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ABSTRACT
We introduce a generalized scaling law,Mtot = 10K Aa Bb, to look for the minimum scatter
in reconstructing the total mass of hydrodynamically simulated X-ray galaxy clusters, given
gas massMgas, luminosityL and temperatureT . We find a locus in the plane of the loga-
rithmic slopesa andb of the scaling relations where the scatter in mass is minimized. This
locus corresponds tobM = −3/2aM + 3/2 andbL = −2aL + 3/2 for A = Mgas andL,
respectively, andB = T . Along these axes, all the known scaling relations can be identified
(at different levels of scatter), plus a new one defined asMtot ∝ (LT )1/2. Simple formula to
evaluate the expected evolution with redshift in the self-similar scenario are provided. In this
scenario, no evolution of the scaling relations is predicted for the cases(bM = 0, aM = 1)
and(bL = 7/2, aL = −1), respectively. Once the single quantities are normalized to the av-
erage values of the sample under considerations, the normalizationsK corresponding to the
region with minimum scatter are very close to zero. The combination of these relations allows
to reduce the number of free parameters of the fitting function that relates X-ray observables
to the total mass and includes the self-similar redshift evolution.

Key words: cosmology: miscellaneous – galaxies: clusters: general – X-ray: galaxies: clus-
ters.

1 INTRODUCTION

Galaxy clusters are believed to form under the action of gravity in
the hierarchical scenario of cosmic structure formation (e.g. Voit
2005). They assemble cosmic baryons from the field and heat them
up through adiabatic compression and shocks that take placedur-
ing the dark matter halo collapse and accretion. Simple self-similar
relations between the physical properties in clusters are then pre-
dicted (e.g. Kaiser 1986, 1991, Evrard & Henry 1991) since gravity
does not have any preferred scale and hydrostatic equilibrium be-
tween intra–cluster medium (ICM) emitting in the X–rays (mostly
by thermal bremsstrahlung) and the cluster potential is a reason-
able assumption. These scaling relations are particularlyrelevant
to connect observed quantities, such as X–ray luminosity, temper-
ature and mass, to total cluster mass, which is used to constrain
cosmological parameters (e.g. Allen, Mantz & Evrard 2011).

Work in recent years has focused in defining X-ray mass prox-

ies, i.e. observables which are at the same time relatively easy to
measure and tightly related to total cluster mass by scalingrela-
tions having low intrinsic scatter as well as a robustly predicted
slope and redshift evolution (e.g. Kravtsov et al. 2006, Maughan
2007, Pratt et al. 2009, Stanek et al. 2010, Short et al. 2010,Fab-
jan et al. 2011). An important role in defining such proxies and
assessing their robustness is played currently by cosmological hy-
drodynamical simulations, thanks to their ever improving numeri-
cal resolution and sophistication in the description of thephysical
processes determining the ICM evolution (e.g. Borgani & Kravtsov
2009).

In this letter, we present and discuss the behaviour of the scal-
ing relations generalized to include the dependence upon two inde-
pendent observables, one accounting for the gas density distribution
(namely gas massMgas and X-ray luminosityL), the other tracing
the ICM temperature,T . This paper is organized as follows. In Sec-
tion 2 we introduce the scaling relations investigated. In Section 3,
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we discuss the redshift evolution and the normalization of these
relations, and how they depend on the selection adopted to define
the sample analyzed. In Section 4, we summarize and discuss our
results in view of their application to observational data.

2 THE GENERALIZED SCALING LAWS

Under the assumptions that the smooth and spherically symmetric
intra-cluster medium (ICM) emits by thermal bremsstrahlung and
is in hydrostatic equilibrium with the underlying gravitational po-
tential, the self-similar (SS) scenario relates bolometric luminosity,
L, gas temperature,T , gas mass,Mgas, to the total mass,Mtot in
a simple and straightforward way. For instance, the equation of hy-
drostatic equilibrium,d(ρgasT )/dr ≈ ρgasGMtot/r

2, allows to
write Mtot ∝ TR, as long as the slope of temperature and gas
density profiles are independent of cluster mass. By combining it
with the definition of the total mass within a given overdensity
∆z with respect to the critical density at the cluster’s redshift z,
Mtot ∝ E2

z∆zR
3, one obtains thatEz∆

1/2
z Mtot ∝ T 3/2, where

Ez = Hz/H0 =
[

Ωm(1 + z)3 + 1−Ωm

]1/2
for a flat cosmol-

ogy with matter density parameterΩm, cosmological constant and
Hubble constant at the present timeH0. Similarly, the definition
of the bremsstrahlung emissivityǫ ∝ Λ(T )n2

gas ∝ T 1/2n2
gas (the

latter being valid for systems sufficiently hot, e.g.> 2 keV) relates
the bolometric luminosity,L, and the gas temperature,T : L ≈ ǫR3

≈ T 1/2f2
gasM

2
totR

−3 ≈ f2
gasT

2, where we have made use of the
above relation between total mass and temperature.

