reconstruction is generally in good agree-
ment with the true underlying signal, it is less accurate
in the regions of small signal values where the signal-
response-to-noise ratio is far worse due to the quite high
degree of non-linearity.

In Fig. 12, we show an example for a reconstruction on
the two-sphere S2. This example has special relevance
for astronomical applications since one can interpret the
sky as a two-sphere and therefore any astrophysical sig-
nals without distance information will be defined on this
manifold. We generate a mock signal from the power
spectrum given in Eq. (14) with P0 = 0.3, k0 = 5, and
γ = 4. The noise level is σ2

n = 10. We discretize the
sphere using the HEALPix2 package [10] with a reso-
lution parameter of Nside = 16 leading to 3 072 pixels
in total. The power spectrum components Pk are in this
case the components of an angular power spectrum, often
denoted as C`.

In this last case study, we replace the trivial response
R = 1 with a projection onto part of the sphere, effec-
tively masking 600 pixels around the equator for which
we assume that no measurements have been taken. This
resembles a typical situation in extragalactic astronomy,
where observations through the Galactic plane are not
possible due to the obscuration by the Milky Way.

2 The HEALPix package is available from http://healpix.jpl.

nasa.gov/.

Fig. 12 shows the signal field, data, and reconstruc-
tion both in the exponentiated and in the linear version.
In the panels showing the reconstructed signal field, it
can be nicely seen how the algorithm is able to extrapo-
late into the gap region from the data on the boundary.
This is possible due to the knowledge of the correlation
structure that was inferred from the same data set. Also
shown in Fig. 12 are the pixel-wise uncertainty estimate

of the signal field’s reconstruction, given by diag(D)
1/2

,
and the fractional uncertainty of the reconstructed expo-

nentiated signal, given by ediag(D)1/2−1, which is approx-

imated well by diag(D)
1/2

in most regions. It can be seen
that the uncertainty tends to be higher in the regions of
low signal values, as was the case in the one-dimensional
examples, and in the region around the equator which
lacks observations. This is to be expected, since the only
constraint on the signal in this region comes from ex-
trapolations from neighboring regions using the signal’s
correlation structure inferred from the data.

IV. SUMMARY AND CONCLUSIONS

We have developed an algorithm to infer log-normal
random fields from noisy measurement data. The log-
normal model was chosen due to its wide range of applica-
tions in astrophysics and other fields. The reconstruction
method uses the correlation structure of the log-normal
field to differentiate between features in the data that
are due to noise and such that are due to variations in
the true underlying field. This correlation structure, de-
termined by the field’s power spectrum, is, however, in
general not known a priori. We have therefore extended
the theory for simultaneous reconstructions of a field and
its power spectrum that was developed and applied suc-
cessfully for Gaussian random fields in the past [6, 8, 19–
21, 24] to log-normal fields.

An additional feature of our reconstruction method is
the use of a smoothness prior for the power spectrum.
We have suggested to employ a prior based on the sec-
ond double-logarithmic derivative of the power spectrum
and shown that it is well suited to handle a large variety
of cases. Having investigated possible pitfalls associated
with the usage of such a prior from theoretical as well as
practical viewpoints, we should stress that the derivation
of the filter formulas laid out here does not depend on the
specific form of the spectral smoothness prior. In cases
in which the prior we employed here cannot be expected
to yield satisfactory results it should simply be replaced
by a different one.

