
ar
X

iv
:1

20
7.

58
25

v1
  [

as
tr

o-
ph

.C
O

] 
 2

4 
Ju

l 2
01

2

Mon. Not. R. Astron. Soc. 000, 1–17 (2009) Printed 26 July 2012 (MN LATEX style file v2.2)

A Mexican Hat with holes: calculating low resolution

power spectra from data with gaps
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ABSTRACT

A simple method for calculating a low-resolution power spectrum from data with
gaps is described. The method is a modification of the ∆-variance method previously
described by Stutzki and Ossenkopf. A Mexican Hat filter is used to single out fluctu-
ations at a given spatial scale and the variance of the convolved image is calculated.
The gaps in the image, defined by the mask, are corrected for by representing the
Mexican Hat filter as a difference between two Gaussian filters with slightly differ-
ent widths, convolving the image and mask with these filters and dividing the results
before calculating the final filtered image. This method cleanly compensates for data
gaps even if these have complicated shapes and cover a significant fraction of the data.
The method was developed to deal with problematic 2D images, where irregular de-
tector edges and masking of contaminating sources compromise the power spectrum
estimates, but it can also be straightforwardly applied to 1D timing analysis or 3D
data cubes from numerical simulations.

1 INTRODUCTION

The calculation of the Power spectrum through direct
Fourier transform of 2D data in astrophysics is often ham-
pered by two problems.

I. Images may have irregular boundaries or parts of the
image are missing. In many cases masks are applied to re-
move contaminating foreground sources, creating holes in
the data that are hard to correct for in Fourier analysis.
Such problems arise, for example, when angular fluctua-
tions of a diffuse emission are analyzed and a number of
compact sources have to be excised from the image (e.g.
Churazov et al. 2012).

II. Another problem often encountered when dealing
with limited data sets is the presence of large scale struc-
tures, which are not fully covered by the image. The large
scale power can leak into the observable Fourier frequency
range, distorting the measured spectrum. This often occurs
in 1D timing analysis when the noise process monitored has
power on timescales longer than the total length of the time
series (e.g. Scott et al. 2003), or in 3D data cubes of hydro-
dynamical simulations for example, when characterizing the
turbulent velocity field in a sub-volume of a larger simulated
volume (e.g. Dolag et al. 2006).

These problems are illustrated in the left panel of Fig.1,
which shows the Fourier power density spectrum (PDS) cal-
culated for a 2D image. As input an image with steep PDS
∝ k−11/3 was used. The red points show the Fourier PDS
for the whole image, blue points show the PDS calculated
for a section one third of the linear size of the original image
and green points show the case when about 25% of the data
in the original image are missing and replaced with zero.
Changes in the slope and normalization are readily visible
for blue and green curves.

A practical way to deal with these problems has been
suggested in a series of papers by Stutzki et al. (1998);
Bensch et al. (2001); Ossenkopf et al. (2008). Their ∆-
variance method preferentially selects fluctuations at a given
spatial scale σ by convolving an image with two filters - a
compact “core” filter and a more extended “annulus”. The
core filter has a characteristic size ∼ σ and both filters are
normalized to unity. The difference between the images con-
volved with these two filters is an image where all fluctu-
ations with sizes much larger or much smaller than σ are
suppressed. Therefore the variance of the resulting image
provides a measure of a typical amplitude of fluctuations of
size ∼ σ in the original image. Introduction of a mask helps
to deal with the boundaries or data gaps.
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In this paper we discuss a simple method, based on
the ∆-variance approach to compute a low resolution power
spectrum (strictly speaking the convolution of the true
power spectrum with a broad filter) even when a large frac-
tion of the original data is missing. The right panel in Fig. 1
shows power spectra computed with our method for the
same images used in the left panel. Compared to the origi-
nal ∆-variance method, our approach uses a different imple-
mentation of the filter, which simplifies the procedure, while
cleanly compensating for missing data. We further test this
particular implementation for a number of potential appli-
cations – e.g. measuring the power spectrum of the surface
brightness fluctuations of the X-ray images of galaxy clus-
ters, or characterizing the power spectrum of a turbulent
velocity field in simulations.

Many other methods have been devised to deal with
data with gaps. Notably, multi-taper analysis techniques
have been developed to estimate the power spectra of
one-dimensional (Thomson 1982) and multidimensional
(Alfred & Hanssen 1997) data in Cartesian coordinates and
on the sphere (Wieczorek & Simons 2007). The choice of ta-
per functions is adapted to the type of data to be treated
and the number of tapers is chosen to balance the bias and
variance in the resulting power spectrum. These methods
can recover very high resolution power spectra, suppressing
the power leakage produced by the finite data length and
are ideally suited to well sampled data where only few or
no points are missing. Severe gaps in the data complicate
the application of these methods however. Fodor & Stark
(1998) deal with large gaps by calculating separate power
spectra for each segment and averaging together the results,
which is not easily applicable to data sets with varying data
and gap lengths or data in more than 1D. Fodor & Stark
(2000) uses multi-tapering methods to compute the power
spectrum of complete data sets with few small gaps, which
requires the calculation of optimized taper functions for the
precise structure of gaps in the data. Although this method
does a very good job at recovering the power spectral shape,
it requires long and complex calculations which are not di-
rectly transferable between data sets with different sampling
patterns and was only tested for cases where gaps cover a
small fraction (e.g. 5%) of the data.

The method we discuss in this paper is simple, ro-
bust and computationally fast. It has no tuning parameters
and the interpretation of the resulting power spectrum is
straightforward. Most importantly, it can be applied with-
out modifications to the data severely affected by gaps of
different sizes. The trade-off is its low spectral resolution,
so it is useful for cases when the underlying power spec-
trum is a smooth function of a wavenumber/frequency. Pos-
sible applications in astrophysics include aperiodic variabil-
ity patterns normally found in AGN light curves; analysis
of fluctuations in 2D images, e.g. maps of molecular lines,
X-ray images, Faraday Rotation Measure maps defined in
irregularly shaped regions; characterization of 3D density or
velocity fields in numerical simulations. All these cases are
often affected to a varying degree by gaps in the data. These
gaps arise mainly due to time constraints in the observations
in time series, co-adding of several 2D images with different

orientations and excision of contaminating sources and lim-
ited computational volumes in 3D simulations.

We demonstrate that for data sets of sufficiently large
dynamic range the proposed method recovers well the overall
shape and normalization of the spectrum even when gaps
occupy large fraction of the data set.

In terms of uncertainties in the power spectrum esti-
mation at a given frequency, the method is analogous to the
regular Fourier power spectrum, for data sets without gaps,
provided that similar binning of the Fourier powers is made
in the frequency space.

In the following section we will describe the method
(Sec. 2) and demonstrate its ability to recover the origi-
nal power spectrum from simulated 2D images with gaps in
Sec. 3. We also apply the method in spherical coordinates
and use it to evaluate the power spectrum for a character-
istic case of CMB data analysis in Sec. 3.2. We explore the
properties and applications of the method to 3D data cubes
in Sec. 4 and 1D time series in Sec. 5. Expected scatter and
errors are discussed in Sec. 6 and we summarize our conclu-
sions in Sec. 7.

2 METHOD

We consider an isotropic homogeneous random field, so that
it can be characterized by a power spectrum P (k), where k
is a scalar. Instead of calculating the “true” power spectrum
P (k), where k is the wave number, we want to evaluate the
amplitude of fluctuations for a broad interval of wave num-
bers ∆k ∼ k. We allow for gaps in the data and want to
recover the correct shape and normalization of the power
spectrum, provided that P (k) does not contain sharp fea-
tures.

The method consists of few simple steps for any given
spatial scale σ:

(i) the original image is convolved with two filters
(e.g. Gaussian) having different smoothing lengths σ1 =
σ/

√
1 + ǫ and σ2 = σ

√
1 + ǫ, where ǫ ≪ 1.

