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ABSTRACT

Context. AGN are known to account for a major portion, if not all, of the cosmic X-ray background radiation. The
dominant sharp spectral feature in their spectra is the 6.4 keV fluorescent line of iron, which may contribute to as much
as ∼ 5− 10% of the CXB spectral intensity at ∼ 2− 6 keV. Owing to cosmological redshift, the line photons detected
at the energy E carry information about objects located at the redshift z = 6.4/E − 1. In particular, imprinted in
their angular fluctuations is the information about the large-scale structure at redshift z. This opens the possibility of
performing the Fe Kα line tomography of the cosmic large-scale structure.
Aims. The goal of this paper is to investigate the feasibility of the Fe Kα line tomography of the large-scale structure.
Methods. At any observed energy E, the 6.4 keV line photons are blended with continuum emission, which originates
in objects located at many different redshifts and therefore contaminates and dilutes the tomographic signal. However,
its contribution can be removed by doing observations at two nearby energy intervals and by calculating the power
spectrum of the corresponding differential signal map.
Results. We show that detection of the tomographic signal at >∼ 100σ confidence requires an all-sky survey by an
instrument with an effective area of ∼ 10 m2 and field of view of ∼ 1 deg2. The signal is strongest for objects located
at the redshift z ∼ 1 and at the angular scales corresponding to ` ∼ 100 − 300, therefore an optimal detection can be
achieved with an instrument having a rather modest angular resolution of ∼ 0.1− 0.5 deg. For such an instrument, the
CCD-type energy resolution of ∼ 100 − 200 eV FWHM is entirely sufficient for the optimal separation of the signals
coming from different redshifts. The gain in the signal strength that could potentially be achieved with energy resolution
comparable to the line width is nullified by the photon counting and AGN discreteness noise. Among the currently
planned and proposed missions, these requirements are best satisfied by LOFT, even though that it was proposed for
an entirely different purpose. Among others, clear detection should be achieved by WFXT (∼ 25− 40σ) and ATHENA
(∼ 20− 30σ).
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1. Introduction

Since the discovery of the cosmic X-ray background (CXB)
back in 1962 (Giacconi et al. 1962), the performance of X-
ray instrumentation has witnessed a very rapid evolution
where sensitivities and angular resolutions of modern X-ray
observatories are higher by more than nine and around five
orders of magnitude, respectively (Giacconi 2003). With the
aid of XMM-Newton 1 and Chandra 2 X-ray observatories,
two of the most advanced X-ray instruments in existence,
more than 20 deep extragalactic X-ray surveys over vary-
ing sky areas and effective flux limits have been performed
(Brandt & Hasinger 2005). The most noticeable amongst
these are ∼ 2 Ms Chandra Deep Field North (CDF-N)
(Alexander et al. 2003) over ' 448 arcmin2 sky area, ∼ 4
Ms Chandra Deep Field South (CDF-S) (Xue et al. 2011)
over ' 465 arcmin2, and ∼ 3 Ms XMM-Newton deep survey
in the CDF-S (Comastri et al. 2011). In the energy ranges
0.5− 2 keV and 2− 8 keV, up to 76% and 82% of CXB has

1 http://xmm.esac.esa.int
2 http://chandra.harvard.edu

been currently resolved (Lehmer et al. 2012). These obser-
vations have demonstrated that, although contribution by
faint star-forming galaxies to the source counts becomes
important at the flux limit of the deepest Chandra sur-
veys, active galactic nuclei (AGN) dominate source counts
at brighter fluxes and produce the dominant fraction of the
CXB intensity (e.g., Gilli et al. 2007), with only relatively
minor contributions from galaxy clusters and from X-ray bi-
naries in star-forming galaxies (Dijkstra et al. 2012). Along
with earlier studies, this has lead to the general belief that
CXB is fully accounted for by spatially sparse X-ray emit-
ting sources and thus placing stringent constraints on the
possible existence of a genuinely diffuse component.

Despite the small areas of the above deep surveys, the
large number of detected AGN 3 has allowed relatively
good determination of the AGN luminosity function (LF)

3 In fact, X-ray selection is currently the most effective way of
selecting AGN. The deepest optical spectroscopic surveys typi-
cally give a factor of ∼ 10 times less AGN per deg−2, and only
utradeep optical variability studies are able to generate compa-
rable AGN sky densities (e.g., Brandt & Hasinger 2005).
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and its evolution over cosmic time. While the very nar-
row and deep surveys are not very suitable for measuring
the spatial clustering properties of AGN, somewhat wider
and shallower surveys like X-Boötes, XMM-LSS, AEGIS,
and XMM-COSMOS have allowed measurement of the two-
point clustering statistics (Murray et al. 2005; Gandhi et al.
2006; Coil et al. 2009; Gilli et al. 2009), albeit with rel-
atively large uncertainty on large scales. The best large-
scale X-ray AGN clustering measurements to date are ob-
tainable with ROSAT-based surveys, e.g., Krumpe et al.
(2010); Miyaji et al. (2011). This situation is expected
to improve significantly with the upcoming Spectrum-X-
Gamma/eROSITA 4 5 space mission, which is planned
to cover entire sky to the limiting sensitivity of ∼ 10−14

erg/s/cm2 (e.g., Predehl et al. 2010; Kolodzig et al. 2012b).
Also, the spectacular capabilities of the proposed future X-
ray observatories, e.g. ATHENA 6 and WFXT 7 proposals,
are expected to provide a significant boost in our ability to
observe AGN clustering with high accuracy.

In this paper we investigate fluctuations in the CXB
intensity field, i.e., we do not look at AGN clustering
in the “usual sense”, but instead include all the pho-
tons constituting the CXB. On small scales (relevant to
the above-mentioned deep X-ray surveys) intensity fluctu-
ations, which are dominated by an uncorrelated Poisson
process sourced by the discrete and sparse spatial distri-
bution of AGN, have been successfully used to extrapo-
late the observed number count and limiting flux relation
below the survey’s point source detection limit (Miyaji &
Griffiths 2002). Although this small-scale fluctuation term
is included in our study, the focus of the current paper
is on CXB fluctuations on larger spatial scales, where the
correlated nature of the fluctuations becomes noticeable.
In particular, as the main topic of this study we investi-
gate the possibility of doing iron 6.4 keV line 8 tomogra-
phy in a way similar to the well-known neutral hydrogen
21cm tomography in the radio band (see Furlanetto et al.
(2006); Pritchard & Loeb (2011) for extensive reviews).
Even though in comparison to the radio band, we are typi-
cally quite severely limited by the poor photon statistics at
X-ray frequencies and by the spatial sparseness of the X-ray
emitting sources, these difficulties are somewhat compen-
sated by significantly lower level of possible contaminants
in the form of various back- or foregrounds. The CXB at
energies 2−10 keV is basically only due to AGN (Gilli et al.
2007) for which the Fe Kα fluorescent emission line at 6.4
keV is the dominant sharp spectral feature in this energy
range. Although in unobscured AGN, its strongest compo-
nent is relativistically broadened (Fabian et al. 2000) and
often redshifted, the narrow Fe Kα line at 6.4 is almost al-
ways present: it is known to be a common feature in the X-
ray spectra of local (Shu et al. 2010, 2011) and distant (e.g.,
Chaudhary et al. 2012) AGN. Its equivalent width depends
on the amount of the intrinsic absorption in the AGN spec-
trum, increasing from ∼ 50 − 100 eV in unabsorbed (Shu
et al. 2010), type I AGN to ∼ 1− 2 keV in Compton thick

4 http://www.mpe.mpg.de/erosita/
5 http://hea.iki.rssi.ru/SRG/
6 http://www.mpe.mpg.de/athena/
7 http://wfxt.pha.jhu.edu/
8 Fe 6.4 keV line is the prominent fluorescence line in the

AGN spectra thought to arise from the reflection off of the cold
accretion disk and molecular torus component.

objects (Shu et al. 2011). The intrinsic width of the nar-
row iron line was reported to be the same in unabsorbed,
2200 ± 220 km/s FWHM, and absorbed, 2000 ± 160 km/s
FWHM (Shu et al. 2010, 2011) objects, corresponding to
∼ 40−45 eV FWHM. Apart from the X-ray Baldwin effect
of a moderate amplitude (e.g., Iwasawa & Taniguchi 1993;
Chaudhary et al. 2012), no other obvious trends have been
reported in the line parameters with the redshift and/or
luminosity.