By combining these basic equations, we obtain that the scaling
relations among the X-ray properties and the total mass are (see
also Ettori et al. 2004):

• Ez Mtot ∝ T 3/2

• Mtot ∝ Mgas

• Ez Mtot ∝ (E−1
z L)3/4.

Kravtsov et al. (2006) introduced theYX mass proxy, which
is given by the product of temperature and gas mass. Owing to its
definition, it is related to the total thermal energy of the ICM. They
demonstrated that, among the known mass indicators,YX is a very
robust mass proxy. Its scaling relation withM500 being charac-
terized by an intrinsic scatter of only 5–7 per cent at fixedYX ,
regardless of the dynamical state of the cluster and redshift, with a
redshift evolution very close to the prediction of self-similar model.
Arnaud et al. (2007) usedXMM-Newtondata of a sample of 10 re-
laxed nearby clusters spanning aYX range of1013−1015M⊙ keV,
and confirmed that theM500 − YX relation has a slope close to the
self-similar value of3/5, independent of the mass range consid-
ered. They showed that the normalisation of this relation isabout
20 per cent below the prediction of numerical simulations which
include cooling and supernova (SN) feedback, and explainedthis
offset with two different effects: an underestimate of truemass
due to a violation of the assumption of hydrostatic equilibrium,
and an underestimate of hot gas mass fraction in the simulations
(see also Zhang et al. 2008). They confirmed thatYX might in-
deed be a better mass proxy thanT andMgas by comparing the
functional form and scatter of the relations between different ob-
servables and mass. Extensive use of theYX − Mtot relation has
been made in recent analyses aimed at constraining cosmological
parameters through the evolution of the cluster mass function (e.g.
Vikhlinin et al. 2009) and the properties of the scaling relations
(Mantz et al. 2010). Pratt et al. (2009) presented the X-ray luminos-
ity scaling relations of 31 nearby clusters from the Representative

XMM-Newton Cluster Structure Survey (REXCESS), all having
temperature in the range 2–9 keV and selected in X-ray luminos-
ity so as to properly sample the cluster luminosity function. Their
analysis showed that scaling relations between bolometricX-ray
luminosity and temperature,YX and total mass, are all well repre-
sented by power–law shapes with slopes significantly steeper than
self-similar predictions. They concluded that structuralvariations
have little effect on the steepening, whereas it is largely affected
by a systematic variation of the gas content with mass. Maughan
(2007) analysed Chandra ACIS-I data for 115 galaxy clustersat
0.1 < z < 1.3 observed to investigate the relation between lumi-
nosity andYX . They found that the scatter is dominated by cluster
cores, and a tightLX − YX relation (11 per cent intrinsic scatter
in LX ) is recovered if sufficiently large core regions (0.15R500)
are excluded. The tight correlation betweenYX and mass and the
self-similar evolution of that scaling relation out toz = 0.6 is con-
firmed. Fabjan et al. (2011) analysed an extended set of cosmolog-
ical simulations of galaxy clusters, and confirmed that theM −YX

scaling law is the least sensitive to variations of the physics in the
ICM and very close, in terms of slope and evolution, to predictions
of the self–similar model. They also pointed out thatM −Mgas is
the relation with the smallest scatter in mass, whereasM−T is the
one with the largest among the considered scaling relations.

In the present work, we generalise the definition of theYX

mass proxy, by considering the scaling relation between total mass,
Mtot, and a more general proxy defined in such a way thatMtot ∝
AaBb, whereA is eitherMgas or L andB = T . The use of this
relation generalizes the relationMtot − Y , while maintaining the
attitude to recover total mass by combining information on depth
of the halo gravitational potential (through the gas temperatureT )
and distribution of gas density (traced byMgas and X-ray luminos-
ity), the latter being more affected by the physical processes deter-
mining the ICM properties. In doing that, we aim to minimize the
scatter in the relations between total mass and observablesby (i)
relaxing the assumption of the self-similarity, (ii) adopting a gen-
eral and flexible function with a minimal set of free parameters,
(iii) offering a method that can be readjusted in dependenceof the
specific sample selection adopted.