(ii) convolved images are corrected for the data gaps (see
§2.2).
(iii) the difference of two images is calculated. This differ-

ence image is dominated by fluctuations at scales ∼ σ.
(iv) The variance of the resulting image is calculated and

re-casted into an estimate of the power.

The variance values are collected as a function of length scale
or, correspondingly, wave number kr ∝ 1/σ to produce the
power spectrum P̃ (kr). The tilde is added to distinguish the
result from the true power spectrum.

We first consider the case of data without gaps (§2.1,
steps i,iii and iv) and then discuss the procedure of correct-
ing for gaps (§2.2) using a Mexican Hat filter as an example.

2.1 Data without gaps

To isolate structures of a characteristic length-scale, we first
smooth the image I with two Gaussian filters (for simplicity
we consider 1D case):

c© 2009 RAS, MNRAS 000, 1–17



Power spectrum of data with gaps 3

Figure 1. Left: Fourier power density spectrum (PDS) calculated for a 2D image. As input a 351 × 351 pixel image with steep PDS
(∝ k−11/3) was used (shown by the black line). The spectra were obtained by averaging the power spectra, recovered from 50 random
realizations of images with the same power spectrum. The errorbars were estimated from the scatter between recovered PDS. The red
points show the Fourier PDS for the whole image, blue points show the PDS calculated for a small section (115×115 pixel) of the original
image and green points show the case when about 25% of the data in the original 351 × 351 pixel image are missing and replaced with
zero. Clearly both the normalization and the shape of the PDS are modified when parts of the data are missing or significant power is
present on spatial scales larger than the size of the image (case of image subsection). Right: Power estimated using the Mexican Hat
filter, corrected for the gaps in the data. The same set of data is used as in the left panel. Clearly the result is insensitive to the presence
of the data gaps. There is a weak bias in the normalization, which is discussed in the text and in the Appendix B.

Gσ(x) =
1

(2πσ2)1/2
e
− x2

2σ2 (1)

of slightly different widths σ1 = σ/
√
1 + ǫ and σ2 =

σ
√
1 + ǫ, where ǫ ≪ 1. The top panel in Fig. 2 shows an

example of two such Gaussian filters, normalized to unity,
together with their difference. For clarity only, in the Fig-
ure we use ǫ ∼ 0.25. After convolving the image with each
of these filters, both resulting images I1 and I2 will retain
structures larger than σ and lose structures smaller than σ
so the difference image I1 − I2 will predominantly contain
structures with the characteristic scales ∼ σ.

For ǫ → 0 the resulting filter

F (x) = Gσ1(x)−Gσ2(x) ∝
∂Gσ(x)

∂σ
(σ2 − σ1) ∝

∝ ǫ

[

1− x2

σ2

]

e
− x2

2σ2 , (2)

which is the familiar Mexican Hat filter. Obviously the shape
of the filter does not depend on ǫ in the limit of ǫ → 0. In
practice we use ǫ = 10−3.

In terms of power spectra, the above procedure is equiv-
alent to multiplying the original power spectrum of the data
by the power spectrum of the filter, shown in the bottom
panel of Fig. 2. This panel shows the Fourier transforms of

the two Gaussian filters, which are of course also Gaussian,
and their difference. The square of the difference, is the filter
power spectrum. As shown in Appendix A, the peak of the
filter power is at kr = 0.225/σ and its width is ∼ 1.155 kr,
independent of ǫ, as long as ǫ ≪ 1. Here and below we adopt
the relation between the spatial scale x and a wavenumber
k in a form k = 1/x without a factor 2π. The resulting filter
is relatively broad and it cannot be made narrower by us-
ing smaller values of ǫ. This has the implication that sharp
features in the power spectrum will be smeared out, so our
aim is to recover the broad band shape and normalization of
the power spectrum but not narrow features. The choice of
the Gaussian filters is twofold. Firstly, they provide a good
balance in terms of the width in real and frequency space.
The width in the real space is important when gaps or edges
are present in the data (see next Section). A small width im-
plies that the region affected by a given gap does not extend
over the whole image. Secondly, the use of Gaussian filter
is computationally convenient, since n-dimensional convolu-
tion with a Gaussian in a real space can be easily factorized
into 1D convolutions in each dimension.

Thus the difference between two convolved images,
which we denote as I(kr) is

I(kr) = I1 − I2 ≡ Gσ1 ∗ I −Gσ2 ∗ I ≡ F ∗ I, (3)

c© 2009 RAS, MNRAS 000, 1–17
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Figure 3. Top row: simulated image with power law shaped PDS, each subsequent panel shows the result of filtering the image at a
different spatial scale k as described in the text, from left to right: k−1/L = 0.6, 0.08 and 0.02, where L is the size of the image. Bottom
row: original image multiplied by the mask, i.e. I ×M . Each subsequent panel shows filtered images calculated from the same simulated
masked image after application of eq. 6 and multiplication by the original mask, i.e. Ic(kr)×M . No spurious peaks or dips are produced
around the masked regions or near image edges. These parts of the filtered images where M = 1 are used to calculate the variance for a
given kr .
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Figure 2. Top panel: 2 Gaussians of σ ∼ 1 used for filtering (red,
blue) and their difference (black). Bottom panel: Fourier trans-
forms of the Gaussian functions shown above (red, blue), their
difference (black) and the difference squared, amplified for clarity
(magenta). The magenta curve is the filter effectively applied on
the power spectrum of the image treated, therefore the variance
of the filtered image is normalized by the area under this curve.
The transmitted power peaks at k = 0.225/σ.

can be used to calculate the variance at scales ∼ 1/kr and
evaluate P̃ (kr) using a simple relation for the normalization
(see Appendix A).

2.2 Data with gaps

We now consider the image with gaps and introduce a mask
M such that

M =

{

1 where I is defined
0 where I is undefined

(4)

Here “undefined” refers not only to gaps, but also to ar-
eas outside the image boundaries. Essentially for an n-
dimensional image we treat the whole n-dimensional space
outside the image boundaries as a data gap. The image I is
also set to zero in the gaps and outside image boundaries.
Thus, one can write I = M × I0, where I0 is the true image
without gaps, defined over the whole n-dimensional space.

Direct application of the filter F described by eq. 2 to
the image I with gaps will produce many spurious struc-
tures, which are difficult to correct for. However one can
use the fact that the I(kr) image can be represented as the
difference of two smoothed images. Consider, for instance,
I1 = Gσ1 ∗ I . Convolving the image with gaps with a Gaus-
sian will still produce spurious features, but their amplitude
can be drastically reduced by dividing I1 by the mask M ,
convolved with the same Gaussian, to produce a corrected
image I1,c:

I1,c =
I1
M1

=
Gσ1 ∗ (M × I0)

Gσ1 ∗M . (5)

Note, that we make the convolution in the infinite n-
dimensional space without assumption of the image peri-
odicity outside the image boundaries. Intuitively the effect
of the division by the convolved mask is clear: the amplitude

c© 2009 RAS, MNRAS 000, 1–17
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of I1 = Gσ1 ∗I = Gσ1 ∗(M×I0) is going to be lower close to
the gaps or close to image boundaries. The convolved mask
M1 = Gσ1 ∗M largely shares these properties and the ratio
I1
M1

will lack an obvious trend of the amplitude decrease near

the gaps. The same argument applies to I2,c =
I2
M2

. Finally

Ic(kr) = (I1,c−I2,c)×M =

(

Gσ1 ∗ I
Gσ1 ∗M − Gσ2 ∗ I

Gσ2 ∗M

)

×M.(6)

The final step of the variance calculation is done only
for the part of the corrected image Ic(kr) where the mask
M = 1 (see Appendix A). In summary, the biases intro-
duced by the shape of the image boundaries and holes in
the mask are corrected for by subjecting the mask to the
same smoothing procedure and then dividing the smoothed
image by the smoothed mask. Therefore, the flux lost by
smearing the image out of the mask boundaries is compen-
sated by an equal loss of mask area around the edges. When
approaching a gap, the convolved mask Gσ1 ∗M decreases
smoothly from a value of 1 before the gap to 0 well into
the gap, provided that the gap is larger than the filter size.
Therefore the convolved mask typically has a value of or-
der 0.5 or larger at the edge of the original gap1. Since only
unmasked parts of the image are used for the variance calcu-
lations, points where the denominators in Eq. 6 vanish are
automatically discarded.