With deep Chandra and XMM-Newton surveys, it has
been established that the fraction of moderately obscured,
Compton-thin AGN is on average 3/4 of all AGN; it is
higher at lower luminosities (e.g., Ueda et al. 2003; Treister
& Urry 2005) and higher redshifts (e.g., La Franca et al.
2005). Although the fraction of Compton-thick objects is
not so well constrained by observations, it is believed to be
comparable to that of obscured Compton-thin objects (see,
e.g., Gilli et al. (2007) and references therein). In agreement
with these figures, CXB spectral synthesis calculations have
shown that its major, ∼ 2/3, fraction is composed of emis-
sion of obscured objects. In these objects, a notable frac-
tion, up to ∼ 2 − 20%, of 2− 10 keV luminosity is carried
away by narrow line photons, which make a correspond-
ingly sizable contribution to the cosmic X-ray background.
Gilli et al. (1999) were the first to calculate this contribu-
tion and obtained ∼ 7% at the energy of a few keV. This is
a strong signal when compared to the typical 21cm signal
in relation to the Galactic (∼ 10−5−10−4) or extragalactic
foregrounds (∼ 10−2 − 10−1) (Furlanetto et al. 2006).

We also mention that several other spectral lines have
been investigated as potential tools for performing tomo-
graphic measurements of the large-scale structure (LSS)
via intensity mapping: e.g., rotational transitions of the CO
molecule (Righi et al. 2008; Carilli 2011; Lidz et al. 2011),
3HeII hyperfine transition (McQuinn & Switzer 2009), CII
fine structure line (Gong et al. 2012), hydrogen Lyman-α
line (Silva et al. 2012). Also, one has to point out that Fe 6.4
keV line has already proven to be a powerful tomographic
probe of the accretion disk and central supermassive black
hole (see Fabian et al. (2000) for a review). In this paper
we investigate its potential as a tomographic probe of the
LSS.

In the energy range relevant to this study we approx-
imate the typical AGN spectrum with a power-law con-
tinuum plus a single Gaussian line at 6.4 keV. The line
photons, emitted by AGN located at the redshift z, will be
observed at the energy E = 6.4

1+z keV. As AGN from a broad
range of redshifts contribute to the X-ray background, the
combined iron line emission from many objects will produce
a broad hump on the CXB spectrum, without any sharp fea-
tures(Gilli et al. 1999). However, the line photons observed
in a narrow energy interval ∆E centered at energy E will
carry information about correlation properties of AGN in
the redshift shell z ' 6.4

E+∆E −1 . . . 6.4
E −1. This information

is diluted by the continuum photons, which at any given
energy are produced by objects located at many different
redshifts. Since the line photons cannot be directly sepa-
rated from continuum photons, statistical methods need to
be employed in order to subtract contribution of the con-
tinuum and to extract the information about correlation
properties of the AGN at a given redshift. Here one can
take advantage of the different behavior as a function of
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energy of those two components: continuum is changing
more slowly than the line contribution.

Our paper is organized as follows. In Section 2 we
present a simple model for the CXB fluctuations including
6.4 keV Fe line. There we model auto and cross power spec-
tra as observed in narrow energy ranges and combine these
in a way to enhance line (and suppress continuum) contri-
bution. In Section 3 we calculate the expected tomographic
signal strength as a function of position and width of the
observational energy bands along with its dependence on
the limiting flux above which resolved sources are removed.
We also discuss the prospects for the current and future
X-ray instruments to measure the signal. In Section 4, in
addition to bringing our conclusions, we discuss several is-
sues that were neglected in the main analysis and point
toward the ways of extending the above work.

Throughout this paper we assume a flat ΛCDM cosmol-
ogy with Ωm = 0.27, Ωb = 0.045, h = 0.70 and σ8 = 0.8.

2. A simple model for the CXB fluctuations
including Fe 6.4 keV line

In this section we introduce models for the auto and cross
power spectra. We present a scheme for separating the line
signal from the dominant continuum contribution and dis-
cuss the error estimates for the two-point functions.

In calculating the power spectra throughout this sec-
tion, we assumed the limiting flux Flim = 10−13 erg/s/cm2;
i.e., all the sources brighter than this flux were removed
from the analysis. We also assumed that the instrumen-
tal sensitivity and exposure time of the survey are such
that the flux 10−13 erg/s/cm2 corresponds to 500 counts in
2− 10 keV band. This sensitivity is, for example, achieved
in a ∼ 35 (∼ 25) ksec XMM-Newton observation with PN
(PN+2MOS) detector, assuming photon index Γ = 2.

2.1. Auto and cross power spectra

These Fourier-space two-point functions carry the full sta-
tistical information in case the underlying random fields
obey Gaussian statistics. In our case, this assumption turns
out to be quite good, since e.g., the accuracy for deter-
mining the global amplitude of the line signal is domi-
nated by intermediate scales, where the approximation of
Gaussianity is very justified.

In order to calculate CXB two-point functions we need
to know

1. the number density of AGN as a function of luminosity
and redshift, i.e., AGN LF;

2. the AGN clustering bias;
3. the spectral shape of the typical AGN along with its 6.4

keV iron line width and strength.

As mentioned in the Introduction the 6.4 keV line is the
dominant line in the spectra of objects contributing to the
CXB as long as one looks at energies E & 2− 3 keV, while
lines from hot ISM and IGM in galaxies and clusters of
galaxies start to complicate this simple picture at lower en-
ergies. In this paper we have chosen to constrain the obser-
vational energies above 2 kev and consider only the narrow
6.4 keV line from AGN. For the AGN LF we adopt 2− 10
keV band LF as determined by Aird et al. (2010).

Table 1. Main characteristics of the two models used in
this paper.

Model luminosity function clustering bias
Model I given by MF to LF follows automatically

mapping (Eq. (3))
Model II Aird et al. (2010) bias corresponding to

LDDE model Meff = 1013 h−1M�

We use two approaches to compute angular power spec-
tra. In the first approach we use the analytic luminosity-
dependent density evolution (LDDE) fit to the observation-
ally determined LF from Aird et al. (2010) and assume that
all the AGN populate DM halos with the effective mass of
Meff = 1013 h−1M�, which is compatible with the results of
Allevato et al. (2011), and the corresponding bias is taken
from the analytic model of Sheth et al. (2001).