In the recent past, similar work has been done by different au-
thors with the aim of generalising the use of simple power-law scal-
ing relations between cluster observables and total mass. Stanek et
al. (2010) discussed the second moment of the halo scaling rela-
tions by investigating the signal covariance at fixed mass innumer-
ical simulations. Okabe et al. (2010) used a small sample of 12 ob-
jects observed with Subaru andXMM-Newton to study the covari-
ance between the intrinsic scatter inMtotMgas andMtotT rela-
tions and to propose a method to identify a robust mass proxy based
on principal component analysis. Rozo et al. (2010) presented an
extensive discussion on the relaxation of some assumptionson the
parametrization of the relation between optical richness and total
mass, by introducing the possibility of deviation from a power–law
shape, as well as richness– and mass–dependence of intrinsic scat-
ter.

To study the behaviour of theMtot ∝ AaBb relation in min-
imizing the scatter, we used a sample of 24 Lagrangian regions, se-
lected around the most massive clusters with a radius equal to five
times the virial radius, and extracted from a parent low-resolution
N-body cosmological simulation with a box of size 1h−1Gpc co-
moving, as described in Bonafede et al. (2011). A flatΛCDM cos-
mological model withΩm = 0.24, Ωbar = 0.04, ns = 0.96,
σ8 = 0.8 and present day Hubble constant of 72 km s−1 Mpc−1,
consistent with WMAP-7 cosmological parameters (Komatsu et
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Figure 1. Contour plots that enclose 1.2, 1.5 and 2 times the minimum scatter, as function of the slopesa andb of the generalized scaling relations, as indicated
in each panel. Also overplotted are the lines from eq. 2 (green dashed) and eq. 3 (blue dotted). (Top panels) The case of{A = Mgas, B = T} using (from
left to right) observational-like measurements of thexmas csfsample; direct measurements of thecsfsample; direct measurements of thenr sample. (Bottom
panels) The same as above, but for the case of{A = L, B = T}. The insets show the values of the normalizationK as a function of the slopea in the region
enclosed within 2 times the minimum scatter.

al. 2011), was assumed. A set of 24 Lagrangian regions, centred
around as many massive clusters, were re-simulated by increas-
ing mass resolution and adding high-frequency modes to the power
spectrum (Tormen et al. 1997). Within the high resolution region,
dark matter particles have a massmDM = 8.47 × 108 h−1 M⊙.
The size of each Lagrangian region was chosen in such a way that
by z = 0 there are no low–resolution particles within at least 5
virial radii from the central cluster. As a result, the largeextent of
each of these high–resolution regions allows one to identify more
than one single cluster–sized halo within it, which is not contami-
nated by low–resolution particles within its virial region(Bonafede
et al. 2011; Fabjan et al. 2011).

Clusters identified from this set of initial conditions weresim-
ulated with the TreePM-SPH GADGET-3 code, an improved ver-
sion of the original GADGET-2 code (Springel 2005). As described
by Fabjan et al. (2011), simulations have been carried out for two
different prescriptions for the physics determining the evolution
of cosmic baryons: (i–samplenr) non–radiative physics and (ii–
samplecsf) including metallicity–dependent radiative cooling, a
model for star formation and galactic winds triggered by SN explo-
sions (as described by Springel & Hernquist 2003) with velocity
vw = 500 km s−1, and a detailed model of chemical evolution as
described by Tornatore et al. (2007). By selecting only objects with
mass weighted temperatureT > 2 keV, we end up with 41 ob-

jects in each sample. A subset of thecsfsample has been processed
through theX-MAS tool (e.g. Rasia et al. 2008) to generate Chan-
dra mock observations, and then analyzed with an observational-
like approach to measure temperatures and gas masses (xmassam-
ple; Rasia et al. 2011). The latter sample includes all the clus-
ters with spectroscopic-like temperature larger than 2 keV, and ob-
served along 3 orthogonal projection directions, so that weend up
with 159 mock observations of simulated clusters. Total andgas
masses withinR500 are computed as as described in Fabjan et al.
(2011) and Rasia et al. (2011). Gas temperatures and luminosities,
both bolometric and in the 0.1-2.4 keV band, are computed after
excising cluster core regions, which are defined as the regions en-
closed within0.15R500 . The effect of core excision is also consid-
ered in the discussion of the results and is shown not to affect the
conclusions of our analysis.

We fit a linear relation to the log-log scaling between to-
tal mass and proxies, normalized to the average values computed
within each sample of simulated clusters:

log10 M̂tot = K + a log10 Â+ b log10 B̂, . (1)

Here we defined{M̂tot = Mtot/M̄tot, Â = A/Ā, B̂ = B/B̄},
with barred quantities indicating the average values of thecorre-
sponding quantities.

