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ABSTRACT

We introduce a generalized scaling lawi,; = 105 A% B®, to look for the minimum scatter
in reconstructing the total mass of hydrodynamically sitedl X-ray galaxy clusters, given
gas massVy,s, luminosity L and temperaturé’. We find a locus in the plane of the loga-
rithmic slopesa andb of the scaling relations where the scatter in mass is mi@chiZ his
locus corresponds toy; = —3/2an + 3/2 andby, = —2ar, + 3/2 for A = Mg, andL,
respectively, and3 = T'. Along these axes, all the known scaling relations can betifiked
(at different levels of scatter), plus a new one definedfas o« (LT)'/2. Simple formula to
evaluate the expected evolution with redshift in the siiflar scenario are provided. In this
scenario, no evolution of the scaling relations is predidte the casesby, = 0,ap = 1)
and(b;, = 7/2,a;, = —1), respectively. Once the single quantities are normaliaeté av-
erage values of the sample under considerations, the naatiahs K corresponding to the
region with minimum scatter are very close to zero. The cortodn of these relations allows
to reduce the number of free parameters of the fitting fundhat relates X-ray observables
to the total mass and includes the self-similar redshiftieian.

Key words: cosmology: miscellaneous — galaxies: clusters: generatayXgalaxies: clus-
ters.

1 INTRODUCTION ies, i.e. observables which are at the same time relativesdly &

measure and tightly related to total cluster mass by scabfay

Galaxy clusters are believed to form under the action ofigraw
the hierarchical scenario of cosmic structure formatiag.(&oit
2005). They assemble cosmic baryons from the field and heat th
up through adiabatic compression and shocks that take glace
ing the dark matter halo collapse and accretion. Simplesseiilar
relations between the physical properties in clusterstae pre-
dicted (e.g. Kaiser 1986, 1991, Evrard & Henry 1991) sineeigy
does not have any preferred scale and hydrostatic equitibbie-
tween intra—cluster medium (ICM) emitting in the X—rays §tip
by thermal bremsstrahlung) and the cluster potential isaaae-
able assumption. These scaling relations are particutetgvant
to connect observed quantities, such as X—ray luminogityper-
ature and mass, to total cluster mass, which is used to eimstr
cosmological parameters (e.g. Allen, Mantz & Evrard 2011).

tions having low intrinsic scatter as well as a robustly e
slope and redshift evolution (e.g. Kravtsov et al. 2006, tfan
2007, Pratt et al. 2009, Stanek et al. 2010, Short et al. 24,
jan et al. 2011). An important role in defining such proxiesl an
assessing their robustness is played currently by cosricaldgy-
drodynamical simulations, thanks to their ever improvingneri-
cal resolution and sophistication in the description ofphgsical
processes determining the ICM evolution (e.g. Borgani &ksav
2009).

In this letter, we present and discuss the behaviour of thle sc
ing relations generalized to include the dependence uporinsie-
pendent observables, one accounting for the gas densitipdison
(namely gas masd/,.s and X-ray luminosityL), the other tracing
the ICM temperaturel’. This paper is organized as follows. In Sec-

Work in recent years has focused in defining X-ray mass prox- tion 2 we introduce the scaling relations investigated.dot®n 3,
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we discuss the redshift evolution and the normalizationheké
relations, and how they depend on the selection adoptedfiteede
the sample analyzed. In Section 4, we summarize and disemss o
results in view of their application to observational data.

2 THE GENERALIZED SCALING LAWS

Under the assumptions that the smooth and spherically syrieme
intra-cluster medium (ICM) emits by thermal bremsstraglamd
is in hydrostatic equilibrium with the underlying gravitatal po-
tential, the self-similar (SS) scenario relates bolorsétnninosity,
L, gas temperaturd;, gas mass)M;as, to the total masshit in
a simple and straightforward way. For instance, the eqnatidy-
drostatic equilibriumd(pgasT)/dr ~ pgasG Mot /12, allows to
write Mot x TR, as long as the slope of temperature and gas
density profiles are independent of cluster mass. By comdpiiti
with the definition of the total mass within a given overdénsi
A with respect to the critical density at the cluster’s refishj
Moy < E2A, R?, one obtains thak, AL/? Mo, o T3/2, where
E.=H./Hy = [Qm(l +2)3 41— Qm} "2 for a flat cosmol-
ogy with matter density paramet®s,, cosmological constant and
Hubble constant at the present tinig. Similarly, the definition
of the bremsstrahlung emissivityoc A(T)n2,. o< T/ *nZ,. (the
latter being valid for systems sufficiently hot, exg2 keV) relates
the bolometric luminosityl, and the gas temperatutg; L ~ ¢R>
~ TV2f2 M2 R =~ f2,.T2, where we have made use of the
above relation between total mass and temperature.