In the second approach, we have fitted LF data from
Aird et al. (2010) with a simple model where the concor-
dance ΛCDM model halo mass function (MF) given in the
analytical form of Sheth & Tormen (1999) is mapped to
the LF. Here the mapping between the horizontal luminos-
ity and mass axes is obtained by assuming

M(L, z) = Mmin

(
L

Lmin

)c1z+c2
, (1)

where Lmin = 1041 erg/s and Mmin, c1, c2 are free pa-
rameters. The acceptable mapping between vertical axes is
obtained if one assumes the “duty cycle” in the form

fduty(z) = exp
(
c3z

2 + c4z + c5
)
. (2)

This MF to LF mapping implicitly assumes that there is
one supermassive black hole (SMBH) for each dark matter
(DM) halo, which is turned on (i.e., shines as an AGN) and
off, as determined by the above duty cycle, and its lumi-
nosity during the ‘on’ state is determined by the DM halo
mass. Thus, in this case the LF is fitted by the following
form

dn

dL
(L, z) = fduty(z)

dM

dL
(L, z)

dn

dM
[M(L, z), z] . (3)

It turns out that this simple six-parameter (Mmin, c1 − c5)
model gives completely satisfactory fit to the Aird et al.
(2010) LF data. The advantage of this model is that once
the MF to LF mapping is done, we have an automatic pre-
diction for the bias parameters needed in clustering cal-
culations. As it turns out, the bias values as a function
of redshift, which are shown in the lower panel of Fig. 1,
are in reasonable agreement with available AGN clustering
measurements (see, e.g., Allevato et al. (2011); Cappelluti
et al. (2012)). As an example, in Fig. 1 the points with er-
ror bars show bias measurements for X-ray-selected AGN
from the COSMOS field as determined by Allevato et al.
(2011). One can see that both models are indeed in reason-
able agreement with observational measurements and that,
in the redshift range z ∼ 0−2 most important for this study,
Model I performs somewhat better. The details, along with
several other consequences of Model I, will be presented in
a separate paper (Hütsi et al. 2012). The properties of these
two models are briefly summarized in Table 1.

3
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Fig. 1. Upper panel: Radial selection functions, i.e., prob-
ability distribution functions for emission redshifts of pho-
tons, for Models I and II (see Table 1), assuming observa-
tional energy bands 3.0−3.2 keV and 3.3−3.5 keV with Flim

fixed to 10−13 erg/s/cm2. Lower panel: Effective cluster-
ing bias as a function of redshift for Models I and II. For
Model II, along with our default value Meff = 1013 h−1M�,
we also show cases with Meff = 1012.5 and 1013.5, which
cover the typical range of biasing values obtained in the
literature. The points with error bars show bias measure-
ments for X-ray selected AGN from the COSMOS field as
determined by Allevato et al. (2011) (see their Fig. 9 for
further details).

As a final ingredient, we need some model for the typical
AGN spectrum with its Fe 6.4 keV line. For simplicity, we
assume the following spectral template 9

– power-law continuum with spectral index Γ = 2, i.e.,

L̃E, cont ∝ E−Γ ;
– Gaussian Fe 6.4 keV line with width σ = 45 eV FWHM

and equivalent width EW = 300 eV.

As detailed spectral synthesis of the cosmic X-ray back-
ground is beyond the scope of this paper, we simplify our
calculations and assume the above spectrum for all objects.
Although with this assumption, our model will not repro-
duce exact shape of the CXB spectrum, it is sufficient for
our goal – to compute angular correlations in the CXB

9 This is clearly quite a substantial approximation. The pos-
sible consequences of the oversimplification is discussed further
in Section 4.

brightness distribution, because no noticeable differences
in the correlation properties of unobscured and obscured
AGN have been reported. For our simplified calculation we
fixed the equivalent width of the narrow iron line at the
value of 300 eV, which correctly reproduces contribution
of line photons to the CXB, ∼ 5 − 10% at a few keV (see
Section 2), obtained in more elaborate spectral synthesis
calculations (Gilli et al. 1999). We investigate the depen-
dence of our results on the assumed iron line strength in
Section 3, where we repeat our calculations for lower and
higher values of the line equivalent width. The dispersion
width of the line was fixed at 45 eV FWHM, in agreement
with the Chandra grating observations of a large sample of
local AGN (Shu et al. 2010, 2011). In order to investigate
dependence of our results on the line width and to allow
for a possible uncertainty in its measurements we also ran
some of our calculations for a three times narrower line, i.e.,
15 eV FWHM (see, e.g., Fig. 5).

In what follows, we use the notation where all the quan-
tities that correspond to counting particles are written with

a tilde on top, e.g., the luminosity is written as L̃ and mea-
sured in units of s−1, etc.

To calculate the two-point functions of the CXB we use
the halo model approach (HM) (see Cooray & Sheth (2002)
for an extensive review). According to HM the pairs of
points are separated into two classes: (i) both points inside
the same DM halo (one-halo term), which describes two-
point function on small scales, (ii) points in separate DM
halos (two-halo term), providing a large-scale two-point
correlator. By making the assumption that AGN always
reside at the centers of DM halos (which might be quite a
good assumption, e.g., Starikova et al. (2011)) they provide
simply a constant one-halo term, which can be written as

C
(ij), 1h
` =

1

F̃ (i)F̃ (j)

∫ ∫
dz

dVc
dz

(z)dL
dn

dL
(L, z)

× F̃ (i)(L, z)F̃ (j)(L, z) . (4)

Here the superscripts i and j are used to denote two ob-
servational energy intervals. In general, Eq. (4) gives us
one-halo coss-spectra between energy bins i and j, while
the case i = j provides auto-spectra. dVc

dz is the comoving

volume element per steradian and F̃ (i) is the photon flux
received from a single AGN (redshift z and 2− 10 keV lu-

minosity L) in the observational energy range E
(i)
min−E

(i)
max,

i.e.,

F̃ (i)(L, z) =
1 + z

4πd2
L(z)

(1+z)E(i)
max∫

(1+z)E
(i)
min

L̃E(L)dE , (5)

where dL is luminosity distance and L̃E the AGN spectral
template (as described above), which is normalized such
that

L =

10 keV∫
2 keV

EL̃EdE . (6)

In Eq. (4) F̃ (i) is the total photon flux received in the energy
interval i

F̃ (i) =

∫ ∫
dz

dVc
dz

(z)dL
dn

dL
(L, z)F̃ (i)(L, z) . (7)

4
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The corresponding two-halo spectra can be given as

C
(ij), 2h
` =

2

π

∫
W

(i)
` (k)W

(j)
` (k)P lin(k)k2dk , (8)

where P lin(k) is the 3D linear power spectrum at z = 0
and the projection kernels (see, e.g., Huterer et al. (2001);
Padmanabhan et al. (2007) for details) are given as 10

W
(i)
` (k) =

∫
j`(kr)g(r)b

(i)
eff (r)f (i)(r)dr . (9)

Here the integral is over comoving distance r, j` is the

spherical Bessel function, g the linear growth factor, b
(i)
eff

the effective clustering bias in energy bin i, which can be
given as

b
(i)
eff (z) =

∫
dL dn

dL (L, z)b [M(L), z] F̃ (i)(L, z)∫
dL dn

dL (L, z)F̃ (i)(L, z)
. (10)

To calculate b(M, z) we use the analytical model of Sheth
et al. (2001). f (i) in Eq. (9) is the radial selection function,
i.e., the probability distribution function for the emission
redshifts of photons. This quantity can be expressed as

f (i)(z) =

∫
dLdVc

dz (z) dn
dL (L, z)F̃ (i)(L, z)

F̃ (i)
, (11)

where the normalization factor F̃ (i), i.e. the total photon
flux in energy bin i, is given by Eq. (7). In all the equations
above, where the integration over AGN luminosities is per-
formed, we have assumed the lower integration bound to
be 1041 erg/s, and the higher bound is taken to be equal to
the luminosity, which corresponds to the limiting flux Flim

above which sources are removed.
The radial selection functions for Models I and II are

shown in the upper panel of Fig. 1. There we have assumed
energy bins 3.0 − 3.2 keV and 3.3 − 3.5 keV 11, and have
taken the flux above which sources are removed, Flim, equal
to 10−13 erg/s/cm2. Thus, the angular power spectra ac-
cording to the HM are calculated as

C
(ij)
` = C

(ij), 2h
` + C

(ij), 1h
` , (12)

where the two- and one-halo terms are given by Eqs. (8)
and (4), respectively.

