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The Fully Constrained Formulation (FCF) of General Reistig a novel framework introduced as an alter-
native to the hyperbolic formulations traditionally usadchiimerical relativity. The FCF equations form a hybrid
elliptic-hyperbolic system of equations including exjilicthe constraints. We present an implicit-explicit nu-
merical algorithm to solve the hyperbolic part, whereasdttiptic sector shares the form and properties with
the well known Conformally Flat Condition (CFC) approxineat We show the stability and convergence pro-
perties of the numerical scheme with numerical simulatiwingacuum solutions. We have performed the first
numerical evolutions of the coupled system of hydrodynanaied Einstein equations within FCF. As a proof
of principle of the viability of the formalism, we present 2Risymmetric simulations of an oscillating neutron
star. In order to simplify the analysis we have neglected#uk-reaction of the gravitational waves into the dy-
namics, which is smalk{ 2%) for the system considered in this work. We use spheraaidinates grids which
are well adapted for simulations of stars and allow for edéehgrids that marginally reach the wave zone. We
have extracted the gravitational wave signature and cardparthe Newtonian quadrupole and hexadecapole
formulae. Both extraction methods show agreement withénntilimerical errors and the approximations used
(~ 5%).

PACS numbers: 04.25.D-, 04.30.Db, 04.40.Dg

I. INTRODUCTION the fact that some of the first successful simulations [8—10]
used the Generalized Harmonic formulation (GH) [11, 12] of
Numerical relativity is a rather young branch of physicsEinstein equations (see more about GH below), most of the
devoted to the numerical solution of Einstein equations foldroups in the numerical relativity community make use of
complex problems, mostly in theoretical astrophysicscivhi & dlf_ferent n.umerlgal recipe, resulting from the comblnat_lon
involve the evolution of spacetime and eventually the matteOf different ingredients: i) the so-called BSSN formulation
content of a system. It was born thanks to the theoretical ad13,.14]; i) the appropriate choice of gauge, with a slicofg
vances which led to the+d split of the Einstein equations the L+log family and some variant of the hyperbolic Gamma-
[1,[2] popularized due to the work df [3]. The-3 splitdefines ~ driver condition for the spatial gauge; iii) the use of higder
a foliation of spacetime which allows to solve the equationsSPatial methods (at least fourth order); and iv) the usegt hi
as an initial value problem for a given spacial hypersurfacdesolution due to the increasing computational power ard de
which is then evolved in time. velopment of adaptive mesh refinement (AMR) techniques.
Soon after that theoretical breakthrough, the first hydrolJsing this recipe a number of groups [15-20] have provided
dynamic calculations of the general-relativistic collepsf ~ Waveforms of one of the most powerful sources of gravita-
a star in spherical symmetry using a Lagrangian code werlonal radiation in the universe, the binary black hole neerg
performed[4,5]. Multidimensional simulations had to wait and one qf the main gandldates for the first dl_recf[ detection
the development of an Eulerian formulatioh [6] which could Of gravitational waves in the ground-based gravitatioratev
overcome the problems of non-spherical Lagrangian code@bservatories (LIGO, VIRGO, GEO600, TAMA300).
Those advances led to a tremendously prolific era of general According to the success of present formulations of the Ein-
relativistic hydrodynamics with multiple applications tiee  stein equations in éierent multidimensional scenarios, one
formation of black holes, accretion onto compact objedts, b could think that all the goals of numerical relativity haween
nary neutron star mergers and core collapse supernovae (saehieved. Indeed, according fo [21], the Holy Grail of Nu-
[7] for a recent review on the topic). merical Relativity is a numerical code to solve Einsteinaqu
In parallel, a considerablefert was made to solve Einstein tions, that simultaneously avoids singularities, handlask
equations in vacuum. Only recently it has been possible tholes, maintains high accuracy, and runs forever. Current
gain the s#ficient understanding of the stability properties of codes satisfy all the above requirements (with the exceptio
numerical solutions of Einstein equations to overcome the n perhaps, of the last one), thanks to both the use of accu-
merical challenge of simulating the merger of two black Bole rate numerical techniques and stable formulations of Einst
and estimate its gravitational wave (GW) signal [8]. Despit equations. There are, however, a number of problems that
could arise when using such an homogeneous set of numerical
recipes to solve a complex multidimensional numerical pro-
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consist in the solution of hyperbolic equations, and in mosneutron stars of about 20% ar2% at most. However, these

of the cases make use of the Bdecomposition of Einstein effects can be important due to the non-linearity of the equa-
equations in a BSSN-like form, and use high order finifeedi  tions. As an example, in the case of neutron star binaries the
rences techniques to solve them numerically. This mightanakenergy loss due to GWs, despite their small nomirigdas,

it difficult to find systematic numerical problems in the com-make the orbit shrink until the neutron stars merge. In the

putations or to detect fundamental theoretical problentisén case of the collapse of stellar cores, the stellar interiodm

set of equations to be solved. els used as progenitors can be treated safely in the Newtonia

Some work has appeared facing these questions. The oridimit (GM/RE ~ 10°® << 1), and only as nuclear density
nal article of [8] and some later oné$ [9] 10] make use of GHS reached GRfects appear. In that case, it would be desir-
formulation. It is a 4D covariant formulation whichftérs  able to have numerical tools which could allow us to evolve
substantially from the 81 BSSN approach and allows for €fficiently and smoothly the spacetime, from the Newtonian
genuine comparisons between waveforms usifigidint for- regime of an stellar core to the mildly relativistic reginfeao
mulations [22] 23]. Within the 81 decomposition of Ein- Proto-neutron star or fully relativistic regime of a blacié.
stein equations, some formulations have appeared [24, 25] An approximation to general relativity that could fill this
in order to try to improve some of the weaknesses of theyap between Newtonian gravity and general relativity is the
BSSN formulation, such as a better preservation of the conconformally Flat Condition (CFC) approximation ([31/32])
straints. Alternatively, the £2 approach (see [26] for a re- The main features of the CFC approximation are: i) although
view) has been successfully used to accurately extract-gravit is not a post-Newtonian approximation, it behaves as a 1PN
tational waves matching its evolution to interior Cauchyada theory [38], and hence, it is possible to recover the Nevaoni
[27]. However, the success in using this approach to sirulatlimit correctly in the case of weak gravity; ii) in sphericgim-
the whole spacetime is very limited [28, 29] due to the forma-metry it coincides with general relativity, which makesétry
tion of coordinate caustics. Regarding the numerical migho accurate for quasi-spherical objects like isolated nevsgtars
finite differences tecniques have been used in all works, excepk for the collapse of stellar cores; iii) it only involvesiBson-
for [9] in which pseudo-spectral methods were used, althouglike equations for the spacetime, and therefore the nuwileric
no substantial dierences have been found in comparison withmethods and computational costs are closer to Newtonian si-
finite differences codes [23]. Nevertheless, an alternative tmulations than to full GR simulations; and iv) it neglects W
pure hyperbolic formulations of the Einstein equationdha@s and the energy losses related to them. The numerical solutio
work that we present here, is interesting and desirable. of elliptic equations is numerically more involved than kyp

The second class of problems is related to the increasingolic equations. However, the time-step in CFC is limited by
level of complexity in the astrophysical scenarios that vaatv  the sound speed instead of the speed of light, as in the case of
to simulate. After the binary black hole problem has beerhyperbolic formulations of GR. That provides a consideyabl
solved, the numerical relativity community moves to the-pro speed up in many scenarios that widely overcomes the extra
blem of solving non-vacuum spacetimes. The collapse ofost of solving elliptic equations, making the numericad-ev
stellar cores and the merger of neutron stars represent chalition considerably faster. The CFC approximation was-orig
lenges by itself, beyond the numerical evolution of Einstei inally thought to deal with the neutron star binary case [34—
equations: realistic microphysics, accurate multidinnemesl ~ 37]. In this case, energy losses by GWs have to be included
neutrino transport, magnetic fields, small scale instiédsli as an extra ingredient to allow for the neutron stars to merge
(e.g., MRI) and turbulence, non-idedfects, elastic proper- The major success, however, has been in the collapse afrstell
ties of the crust of neutron stars, superfluidity and superco cores ([38-40]), which lead to the computation of GW emis-
ductivity in cold neutron star interiors... Although fukkgeral ~ sion using physically motivated microphysics|[41], magmnet
relativity (GR) is unavoidable in the case of the presence ofields [42], and neutrino transport [43]. The CFC approach ha
black holes, approximations to GR in scenarios in which onlyalso been successfully used to simulate the phase-tamsiti
neutron stars are present have a chance to simplify the ninrduced collapse of rotating neutron stars to hybrid qutatss
merical simulations to be able to understand the full prajsic [44] and the evolution of equilibrium models of rotating Reu
complexity of those systems without the burden of solvirey th tron stars|[45, 46]. Direct comparisons of the CFC approach
full GR equations. with full GR have shown that flierences between both ap-