Our approach is analogous to the ∆-variance
method of Stutzki et al. (1998); Bensch et al. (2001) and
Ossenkopf et al. (2008). In particular, one of the suggested
forms of the filters in Ossenkopf et al. (2008) (see their equa-
tion 11) leads to a convolution of an image with a Mexican
Hat filter, in the limit of their parameter v → 1. In other
words the difference between filters is the same as used here.
However the individual filters are different. Ossenkopf et al.
(2008) use a Gaussian as a “core” filter and a ring-like shape
function produced by a linear combination of two Gaussians,
as a “annulus” filter. In our implementation of the Mexi-
can Hat filter the role of the core and annulus filters (see
Stutzki et al. 1998; Ossenkopf et al. 2008 for definitions) is
played by two Gaussians with slightly different widths. Far
from image gaps and boundaries only the difference between
the core and annulus filters matters. But in the presence of
gaps or boundaries the functional forms of both filter starts
to be important. Representing the Mexican Hat as a differ-
ence between two Gaussians simplifies the whole procedure
when correcting for the missing data and ensures that the
effect of gaps is almost identical for I1,c and I2,c.

Figure 3 shows a simulated image with an isotropic
power law power spectrum of slope α = −2. The top row
in this figure shows the image decomposition into compo-
nents of different spatial scales. The bottom row shows the
same simulated image to which an arbitrary mask is applied
(left). Other images in the bottom row show the decompo-
sition performed on the masked image. Clearly, the method
is quite insensitive to the presence of the mask, as seen in
Fig. 3. Indeed, the fluctuations on different spatial scales

1 Unless we are dealing with an isolated data area, small com-
pared to the size of the filter and surrounded by gaps.

Figure 4. Mask 1 (left) and mask 2 (right) applied to simulated
2D images before computing their P̃ (kr) spectra. The black areas
represent the discarded parts of the input images. Data gaps in
real astronomical images are usually less extreme, compared to
mask 2. We use this extreme example to test the ability of the
method to recover the input power spectrum even for images this
heavily affected by gaps.

can be recovered in the masked image without introducing
spurious structures near the edges or gaps.

3 TEST ON SIMULATED IMAGES

To test the ability of the method to recover the original
power spectrum of an image, we generated a set of 2D Gaus-
sian random fields. We simulate the effect of irregular edge
shapes and excision of contaminating sources by masking
out regions with different shapes and size scales. The mask
in Fig. 3 is typical for wide field images when different expo-
sures are combined and contaminating sources are excluded,
creating irregular edges and holes in the mosaiced image. For
the tests below we use more complicated masks, shown in
Fig. 4 to verify the performance of the method in more ex-
treme cases. The tests have also been run using the simple
mask shown in Fig. 3, recovering the input power spectra at
least as accurately.

We checked for overall biases in the power spectrum
shape and normalization by generating images with ran-
domized phases and amplitudes to simulate a Gaussian field
(e.g. Timmer & König 1995). Images were constructed with
power law power spectra of slopes between 0 and –4 and,
for each case, 100 realisations were produced and masked
by the patterns shown in Fig. 4.

Figure 5 shows the variance of the filtered images as a
function of their characteristic filter scale kr, for different
slopes of the power spectrum. Simulated images had a size
of 10242 pixels and a central 3002 pixels section of each
image was used to calculate the power spectrum. The P̃ (kr)
spectra were computed for each simulated image and their
average is plotted in Fig. 5 using black dots for the unmasked
images, green squares for mask 1 and blue stars for mask 2.

A very small deviation from a perfect power law shape
is apparent at the high frequency end of the recovered power
spectra even in the unmasked case. This happens because as
the filter width approaches the size of the resolution element,
the filter is under-sampled and fluctuations at those scales
are less accurately recovered. There is a small decrease of

c© 2009 RAS, MNRAS 000, 1–17
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Figure 5. Recovered power spectrum of simulated images. The
markers show averaged P̃ (kr) spectrum over 100 realizations of
simulated images. Black dots show the spectrum computed for
unmasked images. Green squares and blue stars correspond to
images masked using patters 1 and 2 (see Fig. 4). The slopes of
the input power spectra are given in each panel. The input spectra
are normalized to unity at k = 1.

power, of not more than 10% of the expected value, at k=0.3
pix −1 . Below this frequency the recovered power spectrum
is not affected, so if the range of frequencies covered is large,
the high frequency part can be discarded and the spectral
slope can be accurately measured. Similar effects are seen in
1D and 3D.

The high frequency points in Fig. 5 have the smallest
scatter since they are averaged over many Fourier modes.
Therefore, the statistical uncertainty, discussed in Sec. 6
is small, and can be smaller than the deviations described
above. To avoid assigning too much weight to these points
when fitting the measured power spectra, a systematic error
of 10% was quadratically added to the estimated statistical
uncertainty, associated with each point.

The P̃ (kr) spectra were measured for each masked and
unmasked simulated image and the average of each set was
fit with a power law model. The input and recovered spectral

input No mask Mask 1 Mask 2 norm
slope slope norm slope norm slope norm bias

0.0 -0.02 1.00 -0.03 1.03 -0.24 1.33 1
-1.0 -1.00 0.92 -0.99 0.94 -1.04 1.04 0.95
-2.0 -2.00 0.94 -2.00 0.95 -2.01 0.99 1
-3.0 -3.01 1.12 -2.97 1.19 -2.99 1.24 1.25
-4.0 -4.05 1.91 -4.05 1.96 -4.00 2.53 2

Table 1. Results of power law fits to P̃ (kr) spectra averaged over
100 realizations of Gaussian random fields in 2D with and without
the mask. The input power spectra were normalized to 1 at k =
1 and have slopes ranging from 0 to -4. For the two groups of
columns under the headings Mask 1 and Mask 2, the masks shown
in Fig. 4 were applied to the images before calculating P̃ (kr). For
each case, a recovered power law slope and normalization are
given. Deviations in the normalization are largely explained by
the normalization bias calculated in Appendix B.

slopes and normalizations, obtained by fitting a power law
to the P̃ (kr) spectra are given in Table 1.

The spectral power law slopes are recovered with a de-
viation not larger than 0.24 for any slope probed and not
larger than 0.05 for slopes of –1 or steeper. The normal-
ization deviations from unity follow closely the bias expec-
tation given in Appendix B, except for masks similar to
Mask 2 and very flat slopes. This mask represents a very
extreme case, containing many small scale gaps that distort
the power spectrum more than larger gaps as is evident in
the top panel in Fig. 5 and in Table 1. For simpler masks
and/or steeper power spectra the method recovers the power
spectral parameters accurately and the effect of the mask is
negligible.

The distortions produced by small gaps covering a large
fraction of the image (> 50%, similar to Mask 2 in Fig. 4)
is not easy to predict as they depend on the gap structure.
For these cases, when the measured power spectrum slope
is flatter than -1, we recommend estimating the distortions
through Monte Carlo simulations using known input power
spectra and the same gap distribution as in the real data.

The accuracy with which power spectral parameters can
be recovered depends on the amount of data available, since
this determines the range of scales covered and the density
of independent Fourier modes, which affects the errors. As
an example we fitted the power spectrum of each individ-
ual realization of the images discussed above to measure
the scatter in the recovered power law parameters. In these
fits, the slope and normalization were fitted simultaneously.
The RMS of the recovered parameters are quoted in Table
2. The scatter in the recovered slope and normalization in-
crease for steeper slopes. The scatter is slightly larger for
masked images, although there is no significant difference
between Mask 1 and Mask 2. Notice that these RMS val-
ues characterize the scatter around the biased mean values,
similar to those quoted in Table 1.