By combining these basic equations, we obtain that thersgali
relations among the X-ray properties and the total masssae (
also Ettori et al. 2004):

° Ez Mtot X T3/2
o Mot o Mgas
o E. Moy < (EZ' L)%

Kravtsov et al. (2006) introduced théx mass proxy, which
is given by the product of temperature and gas mass. Owirtg to i
definition, it is related to the total thermal energy of thé1CThey
demonstrated that, among the known mass indicalt¢ds a very
robust mass proxy. Its scaling relation wiltisoo being charac-
terized by an intrinsic scatter of only 5-7 per cent at fixéd,
regardless of the dynamical state of the cluster and rddshih a
redshift evolution very close to the prediction of self-sanmodel.
Arnaud et al. (2007) usediMM-Newtondata of a sample of 10 re-
laxed nearby clusters spannind’a range ofl0'® — 105 M, keV,
and confirmed that th&/so, — Yx relation has a slope close to the
self-similar value of3/5, independent of the mass range consid-
ered. They showed that the normalisation of this relatioabigut
20 per cent below the prediction of numerical simulationscivh
include cooling and supernova (SN) feedback, and explainisd
offset with two different effects: an underestimate of trmass
due to a violation of the assumption of hydrostatic equiilit,
and an underestimate of hot gas mass fraction in the sironkati
(see also Zhang et al. 2008). They confirmed fHat might in-
deed be a better mass proxy thH&rand M,.s by comparing the
functional form and scatter of the relations between dffierob-
servables and mass. Extensive use oftRe— M. relation has
been made in recent analyses aimed at constraining cosicellog
parameters through the evolution of the cluster mass fom¢a.g.
Vikhlinin et al. 2009) and the properties of the scaling tielas
(Mantz et al. 2010). Pratt et al. (2009) presented the Xuayihos-
ity scaling relations of 31 nearby clusters from the Reprtae

XMM-Newton Cluster Structure Survey (REXCESS), all having
temperature in the range 2-9 keV and selected in X-ray lugaino
ity so as to properly sample the cluster luminosity functidheir
analysis showed that scaling relations between bolomitriay
luminosity and temperatur@jx and total mass, are all well repre-
sented by power—law shapes with slopes significantly stebpa
self-similar predictions. They concluded that structwadiations
have little effect on the steepening, whereas it is largéfgcted
by a systematic variation of the gas content with mass. Maungh
(2007) analysed Chandra ACIS-I data for 115 galaxy clusiers
0.1 < z < 1.3 observed to investigate the relation between lumi-
nosity andY’x. They found that the scatter is dominated by cluster
cores, and a tight x — Yx relation (11 per cent intrinsic scatter
in Lx) is recovered if sufficiently large core regiorn& 1(5R500)
are excluded. The tight correlation betwegn and mass and the
self-similar evolution of that scaling relation out£o= 0.6 is con-
firmed. Fabjan et al. (2011) analysed an extended set of dogmo
ical simulations of galaxy clusters, and confirmed thatthe- Yx
scaling law is the least sensitive to variations of the pty/gi the
ICM and very close, in terms of slope and evolution, to precits

of the self-similar model. They also pointed out thét— Mg, is
the relation with the smallest scatter in mass, whefdas T is the
one with the largest among the considered scaling relations

In the present work, we generalise the definition of Ihe
mass proxy, by considering the scaling relation betwee hoass,
M;.t, and a more general proxy defined in such a way Mat o
A®BP®, whereA is either M,,s or L and B = T. The use of this
relation generalizes the relatidi;o: — Y, while maintaining the
attitude to recover total mass by combining information eptt
of the halo gravitational potential (through the gas terapeeT)
and distribution of gas density (traced by, and X-ray luminos-
ity), the latter being more affected by the physical proessteter-
mining the ICM properties. In doing that, we aim to minimizet
scatter in the relations between total mass and observaplé3
relaxing the assumption of the self-similarity, (ii) adiogt a gen-
eral and flexible function with a minimal set of free paramste
(iii) offering a method that can be readjusted in dependearfitke
specific sample selection adopted.