The typical neutron star has a mass of abut- 1.4M,  Proaches, in the case of core collapse, are smaller than the
and a radius oR ~ 10— 15 km, which results in a com- numerical diferences between the codes [47-49]. This fact is
pactness osM/RE@ ~ 0.2 < 1. This implies that a post- understandable since the next post-Newtonian correctmns

Newtonian expansion of the gravitational field of a neutronCFC were found to have an impact on the non-linear dynam-
star is possible and convergent, and that the expectedierror IS Of Iess than 1% [50]. In the case of neutron star mergers
the dynamics of the system, if Newtonian gravity is used in-We are notaware of a direct comparison between CFC and full
stead of full GR, is about 20%. However, it is well known CR-

that GR does not only produces quantitatifieets in the dy- A new formulation of Einstein equations which could ad-
namics of the system, but also qualitatively neffieets like  dress both classes of problems mentioned above, and share
frame dragging or gravitational waves. These two classes afome properties with the CFC approximation, is the Fully
effects appear at 1 and 2.5 post-Newtonian level, respectivelgonstrained Formulation (FCF) _[51]. This formulation is
(see e.qg. [20]), which represent changes in the dynamics dfased on the#l split of Einstein equations butfierent from
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all other formulations of Einstein equations that are purel the evolution of the dferent systems of equations (hydrody-
hyperbolic, the FCF maximizes the number of elliptic equa-namics, elliptic and hyperbolic metric equations). In S&¢t.
tions by solving the constraint equations at each time-@tep we test our numerical implementation through the evolution
choosing an appropriate gauge condition. As a consequencef, a vacuum spacetime with analytical solution. In Sec. V
the hyperbolic part of FCF only contains two degrees of freewe perform simulations of equilibrium configurations of ro-
dom, which correspond, far from the matter sources, to théating neutron star and extract gravitational waves from pe
gravitational wave content of the system. Therefore, FCF idurbed oscillating models. Conclusions are drawn in Sec. V.
fundamentally dferent from all other formulations of general Throughout the paper we use the signaturer( +, +) for the
relativity and can be used as another check of the consistenspacetime metric, and units in which= G = Mg = 1. Greek

of the numerical solutions of Einstein equations. Morepverindices run from 0 to 3, whereas Latin ones from 1 to 3 only.
it is a natural generalization of the CFC approximations thi

fact makes possible a natural extension of all the numerical

codes which use this approximation, in order to have a proper Il.  SPACETIME EVOLUTION

treatment of the gravitational radiation of the system with

too much &ort. It also creates a bridge between weak gravity A. Fully Constrained Formalism

systems, which are well described within the CFC approxima-

tion, and the strong gravity limit. Given an asymptotically flat spacetimaf(g,,) we con-

In practice, to extend a CFC code to FCF one has to addider a 3+ 1 splitting by spacelike hypersurfacgs denoting
additional hyperbolic equations to the existing CFC eilipt timelike unit normals ta>; by n“. The spacetime on each
equations (and also some extra sources in these ellipt&-equspacelike hypersurfack is described by the paiy, K,
tions). This evolution system, written as a first order ose, i wherey,, = g,, + n,n, is the Riemannian metric induced on
a hyperbolic system [52] and includes the whole hyperbolic, \Wwe choose the conventid),, = —1 £,y for the extrin-
sector of the metric of spacetime in this formulation. Intgar  sjc curvature. With the lapse functidiand the shift vector

ular, the explicit values of the eigenvalues and eigenvedd  gi, the Lorentzian metrig,, can be expressed in coordinates
the hyperbolic metric system allow to guarantee the expecte(xu) as

physical behavior on trapping horizons [53]. The remaining
metric variables form the elliptic sector, which is simitar Qo X dX' = =N2dE + 35 (dX + g d)(@dX + g dY). (1)
the group of elliptic equations in the CFC approximatiorthwi
extra sources. Recent works [54] overcome some pathologAs in [51] we introduce a time independent flat metfig
cal problems related with non-local uniqueness in thetadlip which satisfiesZ; fij = d:fij = 0 and coincides withy;; at
equations in CFC, and also in FCF. The equations were rewrispatial infinity. We defing := dety;; andf := detf;;. We in-
ten in such a way that these problems were solved, and thgoduce the following conformal decomposition of the splati
new scheme has been used successfully in some applicatioftricy;;:
[43,[55)56]. . i

The analysis of the numerical evolution of the hyperbolic vii =%, y=/HYE (2)
metric system is the main objective of this work, including
aspects like numerical stability of the system in long-term
simulations, evolution of equilibrium configurations, dret
influence of the elliptic equations in the system. We per- hi =5 — il 3)
form all the numerical simulations using the CoCoNuT code ' ’
[39, 140,157], which was originally designed to evolve the once the 3+ 1 conformal decomposition is performed, a
hydrodynamics equations in the dynamical spacetime of thghoice of gauge is needed in order to properly reformulate

CFC approximation. The code uses spherical coordinates fqtjnstein equations. The prescriptions inl[51] are maximal
the evolution of both matter and spacetime; this is very eenv gjicing,

nient in the present work, since it allows us to place thermoute
boundary sfficiently far from the star, in order to perform an K=0, 4)
accurate gravitational wave extraction|[58].

In this paper we present the first accurate extraction of th
gravitational wave signature coming from the evolution@f r Dy = Dbl = 0, (5)
tating oscillating neutron stars within FCF. As a first step t
wards a full evolution of the coupled system of elliptic and whereK = y'iK;; denotes the trace of the extrinsic curvature
hyperbolic equations of the FCF, we have neglected the baclgnd Dy stands for the Levi—Civita connection associated with
reaction of the gravitational waves onto the dynamics of thehe flat metricf;. More details can be found in [51]. Ein-
system, which is a justified approximation in the case of isostein equations then become a coupled elliptic-hyperisgtie
lated neutron stars and the collapse of stellar cores. tem: the elliptic sector acts on the variabfesN, ands', and

The article is organized as follows. In Sec. Il we review thethe hyperbolic sector acts dW. More details of the analy-
FCF and detail the formulation used in the evolution of spacesis carried out for both elliptic and hyperbolic systems ban
time. In Sec. lll we describe the numerical methods used irffound in [52, 54].

The deviation of the conformal metric from the flat fiducial
one is denoted bk,

gnd the so-called generalized Dirac gauge,
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We introduce the conformal decomposition and Z)iAQT = 0. These decompositions are motivated by
o ouii the local uniqueness properties of elliptic equations show
A = yKY, (6)  in[54]. We definen) := Dyl The hyperbolic system far'

. e N can be written as a first order evolution system for the tensor
and its decomposition in longitudinal and transverseeiess (h” Al w”)

parts
Al = (Lx) + AL, (7)
where
(LX) := O'X] + DIX - gf”Z)ka (8)
|
ah’ -6 AI] 4 gall _ ~ik i skigy iy 2 k
W=2N¢/ A+ pw) -y DB -7 Dkﬂ+§71)kﬂ, )
% = Dy (NTwi’kIW:] +ﬁkAIJ) _AkJDkﬂl _Alkz)kﬂ] + gAljz)kﬂk + 2Nlﬁ_6)~/k|A'kA”
LSyl . .
~8Ny® (u/‘S” 3 )+ N (w*R! + 877! D D) + 4 (75 Dy DIN + 75/ DINDIy)
1
-3 [N (¥R + 87 DwDW) + BUFDYDIN|
=5 (W) + 70) DNG) ~ 91 DD (N + 7DD (N), (10)
ow] T O
— =Dk (2N¢-6A'J +pw' -7 D - DB+ 571@./3') (11)
where
< 1. .1
R= Z I(Iﬂkhrnnz}I)’mn 2'}’k|th @n)’ml, (12)
R = 5 [~wiwy = 50y Wiiwn + Fwfl™ (7w + 74| + 277 W Dimn, (13)