3.1 Comparison with the ∆-variance method

As mentioned in §1 and 2.1 the method described
above is a further development of the ∆-variance

c© 2009 RAS, MNRAS 000, 1–17



Power spectrum of data with gaps 7

No mask Mask 1 Mask 2
input slope slope norm slope norm slope norm

0.0 0.01 0.02 0.02 0.03 0.02 0.03
-1.0 0.01 0.02 0.02 0.03 0.02 0.03
-2.0 0.02 0.03 0.03 0.02 0.02 0.02
-3.0 0.03 0.05 0.04 0.08 0.03 0.06
-4.0 0.07 0.18 0.07 0.20 0.05 0.20

Table 2. Root-mean-square scatter of recovered power law pa-
rameters for sets of 100 simulated images for each spectral slope
and mask. The images are (300 pix)2 and Masks 1 and 2 are
shown in Fig. 4.

method of Stutzki et al. (1998); Bensch et al. (2001) and
Ossenkopf et al. (2008). For the periodic data without gaps
both methods produce mathematically equivalent results2.
We now proceed with a more detailed comparison of the
filters performance for non-periodic data with gaps.

The functional form used in Ossenkopf et al. (2008), in
the limit of their parameter v → 1, is as follows :

Fl,core(x) =
4

πl2
e
− x2

(l/2)2

Fl,ann(x) =
4

πl2
x2

(l/2)2
e
− x2

(l/2)2 , (7)

where l is the size of the filter. It is obvious that the dif-
ference between these two filters is the Mexican Hat filter.
However the shape of the second filter Fl,ann(x) is very dif-
ferent from the first one Fl,core(x). Therefore it is expected
that the impact of edges and gaps will be different for the
filtered images corrected for these gaps and edges. This is in
contrast with the representation of the Mexican Hat filter
as the difference between two Gaussians with almost equal
width, which guarantees that the gaps have essentially iden-
tical impact on both Gaussian convolutions leading to the
filtered images.

To verify the above conjecture we made a number of test
with different power spectra and masks. An example of an
image and its masked version is shown in Fig. 6. As before
the non-periodic image was obtained by cutting a section
of a larger periodic image, in which a random realization of
a Gaussian random field with slope -2 was generated. The
spectra recovered from the original and masked images for
both methods are shown in Fig. 7. The red and green points
were obtained using the procedure described in §2.2, for the
original and masked cases, respectively. Both for the orig-
inal and for masked images the spectrum agrees well with
the input spectrum, shown by the horizontal dashed line.
The spectrum, obtained using Eq. 7 shows larger deviations
from the true input spectrum, especially for the masked im-
age, shown in black. Similar results were obtained for other
types of masks probed. We therefore conclude that for non-
periodic data sets with gaps the filtering based on two nearly

2 Provided that during filtering the images are treated as periodic
data sets

Figure 6. Original image with power spectrum with slope -
2 (left) and its masked version (right). This non-periodic image
was obtained by cutting a small section of a larger image. These
images are used to compare the performance of the two filtering
methods.

Figure 7. Comparison of the recovered power spectra using the
difference between two Gaussian and Eq. 7. The spectra were
multiplied by k2, so that the input spectrum is flat in this plot
(shown by the horizontal dashed line). The spectra were aver-
aged over 10 independent realizations. The red and green points
were derived from the original and masked images respectively,
using the filter described in this work. The blue and black curves
correspond to the original and masked images respectively, pro-
cessed using the pair of filters from Ossenkopf et al. (2008). For
non-periodic data sets and/or for data with gaps the filter based
on two nearly identical Gaussians performs better.

identical Gaussians provides more robust and accurate re-
sults. We note that the value of v recommended by the
authors is v = 1.5. Repeating the test for this value of v
gave similar results to the v = 1 case and our approach with
similar Gaussian still proved more accurate.

c© 2009 RAS, MNRAS 000, 1–17
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3.2 The 2D sphere: application to CMB analysis

The same method can be constructed in spherical coordi-
nates. As an example, in this section we apply the filter
formalism to the study of temperature anisotropies of the
Cosmic Microwave Background (CMB) radiation. Let t(n)
be the CMB temperature in the direction n. A decomposi-
tion of the t(n) map on the sphere in a basis of spherical
harmonics is,

t(n) =

∞
∑

l=2

l
∑

m=−l

al,mYl,m(n), (8)

where Yl,m(n) is the spherical harmonic of order l, m evalu-
ated at the direction n and al,m are multipole coefficients.
We assume that t(n) is a Gaussian isotropic and homoge-
neous random field. The angular power spectrum Cl for mul-
tiple l can be estimated as

Cl = 〈|al,m|2〉, (9)

where the averaging is done over m. Figure 8, shows the
theoretical prediction for the angular power spectrum of
the CMB temperature anisotropies for different angular
frequencies (or multipoles l). The units of the y-axis are
Dl ≡ l(l + 1)Cl/(2π).

Similarly to the Cartesian 2D case described in §2.2
one can define a filter as a difference between two Gaussians
defined on a sphere and allow for the data gaps. This yields
an image (cf. eq. A9)

tσ(n) =

(

Gσ1 ∗ t
Gσ1 ∗M − Gσ2 ∗ t

Gσ2 ∗M

)

×M(n), (10)

dominated by a particular angular scale ∼ σ. As before the
variance of the resulting image is calculated and divided
by the power of the filter. In the multipole space the cor-
responding filter has the same properties as the 2D filter
in Cartesian coordinates, described in the Appendix A (see
eq. A6). Namely,

F̂σ(l) = e−l(l+1)σ2
1/2 − e−l(l+1)σ2

2/2 ≈ (11)

≈ ǫl(l + 1)σ2e−l(l+1)σ2/2, (12)

where σ1 = σ/
√
1 + ǫ, σ2 = σ

√
1 + ǫ and ǫ ≪ 1.

The expected shape of the power spectrum can be cal-
culated as:

C̃lr =

∑

l
Cl|F̂σ(l)|2(2l + 1)

∑

l
|F̂σ(l)|2(2l + 1)

, (13)

where lr is defined as the multipole where |F̂σ(l)|2 reaches its
maximum. The corresponding angular power spectrum C̃lr

is shown in Figure 8 with the dashed line. Clearly, the filter-
ing procedure smears out small scale features, but recovers
the overall shape and normalization of the power spectrum.
This smoothed power spectrum is what we want to recover
from the data using the proposed method.

In real data, the estimation of the angular power spec-
trum must deal with the pixelized data and with the pres-
ence of the Milky Way and other contaminants that make
necessary the exclusion of some pixels on the sky map. We

used HEALPix3 to deal with the pixelized maps. The power
spectrum is evaluated from the variance of the filtered im-
ages 〈t2σ〉 as

C̃lr =
〈t2σ〉

∑

l
2l+1
4π

|F̂σ(l)|2|Wl,px|2
, (14)

where Wl,px is the window multipole function for the
HEALPix pixel.

The presence of a mask usually biases the estimation
of the power spectrum multipoles (Cl-s) and, at the same
time, it couples these otherwise independent quantities. To
test the method we impose a sky mask that covers ∼ 24%
of the sky, including the Galactic plane and the position of
bright radio sources. We also consider two different hemi-
spheres of data separately, defined by an equatorial plane
perpendicular to the direction (l,b)=(0◦, 45◦) in Galactic
coordinates. Therefore, each hemisphere analyzes roughly
38% of the sky. We apply filters, of width of 0.1◦, 0.12◦,
0.22◦, 0.35◦,0.42◦, 0.5◦, 1◦, 2◦, 3◦, 4◦, 8◦, 10◦and 20◦. An
example of a masked CMB realization, filtered at two differ-
ent scales is shown in Fig. 9. When applying our thirteen
different filters in the two masked hemispheres, we obtain
C̃lr for each hemisphere, displayed by the filled green and
blue circles, in Fig. 8. The estimates from the two differ-
ent hemispheres and for each filter scale σ follow closely the
theoretical prediction provided by the dashed line.