Within each set of simulated clusters, containing N ob-
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Figure 2. Evolution of the scaling relation parametrized through thequantityEz in the SS scenario and including the relations in equation 2.Solid (dashed)
lines show the behaviour for the relations withA = Mgas (A = L). (Left) Values ofc, exponent ofEz , from equation 4 as function of the logarithmic slope
b (c = 0 in the case of no-evolution).(Right)Values ofEc

z as function of the redshift for different scaling relations. As representative cases, two sets of lines
are plotted:thin lines assumeb = −1, thick lines adoptb = 3.

jects, we compute for each pair of values of the slopes{ai, bj}
the corresponding scatter, which is defined asσ2(ai, bj) =
∑

k=1,N
(log10 M̂tot,k − K̂ − ai log10 Âk − bj log10 B̂k)

2/N ,

where K̂ =
∑

k=1,N
(log10 M̂tot,k − ai log10 Âk −

bj log10 B̂k)/N . We then search find the locus in the{a, b}
plane where scatter is minimized in a similar. In all cases, this
locus is well represented by the lines

{A = Mgas, B = T} ⇒ bM = −3/2aM + 3/2

{A = L, B = T} ⇒ bL = −2aL + 3/2, (2)

(see Fig. 1) or, in a more concise form,b = −(1 + 1/2d) a+ 3/2,
whered corresponds to the power to which the gas density appears
in the formula of the gas mass (d = 1) and luminosity (d = 2).
This correlation between logarithmic slopes allows us to reduce by
one the number of free parameter in the linear fit of the generalized
scaling law between observables and total mass.

It is worth noticing that these relations reduce to the standard
self-similar predictions in the appropriate cases:Mtot ∝ T 3/2,
Mtot ∝ Mgas,Mtot ∝ Y 3/5 are recovered foraM = 0, 1 and3/5,
respectively;Mtot ∝ L3/4 andMtot ∝ (LT )1/2, which is the
corresponding relation ofMtot ∝ Y 3/5 once gas mass is replaced
by luminosity, are recovered foraL = 3/4 and1/2, respectively.

However, to represent the tilted shape of the contours encir-
cling the region with the minimum scatter in the simulated dataset
here investigated, we should prefer the following relations among
the logarithmic slopes,

bM ≈ −1.9aM + 1.8, bL ≈ −2.4aL + 1.8,

b ≈ −(1.4 + 0.5 d) a+ 1.8 (3)

that are shown as dotted lines in Fig. 1.
In the following discussion, we refer to the SS case described

from the equations 2 as the reference one.

3 EVOLUTION, NORMALIZATION AND ROBUSTNESS
OF THE GENERALIZED SCALING LAWS

In this section, we discuss some properties on the redshift evolution
and normalization of the generalized scaling laws, and present the
results of the tests by which we have verified the robustness of our
predictions.

3.1 Evolution of the generalized scaling laws

With simple mathematical substitutions, we can predict theredshift
evolution expected for the SS case,Mtot ∝ Ec

z :

{A = Mgas, B = T} ⇒ cM = −2/3bM = aM − 1

{A = L, B = T} ⇒ cL = bL/2− 7/4 = −aL − 1. (4)

We are now in the position to look for the scaling relation
which has the weakest redshift dependence or, on the contrary, the
relation which makes this dependence stronger. We note thatthere
is no dependence on redshift only in two cases among the scaling
relations here investigated (see Fig. 2): (i)aM = 1 (andbM = 0),
i.e. for the scaling lawMtot ∝ Mgas; (ii) aL = −1 (andbL =
7/2), i.e. for the relationMtot ∝ L−1T 7/2. The prediction for the
lack of evolution of these scaling relations can be tested against
observational data.