Sjj = TW)/‘;/J is the stress tensor ai®l:= y'1Sj; is its trace T, being the energy-momentum tensor, measured by the observer

of 4-velocity n* (Eulerian observer). Moreover, the system obeys the cainstof the Dirac gaugeA/J 0, and for the
determinant of the conformal metric, we obtaia-"f.
The elliptic part of the FCF equations can be rewritten as

71y mAMA] .\ YR

~Kkl _ -l bl
. ~ . . 7)7”7. AImAij ﬁ
FDDINY) = | 2my~*(E +28)+(% + 35|, (15)
1 - . .
FODBE + S DD = 16Ny~ %71(S"); + A1 D (2Ny°) - 2Ny A A, (16)
|
whereE := T,,n“n” andS; := —y/'T,,n” are, respectively, the elliptic equation for the vectoX,
energy density and the momentum density measured by the 1 D3
observer of 4-velocity?', E* := y®E, S* := y8S, (S*); = DDIX + ZD DX + 5™ | Dy — MYk} (L)<
6q. 3 2
¥°S;, and
i y . Dy N
1 - a8, - 77 (D - 224 A5 9
= 27 (Dl)’lj + Djyil — z)D’lj) (17)

and the evolution Eq_(10) can be viewed as an evolution equa-
The decomposition introduced in E@] (7) leads to an extrdion for the tensoMT.



hydrodynamics elliptic hyperbolic  equations
equations sector sector
CFC CFC CFC no . i fijlmAij
Passive FCF CFC CFC yes Ay = -2nyE" - ey (20)
FCF FCF FCF yes v
Teukolsky waves  no (vacuum) fixed Minkowsky  yes A(Ny) = 27Ny Y(E* + 2S")
Equilibrium NS fixed background fixed background yes 75 f: AmAij
Oscillating NS yes yes yes + Nw’7%, (21)
TABLE I. Approaches to general relativity used in this woHqua- i } ijqy. K _ gy ~6 Aij
tions used and approximation to those equations for thes tfoe AB + 3f DiDf" = D; (ZN"b A )’ (22)

mulations mentioned in the text (CFC, passive FCF and FC#) an P K R
for the three simulations setups presented (Teukolsky syaaapiili- AX + §f l@i@kx =8rfl(S )i (23)
brium neutron stars and oscillating neutron stars).
is identical to the CFC equations in the form described if}).[54
In the present work we solve the coupled evolution of the
hyperbolic system fon'! given by Egs.[{(9)£(1), the elliptic
More details about the derivation of all the equations carapproximated system fd¥, y andg', given by Eqs.[(20)E(22)
be found in[[54]. All these equations are to be solved coupled@nd the hydrodynamics equations. We call the new system
with the hydrodynamic equations for the evolution of matterpassive FCF, in the sense that we neglect the back-readtion o

which can be derived from the Bianchi identities and the conthe GWs onto the dynamics of the system. Contrary to the
tinuity equation, CFC approximation, this approach does not neglect the GWs

itself. Therefore, it allows one to compute the gravitaibn

wave emission of the system directly from the spacetime evo-
T;/;V =0 \]{; =0. (19) lution. Upper three rows of tablé | summarizes the approxi-

mations used in the case of CFC, passive FCF and FCF.

Explicit expressions for the hydrodynamics equationsfier t
case of a perfect fluid in the form that it is used in the present . NUMERICAL METHODS
work can be found in [57].

We perform all the simulations of this work using the nu-
merical code CoCoNuT [39, b7,I59]. We have extended this
code, which solves the coupled evolution of the hydrodynam-
ics equations with spacetime evolution in the CFC approxi-
mation, to add the new degrees of freedom necessary for the

B. Passive FCF FCF in the passive FCF approximation. In the following, we
briefly describe the numerical methods used in the code to
solve the hydrodynamics equations and the elliptic patef t
An mterestmg property of the fully constrained formalism FCF formalism. These methods and equations are identical
is that if 'l = 0, the resulting 3-metrig;; is conformally  to those described i [54,/57]. We also describe the numeri-
flat. This condition corresponds to the well know conformall cal techniques applied to solve the evolution of tHieensor,
flat condition (CFC) approximation [31,32] of Einstein equa which is necessary to extend the CFC approximation to pas-
tions. The CFC approximation has been proved to provide aGsjve FCF. In all cases we consider spherical coordinates and
curate evolutions of spacetimes including single neuttarss  axisymmetry. In order to simplify the notation, we will re-
and core collapse supernovae![47-49]. In these scenagos ther to the three sets of variables as hydrodynamics vasable
back-reaction of the gravitational waves (GWS) onthe dy-namU (D S, 7-) (See definitions be|ow) e|||pt|c spacet|me va-
ics of the system is so small that can be approximated to riables or CFC variabled/ = Ny, A, X1), and hyperbolic
be zero. The main drawback of the CFC approximation is thaépaceUme variablesy := (hil, Ail, WIJ)
the gravitational wave content is removed from the system,
and the computation of the gravitational wave emission has
to be performed approximately by means of the quadrupole

A. Hydrodynamics equations
formula. 4 4 q

Since our aim is to deal with this kind of astrophysical sce- The system of Eqs[{19) can be cast into a system of con-
narios, neutron stars and core collapse supernovae, irhwhigervation laws [60] as
the gravitational waves are not important for the dynamics,
when solving the complete FCF system, the back-reaction U + 8iF (U,V) = QU, V). (24)
of the hil tensor onto the hydrodynamics and elliptic part of
the metric equations can be neglected. Therefore, we impode := (D, S;, 7) is the conserved variables vectbr,= —J“n,
hi = 0 in Egs. [I#){T7). The resulting system of elliptic andr = E — D.



Since we are neglecting the back-reaction of the GWs onto C. Hyperbolic spacetime equations
the dynamics of the fluid, there is no dependence on the

hyperbolic-spacetime variabl¥g in the previoug set of equa-  Once we have updated the hydrodynamic variatilesnd
tions. We use Godunov-type schemes, which are suitablghe CFC variablesy, we solve the hyperbolic part of the
for solving equations written in conservative form. Thesespacetime evolution, Eq<](9)={11). This part contains the
schemes allow for a numerical evolution of the system withgrayitational wave information of the system. It consists o

high accuracy in conservation of mass, momentum and ensyolution equations for the variabl@g of the form
ergy, and the correct behavior at discontinuities, e.g.clsho

waves at the surface of neutron stars (see g.g. [7]). We use W = g(W, V, U). (26)

the Marquina flux formule [61] combined with a second-order

linear reconstruction with MC slope limiter [62]. The time  We solve the system following a two step approach. In
update of the matter quantities relies on the method of linethe first step we update’ and A" to the next hypersurface,

in combination with a second-order accurate explicit RungeXy = Zn,ar, denoted by an upperinder ¢ 1), using only
Kutta scheme. The time step is restricted by the Courantinformation of the previous hypersurfaég,, denoted by ).
Friedrich-Lewi (CFL) condition/[63]. This combination pro It is therefore an explicit algorithm of the form

vides second-order convergence in a number of tests includ- N L i)

ing the evolution of oscillating neutron stars[57], whicg-d ahll = Sp(h1, 1O Wi o), (27)
grades to _first-order_ in the presence of discontinuities. We oA = SA(h”(”),A”(”),V\/E(”),U(”),V(”)), (28)

use spherical coordinates {, ¢) in axisymmetry. The an-

gular grid is equally spaced i# but the radial grid can be which can be integrated using explicit Runge-Kutta schemes
non-equidistant. In the second step we updaté using an implicit-
explicit approach. We compute the sources using the values
(h1™ Al and the updated values df (™), Ali(+1)y com-
puted in the first step. The sources of Eql(11) can be splitted

B. Elliptic spacetime equations into two terms of the form

Once the values of the hydrodynamic variablds, have o)) = Spa(h, AL V) + Sya(w], V), (29)
been updated, the CFC metri¢, can be updated by solving
the elliptic part of the spacetime evolution equations.ohc  Where

sists in a system of Poisson-like elliptic equations, EB8) o ) R
(22), which can be written as Sw1 = Dk (ZNW_GA” -7 D -7 DB + §5’”D,3|),
AV = (U, V). (25) Swe = D (BW). (30)