For a single realization of the sky, the relative scatter of
power spectrum estimates with respect to the average value
is known to approximately follow the scaling

∆C̃lr

C̃lr

=

√

2

(2l + 1)(∆l)fsky
, (15)

which corresponds to the black solid line in the bottom panel
of Fig. 8. The symbol fsky denotes the fraction of the sky
covered in each hemisphere (around ∼36% ), and ∆l pro-
vides the effective width, in multipole space, of each filter.
The blue and green circles show that the estimates of the
angular power spectrum are scattered around the theoretical
expectation by an amount that is not far from the theoreti-
cal prediction. This behavior breaks down at smaller angular
scales, due to effects related to the finite pixel size, which in
this case is slightly below 7 arc minutes.

4 3D DATA CUBES

When analysing data of numerical simulations, e.g. a veloc-
ity field in hydrodynamic simulations, one often deals with
3D data cubes. In this section we extend the method on
three dimensions and compare our power spectrum results
with calculations using the conventional Fourier transform.
As before, we generate isotropic Gaussian random fields with
a power law power spectrum spectrum, in 3D. In particu-
lar we consider a red noise process with slope −11/3, cor-
responding to the 3D Kolmogorov power spectrum, which
is often assumed when dealing with the turbulent velocity
field.

3 HEALPix’s URL site: http://healpix.jpl.nasa.gov/
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Figure 9. Simulated CMB type maps, masked to remove the Galaxy and foreground point sources, and then filtered at two different
angular sales. The maps show no evidence for spurious feature near the edges of the mask.

The power spectrum P̃ (kr) is calculated analogously to
the 2D case, by filtering the cube with 3-dimensional Gaus-
sians. The analysis in Appendix A is directly applicable for
n = 3. As before we assume isotropy in the random field, so
we are only interested in the power spectrum as a function
of spatial scale.

The first question we address is whether the shape of
the red noise is recovered well when the noise extends below
the lowest wave numbers set by the size of the cube. To this
end we calculate the power spectrum for the full simulated
box and also for smaller “trimmed” boxes, which are cut
from the original larger cube. The mean of 100 power spec-
tra evaluated through the variance (see §2) for the full box
and trimmed sections, 1/2 and 1/4 of the original size on a
side, are shown in Fig. 10. The 1σ statistical uncertainties
for all three cases are shown on Fig. 10 with gray shadows.
The mean of 100 cube realisations and their trimmed sec-
tions are shown by the red lines on each panel, while the
scatter is represented by the gray area. Power spectra calcu-
lated through the conventional Fourier transform are shown
in Fig. 11. The input power law power spectrum is shown
by the dashed black line. Since trimmed cubes are not peri-
odic anymore the power spectrum recovered through Fourier
transform is strongly distorted by leakage of power from very
low frequencies. However, we see good agreement between
the input and recovered power spectra calculated through
the variance method. The minor discrepancies are only on
the smallest and highest wave numbers.

Both discrepancies are caused by the fact that the value
of the variance is a convolution of the true PDS with the
filter in frequency space. As a result at low k the power
leaks out if the full simulated box is used, the simulated
cubes effectively have zero power at frequencies lower then
1/L. This effect goes away if a subsection of the original
cube is used (see also 2D case in Fig. 1).

We now proceed by considering the impact of data gaps
on the recovered power spectra. We consider 3D masks cov-
ering different fractions of the cube volume. Slices of masks
through the box center are shown in Fig 12. The first two
masks are generated randomly and the fraction of missing
data is 50 per cent in the left panel to 85 per cent in the mid-

dle panel. Often, when one deals with simulations of galaxy
clusters, large sub-halos or one of the sub-clusters in merg-
ing systems are excluded from the analysis. Consequently,
we generated a third 3D mask that mimics a situation when
large sub-halo is excluded. The slice of this mask is shown
on the right panel in Fig. 12.

Figure 13 shows the power spectrum of the data with
gaps calculated through the conventional Fourier transform
and with the variance method. Clearly, the direct Fourier
method should not be used for data with gaps. The increase
of the gaps fraction leads to the leakage of power causing
the flattening of the spectrum and the decrease of its nor-
malization. At the same time the power spectra calculated
through the variance are perfectly recovered, with only mi-
nor changes on small and large wave numbers even in case
when 85 per cent of the data are in gaps.

5 1D: TIMING ANALYSIS

A possible 1D application of the method can be found in
the study of light curves of variable objects. The method is
of course not suitable for the search of periodicities, but can
be useful for studies of aperiodic variability, when the broad
band shape of the power spectrum is of interest.

The top panel in Fig. 14 shows a simulated light
curve typical for long term X-ray monitoring of an Ac-
tive Galactic Nucleus (AGN) (e.g. Uttley et al. 2002;
Markowitz et al. 2003). The power spectra of these light
curves is normally modeled as a single or broken power
law, where the slopes and/or break frequencies are of in-
terest (e.g. McHardy et al. 2006; Papadakis et al. 2009).
These light curves often have yearly gaps due to visibil-
ity constraints and different variability time-scales are cov-
ered by varying the sampling rate. The window function
produced by these gaps causes spurious features in the
power spectrum and different approaches have to be used
to remove these features from the Fourier transform of
the light curve (e.g. Uttley et al. 2002; Markowitz 2010;
Emmanoulopoulos et al. 2010; Kastendieck et al. 2011).

The case of AGN light curves is essentially different

c© 2009 RAS, MNRAS 000, 1–17
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Figure 8. Input angular band power spectrum (solid line), the
result of filtering such power spectrum with scale changing filters

(dashed line), and the result of computing the angular power
spectrum with 13 different filters in two different hemispheres of
a masked single CMB sky realization (green and blue circles). In
the bottom panel we show the relative error of the power spectrum
estimates with respect to the theoretical prediction (dashed line
in top panel). The solid line provides the theoretical expectation,
√

2/(2l + 1)/∆l/fsky with fsky =fraction of the sky not being
masked. At l values higher than ∼ 800 the filter size reaches the
pixel scale and the errors detach from the theoretical prediction.

Figure 10. Power spectra calculated through the variance for
boxes of different sizes (same as Fig. 11). Top: initial size of the
box; middle and bottom: 1/2 and 1/4 of the original size on a
side respectively. Red: the mean of 100 cube realization, gray: the
range of statistical uncertainties corresponding to 1 σ scatter.

from images and simulated data cubes since normally the
light curves are not sampled continuously over a regular grid,
but consist of snapshot observations on irregularly spaced
time intervals. Long term AGN light curves, as described
above, suffer strongly from this effect, since the timescale
coverage is optimized by combining epochs of very different
sampling rates as shown in the bottom panel of Fig. 14. For
our example, frequencies from 3× 10−9 to 3× 10−5 Hz are
probed using only 1100 light curve points. If it was evenly
sampled, this range would require 20.000 points. This un-
even sampling does not pose a problem to the variance cal-
culation, since the filter convolution can be performed over
uneven grids. In this case, the mask is simply the same time
series, with all flux values replaced by 1. Figure 15 shows
the filtered light curves on different timescales produced by
this approach, gaps in the time series and varying sampling
rates do not prevent a clean filtering of the fluctuations.

In Figure 15 we have only plotted the useful part of
each filtered light curve, these sections are selected to reduce
the effect of aliasing, which is potentially a larger problem
for light curves than for images. In the case of isotropic
fluctuations in images, fluctuations on length scales shorter
than the pixel size are averaged out. In the case of light
curves, unless they are continuously exposed, variability on
timescales shorter than the sampling interval adds to that of
the longer fluctuations. This effect aliases power into lower
frequency bands and distorts the measured power spectrum.