The algorithm we have derived depends in no way on
the space on which the signal field is to be reconstructed.
We have demonstrated this by showing examples of re-
constructions of mock signals on a one-dimensional inter-
val, a flat two-dimensional space, and a spherical space.
We have discussed the performance of the algorithm in
these scenarios and pointed out possible caveats when
dealing with very low signal-response-to-noise ratios.

http://healpix.jpl.nasa.gov/
http://healpix.jpl.nasa.gov/
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In these application examples, we have assumed that
the observational data simply represent the underlying
log-normal field, subject to additive noise. Furthermore,
we have illustrated the ability of the algorithm to extrap-
olate from the given data in a test case in which these
data were assumed to be incomplete, thus demonstrat-
ing the power of the usage of the correlation information
contained in the data. The derivation of the filter formu-
las, however, is even more general. It allows for an ar-
bitrary linear relationship between log-normal field and
data, described by a response matrix R. The resulting
formulas include the general response matrix which can
e.g. represent an incomplete observation, a convolution,
or a Fourier transformation. We have also allowed for a
general noise covariance matrix, thus including cases of
heteroscedastic or correlated noise.

This makes the algorithm widely applicable.
Applications that we have in mind include for ex-
ample the study of diffuse Galactic emission components
at radio frequencies and reconstructions of emissiv-
ity fields across galaxy clusters from interferometric
observations.
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Appendix A: Case studies for the spectral
smoothness prior

In this appendix, we discuss a few possible correlation
structures and power spectra and examine the suitability
of a spectral smoothness prior of the form described by
Eq. (24).

1. Power law spectra

If the signal’s power spectrum is a broken power law of
the shape given by Eq. (14), the first double-logarithmic
derivative is

∂pk
∂ log k

= − γ

1 +
(
k0
k

)2 , (A1)

which behaves like −γ
(
k
k0

)2
for k � k0 and tends to-

ward −γ for k → ∞. The second double-logarithmic
derivative is

∂2pk

∂ (log k)
2 = − 2γ(

k
k0

+ k0
k

)2 , (A2)

which tends toward zero both for k → 0 and k →∞. The
second derivative takes on its extremum, given by −γ2 ,
at the knee frequency k0 where the spectral index of the
power spectrum changes from 0 to γ. Thus neither a prior
punishing large values for the first logarithmic derivative,
nor one punishing large values for the second logarithmic
derivative prevents the true solution from being found,
provided the values of −γ and −γ2 , respectively, are well
within the range of values that are allowed for the deriva-
tive by the prior. In fact, choosing σp = γ/2 would allow
such a change in spectral index roughly once per e-folding
of the k-value. Choosing σp = γ

2h would turn such a kink
into a less common h-sigma event.

The case of a broken power-law contains the special
cases of a pure power-law, i.e. k0 → 0, such as arises

for example for Brownian motion of a particle, and of an
exponential two-point correlation function, i.e.

C(r) = Sxy = C0e−βr, (A3)

where r = |x− y| is the distance between two points or
time-instances x and y. Such a correlation function arises
for example from the Ornstein-Uhlenbeck process [25].
Fourier transforming this correlation function in a one-
dimensional space yields the power spectrum which takes
on the form given by Eq. (14) with P0 = 2C0

β , k0 = β,

and γ = 2.
However, there are also cases that do not lead exclu-

sively to small values of the double-logarithmic deriva-
tives. Two such scenarios will be studied in the remain-
der of this appendix.

2. Gaussian correlations

Consider a two-point correlation function of Gaussian
shape for a field on a one-dimensional space, i.e.

C(r) = C0e−
r2

2σ2 . (A4)

A field whose statistics are described by such a two-
point correlation function can be regarded as a station-
ary and spatially uncorrelated field convolved with a
Gaussian. Calculating the corresponding power spec-
trum via Fourier transformation yields

Pk =
√

2πσC0e−
σ2k2

2 . (A5)

This power spectrum drops quickly with increasing k, due
to the flatness of the correlation function around r = 0.
Therefore, both the first and second double-logarithmic
derivatives grow unbounded as k →∞. Thus, by employ-
ing a spectral smoothness prior that punishes large values
for these derivatives, one prevents in principle the recon-
struction of the true power spectrum and supresses the
small-scale correlations in the reconstructed field that are
in reality more pronounced. In cases in which Gaussian
correlations are expected, it might therefore be advisable
to choose the strength of the spectral smoothness prior,
given by σp, k-dependent or choose a different smooth-
ness prior altogether.