This system of equations can be solved hierarchicallyé The first term, Sy, does not depend explicitly on the

following the procedure described {n [54]. volved variablesa;.  The second termSwz, depends

We compute the numerical solution using spectral methoddineary onwj; and does not depend explicitly on the variables
The sources of the equations are interpolated to the spe€d”;A’). This property allows us to design a numerical algo-
tral grid, where the elliptic equations are solved using thgithm to evolvew]! from i to s, using the values df! and
LORENE library for spectral methods [64]. The solution of Al atZ.. and all other variables &, i.e.,
the equations is interpolated back to the finitfedience grid - -
in order to update the metric field$, ¢ ands', which are AW = Sy (NI, ATOD) vy 15, V). (31)
needed for the recovery of the primitive hydrodynamic va-
riables (e.g., density and velocity) and the evolutioh'bfsee ~ This scheme provides a numerically stable evolution, due to
next subsection). The spectral grid consists of severalrad the (partially) implicit dependence @y, and explicit orSyy.
domains in spherical coordinates. Further details canimedo We evolve the system with the same Runge-Kutta schemes as
in [57]. in the first step, but with the corresponding partially inajtli

Since the system of equations is elliptic, the Courant con€valuation of the,; source term (see AppendiX A for more
dition does not restrict the time step. Although the metricdetails). However, this evaluation reduces the theoretica
could be computed after every time step, in some scenaridder of the scheme, which is observed in numerical simulation
the typical time scale of variation of the CFC variables isiu I those scenarios where the ter@g (h')"5, A1+, v)
longer than that of the hydrodynamic ones, and it is justifiec®ndSwa (W@, AI®, V) differ significantly. In practice, the
to computeV not at every hydrodynamics time step. In the reduction of the order of the method can be small as long as
simulations of neutron star oscillations presented ingthjger  the leading term of the sources for the evolutiomgfis the
we compute the CFC part of the metric every 10th hydrody-one containing thé\! tensor, as we have obtained in the evo-
namical time steps and use a parabolic extrapolation betwedution of Teukolsky waves with a method based on a fourth-
consecutive metric computations. This method has shown torder Runge-Kutta scheme (see Sed. IV). In other cases the
provide stfficient accuracy for this scenario [39]. order of convergence of the method can be reduced up to



second-order within the same scheme, as we have obtaine

when the tensohn' reaches stationary values in the evolution

of equilibrium configurations of rotating neutron starse(se 2x10"
Sec[VB). In a general scenario, an implicit-explicit (IMEX
Runge-Kutta scheme [66, 167] could be used to prevent the
reduction of the order of convergence, although this is be-
yond the scope of this paper. The use of implicit terms for
the second step of the time integration is crucial in order to <
provide stability. We have checked that when a purely ex-

plicit approach is used fmﬂj, the numerical method becomes 2x10°F - 188 ;‘ %E .
unstable|[68]. The method becomes also unstable, when w — 200 x 40

computew] directly as spatial derivatives &fl. This behav-
ior is expected since the terms3x; are responsible for expo- 7 | | | |
nentially growing unstable modes in the equations in sighéri -4x10 g 2 4 6 8 10
coordinates (see AppendiX B), and the implicit treatment fo
this part helps stabilizing the numerical solution.

To solve Egs.[{29) we use a fourth-order explicit Runge-
Kutta schemel [69], together with the partially implicitdke 7
ment mentioned above. We use a fourth-order Lagrange in 6x10 = 50 x 1(
terpolation [70] to compute spatial derivatives, even fonn 3 =100 x 20 |
equidistan grids, and a forth-order Kreiss-Olinger diaBig 7 — 200 x 4€
term [71] to avoid the development of high frequency numeri- 3x10
cal noise. We impose a Sommerfeld/[72] condition at the outer _
boundary to preventreflections from the boundaryintothe nu <
merical domain.

The time step is determined by the Courant condition for
the speed of light¢. This time step condition is more restric- =
tive than that of the hydrodynamics because the fluid eigen- ~ -3%10
values are bounded ly The time step foW is chosen to be L
an integer fraction of the hydrodynamic time step, such that 0
after each hydrodynamictime stejandW are synchronized.

FIG. 1. Radial profile oh™ att = 6 at the equator (upper panel)
and at the pole (lower panel). Thredfdrent resolutions, x n, are
IV. TEUKOLSKY WAVES shown: 510 (dotted lines), 10020 (dot-dashed lines) and 2080
(solid lines).
The first test is the evolution of Teukolsky waves [73] which
are solution of the linearized Einstein equations in a vatuu
spacetime. We choose as initial data a combination of irggoin
and outgoing even parity axisymmetric Teukolsky waves withof the outgoing wave, as it is prescribed by the imposed con-
amplitude 10°. It provides regular initial data at= 0 which  dition. In Fig.[2 we plot the absolute errors of all the nonazer
satisfies the Dirac gauge and is traceless (which is therlinegomponents of the tensb¥ at (. r, 6) = (6,0, 7/2), for differ-
approximation of unit determinant corresponding to ortitren  €nt resolutions. We obtain an order of convergence4f36,
mal spherical coordinates for the conformal spatial métiic 3.8, and 46 for the components”™, h*’, h#¢ andh', respec-
We keep the background flat, i.&N,= y = 1 andg = 0. We tively, which is close to the fourth-order of the correspiogd
assume symmetry with respect to the equatorial plane. Fhe r&Runge-Kutta method. Note that, since the background has
dial interval [Q 10] and the angular one [B/2] are discretized S' = 0, the source terBy, = 0 in Eq. [29); in this case we
by n, andn, equally spaced grid points, respectively. Tdble 10bserve no reduction of the convergence order.
summarizes the approximations made in this test.
We display in Fig[ L the radial profile of the componéfit
at the end of the simulatiot = 6, for three diferent numeri- V. EVOLUTION OF EQUILIBRIUM ROTATING
cal resolutions, x ny. Since the amplitude of the wave is NEUTRON STARS
suficiently small to be considered a linear perturbation, we
can compare the numerical solution with the analytical ex- To test the performance of the passive-FCF formulation in
pression for the Teukolsky wave at each time. The solutioran astrophysical scenario we perform simulations of the evo
agrees in the propagation speed of the wave, its amplitudle adution of isolated neutron stars. In this case the gravtsi
the asymptotic decay with increasing radius with the amalyt field is suficiently strong to need to go beyond the Newtonian
cal solution. The Sommerfeld condition at the outer bouypdar limit and at the same time the gravitational wave back-ieact
produces ingoing reflections with at most an amplitude sgjuaris suficiently small for the passive-FCF approximation to be



‘ S‘D: regular resolution high resolution
By r'mp-PD/I« 1.19 1.19
3 I'pp_pp/AF 10.5 10.5
AT Fout/ A 104.2 104.2
T Arpp_pp/AF 5 10
- N MD 80 160
E NrpD 346 690
X ] N pp 43 88
o _ n 469 938
E No 16 32
u] ]
10/ o ) AR i TABLE Il. Parameters used in the finitefffirences grid in simula-
10 ?A(./“’ E tions of neutron star evolution.
Ll | | L]
0.25 0.5 1

Scaled cell size ) . .
we have diferent resolution requirements inside the neutron

FIG. 2. Absolute errors of all the non zero components ofénsar  Star, where hydrodynamic variables have to be properly re-
hi at ¢t,r,6) = (6,0,7/2) in terms of the (scaled) cell size. Solid, solved, and outside, where it isfBaient to resolve the wave-
dashed, dot-dashed and dot-dot-dashed lines fit the emorthé  length of the outgoing GWs.

component’, h'?, h*# andh'”, respectively. Dotted line is the refer- oy the finite diference grid, we consider three radial do-

ence of fourth order of convergence. mains covering the computational domain (see Fig. 3): the
matter domain(MD) contains the neutron star, extends from
the center to a radiusyp_pp slightly larger than the stellar
radiusr.. This domain is covered by an equidistant radial
grid. Thepropagation domairfPD), extends fronfiyp_pp to