Aliasing can be diminished by demanding a mini-
mum number of exposures within the convolution Gaussian
around a given lightcurve point for this point to count to-
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Figure 15. Result of the filtering routine on the light curve shown in Fig. 14. Gaps in the light curve do not affect the filtering process.
Short timescales are only probed by higher cadence light curve segments. This is achieved by discarding data points that have less then
6 neighbors within a time space of 4σ for each value of the filter width σ while calculating the convolution. The panel on the left shows
light curves filtered on timescales of 3300, 1100, 366, 121, 13.5, 1.5 and 0.5 days. The panel in the right shows a zoom to the most
intensive monitoring section, at the beginning of the light curve, for filter timescales of 13.5, 4.5, 1.5 and 0.5 days, from top to bottom.

Figure 11. Fourier power spectrum calculated for a simulated
box of 643. The power spectrum was obtained by averaging power
spectra calculated for 100 random realizations with the same slope
α = −11/3. The input power spectrum is shown with the dashed
line. Blue, red and green curves show the recovered power spectra
from the initial box size (643 cells), and trimmed sections of 1/2
and 1/4 of the original size on a side, respectively.

Figure 12. Slices of masks we applied to the data boxes in
our calculations. Slices are through the center of the box. Black:
excluded data, M = 0; white: data used for power spectrum cal-
culations, M = 1. Left and middle panels: masks are generated
with random gaps. The fraction of discarded data is 50 and 85
per cent. Right panel: mask mimics the case of excluded sub-halo.

wards the variance calculation. In other words, if a point in
the light curve has no neighbors closer than 4σ, for a given
filter width σ, then it cannot provide information on the cor-
responding frequency kr. Therefore, although the point can
participate in the convolution of the light curve, it should
not be counted in the variance for that frequency. The proce-
dure applied on the simulated light curve counts the number
of neighbors for each point in the light curve while making
the convolution and later discards points that have less than
6 neighbors for a given filter width, producing the filtered
lightcurves in Figure 15. Therefore, the shorter timescales
are only probed by the more intensively sampled sections.

We tested the recovery of the input power spectra for
unevenly sampled light curves for different minimum num-
bers of neighbors within 4σ of each point. Figure 16 shows an
example of these tests, for simulated light curves of power
law slope -1. Each power spectrum is the average of 100
simulations, to average out the fluctuations between differ-
ent realizations. In the Figure, the black solid line represents

c© 2009 RAS, MNRAS 000, 1–17
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Figure 13. Power spectra calculated for data with gaps (one
realization). Top: Fourier method, bottom: variance method.
Dashed curves show initial power spectrum. Blue: 50 per cent
of data is discarded, see the left panel in Fig. 12; red: 85 per
cent of data is excluded, the middle panel in Fig. 12; green: large
sub-volume of the box is excluded, see the right panel in Fig. 12.
Fourier method changes the slope and normalization of the recov-
ered power spectrum, while the variance method recovers power
spectrum without distortions on a large range of wavenumbers.
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Figure 14. Top: Simulated light curve, typical of AGN long term
X-ray monitoring, with varying sampling frequency and contain-
ing yearly gaps. Bottom: The sampling rate varies with time,
here the time difference between consecutive observations is plot-
ted as a function of time, except for the largest gap, after the
short, high cadence monitoring.
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Figure 16. The minimum number of neighbor points required
to count a point in the variance calculation affects the shape
of the resulting power spectrum. The power spectra above are

each an average of 100 realizations, requiring 0 neighbors (solid,
black), two neighbors (red, dashed), six neighbors (pink , dot-
dashed) and ten neighbors (blue, dotted). Requiring more than
10 neighbors does not improve the recovered power spectrum and
reduces the sampled frequency range as explained in the text.
Error bars denote the RMS scatter in each set of simulations.

the power spectrum with no minimum number of neighbors
required, so that all light curve points count towards all fre-
quency bins. The peak in the middle is the effect of aliasing
and the drop at high frequencies is the result of counting
many isolated points in the variance, since these have all
the same value they reduce the variance artificially. The red
dashed line uses at least two neighbors and already corrects
this last problem, while the aliasing is not resolved. Requir-
ing 6 neighbors (pink dot-dashed line) already solves a large
part of both problems, while requiring 10 neighbors (blue
dotted line) produces a power spectrum quite close to the
input power law. Using more neighbors does not improve
the recovered power spectrum but it reduces the probed fre-
quency range, since at high frequencies the sampling rate
itself limits the number of possible neighbors.

Finally, the entire power spectrum of the full range of
frequencies covered by the light curve in Fig. 14 can be com-
puted directly. Figure 17 shows the result of applying the fil-
ter formalism using a minimum of 6 neighbors to simulated
light curves with the same sampling pattern and a bending
power law power spectrum. For this Figure, 100 random re-
alizations were averaged together. At low frequencies the flat
input slope and extreme mask produces the slope bias ex-
pected from the results in Table 1 while the high frequency
normalization is biased upwards by a factor of 1.3, as ex-
pected from Appendix B. The approximate slopes, break
and normalization of the input power spectrum, shown by
the solid line, are clearly recovered.

For light curves similar to the one shown in Fig. 14
the power spectrum is usually estimated through Monte
Carlo simulations of sample light curves with given power
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Figure 17. Power spectrum of the simulated light curve with the
same sampling as in in Fig. 14 with a flat input power spectrum
which bends to a power law slope of –2 at a frequency 10−6

Hz. The black symbols correspond to P̃ (kr) averaged over 100
realizations of the light curve. Error bars denote the RMS scatter
in each set of simulations.

spectrum parameters, attempting to recover only power law
slopes, breaks and normalizations.

The simplicity of the variance method is that it can be
applied directly on the full light curve, regardless of the gap
and sampling distributions and reproduce the overall shape
with approximately correct normalization of the power spec-
trum. This will be particularly useful for large samples of
AGN light curves from large-area repeated surveys, where
estimation of aliasing and red noise leak for each particu-
lar AGN becomes impractical. For comparison, power spec-
trum fitting of the light curve in Fig. 14 using PSRESP
(Uttley et al. 2002) takes several hours whereas P̃ (kr) and
its error estimate can be obtained in a few seconds on the
same computer and both methods recover the spectrum with
similar accuracy.

6 ERROR ESTIMATION

As with other methods, it is possible to predict the uncer-
tainty of the power estimates by assuming certain properties
of the underlying variability process. In this case we will as-
sume that the data being treated correspond to a Gaussian
field, so that independent points in the power spectrum are
distributed around their mean values as a χ2 distribution
with two degrees of freedom, with standard deviation equal
to the mean. This means that the uncertainty of the power
for each individual Fourier mode is equal to the power it-
self. Therefore, to calculate the expected uncertainty in a
frequency bin, it is only necessary to combine quadratically
the power at the frequencies that fall within the bin.

The effect of the filter in frequency domain is to make
a weighted average of the power spectrum estimates within
the width of the filter. Therefore, the expected uncertainty,
E, of P̃ (kr) can be calculated as a weighted mean of the
P (k) values that fall under the frequency filter, where the
values are combined quadratically.

Independent Fourier modes in each dimension are sep-
arated in frequency by 1/Ni where Ni is number of pixels
in dimension i. This spacing needs to be taken into account
when calculating the uncertainty in order to include the cor-
rect number of power estimates under the filter. In the case
of isotropic fluctuations in n dimensions, where we only cal-
culate the power as a function of k =

√
∑n

i=1
(ji/Ni)2, dif-

ferent groups of indices producing the same value of k are
averaged together and this should also be considered in the
uncertainty calculation.