In the recent past, similar work has been done by different au
thors with the aim of generalising the use of simple powerdeal-
ing relations between cluster observables and total méaselSet
al. (2010) discussed the second moment of the halo scaliag re
tions by investigating the signal covariance at fixed massimer-
ical simulations. Okabe et al. (2010) used a small sampl @kt
jects observed with Subaru aXdMM-Newtonto study the covari-
ance between the intrinsic scatter Mot Mgas and Mo T' rela-
tions and to propose a method to identify a robust mass praggd
on principal component analysis. Rozo et al. (2010) preskan
extensive discussion on the relaxation of some assumpiotise
parametrization of the relation between optical richness tatal
mass, by introducing the possibility of deviation from a powaw
shape, as well as richness— and mass—dependence of mstasi
ter.

To study the behaviour of thef,; < A®B? relation in min-
imizing the scatter, we used a sample of 24 Lagrangian reggm
lected around the most massive clusters with a radius eqdisiet
times the virial radius, and extracted from a parent lovelgon
N-body cosmological simulation with a box of sizé1'Gpc co-
moving, as described in Bonafede et al. (2011). Afl@DM cos-
mological model withQ2,,, = 0.24, Qpqr = 0.04, ns = 0.96,
os = 0.8 and present day Hubble constant of 72 kmd $1pc™!,
consistent with WMAP-7 cosmological parameters (Komatsu e
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Figure 1. Contour plots that enclose 1.2, 1.5 and 2 times the minimwatiesc as function of the slopesandb of the generalized scaling relations, as indicated

in each panel. Also overplotted are the lines froméogr2€n dashedand eq B

iflue dottegl. (Top panely The case of A = Mgas, B = T'} using from

left to right) observational-like measurements of #treas csbample; direct measurements of tefsample; direct measurements of tiresample. Bottom
panely The same as above, but for the cas¢ 4f= L, B = T'}. The insets show the values of the normalizatforas a function of the slopein the region

enclosed within 2 times the minimum scatter.

al. 2011), was assumed. A set of 24 Lagrangian regions, exentr
around as many massive clusters, were re-simulated byaisicre
ing mass resolution and adding high-frequency modes todhveip
spectrum (Tormen et al. 1997). Within the high resolutiagioe,
dark matter particles have a mass)y; = 8.47 x 10® k™' M.

jects in each sample. A subset of tefsample has been processed
through thex- MAS tool (e.g. Rasia et al. 2008) to generate Chan-
dra mock observations, and then analyzed with an obsenadtio
like approach to measure temperatures and gas massassam-
ple; Rasia et al. 2011). The latter sample includes all this-cl

The size of each Lagrangian region was chosen in such a way tha ters with spectroscopic-like temperature larger than 2 ked ob-

by z = 0 there are no low-resolution particles within at least 5
virial radii from the central cluster. As a result, the lamédent of
each of these high—resolution regions allows one to identifre
than one single cluster—sized halo within it, which is nattemi-
nated by low—resolution particles within its virial regi@onafede

et al. 2011; Fabjan et al. 2011).

Clusters identified from this set of initial conditions wesim-
ulated with the TreePM-SPH GADGET-3 code, an improved ver-
sion of the original GADGET-2 code (Springel 2005). As désen
by Fabjan et al. (2011), simulations have been carried auirfo
different prescriptions for the physics determining thelation
of cosmic baryons: (i—~sampler) non-radiative physics and (ii—
samplecsi) including metallicity—dependent radiative cooling, a
model for star formation and galactic winds triggered by Spe-
sions (as described by Springel & Hernquist 2003) with vigjoc
vew = 500 km s71, and a detailed model of chemical evolution as
described by Tornatore et al. (2007). By selecting only ciisjevith
mass weighted temperatue > 2 keV, we end up with 41 ob-

served along 3 orthogonal projection directions, so thaeme up
with 159 mock observations of simulated clusters. Total gas
masses withinRso0 are computed as as described in Fabjan et al.
(2011) and Rasia et al. (2011). Gas temperatures and luitigsos
both bolometric and in the 0.1-2.4 keV band, are computeet aft
excising cluster core regions, which are defined as the mego-
closed within0.15R500. The effect of core excision is also consid-
ered in the discussion of the results and is shown not totathec
conclusions of our analysis.