Star conter Extraction a radiusrpp_pp >> 1. In this region the radial grid spac-

| T« TMD—PD 8O0 "pp_pD Tout ing increases geometrically outwards, such that the GWs are
) ) Oj\ ) well resolved. Near the outer edge of the domain, the GWs
Matter domain Propagation Damping domain reach the wave zone, and hence it is an appropriate radius to

domain perform the GW extraction. Theéamping domaif{DD) ex-
tends fronrpp_pp to the outer boundary of the numerical grid
rout- We locate the outer boundary such that an outgoing wave
generated at the centertat 0 and traveling at the speed of
light reaches the outer boundary at the end of the simulation
This configuration minimizes spurious reflections due to the
outer boundary condition which where found in our prelimi-
nary work [58]. In the damping domain the radial grid spacing
valid. Tabld] summarizes the approximations made in the siincreases geometrically outwards and the wavelength of the
mulations of this section. GWs is not well resolved. This produces dfeetive damping
of the outgoing GWs which helps to reduce tHeeet of the
outer boundary conditions. To construct the finitéatience
grid we need to provide the values Qfip_pp, I'pp-DD;, Mouts
the number of grid points inside of the MD, the grid spacing
We construct the initial data using the numerical coste ~ Arpo-pp atrep-pp (which automatically fixes the number of
star_dirac of theLorene library [64], which computes axisym- Points inside PD), and the cell radial spacing ratio between
metric and uniformly rotating neutron stars in equilibriim ~ Consecutive ones at DD (which fixes the number of points in
the FCF formalisni [65]. We use a polytropic equation of statethis domain). We perform simulations with two resolutions,
P = Ko', with " = 2 andK = 100 (inc = G = M, = 1  labeled regular and high, whose grid parameters are given in
units), to construct a neutron star with a 550 Hz rotation fre tablefl.
guency, an ADM masMapm = 1.4874M, and a radius For the spectral grid we use two resolutions labeled regu-
R = 1518 km. The surface is located at a coordinate radiugar and high. The regular resolution grid consists of 5 radia
r. = 1286 km at the equator. The wavelegth of GWSs at thespectral domains covering the finitéférence grid, 4 domains
frequency of the fundamental f-mode® kHz as measured with 33 and 1 with 17 radial collocation points, and a com-
from our numerical simulations of Séc. WY C)As = 181 km.  pactified spectral domain fromg,; to infinity with 17 colloca-
Following [74] the (local) wave zone for our neutron star tion points. The) direction is covered by 5 collocation points.
model is located at >> 1 = 1/(2r) = 28.8 km. The high resolution grid consist of 13 spectral domains,-6 do
Thanks to the use of spherical coordinates, we can adapt thmains with 33 and 7 with 17 collocation points, and a com-
radial grid to cover dtferent domains of the space with the res- pactified domain with 17 collocation points. THhealirection
olution needed on each domain. In the case of a neutron st& covered by 17 collocation points.

FIG. 3. Scheme of the radial grid used in the code for rotatiewgr
tron star simulations.

A. Initial model and grid
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10— in the simulations of the next section, where the vettds
also evolved in time. The consequences of this modification
on the background metric are evaluated below. We evolve the
system of equations for the vectf for 10 ms. Due to small
numerical discrepancies between the initial datafNcand the
numerical stationary solution of the equations a pertiobat

in the vectoW appears and propagates outwards. The upper
panel of Fig[# shows four snapshots of the evolution of the
h™ component compared to the stationary solution (grey line).
Note that the perturbation reaches the outer boundary atabo
3 ms, well before the end of the simulation. This is due to
the unphysical superluminical propagation of the wave & th
damping domain, where its wavelength is unresolved. How-
ever, due to the smallness lof at the outer boundary, about

3 orders of magnitude smaller than at the center, spurious re
flections are not noticeable in the simulations. At the end of
the simulation the outgoing wave leaves the numerical domai
10— T T T and an equilibrium configuration remains. We can compare
this solution with the initial stationary data to look for-nu
merical discrepancies. At the center the initial configorat

is recovered within- 10% accuracy. For distanceg . > 10

(see upper panel of Figl 4) there are larger deviations, l@ad t
components ofl decay approximately as? instead ofr 3

as in the initial stationary model. Since gravitational esv
are contained in the part bff decaying as?, the erroneous
decay observed in the simulations at large distances aidl le

to a constantfiset in the computed gravitational wave ampli-
_10§ E tude. This dfset can be comparable to the amplitude of GWs
107 7 produced by small perturbations (seel [58] for more details)

T VY RS S B We discuss the possible causes for this behavior below.
0.1 1 10 100 _ .
rir, One important reason for the appearance ftéeds is the

accuracy of the numerical solution of the elliptic equasion
FIG. 4. Radial profiles ofil for numerical simulations of neutron We have performed simulations increasing the spectral grid
stars. The upper panel shows four snapshots of the evolafibii  resolution, but keeping the same regular resolution fofithe
and the initial stationary solution (grey line). The lowanel shows  nite difference grid. The spectral grid resolutioffieats the
the componentl™ (black lines),h” (blue lines), and¥# (red lines)  accuracy of the computation of the backgrodvhdomputed
for the initial stationary configuration (dotted lines),dathe final  at the beginning of the simulation. The lower panel of Elg. 4
configuration at 10 ms (dashed lines for the regular and $ioles  shows the final configuration of the diagonal components of
for the high resolution spectral grid). hil for the regular and high resolution spectral grid, compared
to the initial equilibrium configuration. The error at thenter
of the equilibrium configuration at the end of the simulation
does not improve with respect to the regular resolution spec
B. Equilibrium neutron stars tral grid. The erroneous decay bf improves significantly
for the ™ component, and we recover the correct decay
Before attempting to solve the full coupled evolution of in the whole propagation domain. However, tifé andh##
spacetime and hydrodynamics in neutron stars, we perforffomponents do notimprove significantly. Therefore, theee i
simulations in a more simplified setting. We evolve the hy-Strong sensitivity of thé" component on the spectral metric
perbolic sector of the passive FCF formalism in a fixed nonresolution, and hence on the accuracy of the computation of
trivial background (non-vanishiny, ', ¢ and hydrodynamic V, because the variables h appear in the leading terms of
variables) corresponding to the equilibrium configuratba  the equations fow, Egs. [9)-{(Ilt). However, spectral resolu-
rotating neutron star. Therefore, we evolve stationaraihi  tion does not seem to cure the problemafthandh# which,
data for the variable vect&l and keep the variable vector ~ as we show below, are related to other sources of inaccuracy
andV fixed during the evolution ofV. in the solution ofV. Because of the better performance of the
oOur fiducial model has regular resolution concerning botr1igh resolution spectral metric we use this resolution for a
the finite diference grid and the spectral one. The backgroungimulations hereafter.
model is computed with FCF gravity, but we recompute the To check the fect of the finite diference grid resolution
elliptic part, V, at the beginning with the CFC approxima- we have performed simulations with the high resolution grid
tion, i.e., the background is evolved in the same way as it ikeeping the high resolution spectral grid fixed. The finife di

"
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FIG. 6. Same as figl5, but we compare simulations using the @p@xzimation (thin lines) and the full FCF metric (thick éinfor the
background metri¥/.

ference grid resolutionfBects the accuracy of the solution of to a finite spectral grid resolution, the approximating of th
the vectorW, i.e. the evolution ofil. In Fig.[§ we plot the vectorV by the solution of the CFC equations instead of the
time evolution of the components of the tensdr(left panel  full FCF elliptic equations might also introduce small ego
for the diagonal terms and right panel for non-diagonal 8rm in the vectoV, which are sfficiently large to explain the ob-
atr/r, = 19.44, for the two finite diference grid resolutions. served dsets. Although we still cannot solve the FCF elliptic
This coordinate radius is close to the outer boundary of thequations with CoCoNuT in a simulation with spacetime evo-
propagation domain and the inner edge of the extraction rdution, for the case of fixed vectotsandV considered in this
gion for GWs (see next section). About 1 ms after the besection, we can take the full FCF solution fércomputed by
ginning of the simulation the outgoing wave reaches the exthe initial data solverotstar_dirac. We have performed simu-
traction radius visible in Fid.]5 as a sudden rise of all com-ations with the regular and high resolution finitefdience
ponents ofhll. After the outgoing wave leaves the numeri- grids and the FCF background metric vectar The resolu-
cal domain the value df! does not settle down to the initial tion used for the spectral solver in the initial data gerwrat
equilibrium value, but to anfset value, decaying as®. All rotstar_dirac, fixes the numerical accuracy of the vector
components converge with finiteftBrence grid resolution to  Unfortunately, due to internal code limits aftstar_dirac, the

an dfset value. The fiset of the componettit” cannot be ap- maximum resolution that we could achieve was 8 radial do-
preciated in Figl b since it is much smaller than in the othemains, 5 with 33 and 3 with 17 collocation points, and 17
components. collocation points in the direction. This resolution lays in

between the regular and the high resolution spectral gadd u
Apart from the numerical error in the computatiorvoflue
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FIG. 7. Quadrupolar component of the gravitational waveaetéd from simulations of an oscillating neutron star. \Gepare the amplitude
computed using the direct extraction method (black dasimed With the quadrupole formula (orange dashed line). \We plot the @fset-
corrected waveform (black solid line) and the non-pertdrbeutron star simulation (black dotted line) which we usthacorrection.