10 In principle, one could also include the effects of redshift-
space distortions here, following Padmanabhan et al. (2007).
However, this would only lead to a noticeable difference on
scales larger than the scales where most of our signal tends to
arise. Also, to have enough photon statistics available, we can-
not make the observational energy range too narrow, so even
photons emitted from the 6.4 keV line originate in a relatively
broad redshift shell, which makes redshift distortions quite neg-
ligible in practice. Due to these reasons we have chosen not to
include redshift-space distortions in our calculations.
11 To be more precise, to ensure that the continuum contributes

equally to both energy bins, the upper energy in bin 2, E
(2)
max,

is calculated as (valid if Γ = 2) E
(2)
max = (1/E

(2)
min − 1/E

(1)
min +

1/E
(1)
max)−1 ' 0.3544 keV. However, when the energy bin gets

narrow, this difference does not matter much, and E
(2)
max = 3.5

keV gives practically equivalent results for the final power spec-
tra.
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Fig. 2. Two-halo terms of angular auto and cross power
spectra for Model I assuming two observational energy
ranges: (1) 3.0 − 3.2 keV and (2) 3.3 − 3.5 keV and fix-
ing Flim to 10−13 erg/s/cm2, as in Fig. 1. The three dashed
lines with intermediate amplitude represent auto-spectra in

energy bin 1 (C
(11),2h
` ) and bin 2 (C

(22),2h
` ) along with the

corresponding cross-spectrum (C
(12),2h
` ) (all three lines are

on top of each other, with C
(12),2h
` being slightly lower at

small `). The solid line shows the signal after removal of

the continuum part, i.e., C
(11)
` +C

(22)
` − 2C

(12)
` . The short-

dashed line with the highest amplitude corresponds to the
sum of autocorrelations of bin 1 and 2 in case there is only
signal from 6.4 keV line and no continuum contribution.
The same curve multiplied by f2

line (the square of fraction
of photons from the line) is plotted as a dotted line, which
is also equivalent to the corresponding sum of linear spectra
multiplied by b2f2

line, where b is the linear clustering bias
parameter (in current case b ' 2.5 and fline ' 0.047).

2.2. Line signal. Subtraction of the dominant continuum
contribution

To extract the line signal from the dominant continuum
contribution, we calculate the following quantity

C` = C
(11)
` + C

(22)
` − 2C

(12)
` ; (13)

i.e., from the sum of the auto-spectra of two nearby energy
bins we subtract their double cross-spectrum. It is clear that
this procedure only removes the slowly changing component
(continuum) since then

C
(11)
`, cont ' C

(22)
`, cont ' C

(12)
`, cont , (14)

and we are basically left with only the line signal. Of course,
for this procedure to work accurately enough, i.e., Eq. (14)

to be valid, one has to adjust energy ranges E
(1)
min−E

(1)
max and

E
(2)
min−E

(2)
max so that continuum gives equal contribution (in

terms of detected number of photons) to both. This seems
to demand some prior information on the effective contin-
uum shape, which one need not have available. However, in
practice, when one looks at narrow enough energy ranges,
where the continuum changes only slightly in contrast to

5
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the rapidly varying line component, this scheme should per-
form reasonably well, even when we have no detailed infor-
mation on the smooth continuum part.

In Fig. 2 we show C
(11)
` , C

(22)
` and C

(12)
` along with

the resulting signal calculated from Eq. (13). Here we have
plotted two-halo components only. Also, as the curve with
the largest amplitude, we show the signal in case there is
only line contribution without continuum. The observing
energy ranges are chosen the same way as in Fig. 1 to ensure
that line contributions have no overlap in z, and thus the

cross-spectrum C
(12), line
` ' 0. If the mean photon flux from

the line in the energy range E
(1)
min − E

(1)
max (E

(2)
min − E

(2)
max)

is the fraction f
(1)
line (f

(2)
line) of the total flux in that energy

interval, the signal C` is related to the “line only” signal as

C` '
(
f

(1)
line

)2

C
(11), line
` +

(
f

(2)
line

)2

C
(22), line
`

' f2
line

[
C

(11), line
` + C

(22), line
`

]
, (15)

because in practice (f
(1)
line ' f

(2)
line) ≡ fline. This can also be

given as

C` ' f2
lineb

2
[
C

(11), lin
` + C

(22), lin
`

]
, (16)

where C
(11), lin
` and C

(22), lin
` are the linear density fluctu-

ation spectra in case the radial selection corresponds to
the “line only” selections of Fig. 1, and b is the cluster-
ing bias parameter (in this particular case b ' 2.5 and
fline ' 0.047).

The quantity on the right-hand side of Eq. (15), i.e.,
the line signal we wish to recover, is plotted as a dotted
line in Fig. 2, demonstrating that our approximate scheme
of Eq. (13) for removing the continuum component (shown
with a solid line) works quite well. The small deviations at
low ` are due to residual line-continuum cross terms, which
are missing in the “line only” case.

Thus, the simplest quantity one can hope to obtain from
measuring of C` is the signal amplitude A = bfline, if the
linear density fluctuation spectrum is known. The analysis
of how well one can determine the amplitude A is presented
in Section 3 below.

2.3. Error estimates

Assuming that the fluctuation fields follow Gaussian statis-
tics, which is a valid assumption on large enough scales 12,

the errors on spectra C
(ij)
` can be written as (Knox 1995;

Jungman et al. 1996)

δC
(ij)
` =

√
2

(2`+ 1)fsky
· C(ij)

` , (17)

where fsky is the fraction of sky covered by the survey.
Throughout this study we take fsky = 1. The results can
be easily rescaled to a more realistic value of fsky ≈ 0.83

12 For “large enough” we mean scales that are described well
by the linear theory. It turns out that information on signal
amplitude A arises mostly from modes ` ∼ 100, which assuming
the typical redshift range of the dominant AGN activity (z ∼ 1),
correspond to comoving scales that are indeed well within the
linear regime.
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Fig. 3. Angular power spectra for the extracted line signal
assuming energy bins 3.0−3.2 keV and 3.3−3.5 keV along
with Flim = 10−13 erg/s/cm2. For clarity the errors are only
displayed for Model I. To calculate the level of photon noise
we have assumed that flux 10−13 erg/s/cm2 corresponds to
500 counts. Upper panel: Angular spectra including two-
and one-halo terms. The gray shaded area shows 1σ un-
certainty region as calculated from Eq. (18). Here we have
assumed perfect photon sampling, i.e., the photon noise is
taken to be zero. Middle panel: Angular power spectra
with one-halo term subtracted. The gray band shows error
corridor as calculated from Eq. (19). The level of photon
noise, which is not yet included in calculation of errors, is
shown by a short-dashed line. Lower panel: The same as
middle panel but with the effect of photon noise included
(Eq. (21)). The light gray band and dark gray histogram
present errors without and with binning, respectively.
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Fig. 4. Signal-to-noise ratio according to Eq. (22) with
`max = 500. Flim = 10−13 erg/s/cm2 along with 500 counts
at this flux is assumed. The upper and lower panels cor-
respond to Models I and II, respectively. In the left-hand
panels we show S/N as a function of ∆E and Eshift while
keeping E fixed to 3.0 keV. The right-hand panels display
S/N as a function of E and ∆E by keeping Eshift equal to
∆E. The dashed S/N contours correspond to values 1, 2,
4, 8, 16, and 32.