3. Triangular correlations

Another case in which the double-logarithmic deriva-
tives of the power spectrum can become divergent is a
correlation function with finite support. As an example,
we consider a signal on a one-dimensional space with cor-
relations only over the finite distance 2L, given by

C(r) =

{
C0

(
1− r

L

)
for r < L

0 else
. (A6)
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This triangular correlation function describes a station-
ary and spatially uncorrelated field that has been con-
volved with a top-hat kernel. Fourier transforming it
yields the power spectrum

Pk =
2C0

k2L
(1− cos (kL)) . (A7)

This power spectrum becomes exactly zero at finite k-
values. Its logarithm, and therefore also the double-
logarithmic derivatives, are divergent at these locations,
so not even a k-dependent value of σp can ensure the cor-
rect reconstruction of the power spectrum in this case.
The oscillatory behavior of this power spectrum is a
generic feature of signal fields that are correlated only
over a finite distance.

Note that both in the case of only locally correlated
fields and in the case of Gaussian correlations, the double-
logarithmic derivatives can be kept finite by adding a
constant floor to the power spectrum, i.e. introducing
an additive part to the signal that is spatially uncorre-
lated. In many cases, the variance of the uncorrelated
addition needed to satisfy the spectral smoothness prior,
Eq. (24), will be small enough so as not to influence the
signal reconstruction significantly. Note that in practice,
any field variations are restricted by the finite pixel size
and only k-values up to a finite kmax will be considered.
In Sec. II C, we investigate the effect that the spectral
smoothness prior given in Eq. (24) has in practice on
the recunstruction of a signal field exhibiting the two po-
tentially problematic two-point correlations that we dis-
cussed here.

In conclusion, using a spectral smoothness prior that
punishes large values for the first or second double-
logarithmic derivative of the power spectrum can lead
to the introduction of spurious small-scale variations in
cases in which the true two-point correlation function is
flat around r = 0 or has only finite support. In the latter
case, it can also introduce spurious large-scale correla-
tions. This will, however, in general only be a problem
for the reconstruction if some feature that mimics these
large-scale correlations is present in the data, i.e. caused
by the noise. Another case in which the employment of
any spectral smoothness prior is obviously a bad idea
is that of a signal that exhibits prominent periodicities.
The detection of such spectral lines would only get hin-
dered by the usage of a spectral smoothness prior.

Appendix B: Discretization of the spectral
smoothness prior

In our implementation we use discretized values
(ki)i=0,...,imax

for the length scales that are represented

on the computational grid, or in case of the two-torus,
bins thereof. We approximate the integral in the expo-
nent of the spectral smoothness prior, Eq. (24), with a
sum according to

∫
d(log k)

(
∂2 logPk

∂ (log k)
2

)2

≈
imax−1∑
i=1

δi (∆p)
2
i . (B1)

Here, we use the abbreviations

δi =
log ki+1 − log ki−1

2
(B2)

for integer values of i and

δi = log ki+1/2 − log ki−1/2 (B3)

for half-integer values of i. Note that we have excluded
the boundaries at k0 and kimax from the sum to avoid
numerical problems at these locations.

We approximate the second logarithmic derivative as

(∆p)i =
∑
j

∆i,jpj =

pi+1−pi
δi+1/2

− pi−pi−1

δi−1/2

δi
, (B4)

so that we can represent it as a matrix with the entries

∆i,i = − 1

δi

(
1

δi+1/2
+

1

δi−1/2

)
, (B5)

∆i,i±1 =
1

δiδi±1
, (B6)

acting on the vector p. All other entries of the matrix ∆
are zero.

We can now write the exponent of Eq. (24) as

− 1

2σ2
p

∫
d(log k)

(
∂2 logPk

∂ (log k)
2

)2

= −1

2

∑
i,j=0

piTi,jpj ,

(B7)
where the matrix T is given by

Ti,j =
1

σ2
p

∑
l

∆l,iδl∆l,j . (B8)
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