for CFC metric computations. Figl 6 compares the evolution C. Perturbed equilibrium configuration of rotating neutron

of h'l at the GW extraction radius with the CFC and the FCF star

background. Thefiset inh®, h¢¢ andh' is reduced when the

CFC approximation is removed and the background is com- The last test consists in the evolution of an oscillating-neu

puted with the full general relativistic FCF formulationhd  tron star with coupled hydrodynamics and spacetime evolu-
offsetinh™ increases, however, although this is expected sincgon, i.e. we evolve the coupled system fdrV andW in the

the resolution of the spectral grid is lower in the FCF casath passive-FCF approximation. We use the regular resolution fi
in the CFC case. We observe no change in tiiged of then™  nite difference grid and the high resolution spectral grid. We
component. initiate the oscillations by adding a smalk 2 velocity per-

We conclude that the main reason for th&set inh'i at  turbation (about 1% of the speed of light) to the stationary
large distance from the source is the accuracy of the compunitial data used in the previous subsection. Previousrprel
tation of the vectoW. Both the resolution of the spectral grid inary studies|[58] show that the gravitational radiatios ba
and the neglected terms in the elliptic part due to the passiv be extracted close top pp but still inside the propagation
FCF approximation are responsible for this loss of accyracydomain, where the wavelength of the fundamental mode is re-
affecting in each case filerent components dfi. This de-  solved by about 5 grid points in the regular resolution finite
fines the spectral grid resolution necessary for the sinmmiat ~ difference grid.
in the next section, but the use of the passive-FCF approxima For asymptotically flat spacetimes, as the one used in our
tion still introduces an fiset which cannot be removed. The Simulations, itis possible to compute the amplitude of tlis p
resolution tests show that the finitefférence grid is adequate polarization of the gravitational wave, i.e. the real pdrthe
to evolveW, and is not responsible for thefset. ¥, Weyl scalar, detected by an observer at a distéhaegth

The order of convergence of the code iffidult to evaluate an observation angle with respect to the rotation axis as

due to the fact that if we increase the finit€eience grid res- . h*(RO,T)-h*R 6,T)
olution the solution converges towards afiset solution and h.(R©,T) = lim 5 :
not to the equilibrium one, and at the same time tlflisai con- ) o )
verges with the spectral grid resolution and fieated by the [N axisymmetry, the cross polarizatioh,, vanishes. In
passive-FCF approximation. However, we can check the timg€neral, one should compute outgoing null geodesics fdr eac
behavior of the stationary solutions after the outgoingavav ~ @ngled and determine the observation angleand the dis-
gone. In Fig[5 the time evolution of dfii-components suf- tancer, _and then use.the numerical valuehffat the extrac-
fers a time-drift which is due to numericalffiision. We fit ~ tion radius to determiné, (R, ©,T). Thanks to the equato-
the evolution of theh®-component betweeq, = 4 ms and rial symmetry, the curveg = _n/2 on E_t are n_uII geodesms,

t, = 10 ms toh®(ty) + C - (t, — t,)P. The fitted value for and will be observed at a distan&ewith inclination anglg

the powerp is 1.7 and 18 for the regular and high resolution ® = /2. The d|sta_nce to an observer located at a coordinate
simulations, respectively. If we consider ti@t~ ArP, we  radiusr can be easily computed as

can also compute the power ps= 10g(Creguiar/ Chigh)/109 2, r r
which is 196. Therefore, the order of convergence is close R(r) = f Vyr(r,0 = n/2)dr = f (r,0 = n/2)*dr. (33)

to second-order, due to the mixture of implicit and explicit 0 0

terms in the fourth-order Runge-Kutta scheme. If we apply For our neutron star model, the spacetime surrounding it is
this analysis to other componentstdf, we find a similar or-  not extremely curved, and radial null geodesics at other an-
der of convergence. gles are approximately curves with consténie. @ ~ 4. If

(32)
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FIG. 8. Gravitational wave extracted from simulations ofaatillating neutron star. Upper and lower panels show tredaipolar and
hexadecapolar component respectively. On each panel wpazernsimulations for regular (dashed lines) and high (doties) resolution
finite differences grid. Theffset-corrected waveform computed with the direct extraati@thod (black lines) is compared to the PN method
(quadrupole and hexadecapole formulae, orange lines).

we integrate the distand®as in Eq.[(3B) at dierent angles,  write the amplitudes of the fierent multipoles as volume in-
the diference between equator and polar axis is ab®@49%. tegrals over the matter sources. Truncating the integtdiea
Hence, for neutron stars we can safely comgytat any an-  lower post-Newtonian level, i.e. with Newtonian sourcée, t
gle using the numerical value of at the extraction radius, quadrupolar component results in the well known quadrupole
located atey/r. = 19.44, as formula [75]. In axisymmetry the quadrupole formula reads

2 (Fexts 6, 1) — (T exts 6, 1) R(Fex) 2
h.(R6,T) ~ e 5 ext Fj”, (34) AES:B‘/]%%{ f D(322—1)r2\/§drd6dcp)}, (36)

whereT =t — R/cis the retarded time. Note that Ef.[34) is . o o
approximate and valid only in the wave zone, i.e.ffigg >>  With 2= cosé. Using the continuity equatiod;, = 0, one of

AF. the time derivatives can be removed analytically (cf! [30])
In axisymmetry and with equatorial symmetry, the multi- q
polar decomposition of the radiation field lis [74]: =8 /%d_{f D (\/”(322 -1)
t

1
h.(R6.T) = = (ASZ(TYTE220(0) + AZZTE24%0) + ...) (35) N R d‘p)}’ @37)
We have extracted the amplitude of the 2 and 4 multipoles, _ o
AS2 andAg2, respectively, from the numerically computed ~ wherev" = oV - g'. The latter formula is more convenient
For post-Newtonian sources, as in our case, we expect the arfffom the numerical point of view, since only one time deriva-
plitude of the multipoles to decrease witfy4]. We were un-  tive has to be evaluated numerically. We use it in this work.
able to extract higher-order multipoles because of thelsmal In equatorial symmetry, the hexadecapolar component is
ness of the signal, which made the numerical extraction to§76,/77]:
noisy.

. e 4

An_ alterr_1at|ve approach to compute the grawtauongl wave Eg _ @d_ {fD (724 _ 62+ §) (4 Wdrd@dgo)}.

amplitude is to use the post-Newtonian wave-generation for 126 dt¢ 5
malism. This is possible if the sources allow for a post- (38)
Newtonian expansion, i.e.v{c)> ~ M/r, < 1. For slow- In a similar way as for the quadrupole formula, it is possible
motion sources| [74], for which, << 1, it is possible to to remove one time derivative using the continuity equation



150 4 } T {2 i T H 4T i
, f i HL ey
5 100 L —
8o | i
F 50 o .
w L
2.0 -
= I i
L, 1.5 —
o2 1
— 1.0 -
= |
u 1 1
0.5 ! n
"0 3 4 5
f [kHZ]
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of an oscillating neutron star.
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(cf. [76,777):
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Upper and lower panels shuav t
quadrupolar and hexadecapolar component respectively.ea®h
panel we compare simulations for regular (dashed lines)hegial
(solid lines) resolution finite dierences grid. The Fourier transform
of the dfset-corrected waveform computed with the direct extractio
method (black lines) is compared to the quadrupole formadange

ol o2+

v ((3 — 7221 - 22)] 3 Wdrd@d@}. (39)
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corresponding to the model in the previous section with the
same resolution, but fixdd andV, and no initial perturbation.