(Worrall et al. 1982; Revnivtsev et al. 2006), corresponding
to the extragalactic sky |b| > 10◦. 13

Since the signals in nearby energy bins are highly corre-
lated, being dominated by the continuum contribution, we
obtain for δC`

δC` = δC
(11)
` + δC

(22)
` − 2δC

(12)
` =

√
2

(2`+ 1)fsky
·C` .(18)

The last result is similarly obtained if one realizes that C`
of Eq. (13) is in reality a power spectrum of the difference
field (fluctuation field in the first energy range minus the
field in the second energy range). If both fluctuation fields
can be approximated as Gaussian, so can be any linear
combination of these, then Eq. (18) follows immediately.

In the upper panel of Fig. 3 we show C` for Models I and
II. The observed energy ranges are the same as in Fig. 1. For
clarity, the error range, which is shown by the shaded area,
is given only for Model I. In the middle panel we present
only the two-halo terms, i.e., the one-halo contributions are
subtracted. As the amplitude of the one-halo term can be
determined with very good accuracy, the errors in this case
are also approximated well by

δC
(2h)
` ' δC` =

√
2

(2`+ 1)fsky
·
(
C2h
` + C1h

`

)
. (19)

13 Unlike the CMB studies, where the Galactic foreground
emission is bright in a broad range of Galactic latitudes, the
bright Galactic ridge X-ray emission is more concentrated to-
ward the Galactic plane.

In this panel we have also shown the photon noise level,
which is taken to be

SN =

√(
1

N (1)

)2

+

(
1

N (2)

)2

, (20)

where N (1) and N (2) are the registered counts per stera-
dian in the first and second energy bins. Here we have
assumed that the photon noise can be taken to be inde-
pendent in those two non-overlapping energy ranges, and
that the cross-spectrum is free of photon noise.

In the last panel of Fig. 3 we show the errors once the
photon noise is included; i.e.,

δC
(2h)
` '

√
2

(2`+ 1)fsky
·
(
C2h
` + C1h

` + SN
)
. (21)

The light gray shaded area corresponds to the unbinned
case, while the dark gray histogram represents the binning
with ∆` = 0.1`.

As one can see from Fig. 3, predictions of the two models
agree within ∼ 30%

3. Results

3.1. Expectations for the signal strength

In this section we investigate how well the signal amplitude
A = bfline could be measured. Focusing only on this single
parameter, we can easily write for it the signal-to-noise ratio
as

S/N ≡ A

δA
=

√√√√∑
`

(
C

(2h)
`

δC
(2h)
`

)2

. (22)

The summation over the multipole number ` is truncated
at `max, up to which one can still assume the validity of the
linear theory along with the Gaussianity assumption. In 3D
the corresponding comoving wavenumber is often taken to
be kmax = 0.2 hMpc−1. As the strongest signal is expected
for the energies that sample the maximum of the radial
selection function, which occurs at z ∼ 1 (see Fig. 1), we
can write `max = kmaxRz=1 ' 0.2 · 2400 ' 500 in this
case, where Rz=1 is the comoving distance to z = 1. In
reality one should vary `max depending on at what redshift
most of the signal originates. However, as our interest is
mostly concerned with energies (redshifts) where the signal-
to-noise ratio is significantly high, and this turns out to be
constrained to a rather narrow energy (redshift) range, we
can safely keep `max fixed to the above value. Also, it turns
out that most of the sensitivity for measuring A comes from
the multipoles `, which are somewhat smaller than `max, so
the case without upper ` cutoff in Eq. (22) only mildly
improves the signal-to-noise ratio.

In the following we study signal-to-noise as a function
of width and location of the energy bins. We also investi-
gate the dependence on the limiting flux Flim above which
sources are removed. The conversion factor between pho-
ton counts and source flux is set to 500 counts at 10−13

erg/s/cm2 (2−10 keV band), as before. This level of photon
statistics is achievable with, e.g., ∼ 25 ksec XMM-Newton
exposure using PN+2MOS detectors.
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Fig. 5. Signal-to-noise for Models I (solid lines) and II
(dashed lines) as a function of ∆E keeping E fixed to 3.0
keV and allowing Flim to take values 10−13 (upper curves),
10−14 (middle curves), and 10−15 erg/s/cm2 (lower curves),
while keeping the flux to counts conversion factor the same,
i.e., 500 counts at 10−13 erg/s/cm2. The dotted lines are
for Model I with a three times narrower line, i.e., 15 eV
FWHM.
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tional energy ranges as shown in the legend. The flux to
photon count conversion factor is kept fixed to 500 counts
at 10−13 erg/s/cm2.

We denote the beginning of the first energy bin E
(1)
min by

E, the width E
(1)
max − E(1)

min is represented by ∆E, and the

distance between the bins E
(2)
min −E

(1)
min is written as Eshift.

The upper energy of the second bin E
(2)
max is calculated as

E
(2)
max = (1/E

(2)
min − 1/E

(1)
min + 1/E

(1)
max)−1 (valid if Γ = 2),

which guarantees that the continuum contributes equally
to both energy bins. Thus, including the limiting flux Flim,
we have in total four parameters which we choose to vary
to study the effect on signal-to-noise ratio.
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Fig. 7. The changes in the extracted line signal angular
power spectra for Model I by allowing Flim (upper panel),
∆E (middle panel), and E (lower panel) to vary. In the
upper panel E = 3.0 keV, ∆E = 0.2 keV, in the middle
panel E = 3.0 keV, Flim = 10−13 erg/s/cm2, and in the
lower panel ∆E = 0.2 keV, Flim = 10−13 erg/s/cm2. The
flux-to-photon count conversion factor is again fixed to 500
counts at 10−13 erg/s/cm2.

In the left-hand panels of Fig. 4 we have fixed Flim =
10−13 erg/s/cm2, E = 3.0 keV, and allowed ∆E and Eshift

to vary in logarithmic steps between 10−2 and 1 keV.
The upper and lower panels correspond to Models I and
II, respectively. As one might have expected, we see that
signal-to-noise ratio achieves highest values if one chooses
Eshift ' ∆E, since this guarantees that there is not much
overlap between the redshift ranges where the line signal
of both energy bins originates. Above the diagonal line
Eshift = ∆E, the line contributions start to overlap, which
leads to a fast drop in signal-to-noise. Also, the signal-to-
noise ratio starts to decrease rapidly (mostly due to lim-
ited photon statistics) in case one chooses too small ∆E,
smaller than the assumed line width. As with E = 3.0 keV
we are probing redshifts z ' 1, 45 eV FWHM corresponds
to 0.045/(1 + z) ' 0.023 keV for the z = 0 observer.
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In the right-hand panels of Fig. 4 we have fixed Eshift =
∆E, and allowed E and ∆E to vary. We see that the highest
signal-to-noise is achieved for the energies E = 2 − 4 keV,
which corresponds to the redshift range where the radial
selection shown in Fig. 1 has considerable amplitude. We
can also see that, with only a mild dependence on obser-
vational energy, the highest achievable signal-to-noise ratio
corresponds to ∆E ∼ 0.2 keV, with quite a broad maxi-
mum around that value. This is best seen in Fig. 5, where
we have shown cuts through the right-hand panels of Fig. 4
at fixed E = 3.0 keV. Here, in addition to Flim = 10−13

erg/s/cm2, we have also shown the cases with Flim = 10−14

and 10−15.
In Fig. 6 we show how signal-to-noise ratio varies as

a function of Flim, by fixing ∆E = 0.2 keV and Eshift =
0.3 keV, for the observing energies E = 2, 3, and 4 keV.
As noted before, the optimal signal-to-noise is achieved if
E ∼ 3 keV, and it drops appreciably if one goes ∼ 1 keV
above or below that value. Similarly, one sees that optimal
values for Flim, above which to remove bright sources, are
around 10−13 erg/s/cm2, while signal-to-noise drops by a
factor ∼ 2−4 if one reduces Flim down to 10−15 erg/s/cm2.