The correct density of Fourier modes is easily obtained
by summing over all the independent modes, or equivalently
over half the data points, i.e. over points j, from 1 to N1/2
in the first dimension and from 1 to Ni in all the following
dimensions as

E(kr) =

√

∑N/2

j=1
(P (j/N)F̂ 2

kr
(j/N))2

∑N/2

j=1
F̂ 2
kr
(j/N)

. (16)

for 1 dimension and

E(kr) =

√

∑N1/2

j=1

∑N2

l=1
(P (k)F̂ 2

kr
(k))2

∑N1/2

j=1

∑N2

l=1
F̂ 2
kr
(k)

. (17)

for 2 dimensions. For larger n the formula is similar.
The filter F̂kr (k) is centered on kr in frequency domain

and is given in equation A6. Clearly for larger data sets
(larger Ni), the independent modes are spaced more closely
in frequency so more power spectrum points are averaged
together under the same filter width and the uncertainty
decreases accordingly as 1/

√

Πn
i=1Ni. Since the number of

Fourier modes within the filter width grows linearly with
increasing frequency in each dimension, the expected error
spectrum is steeper than the powerlaw power spectrum by
0.5 in 1-D, by 1 in 2-D and by 1.5 in 3-D. As shown in the
next section, this prediction is well matched by the data.

The expected error can be calculated in one pass
through the data points per frequency kr, so it does not
imply a significant computational effort.

The assumption of a Gaussian field implies that each
independent frequency will have its power distributed as a
χ2 distribution with two degrees of freedom but the average
over many such points will lead to a Gaussian distribution.
For low frequencies the number of Fourier modes within the
filter is small, so the distribution of powers deviates notice-
ably from Gaussian. However, since the filter is broad in
frequency, in 1D kr = 4/T already contains enough points
to produce an approximately symmetric distribution of mea-
sured power. In 2D and 3D cases the symmetry is achieved
at even lower frequencies since the number of Fourier modes
within the filter grows as kn.

The values of P (k) in the error formula can be estimated
by interpolating between measurements of P̃ (kr), given that
the true underlying form is not known a priori. Using the
measured power spectrum in the error formula automatically
takes into account the normalization bias and any other dis-
tortions, so that the resulting errors always represent the
statistical uncertainty around the measured values. If the
spectrum is finally rescaled by the normalization bias, the
errors should be rescaled accordingly.
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6.1 Comparing expected error with measured

scatter

The error formula predicts the scatter of P̃ (kr) measure-
ments around the underlying power spectrum for a Gaussian
noise process. We tested the accuracy of this approach by
comparing directly the predicted error to the RMS scatter
in 100 realizations of a noise process. Figure 18 shows this
comparison of measured scatter in markers and predicted
errors in lines, both relative to the measured power spec-
trum. Solid lines and nearby markers correspond to 1D time
series without gaps with input power spectra slopes of -1
and -2 (the power spectra themselves are not shown here).
There is a very good agreement between the measured RMS
spread and the estimated uncertaintyE in the case of contin-
uous data sets. The error estimate described in this section
is equivalent to the expected scatter from Fourier analy-
sis in the case of continuous data sets. The analysis above
shows that the scatter around the mean power in binned
Fourier transforms and in P̃ (kr) spectra are identical, so
both methods are equivalent when measuring low resolution
power spectra of data without gaps.

6.2 Effect of gaps on the error estimate

Evidently, gaps in the data will reduce the number of avail-
able independent points and so the uncertainty in the power
spectrum measurement should increase. As a first step to
model this effect we scale E by the number of points actu-
ally available in the data (Na) compared to the total number

of points if there were no gaps N : E′ = E ×
√

N/Na.
As a further refinement, it is convenient to count the

number of available points as a function of kr, since small
gaps do not affect the power estimates at low wavenumbers.
This estimate is shown by the dashed lines in Fig. 18. A
good match to the measured scatter (markers closest to the
dashed lines) was obtained when points in gaps were dis-
counted only if the gap was longer than 10% of the filter
spatial scale (1/kr). The errors and scatter measurements
correspond to the same sets of simulated light curves dis-
cussed above, this time masked by gaps of random lengths
so that 85% of the points were discarded. The uncertainty
for each slope increases and the increase is larger at small
spatial scales, which are affected by more gaps. In any case,
the increase in uncertainty for any length scale is between
E and E ×

√

N/Na, so that for a small fraction of missing
points the dependence of the error increase on kr can be
neglected.

In the case of light curves with uneven sampling and
very different sampling rates it is more convenient to scale
the error by the lengths of useful data stretches to the total
length. As before, useful light curve stretches can be se-
lected for each frequency kr by requiring a minimum num-
ber of neighbors for useful data points. All useful segments
are added to produce Tu(kr) and the error is scaled as

E×
√

Ttot/Tu, where Ttot is the total length, used to calcu-
late the frequency spacing.

When using these error estimates to fit models to the
power spectrum it is necessary to use only independent mea-
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Figure 18. Comparison of predicted relative error (lines) with
measured RMS scatter (markers), for sets of 100 P̃ (k) of simu-
lated light curves. The solid lines and corresponding markers are

calculated for continuous light curves of 2048 points and power
law slopes of –1 (blue lines and markers) and –2 (red lines and
markers). The dashed lines and markers show the predicted and
measured errors for the same light curves after 85% of the data
points have been masked out producing gaps of random length.
For this range of slopes at least the analytic prediction of the
uncertainty in Eq. 17 works well.

surements that, given the mixing effect of the filter, should
be separated by at least a factor or 2 in frequency.

The analytic error estimate was compared to Monte
Carlo simulations of Gaussian fields in 1, 2 and 3D, for sim-
ple power law or broken power law power spectra of zero
or negative slopes. Although this is a limited subset of all
possible power spectra it does cover a wide range of astro-
physical phenomena of interest. More examples are given in
Fig. 19. Here 2D images with broken power law power spec-
tra and affected heavily gaps as shown in mask 2 of Fig. 4 are
examined. The decrease in number of points was estimated
from gap size distribution in the x direction only to estimate
the errors. Since the gap structure is largely isotropic, this
simple 1D estimate gave a good approximation, shown by
the dashed line, error estimates from RMS scatter of 100
trials is shown in black markers. In the same figure we plot
the predicted error and RMS scatter of 100 simulated data
cubes with power law slope –11/3, also masking out 50%
of the data points. The mask in this case is similar to that
shown in Fig. 12, which affects all scales in approximately
the same way so the effect of the mask can be estimated
simply by rescaling the predicted error by the square root
of the ratio of the total number of points to the number of
points actually available.

6.3 Data with periodic gaps

A special case that we considered is largely found in 1-D light
curves where observational constraints produce strictly pe-
riodic gaps. If the data and gap stretches are of equal length
or the data stretch is longer, then the variance method and
error estimate can be directly applied. However, if the gaps
(Tg) are longer than the data stretches (Td) and the sam-
pling pattern is strictly periodic, then some timescales are

c© 2009 RAS, MNRAS 000, 1–17



Power spectrum of data with gaps 15

0.01 0.10.02 0.05 0.2

0.
1

0.
02

0.
05

0.
2

re
la

tiv
e 

er
ro

r

k [pix −1]

Figure 19. Relative error prediction for 2D (red) and 3D (blue)
data. In this example the input power spectrum of the 2D data
is a broken power law of low frequency slope –0.5 and high fre-
quency slope –2.5, and for the 3D data is a power law of slope
–11/3. The images have been masked out by random sized gaps
covering 50% of the image. The predicted errors divided by the
average power spectrum are shown by the dashed lines and the
measured RMS scatter of the 100 realizations is shown by the blue
and red markers. The error formula in Eq. 17 predicts the errors
accurately for simple and broken power law spectra in images and
data cubes as well.

effectively not probed by the data and the method cannot
be expected to produce reliable power spectral estimates for
the corresponding frequencies. Frequencies above (2×Td)

−1

and below (4×(Td+Tg))
−1 are properly reproduced and the

error estimate applies, as shown with an example in Fig. 20
. The power spectrum of frequencies within this range are
not reliable and should be discarded.

Unsurprisingly, it is possible to recover the power spec-
trum for the timescales that are well sampled, either shorter
than each individual data stretch Td or longer than a few
times the sampling interval. In cases like this it is com-
mon to make separate estimates for the high and low fre-
quency power spectrum, by averaging together individual
power spectra from short stretches for the first case and by
computing the power spectrum of low resolution light curves,
averaging together data over Td and using the sampling in-
terval as time step for the latter. One of the advantages of
the variance method is that it can compute reliably the same
range of frequencies directly from the complete light curve,
without any further manipulation of the data.