We fit a linear relation to the log-log scaling between to-
tal mass and proxies, normalized to the average values dechpu
within each sample of simulated clusters:
logy, Mo = K + alog,, A+ blog,, B,. Q)
Here we define({Mtot = Mtot/MtomA = A/A,B = B/B},
with barred quantities indicating the average values ofcihiee-
sponding quantities.

Within each set of simulated clusters, containing N ob-
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Figure 2. Evolution of the scaling relation parametrized throughdbantity £, in the SS scenario and including the relations in equétid®ofid (dashed)
lines show the behaviour for the relations with= Mgas (A = L). (Left) Values ofc, exponent of&.,, from equatiofi ¥ as function of the logarithmic slope
b (¢ = 0 in the case of no-evolutionfRight) Values of E¢ as function of the redshift for different scaling relatioAs representative cases, two sets of lines
are plottedthin lines assumé = —1, thick lines adopt = 3.

jects, we compute for each pair of values of the slopesb,} 3 EVOLUTION, NORMALIZATION AND ROBUSTNESS
the corresponding scatter, which is defined &qa;,b;) = OF THE GENERALIZED SCALING LAWS

9 2% A H \2
Z’“:LN(}O&O Miotx = K = a IOg}O Ai = b logag Bk? /N In this section, we discuss some properties on the redshifitgon
where K = 3, ((logyg Miotix — ailogyyAr — and normalization of the generalized scaling laws, andemiiethe
bjlog,, Bx)/N. We then search find the locus in tHe, b} results of the tests by which we have verified the robustnisaro
plane where scatter is minimized in a similar. In all cashss t  predictions.
locus is well represented by the lines

{A= Mg, B=T}= by =—3/2am +3/2 3.1 Evolution of the generalized scaling laws
{A=L,B=T}= br = —2ar + 3/2, ®) With simple mathematical substitutions, we can predictéushift

evolution expected for the SS cadédoc < Ef:
(see Fig[L) or, in a more concise forin= —(1 + 1/2d) a + 3/2, _ _ _ _ _
whered corresponds to the power to which the gas density appears {A=Mg, B=T}=  cu=-2/3by =an -1
in the formula of the gas masd (= 1) and luminosity { = 2). {A=L B=T}t= c=b/2-T/4=—-ar—1. (4)
This correlation between logarithmic slopes allows us thuoe by

one the number of free parameter in the linear fit of the gdizech which has the weakest redshift dependence or, on the cgriinar
scaling law between observables and total mass. relation which makes this dependence stronger. We notettbet
Itis worth noticing that these relations reduce to the stashd  j5 no dependence on redshift only in two cases among thengcali

self-similar predictions in the appropriate caséfio, ox T%%, relations here investigated (see Fil. 2)«(iy = 1 (andbas = 0),
Miot o Mgas, Mot o< Y*/" are recovered fary, = 0, 1and3/5, i.e. for the scaling lawMior o< Mgas; (i) ar = —1 (andb, =

respectively;Mior o< L** and My oc (LT)"/?, which is the 7/2), i.e. for the relationVf;.; oc L~ 77/, The prediction for the

corresponding relation af/;.;  Y*/° once gas mass is replaced |ack of evolution of these scaling relations can be testesinag
by luminosity, are recovered far, = 3/4 and1/2, respectively. observational data.

However, to represent the tilted shape of the contours -encir
cling the region with the minimum scatter in the simulatethdat
here investigated, we should prefer the following relaiamong 3.2 Normalization of the generalized scaling laws
the logarithmic slopes,

We are now in the position to look for the scaling relation

As shown in FiglIL, the normalizatids corresponding to the value
of minimum scatter is close to zero. This is expected onceuba-

by ~ —1.9an + 1.8, by ~ —2.4ap + 1.8, tities are normalized to the averaged vallés,., A, B. However,

b~ —(144+0.5d)a+1.8 (3) only A and B are known for an observed sample. Thus, by adopt-
ing one of the relations in equatidn 2, one can directly measu
that are shown as dotted lines in Hiy. 1. Moy = Mot /Mot and recover the total masd., only once

In the following discussion, we refer to the SS case desdribe M. is independently evaluated either through mock samples se-
from the equationsl2 as the reference one. lected from catalogs of hydrodynamically simulated olge¢atcon-
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Figure 3. Best-fit values of the slopes,; andb,,; as a function of the sample examined, (1)-(10) fremas(Rasia et al. 2011), (11)-(14) from direct
measurements in the hydrodynamical simulations (Fabjat. &011): (1) atA = 2500, with the spectroscopic-like estimaie = T, > 2 keV; (2) at