The underlying changes in the power spectra, along with
error bars, for Model I are shown in Fig. 7. Here in the
upper panel E = 3.0 keV, δE = Eshift, and we have varied
Flim from 10−15 up to 10−13 erg/s/cm2. By reducing the
value of Flim, we see how the error bars get progressively
larger, and the signal amplitude drops due to the removal
of brighter, and thus (in this model) more biased, sources.

In the middle panel of Fig. 7 the effect of varying ∆E(=
Eshift), while keeping E = 3.0 keV and Flim = 10−13, is
shown. Again, the error bars are smallest for the case ∆E =
0.2 keV, and increase in the other two cases. The amplitude
of the signal keeps on increasing, as one would expect, since
narrower ∆E corresponds to the narrower radial selection
function, hence less smearing along the line of sight.

In the last panel we have varied the observing ener-
gies (E = 2, 3, 4 keV), while fixing ∆E = 0.2 and Flim =
10−13, and so effectively probe cosmic structure at different
redshifts, which explains the largest variation in spectral
shapes seen among the panels of Fig. 7. Again, the tightest
error bars correspond to E = 3 keV case.

3.2. Prospects for current and future X-ray instruments

In this section we investigate the potential of the current,
near-term, and proposed future X-ray instruments to detect
the 6.4 keV line tomographic signal. We consider all three
major currently operating X-ray observatories – Chandra,
XMM-Newton and Suzaku 14, two missions planned for a
launch in the next few years – ASTRO-H 15 and eROSITA,
and several proposed mission concepts – ATHENA, WFXT,
and SMART-X 16. We also include LOFT, due to its large
grasp, although it does not carry an imaging instrument.
Finally, we consider a hypothetical future mission with the
effective area of 10 m2 and the field of view of 1 deg2.

So far we have assumed perfect energy resolution of
the telescope, whereas the energy response of the major-
ity of imaging instruments above (not considering micro-
calorimeters) have a width of ∼ 130 eV (FWHM) at 6 keV.

14 http://www.astro.isas.ac.jp/suzaku/
15 http://astro-h.isas.jaxa.jp/
16 http://hea-www.cfa.harvard.edu/SMARTX/
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Fig. 8. Signal-to-noise ratio of the tomographic signal as a
function of the fraction of sky fsky covered in the survey and
Aeff × t – a product of the effective area Aeff , at the energy
where the tomographic signal is extracted, and the time t
spent per field. The dashed S/N contours correspond to
values 1, 2, 4, 8, 16, 32, and 64. The straight lines show the
locus of the points, which can be achieved in the course of
a 1-year survey (4 years for eROSITA) by various currently
existing, near-term, and possible future X-ray instruments.
The panels show results for different values of the 6.4 keV
line equivalent width: 500 eV (top panel), 300 eV (middle)
and 100 eV (bottom). Observational energy bands 3.0−3.2
keV and 3.3−3.5 keV, corresponding to z ' 1, are assumed.
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This typically translates to ∼ 90 eV at 3 keV, where most of
the signal is expected to arise. Assuming that instrumen-
tal energy response is approximated well by a Gaussian,
the instrumental energy resolution can be accounted for by
substituting the intrinsic line width with the effective width
(convolving a Gaussian with another Gaussian produces a
Gaussian):

σeff =
√
σ2

line + (1 + z)2σ2
instr . (23)

The instrumental energy resolution is included in calcula-
tions of this section using the above formula.

As it follows from the discussion of the noise compo-
nents (Eqs. (19) and (20)), the signal-to-noise ratio S/N is
determined by the fraction of sky fsky covered in the sur-
vey and the average number of counts registered per FOV.
To characterize the latter we use the quantity Aeff × t, a
product of the effective area Aeff at the energy where the to-
mographic signal is extracted and the time t spent per field.
For a flat energy response, Aeff×t [cm2 ksec] ' 65×Ncounts,
where Ncounts is the number of counts received in the 2–10
keV band from a 10−13 erg/s/cm2 source with photon index
Γ = 2.

The result of the signal-to-noise calculation for Model I
is shown in Fig. 8 in the form of a two-dimensional map,
as a function of covered sky fraction fsky and Aeff × t. In
computing the photon counting noise we used the observed
spectrum of the CXB and assumed flat response in the
energy range of interest (3.0−3.5 keV) to calculate N1 and
N2 in Eq. (20). The AGN discreteness term was computed
self-consistently via Eq. (19). We note that the latter is
somewhat overestimated in our calculations since the 2−10
keV band LF does not include the full contribution from
Compton thick objects.

The middle panel in Fig. 8 represents our default case
corresponding to the 6.4 keV line equivalent width of 300
eV. To account for the large uncertainty in effective (popu-
lation averaged) value of 6.4 keV line strength we also show
the results for EW = 500 eV (upper panel) and EW = 100
eV (lower panel). The choice of the energy bins (3.0 − 3.2
and 3.3− 3.5 keV) is tuned for the extraction of the tomo-
graphic signal at the redshift z ' 1, where it is strongest.
We therefore take z ' 1 in Eq. (23). The corresponding
effective line width ∼ 150− 200 eV FWHM is rather large.
However, as the energy bin widths are also large, ∆E ∼ 0.2
keV, and the signal strength has a rather broad maximum
around this value (Fig. 5), the additional signal smearing
due to instrumental energy resolution turns out to have
only mild effect on the signal-to-noise ratio.

In Fig. 8, the signal-to-noise ratio increases as
√
fsky,

and for low enough values of Aeff × t, i.e. when the dom-
inant noise component is photon noise, it is proportional
to Aeff × t. However, at large Aeff × t, the increase in
signal-to-noise saturates because of the presence of the
irreducible noise component due to the discrete nature
of AGN. Correspondingly, the signal-to-noise iso-contours
flatten out in the right-hand side of Fig. 8.

To explore the suitability of different instruments for
measuring the tomographic signal, we determine the bound-
aries of the regions on the fsky–Aeff × t plane, which can
be achieved by these instruments. These boundaries are de-
fined by the relation

fsky = fFoV
T

t
=

grasp× T
Aeff × t

, (24)

where T is the total time spent for the survey, t the time
spent per one pointing, and fFoV the fraction of sky covered
by the field of view of the instrument. The key instrumen-
tal parameter determining the strength of the tomographic
signal is the grasp, Aeff × fFoV. The second parameter is,
naturally, the duration of the survey T . In applying the
Eq. (24) to different instruments we used the FoV sizes
and effective areas Aeff from the instruments’ manuals and
websites.