3.2 Normalization of the generalized scaling laws

As shown in Fig. 1, the normalizationK corresponding to the value
of minimum scatter is close to zero. This is expected once thequan-
tities are normalized to the averaged valuesM̄tot, Ā, B̄. However,
only Ā andB̄ are known for an observed sample. Thus, by adopt-
ing one of the relations in equation 2, one can directly measure
M̂tot = Mtot/M̄tot and recover the total massMtot only once
M̄tot is independently evaluated either through mock samples se-
lected from catalogs of hydrodynamically simulated objects to con-
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Figure 3. Best-fit values of the slopesaM and bM as a function of the sample examined, (1)-(10) fromxmas(Rasia et al. 2011), (11)-(14) from direct
measurements in the hydrodynamical simulations (Fabjan etal. 2011): (1) at∆ = 2500, with the spectroscopic-like estimateT = Tsl > 2 keV; (2) at
∆ = 2500, with the X-ray spectroscopically determinedT = TX > 2 keV; (3) withT = TX > 2 keV and the core included; (4) withT = Tsl > 2 keV;
(5) with T = TX > 2 keV; (6) withT = Tsl > 4 keV; (7) withT = TX > 4 keV; (8) withMtot > 1014M⊙; (9) with T = TX and 1,000 realizations
of randomly selected objects with 30 clusters with2 < T < 4 keV and 40 clusters with4 < T < 10 keV; (10) the same as in (9) but including a relative
statistical error of 20 per cent on the total mass; (11) for the samplenr and excluding the core (0 − 0.15R500), (12) including the core, (13) for the sample
csfand excluding the core, (14) including the core. For the cases (3)-(14), all quantities are estimated at∆ = 500. The bottom panels show the corresponding
scatterσ. Green diamondsandblue squaresin the central (lower) panels are the predicted slopebM (scatter) from the SS relations in equation 2 and the
corrected relations in eq. 3, respectively.

tain the same number of objects, and with similar properties, of the
observed ones, or through a self–calibration tuned by a sub-sample
of clusters for which robust mass estimates are available. Under this
respect, the suggested approach is the standard one, with the same
limitations affecting any other application of the scalinglaws: mass
calibration and selection effects. The innovation, we are propos-
ing, is to add an extra parameter, imposing a new constraint on the
slopes of the scaling laws, to allow a further minimization of the
scatter.

3.3 Robustness of the generalized scaling laws

To assess the robustness of the analysis of the simulated dataset, we
have repeated our calculations by extracting the simulatedobjects
according to different criteria, e.g., including or excluding the clus-
ter core emission, adopting different overdensity, using different
definition for the gas temperature, selecting only very hot or mas-
sive systems. All these samples reproduce consistently theplots
shown in Fig. 1, by varying only the location of the best-fit val-
ues, but confirming the dependence among the logarithmic slopes
over the region of the parameter space that minimize the measured
scatter (see Fig. 3).

When observational data are considered, several other selec-
tion effects can still affect both the definition of a sample and the
measurements of the normalization and slope of the adopted scaling
law. A proper treatment of the second–order moments and of the
covariance related to the scaling relation has then to be addressed
(see, e.g., Stanek et al. 2010, Rozo et al. 2009 and 2010, Mantz et
al. 2010).

4 SUMMARY AND DISCUSSION

We have presented new generalized scaling relations with the
prospective to reduce further the scatter between mass proxies and
total cluster mass. We find a locus of minimum scatter that relates
the logarithmic slopes of the two independent variables considered
in the present work, namely temperatureT , which traces the depth
of the cluster potential, and another one accounting for thegas den-
sity distribution, such as gas massMgas or X-ray luminosityL.
Within this approach, all the known scaling relations appear as par-
ticular realizations of generalized scaling relations. For instance,
we introduced the scaling relationMtot ∝ (LT )1/2, which is anal-
ogous to theMtot − Y relation, once luminosity is used instead of
gas mass.

Also the evolution expected in the framework of the self-
similar model are predicted for the generalized scaling relations.
They can be used either to maximize the evolutionary effect to test
predictions of the self-similar models itself or, on the contrary, to
minimize them in case of cosmological applications.

A linear function in the logarithmic space can be then fitted to
the data normalized to the average values measured in the sample:

log10 M̂tot = K + a log10 Â+ b log10 B̂ + c log10 Ez, (5)

with K = 0, bM = −3/2aM + 3/2, cM = −2/3bM = aM − 1
for {A = Mgas, B = T} andK = 0, bL = −2aL + 3/2, cL =
bL/2− 7/4 = −aL − 1 for {A = L,B = T}. In a more concise
form, the above relation can be recast asb = −(1+1/2 d) a+3/2,
whered corresponds to the power with which gas density appears
to define either gas mass (d = 1) or luminosity (d = 2). This
fitting function has 4 free parameters that are reduced to one(plus
the average value of the total mass of the objects in the sample)
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thanks to the existing tight correlation found betweena andb, at
least within the region of the{a, b} parameter space where intrinsic
scatter is minimised.

The method and the results presented in this work offer a ro-
bust framework to relate, with the request of a minimum scatter, the
X-ray observables to the total gravitational mass of galaxyclusters
for studies of their thermodynmical properties and for cosmological
application.
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