A = 2500, with the X-ray spectroscopically determing@d= Tx > 2 keV; (3) withT = Tx > 2 keV and the core included; (4) with = Ty, > 2 keV;
G)with T = Tx > 2keV; (6) with T = Ty > 4 keV; (7) with T = Tx > 4 keV; (8) with Mot > 10 Me; (9) with T = Tx and 1,000 realizations
of randomly selected objects with 30 clusters withkc T' < 4 keV and 40 clusters with < T' < 10 keV; (10) the same as in (9) but including a relative
statistical error of 20 per cent on the total mass; (11) ferdamplenr and excluding the coré(— 0.15Rs500), (12) including the core, (13) for the sample
csfand excluding the core, (14) including the core. For the<é3p(14), all quantities are estimated&t= 500. The bottom panels show the corresponding
scattero. Green diamondsind blue squaresn the central (lower) panels are the predicted slbpg (scatter) from the SS relations in equatidn 2 and the

corrected relations in efg] 3, respectively.

tain the same number of objects, and with similar propertiethe

observed ones, or through a self—calibration tuned by ssautple
of clusters for which robust mass estimates are availalvidetthis
respect, the suggested approach is the standard one, eitiathe
limitations affecting any other application of the scallags: mass
calibration and selection effects. The innovation, we amp@s-
ing, is to add an extra parameter, imposing a new constraithe
slopes of the scaling laws, to allow a further minimizatidrtte

scatter.

3.3 Robustnessof the generalized scaling laws

To assess the robustness of the analysis of the simulatesbdave
have repeated our calculations by extracting the simulalgekcts
according to different criteria, e.g., including or exdhglthe clus-
ter core emission, adopting different overdensity, usiifferént
definition for the gas temperature, selecting only very hahas-
sive systems. All these samples reproduce consistentlyltite
shown in Fig[lL, by varying only the location of the best-fit-va
ues, but confirming the dependence among the logarithmpeslo
over the region of the parameter space that minimize theuneds
scatter (see Fifl] 3).

When observational data are considered, several othar-sele
tion effects can still affect both the definition of a samptel dhe
measurements of the normalization and slope of the adoptdidg
law. A proper treatment of the second—order moments andeof th
covariance related to the scaling relation has then to beeaded
(see, e.g., Stanek et al. 2010, Rozo et al. 2009 and 2010zMant
al. 2010).

4 SUMMARY AND DISCUSSION

We have presented new generalized scaling relations weh th
prospective to reduce further the scatter between masseprard
total cluster mass. We find a locus of minimum scatter thattesl
the logarithmic slopes of the two independent variablesictaned

in the present work, namely temperatrewhich traces the depth
of the cluster potential, and another one accounting fogéssden-
sity distribution, such as gas mads,.s or X-ray luminosity L.
Within this approach, all the known scaling relations apegar-
ticular realizations of generalized scaling relationst Fstance,
we introduced the scaling relatidd;.. « (L7)*/2, which is anal-
ogous to theM;ox — Y relation, once luminosity is used instead of
gas mass.

Also the evolution expected in the framework of the self-
similar model are predicted for the generalized scalingtiahs.
They can be used either to maximize the evolutionary eftetagt
predictions of the self-similar models itself or, on the ary, to
minimize them in case of cosmological applications.

A linear function in the logarithmic space can be then fiteed t
the data normalized to the average values measured in th@esam

©)

with K = 0, by = —3/2(11\/[ + 3/2, CM = —2/3b1\/1 =apy — 1

for {A = Mgas, B =T} andK = 0, by, = —2ar + 3/2,cL =
br/2—T/4=—ar —1for {A = L,B =T} Inamore concise
form, the above relation can be recasbas —(1+1/2d) a+3/2,
whered corresponds to the power with which gas density appears
to define either gas masd (= 1) or luminosity @ = 2). This
fitting function has 4 free parameters that are reduced td@ns

the average value of the total mass of the objects in the sgmpl

log Mmt = K + alog,, A+ blog, B+ clog,g -,
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thanks to the existing tight correlation found betweeandb, at
least within the region of théa, b} parameter space where intrinsic
scatter is minimised.

The method and the results presented in this work offer a ro-
bust framework to relate, with the request of a minimum sczathe
X-ray observables to the total gravitational mass of gatdugters
for studies of their thermodynmical properties and for cokgical
application.
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