The results of this calculation are shown in Fig. 8 by
straight lines. Each line shows the locus of the points on the
fsky–Aeff×t plane, which can be achieved in the course of a
one-year survey. For eROSITA we also did a calculation for
4 years. Different locations along these lines correspond to
different fractions of the sky covered in the survey (and to
different survey depth, as the total duration of the survey
was fixed). Obviously, the optimal survey parameters are
defined by the point where the signal-to-noise ratio is max-
imal. Owing to the shape of the iso-contours on the signal-
to-noise map, the optimum is not achieved by covering the
whole sky. On the contrary, for the low-grasp missions, it
is reached by surveying rather small sky areas, ∼ 40− 400
deg2 to large depths in order to collect a large number of
counts. In this context it is worth mentioning that, as we
study CXB surface brightness fluctuations, considerations
of the confusion limit are irrelevant.

From Fig.8 one can see that to detect the tomographic
signal at the confidence level of >∼ 100σ a survey with a ∼ 10
m2 class instrument is required. Such a detection would
permit detailed redshift-resolved studies of the correlation
properties of AGN in the z ∼ 0− 2 redshift range.

Among planned and proposed missions carrying X-ray
optics, the highest signal-to-noise ratio of ∼ 25 − 40σ can
be achieved by WFXT in a survey covering ∼ 3 · 103 deg2

(∼ 7 · 103 deg2 for a 500 eV EW line). In the all-sky sur-
vey of the same duration, WFXT will achieve ∼ 15 − 30σ
detection. With somewhat lower confidence the signal will
be measured by an ATHENA class mission.

eROSITA could in principle detect the signal at the
∼ 12σ confidence level (∼ 20σ for a 500 eV EW line),
if the four-year survey concentrated on the ∼ 700 deg2

(∼ 2000 deg2) region of the sky, which is unrealistic to
expect, as such a “pencil beam” survey would undermine
the main scientific objectives of the mission. In the all-sky
survey eROSITA will detect the tomographic signal only
marginally, if at all.

It is worth noting that the measurement of the tomo-
graphic signal describing intensity fluctuations in the line
emission (C` in the terminology of Eq. (13)) should not be
confused with the detection of CXB intensity fluctuations
due to continuum emission of objects located at all red-

shifts (C
(11,22)
` in Eq. (13)). The power spectrum of the lat-

ter can be detected by many missions, including eROSITA
(Kolodzig et al. 2012a).

Among currently operating missions, only XMM-
Newton has a chance of a ∼ 8σ (∼ 13σ for a 500 eV EW
line) detection of the tomographic signal. This would re-
quire a one-year long survey covering ∼ 150 deg2 (∼ 400
deg2 for a 500 eV EW line) of the sky, with the exposure
time of ∼ 40 ksec (∼ 15 ksec) per pointing. Although this
may sound like an enormous investment of observing time,
it is not entirely unfeasible, given the long lifetime of the

10
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Fig. 9. Achievable S/N and optimal sky fraction covered by the survey as a function of total survey time for various
existing and future X-ray instruments. Calculations were done for Model I. Left- and right-hand panels correspond to
3.0 − 3.5 keV and 1.6 − 2.1 keV observational energy ranges. These ranges are tuned to detect the tomographic signal
from the redshift z ' 1 and z ' 2, respectively.

mission and the breadth of the science topics which may be
addressed by such a survey.

In Fig. 9 we plot achievable signal-to-noise ratio and the
optimal survey sky fraction (assuming Model I) as a func-
tion of total survey time for various instruments. Because
grazing incidence telescopes often have a significant jump in
the effective area below E ∼ 2.1−2.2 keV, we also did these
calculations for the E(1) = 1.6−1.8 keV and E(2) = 1.9−2.1
keV energy bins, corresponding to the redshift z ' 2, the
result plotted in the right-hand panels of Fig. 9. However,
no significant gain is achieved at lower energies, with the
signal-to-noise ratio even decreasing somewhat. The main
reason is the increased cosmological dimming along with
reduced volume factor at higher redshifts, which cannot be
compensated for by about a four- to five-fold increase in
the effective area.

From Fig. 9 we see that the optimal survey strategy
requires that fsky ∝ T with the proportionality coefficient
determined by the grasp of the instrument. This can be un-
derstood in terms of the competition between the photon-
counting noise and the AGN discreteness noise. Indeed,
the time t spent on an individual pointing should be large
enough to reduce the photon-counting noise to the level
comparable to the (irreducible) AGN discreteness noise.

Any further increase in the exposure time t does not re-
sult in any significant increase in the signal-to-noise ratio.
Therefore, irrespective of the total survey time T , the opti-
mal time t spent per pointing is fixed for a given instrument.
A consequence of this is that the signal-to-noise ratio scales
with the survey time as S/N ∝

√
fsky ∝

√
T .

For X-ray instruments there is usually a tradeoff be-
tween angular resolution and effective area. In this context
it is important to realize that the peak of the signal-to-
noise ratio is achieved at the angular scales corresponding
to ` ∼ 100 − 300 (Fig. 3,7), therefore moderate angular
resolution of ∼ 0.1 − 0.3 degrees or even coarser is suffi-
cient. Therefore the main limiting factor for the present
and near-term missions is the grasp, Aeff × FoV, but not
the angular resolution. As it turns out, among currently
discussed missions, the one with the highest grasp is LOFT
(Large Observatory For X-ray Timing) 17, even though it
was proposed for an entirely different purpose and does
not carry X-ray optics. With the proposed effective area of
∼ 10 m2, it is potentially capable of detecting the tomo-
graphic signal with the signal-to-noise ratio of ∼ 100σ. For
LOFT detector, the angular resolution of the sky intensity

17 http://gri.rm.iasf.cnr.it/
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map will be determined by its field of view, which is ex-
pected to be in the ∼ 0.5 − 1 deg range. This corresponds
to ` ∼ 200− 400, and this level of angular smearing should
not lead to a significant deterioration in the signal-to-noise
ratio (Fig. 3). The main potential obstacle in using LOFT
for the 6.4 keV line tomography (apart from the observa-
tion planning considerations) is the amplitude and stability
of the instrumental background.

4. Discussion and conclusions

Our results show that the iron 6.4 keV line tomography of
LSS should be possible with a survey covering a consid-
erable portion of the sky with the sensitivity that allows
detection of ∼ 500 − 1000 counts from a 10−13 erg/s/cm2

source (2 − 10 keV band). Such sensitivity corresponds to
a ∼ 25 ksec XMM-Newton observation (PN+2MOS detec-
tors).

This 6.4 keV line tomography can complement and com-
pete with the more traditional methods of studying LSS via
building source catalogs and analyzing the 3D distributions
of sources. Its main advantage over the traditional methods
is that no redshift information is required, thus alleviating
the need for optical follow-up observations. Such observa-
tions may be especially time consuming for faint sources.
Moreover, they may become prohibitively long when large
sky areas are considered.

Since the goal of the intensity mapping is not to resolve
the fluctuation field down to all the discrete components,
but rather to investigate the statistics of fluctuations on
somewhat larger scales, the issue of source confusion is irrel-
evant. Therefore no demanding requirements are imposed
on the angular resolution of the instrument. Indeed, the
major contribution to the signal-to-noise ratio is made by
angular scales corresponding to ` ∼ 100−300 (Fig. 3, 7), i.e.
∼ 0.5− 2 deg. This is also comfortably consistent with our
calculations using only information from the scales, where
the assumptions of linear evolution and Gaussianity are
very justified. The corresponding maximal multipole num-
ber is `max ≈ 500. Typical angular resolutions of modern
X-ray telescopes are much better than these angular scales,
therefore there is no need to include the effect of the instru-
mental point spread function in our calculations.