In this case we do not observe any oscillation, since the star
itself is not oscillating, but anféset appears of similar magni-
tude as in the oscillating case. We can use the value offthe o
set at each time from the non-perturbed simulation to remove
the dfset in the oscillating simulation by simple subtraction
of both gravitational wave signals. In that case, the coedbc
signal (solid line in Fig[l7) agrees with the quadrupole for-
mula within 5%. Therefore, the only big discrepancy with the
quadrupole formula is due to the error committed in the com-
putation of the vectoY, using the passive-FCF approximation
and the spectral grid resolution. The quadrupole formusanis
approximate formula, which is valid in the slow-motion post
Newtonian limit. The error in the formula should be of the
order //c)?> ~ M/r.,, which for our system is 17%. There-
fore, the 5% discrepancy in phase and amplitude is compatibl
with the approximation error of the quadrupole formula.

In the case of the hexadecapolar compon@fgt (lower
panel of Fig.[([8) and{9)), the direct extraction method show
an important contribution due to numerical noise. Note that
the hexadecapolar component is about a 2% contribution to
the total wavefornmh,. Therefore, this numerical noise ap-
pears because of errors in the evolutioh'dbelow 1%, which
are expected in our simulations. In this case the hexadézapo
formula provides a good estimate of the phase and the fre-
qguency ¢ 5%), however, the error in the amplitude is about
50%. Note that for the hexadecapolar component there are
possible sources of error in both the direct extraction wth
due to the smallness of the amplitude, and in the hexadeca-
pole formula, due to the three numerical time derivatived th
we have to perform. Therefore, it isfiicult to disentangle
which one is a better approximation to the waveform. Nev-
ertheless, both methods provide a reasonable agreemdnt, an
we are confident that the amplitude computed with any of the
two methods is a rather good order-of-magnitude estimate of
the hexadecapolar component.

To test the &ect of the finite diference grid resolution,
we compare simulations with regular and high resolution,
and the same high spectral metric resolution. Elg. 8 shows
the dfset-corrected values d&53 and AE2 for both resolu-
tions. For the fset correction we use the corresponding regu-
lar and high resolution simulations of the previous section
We compare with the post-Newtonian wave generation for-

In Fig.[d, we plot the time evolution of the quadrupolar malism (quadrupole and hexadecapole formufzi¢, method

componentA52 computed with Eq.[{34)drect extraction

for short) for both resolutions. In both methods, direct ex-

hereafter) compared to the result of the quadrupole formuldraction and PN method, we observe a damping of the wave-
There is a remarkable good agreement in the frequency, phagams which is reduced when increasing the resolution. The
and amplitude of the gravitational wave except for a coristanPN method only uses information in the GW generation zone
offset. The Fourier transform of the waveform is shown in(r < r,), contrary to the direct extraction method, where the
the upper panel of Fig[19). Within the numerical frequencywave is propagated from the generation zone to the wave zone.
resolution of the Fourier transform of the waveform, aboutHowever, in both cases the damping observed in the wave-
0.02 kHz, we do not observe ftierences in the frequency forms is of similar magnitude. That means that the source of
between the direct extraction method and the quadrupole fothe damping must be caused by numerical inaccuracies in the
mula. That sets an upper limit of 1% for the frequency dif-region close to the star, but not in the propagation domain.

ference in the fundamental oscillation mode,= 1.66 kHz.

In other words, we observe a numerical damping of the os-

The phase dierence between both GW extraction methods iscillations of the star itself, but not of the waves duringithe
about 5%. The dash-dotted line shows the gravitational wavpropagation towards the GW extraction point.
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VI. SUMMARY AND CONCLUSIONS We were able to get convergent results increasing the spectr
resolution, however, anfiset still remained due to the passive
We have reviewed the fully constrained formalism, which FCF approximation. We conclude that GWs back-reaction
is a natural generalization of the CFC approximation of GR Should be included in the future, as well as an improvement
and we have expressed the system of FCF equations in a forff the accuracy of the numerical solution of the elliptic agu
suitable for numerical simulations. We have presented a ndiOnS, in order to remove thesésets. o
merical scheme to solve the FCF system using spectral me- We note that all simulations that we have performed in this
thods for the elliptic part and finite fierence schemes for the WOrk make use of spherical orthonormal coordinate grids in
hyperbolic part. In the simulations presented here we hav8XiSymmetry. Our simulations are among the few multidi-
neglected the back-reaction of the GWs onto the dynamic@ens'onal simulations of Einstein equations in spherioal ¢
which we call passive-FCF. This work focuses on the stabilit 0rdinates. In the context of+3 formulations, some of the
and convergence of the hyperbolic part of the FCF equati0n§',r5t_ simulations of black hole formation gsed spher_|cal co-
since the stability issues of the elliptic part were conside Ordinates|[80,_€1], however the formulations used in those
by [54]. We have presented a fourth-order finitéfatience Worl_<s were _unstable leading to exponentially growing con-
scheme to solve the system of hyperbolic equations thatsnak&traint violations. Although some work has been done to re-
use of implicit relations, to provide the necessary stgbif formulate the BSSN equations in order to ease its evolution

the algorithm. We have solved the equations in spherical cd SPherical coordinates [82-84], these reformulationssha
ordinates and axisymmetry. been only tested for 1D numerical problems. On the other

Qand, spherical coordinates are widely used in the null for-
mulations (see [26]), mostly in the context of Cauchy match-
ing, although stand-alone characteristic formulatiorvetsdill

We have performed convergence tests for the hyperboli
part, in which the gravitational radiation of the systemns e
coded, using a simple vacuum test with known analytical so ; o 5
lution: the Teukolsky waves. We have shown the stability and’®"Y few_ nhumerical applications (e.g. 1281 29]). . .
convergence of the numerical evolution which is consistent We th!nk that th? reason for the success of our S|rr_1ulla'g|ons
with the fourth-order convergence of the numerical scheme! sph_encal (_:oordlnates is wofold. First, we use an |mp_l|c
We have performed the evolution of equilibrium neutronsstar explicit algorithm to solve the system of hyperbolic eqoas,

and checked that the numerical code is able to maintain Sucwhereas we solve implicitly the terms in the equations egdi

configurations in equilibrium keeping the hyperbolic part t to instabilities. Second, only two degrees of freedom of the

an accuracy of second-order. We interpret the drop to secon@dYStem the GWs, are evolved by means of hyperbolic equa-

order convergence in all our simulations with matter cohtent'ons'twh'le_}_t;f rest.ar;e thte reSl;I'E(c):thhe compblftanon_qlliﬁ
as an inconsistency in our numerical scheme in this regimee,.(zjwitr']ons't 'St”g’.‘l'.? (teatﬁreo . |s|pc|>53| .tﬁ' crt:/(\:llaampr
due to the mixture of explicit and implicit terms in the Runge vide the extra stability to the numerical aigorithm. Ve n

Kutta scheme. In order to improve the order of convergencéure’ whether both requirements are indeed necessary-to per

one should use IMEX methods to solve the system of equal™ stable simulations in spherical coordinates, or waeth

tions (66 67]. Although this approach is beyond the scope ofhe implicit-explicit scheme gives rise to the stability toe
this work’ it may be considered in the future numerical algorithm. It would be interesting to explore the

Finally, we have performed simulations of the evolution Ofbehawor of purely hyperbolic formulations with our imptic

an oscillating equilibrium neutron star. We have extrau:tedexloIICIt algorithm in spherical coordinates.
the gravitational wave signature from the metric composient
in the wave zone. We have compared the results from the
direct extraction method with calculations using the post-
Newtonian wave generation formalism, namely the Newto-
nian quadrupole and hexadecapole formulae. We found that |- C.-C. acknowledges support from the Alexander von
the approximate quadrupole formula describes very accdfumboldt Foundation. This work was also supported by
rately (~ 5%) the quadrupolar component of the wave, dethe Collaborative Research Center on Gravitational Wave
spite the fact that its nominal error is somewhat larger ( Astronomy of the Deutsche Forschungsgesellschaft (DFG
20%). Similar good agreement of the quadrupole formulaSFBTransregio 7) and by the grant AYA2010-21097-C03-01
with BSSN simulations was found by [78,79]. We were able©f the Spanish MICINN. We would like to thank M.A. Aloy,

to extract the hexadecapole component of the wave, although?- Font, P. Montero and E. Muller for their useful comngent
numerical noise is considerably larger than in the quadeupo and discussion.