7 CONCLUSION

A simple method for estimating a low resolution power spec-
trum from data with gaps is described. Essentially the vari-
ance associated with a given scale is calculated by convolv-
ing the image with a Mexican Hat filter. Gaps in the data,
described by the mask M are corrected for by representing
the Mexican Hat filter as a difference between two Gaussian
filters, convolving the image and mask with these filters and
dividing results before calculation of the final Mexican Hat-
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Figure 20. Effect of periodic gaps in 1-D data. The above P̃ (kr)
spectrum is the average of 100 realizations of slope –2 light curves
masked by periodic gaps, where every 20 data points are followed
by 80 gap points. The RMS spread of the simulations is shown
by the black markers and the uncertainty predicted by Eq. 17 is
shown by the corresponding black line. The average power spec-
trum in blue crosses fits well the input power spectrum shown by
the top black line and the error estimate works well for frequencies
above (2×Td)

−1 = 0.025 and below (4× (Td + Tg))−1 = 0.0025,
the power spectrum for frequencies in between these values should
be discarded.

filtered image. The variance of the filtered image is then
calculated and the power spectrum is evaluated by repeat-
ing the procedure for different filter scales. The calculated
power spectrum is smeared out by the width of the filter,
so sharp features are lost, but the broadband spectral shape
and normalization are recovered well.

The strength of the method is that it is simple and
robust. It can deal with severe gaps in the data and pro-
duce accurate power-spectral power law slopes and normal-
izations with no tuning parameters and is computationally
cheap. By dividing the filtered images by their correspond-
ingly filtered masks and maintaining the calculation in the
space domain, the method cleanly compensates for data gaps
even if these have complicated shapes and cover significant
part of the data set. We use simulations to show that the
power spectrum recovered from complete data sets and from
their masked versions are consistent and no additional bi-
ases are introduced by the masks. The method can be ap-
plied straightforwardly to 1D timing analysis, 2D imaging of,
for example, brightness fluctuations in galaxy clusters, and
higher dimensional data cubes from numerical simulations.
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APPENDIX A: CARTESIAN COORDINATES

Consider a n-dimensional ‘image’ I(x), where x is n-
dimensional vector, and corresponding mask M(x) with val-
ues of either 0 or 1. M(x) = 0 means that this particular
region of the image does not contain useful information and
should be ignored when calculating the power. We first con-
sider Cartesian coordinates. Our goal is to estimate typical
amplitude of the power spectrum for a given spatial scale a
or, equivalently, given wave number kr. Here and below we
adopt the relation kr = 1/a without a factor 2π. The image
is assumed to be an isotropic Gaussian random field so we
will only compute the power as a function of the scalar kr.

We start by defining a Gaussian filter in spatial domain,
which will be convolved with the image:

Gσ(x) =
1

(2πσ2)n/2
e
− x2

2σ2 . (A1)

Assuming first that the mask is equal to 1 everywhere we
can combine two Gaussians to create a filter which selects
fluctuations with a given scale (see Fig. 2):

Fkr (x) = Gσ1(x)−Gσ2(x), (A2)

where σ1 = σ/
√
1 + ǫ, σ2 = σ

√
1 + ǫ and ǫ << 1. The shape

of the filter is identical to the Mexican Hat in the limit of
small ǫ. In Fourier space the corresponding filter is:

F̂kr (k) = e−2π2k2σ2
1 − e−2π2k2σ2

2 . (A3)

Making a Taylor expansion for ǫ we obtain

F̂kr (k) ≈ ǫ4π2k2σ2e−2π2k2σ2

. (A4)

The filter shape is therefore independent of the value of ǫ
in the limit of small values so that the Taylor expansion is
valid. The value of ǫ only determines the normalization of
the filter and this effect is canceled in the conversion of the
variance of the filtered image, Vkr to P̃ (kr) below. The peak

of the filter is at k =
1√
2π2

1

σ
(see Fig. 2). It is therefore

natural to relate the characteristic scale kr corresponding
to this particular filter width σ by:

σ =
1√
2π2

1

kr
≈ 0.225079

kr
. (A5)

Thus the final expression for the filter in Fourier domain is:

F̂kr (k) ≈ 2ǫ
(

k

kr

)2

e
−
(

k
kr

)2

. (A6)

Convolving the image I(x) with the filter Fkr (x) described
by eq. A2 and integrating the square of the convolved image
is equivalent to integrating the product of the power spec-
trum P (k) and the square of the Fourier transform of the
filter, F̂kr (k). Below, Vkr is the variance of the filtered image
(F ∗ I) since the mean of this filtered image is zero.

Vkr =

∫

(F ∗ I)2dnx =

=

∫

P (k)|F̂kr (k)|2dnk. (A7)

Notice that in eq. A6 the filter drops to zero for k larger and
smaller than kr so that the function P (k) can be approxi-
mated by P̃ (kr) and taken out of the integral:

Vkr ≈ 4ǫ2P (kr)

∫

(

k

kr

)4

e
−2
(

k
kr

)2

dnk =

= ǫ2P (kr)n
(

n

2
+ 1

)

2−
n
2
−1π

n
2 kn

r (A8)

The last approximation breaks down for very steep power
spectra, of positive or negative slope, where its product with
the filter does not drop rapidly to zero for values of k differ-
ent to kr.

The quantity Vkr is calculated from the image by follow-
ing the filter and difference method described and expression
A8 relates this quantity to the power P (k) through a scale-
dependent normalization. Therefore, the power P̃ (kr) can
be evaluated.

In practice the mask is not unity everywhere. In this
case the above calculation is done by convolving the image
and mask with the two Gaussian filters, dividing the con-
volved images; subtracting results and applying the original
mask to the result:

Skr (x) =

(

Gσ1 ∗ I
Gσ1 ∗M − Gσ2 ∗ I

Gσ2 ∗M

)

M (A9)

The square of Skr (x) is then integrated. The regions where
the image is not defined (Skr (x) = 0), which do not con-
tribute to the variance, are simply compensated for by
counting all pixels where M(x) = 0 and making appropriate
scaling:

Vkr,obs =
N

N(M=1)

×
∫

S2
kr
(x)dnx, (A10)

where N =
∫

dnx and N(M=1) =
∫

M(x)dnx.
Comparing eq. A10 and A8 we get the final estimate of

the power density spectrum P̃kr for a given wave number
kr:

P̃ (kr) =
Vkr ,obs

ǫ2n
(

n
2
+ 1

)

2−
n
2
−1π

n
2 kn

r

=
Vkr,obs

ǫ2Υ(n)kn
r
, (A11)

where

Υ(n) = n
(

n

2
+ 1

)

2−
n
2
−1π

n
2 , (A12)

and Υ(n) = 3
4

√

π
2
, π, 15π3/2

8
√

2
for n = 1, 2, 3.

The evaluation of the power density spectrum thus re-
duces to eq. A11 for a set of values of kr.

APPENDIX B: NORMALIZATION BIAS FOR A

POWER LAW SPECTRUM

For a pure power law spectrum P (k) ∝ k−α the expression
A7 can be easily evaluated and exact relation between P̃ (kr)
and P (kr) can be written. The shape of the spectrum is
of course recovered correctly, while the normalization may
differ slightly, caused by moving P (k) outside the integral
in eq. A8:

c© 2009 RAS, MNRAS 000, 1–17



Power spectrum of data with gaps 17

Figure B1. Bias P̃
P

in the normalization of the recovered spec-
trum for a pure power law power spectrum, as a function of slope
for different dimensions of the problem (red - 1D, blue - 2D, black
- 3D)

.

P̃

P
= 2α/2 Γ(

n
2
+ 2− α

2
)

Γ(n
2
+ 2)

. (B1)

Corresponding bias P̃
P

is shown in Fig. B1. One can see that
for the most relevant problems (2D or 3D geometry, d lnP

d ln k

in the range [-3:0]) the bias is modest.
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