The iron Kα line tomographic signal is sensitive to the
effective AGN clustering bias, AGN LF, and 6.4 keV line
parameters. From the very detailed, deep but narrow-field,
X-ray studies one could get a good handle on AGN LF
along with estimates for the population-averaged 6.4 keV
line strength, and apply this knowledge in tomographic
measurements to determine AGN clustering bias as a func-
tion of redshift. On the other hand, even the best currently
available X-ray AGN LFs are based on a rather limited
number of objects, ∼ 103, primarily detected in a few nar-
row, pencil-beam surveys, therefore become progressively
less accurate with increasing redshift and luminosity. Also,
they may be subject to the cosmic variance. This may affect
our predictions for the strength of the tomographic signal
to be measured in large area surveys and at lower energies,
corresponding to higher redshifts. Therefore actual detec-
tion and measurement of the tomographic signal can help
constrain the evolution of the AGN volume density, up to
z ∼ 2, and maybe slightly beyond, provided that reason-
able assumptions about the redshift behavior of the AGN
bias are made.

On the other hand, if one has a good empirical model
for the AGN clustering and LF available, one could turn
the above argument around to learn something about the
population-averaged 6.4 keV line strength and its possible
evolution with redshift. This gives us a probe of Compton
thick fraction of AGN and its evolution over cosmic time.

In our calculations, we used a simple spectral model,
consisting of a power-law continuum and a narrow line. Real
AGN spectra are more complex. First, the iron 6.4 keV line
has also a broad component, which has an intermediate be-
havior in terms of variation as a function of energy. Second,
in the energy range of interest there are weaker lines, in-
cluding the 6.7 and 6.9 keV lines of He,H-like iron, present
in some of the AGN spectra and in the spectra of clusters
of galaxies. Among other lines are the iron Kβ fluorescent
line at 7.06 keV and the Ni Kα line at 7.5 keV. These lines
are >∼ 5 − 10 times weaker than the 6.4 keV line, and al-
though they should be taken into account in more precise
calculations, their contribution was ignored in our study.

Third, the shape of the continuum spectrum is more
complex than a power law. The most important feature is
the iron K-edge at 7.1 keV. As the fluorescent yield of iron
Kα line is ≈ 0.3 (≈ 0.038 for the Kβ line) (Bambynek et al.
1972; Basko et al. 1974), the K-edge is produced by remov-
ing about three times more photons from the spectrum than
contained in the 6.4 keV line. However, in the case of the
reflected spectrum, these photons are distributed over a sig-
nificantly broader energy interval than the narrow 6.4 keV
line, and the amplitude of the resulting feature at 7.1 keV is
correspondingly smaller. Similar to the line, the K-edge has
two components, a narrow component with a sharp step-
like feature at 7.1 keV and the relativistically broadened
component, also known as the “smeared edge”. The rela-
tive strength of the two components will vary according to
the relative strengths of broad and narrow line components.
Since the location and depth of the sharp step-like feature
at 7.1 keV are defined by the laws of atomic physics and
are precisely known, one can use a spectral template that
includes both the line and the edge, in measuring the to-
mographic signal. This can potentially increase the signal-
to-noise ratio of the tomographic signal. Similarly, other
lines like the iron Kβ and nickel Kα lines, can be included
in such a template, resulting in a further increase in the
signal-to-noise ratio.

The complexities described above were ignored in our
study, because its main goal was to obtain a simple, hence
inevitably somewhat rough, estimate of the observability of
the tomographic signal. We thus have intentionally kept our
model as simple as possible and considered a spectrum con-
sisting of two components with clearly distinct behavior as
a function of energy – slowly varying continuum and rapidly
changing narrow line. Obviously, this analysis can be eas-
ily extended to incorporate more complex AGN spectra.
Below, we very briefly sketch the way one might proceed
by using the Fisher matrix approach (see, e.g., Tegmark
et al. 1997).

The Fisher information matrix (i.e., the ensemble aver-
age of the Hessian matrix of the minus log-likelihood) for
the CXB fluctuation fields measured in energy bins i and j
(and assuming Gaussianity) can be given as

F (ij)
mn =

1(
δC

(ij)
`m

)2 δ`m`n , (25)
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where δC
(ij)
`m

is given by Eq. (17), and δmn denotes
Kronecker delta. Here the parameterization is in the form

of discrete bandpowers C
(ij)
`m

. If C
(ij)
` is fully determined

by parameter vector Θ = {θα}, α = 1 . . . N , F
(ij)
mn can be

rotated into that basis, giving

F
(ij)
αβ =

∑
m

∑
n

∂C
(ij)
`m

∂θα
F (ij)
mn

∂C
(ij)
`n

∂θβ
=

=
∑
`

∂C
(ij)
`

∂θα

1(
δC

(ij)
`

)2

∂C
(ij)
`

∂θβ
. (26)

Here the parameter vector could contain, e.g., parameters
of the AGN spectral template, clustering bias parameters,
and parameters describing AGN LF. Since the observations
can be done in several frequency bins, the total Fisher in-
formation matrix can be written as

Fαβ =
∑
i

∑
j≤i

F
(ij)
αβ . (27)

Here j ≤ i is to ensure that cross-bin contributions are in-
cluded only once. Once Fαβ is calculated, the obtainable pa-
rameter constraints follow immediately (see, e.g., Tegmark
et al. 1997). We leave the detailed implementation of the
above scheme to a possible, future paper.

It is also important to point out that, even though the
analysis in this paper focused on large-scale clustering sig-
nal, and thus assumed significant sky coverage, the method
is also applicable to smaller survey fields, where one can
only effectively probe the one-halo term. In this case the
variability of the amplitude of the one-halo term as a func-
tion of energy should provide one with means to probe the
flux-weighted number density of AGN as a function of red-
shift.

Finally, although in this paper we did not discuss the
possibility of cross-correlating CXB maps at different en-
ergy ranges with the (photometric or spectroscopic) galaxy
catalogs, it is certainly one of the ways to enhance the fi-
delity of the tomographic signal.

We conclude that the 6.4 keV line tomography of the
LSS is indeed feasible with the future X-ray instruments. In
particular, WFXT/ATHENA type missions should be able
to detect the tomographic signal with a moderate signifi-
cance, whereas a 10 m2 class mission will perform detailed
tomography of the LSS. The LOFT detectors, although de-
signed for entirely different science goals and not equipped
with X-ray optics, have the largest grasp among currently
operating, planned or proposed missions, in the same range
of values as our hypothetical 10 m2 case. Therefore LOFT
has the potential to detect the tomographic signal with a
high signal-to-noise ratio. A more detailed feasibility study
should take the amplitude and stability of the instrumental
background of LOFT detectors into account. Furthermore,
for this potential to be realized, a dedicated effort should
be made to accommodate at least a few month-long sky
survey in the LOFT observing program.
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Hütsi, G., Gilfanov, M., & Sunyaev, R. 2012, in preparation
Iwasawa, K. & Taniguchi, Y. 1993, ApJ, 413, L15
Jungman, G., Kamionkowski, M., Kosowsky, A., & Spergel, D. N.

1996, Phys. Rev. D, 54, 1332
Knox, L. 1995, Phys. Rev. D, 52, 4307
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