component. The comparison with the Newtonian hexadeca-

pole formula agrees in frequency, phase and order of mag-

nitude, however the comparison is limited by the numerical ~APPendix A: Runge-Kutta schemes and partially implicit
accuracy of both wave extraction methods. We found that the evaluation of the S, term

evolution of the hyperbolic part of the metric is very semsit

to inaccuracies in the elliptic sector, resulting ifisets in the In this appendix we describe with more details the numeri-
gravitational wave signature. The main sources for inacur cal method used in the evolution of the variatMéswhich has
cies are the number of collocation points in the spectraksol a partially implicit evaluation of th&,, term in the evolution

for the elliptic part and the absence of back-reaction termsof thevv'k' tensor. They are based in the explicit Runge-Kutta
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schemes of second, third and fourth order. We show the pro- 2. Based on the third order Runge-Kutta scheme:

cedure with the second and third order ones.
The optimal second and third order

schemes | [85] of a general evolution equation in tine
for the variableu of the formu; = L(u) are respectively

u® = u" + ALL@UY),

1
g = 5 (un +u® 4 At L(u(l))), (A1)
and
u® = UM+ At L"),
3,1 1
@ = 20"+ Zu® 4+ ZAt L@
u = Zuh+ ZuD 2 (u),
1, 2 2
U= 20+ U+ ZAtL), (A2)

whereu” = u(t") andu™? is the numerical approximation for

the valueu(t" + At).

The corresponding methods used in order to evile
based on the previous Runge-Kutta schemes are:

1. Based on the second order Runge-Kutta scheme:

HI® = RO 4 At S (RO, ATO Wi yo)
AID = AT 4 At S, (RO, FIO, WO Yo o)
WD = WO 4 ALS,, (HIO, AT, vy

+ AtSyo(w)®, v,

iD= Tpior o Ipio | Tags, (io, i, wio), yo
2 2 2 9 9 9 9
. 1. 1.
A1) — Z Alj) 4 = Alj ()
27 T2
1 o -
+ EAt SA(h"(l), AI@), Wlkj(l)’ um, V(n)),
oy _ Lior i 1 ii(0+1) Aij(ne1
\le ) = E\le + E\le + EAt S\,\/]_(h”(nJr ), /A\”(nJr ), V(n))

+ %At Swa(W)®, v, (A3)

Runge-Kutta

HI® = KO 4 At S (IO, AT W0 o)
AT = RO 4 AL (RO, IO WO Yo yo)
WO = W0 | AL S, (W1, AW, y o)

+ AtSyo(wW)®, v,

N 3 . 1 . 1 o .
Hi@ — ZRiM | ZpiI@ L ZAt S, (KO, AT W@ ()
4 + 4 + 4 h( ” ” k 9 )’
Al@ _ Z Al % Al %SA(hij(l), NORWORTORVEN
ji@ _ 3y, Lo, 1 i@ AiE
\le = Z\le + Z\le + ZAt Swl(h”( ), A”( ), V(n))
1 .
+ ZAt Swa(W)®, V)
HieD = Lyio , 2hie) 4 Zas, (10, K@), W@, vo)
3 3 3 b b 9 9
o 1. 2 .
Aiesn _ Lo 2 i@
37 T3
+ 2AtS;(HI@, AI@, i) )y
3 A B ) k B B )
N 1 2 2 N .
Wlkl(n+l) — §Wlk](n) + §Wlk1(2) + éAt Swl(hlj(n+l)’ Alj(n+l), V(n))

+ gm Swa(W)@, v®). (A4)

Appendix B: Exponentially growing unstable solutions of tre
wave equation in spherical coordinates

This work addresses the numerical solution of the hyper-
bolic part of the FCF equations, therefore it is interestimg
examine the linear stability properties of these equatians
spherical coordinates. It is possible to rewrite Eg$. (9 an

(10) as
ohil

T 2Ny 6Al 1+ §;, (B1)
Al 2

If we take the time derivative of Eq._(B1), and substitute in
Eq. (B2), we obtain a wave equation fot:
azhij

o N2W74Ahij = éwave

a2 (B3)

It can be easily shown that for— oo, and ifhil is sufficiently
small to be regarded as linear perturbations of Minkowsky
spacetime, then

Rl

g _ AN =0,

a2 (B4)

which represents waves traveling at the speed of light, and ¢
be interpreted as gravitational waves.

Since the system of hyperbolic equatioh¥ (9-11) contain
terms that behave as a wave equation, it is interesting tty stu
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the potential numerical problems of the numerical solutbn The imaginary and real part of are
the following scalar wave equation for an arbitrary scdlar

90
— - AD® =0. B5
5 (B5)
k2 > 5 . 1/2
The linear stability analysis of an equation is independént I (w) = [—E_ % + ("7 + %) + ':—2 , (B10)
coordinates. However, if we assume separation of variables
in the test functions used in the analysidfaliences can arise k (B11)

between dferent coordinates. For a set of coordinates, e.g. Rw) = r1(w)’
spherical coordinates, @, ¢), the numerical discretization of respectively. Fok # 0 there is always a non-vanishing con-
the equations follows the direction of the coordinates.r&he tribution to the imaginary part and hence the oscillatotyso
fore we can assume that in the neighborhood of a numericaions are unconditionally unstable and can grow exponintia
cell it is possible to describe the numerical solution as-com!n the typical numerical grid that we use in our simulations,
bination of a base functiorbs = f(r)g(6)h(¢) which accepts the minimum value for is rmin ~ Ar and the maximum value
separation of variables. For a numerical scheme in CartesidOr K is kmin ~ 1/Ar. That sets the value @b for the fastest
coordinates, Xy, 2), the base functions would befféirent, ~growing unstable solution to
Oc = F(X)G(Y)H(2), since the numerical method is adapted
to a diferent set of coordinates. However, physical global so-
lutions of Eq. [B5), which are numerically described usiig e
ther®s or @, should be independent of the coordinates used R(w) ~ ii
in the numerical evolution. In order to test the stabilitytioé Ar
numerical solution of Eq[(B5) in a numerical discretizatio
based in spherical or Cartesian coordinates, we need to per-
form the linear stability analysis of functions of the forbg
or O¢ respectively.

In the case of Cartesian coordinates we choose

 I(w) ~ iA—lr. (B12)

Therefore, the numerical discretization of a physical solu
tion @ in spherical coordinates is generically unstable to lin-
ear perturbations in a neighborhood of any numerical cell,
B = dt-koky-ka) (B6) that grow exponentially. The fastest gr(?wing unstable mode
appears closest to the center,~ Ar, with a wave-vector
which is linear and separable iny andz, beingky, ky andk, K ~ 1/Ar, angular dependende= 0, and an oscillatory fre-

constants. Substituting into E@_(B5) we obtain the dispers duency JAr « 1/At. Therefore it looks like point-to-point
relation noise in both space and time. It grows in a time-scal&taofi-

ining the simulation in a few iterations, independently od t
W =K+ I+ I (B7)  resolution used in the simulation. It is expected that fer th
case of the evolution of the componentshdfa similar pro-
For real values ok, ky andk; it results in real values ab,  blem arises as in the case of the scalar wave equation. Indeed
meaning thatbc accepts oscillatory solutions, but not solu- our first attempts to numerically solve those equationsauith
tions exponentially growing of decaying. Therefore a numer any special treatment show such an unstable behaviourland al
cal algorithm that uses locally a basis with linear p¢t i.e.  the features described above can be observed (see [68]).
numerical schemes based in discretization in Cartesian coo

dinates, will be stable. In order to avoid this numerical problem we give a spe-
In the case of spherical coordinates we choose cial treatment to the terms leading to the instability,, itee
- . Laplacian ofh'). We compute the evolution for the spatial
D = €YM@, ), (B8)  derivatives o'l separately (Eq[{11)), and we treat the terms

L i ) ) containing spatial derivatives @f! implicitly in our numeri-
Wnt"Ch is linear and separable in variablesy and, being 5| algorithm (this term is contained By1). Furthermore,
Y["(6, ¢) the spherical harmonics akdconstant. In this case \ye yse a Kreiss-Olinger dissipative tefm/[71] to elimindie t
the dl_sper5|on rel_at|on, making use of the properties of th‘high frequency noise corresponding to exponentially gnowi
spherical harmonics, reads solutions. Only using the combination of these two proce-

I0+1) 2k dures we were able to perform stable numerical simulation of
w? =K+ S+ i (B9)  the FCF equations in spherical coordinates.
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