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ABSTRACT

We perform a global linear perturbative analysis, and itigate the oscillation properties of
relativistic, non-selfgravitating tori orbiting arounéutron stars in the slow rotation limit ap-
proximation. Extending the work done in Schwarzschild ardrfackgrounds, we consider
the axisymmetric oscillations of vertically integrated ia the Hartle-Thorne spacetime. The
equilibrium models are constructed by selecting a numbédifigfrent non-Keplerian distribu-
tions of specific angular momentum, allowing for disc sizes 0.5 — 600 gravitational radii.
Our results, obtained after solving a global eigenvaludlem to compute the axisymmetric
p-modes, indicate that such oscillation modes could accaithtmost observed lower(,)
and upperi;y) high frequency quasi-periodic oscillations for Sco X+igd#&or some Z sources
and Atoll sources withv;, = 500 Hz. However, when < 500 Hz, p-modes oscillations do
not account for the linear relation; = Avy, + B, B # 0 between the upper and the lower
high frequency quasi-periodic oscillations that are obseiin neutron star low-mass X-ray

binaries.
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1 INTRODUCTION

Quasi-periodic oscillations (QPOs) observed in the X-mgctra of
binary systems are transient phenomena associated tdhvaondl
states and state transitions. Those observed at high freigse in
the range~ 200 — 1200 Hz ), are referred to as
high frequency QPOs (kHz-QPOs). An important feature ohsuc
kHz-QPOs is that they usually appear in couples consistirg o
lower and an upper kHz-QPO. The entire set of kHz-QPOs d=tect
in black hole binaries (BHBSs), i.e. binaries having a blackehas
an accretor, contains only seven sodfcésur of whictfl show both
the upper and the lower kHz-QPO. On the other hand, therepare a
proximately20 neutron stars binaries (NSBs), i.e. binaries having a
neutron star as the accretor, that show the kHz-QPO pheramen
ogy (serO) for a recent review about QPOs in NSBs)
including both Z and Atoll typel (Lewin & van der Klls 2006).-In
terestingly, these QPO frequencies correspond to the drezigs
of orbits a few gravitational radii away from a stellar-massn-
pact object, which explains why kHz-QPOs have been coresider
a promising tool to investigate the gravitational forcethi@ strong
field regime. It should also be noted, however, that in a reeerk
ImO) have shown that the NSB J1701-462 psovide
an example of a source that, during the same outburst, fisesen
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1 se i i 6) for a review on X-ray propes of
BHBs.

2 GRS 1915+105, GRO 1655-40, XTE J1550-564 and H 1743-322.

spectral and timing characteristic of both Z and Atoll sestdBe-
cause the kHz-QPOs detected are remarkably different itwbe
spectral states, and because such differences cannotibetatt

to changes in the gravitational field of the central compéped,
the authors conclude that the coherence and rms amplituthe of
kHz-QPOs cannot be used to deduce the existence of the inserm
stable circular orbit around a neutron star.

Although it is still not clear whether there is a unique physi
cal mechanism responsible for the generation of kHz-QP @etim
BHBs and NSBs, a few observational evidences have emerged ov
the years which may indicate the existencaved distinctmecha-
nisms.

e First of all, the kHz-QPO peak separation in NSBs is typi-
cally within 20% of the neutron star spin frequeney,in, or half of
that 5). In particular, sources within < 400H z
always haveAr ~ vgpin, While sources withspin > 400H 2 al-
ways haveAv ~ vgpin /2 (Muno et all 2001).

e Secondly, while in NSBs the frequencies observed may
vary by a factor2 in association to changes of the luminos-
ity, the frequencies in BHBs are much more stable and vary at
most by 15%, even when the luminosity changes by a factor
3 (Remillard & McClintock| 2006). This effect is clearly shown
in Fig. 1 by Belloni etal. [(2005) or in Fig. 3 by Torok et al.
), where the upper frequencies;, are plotted versus the
lower frequenciesyr,; showing that while kHz-QPOs from @in-
gle BHB are represented essentially as a point, kHz-QPOs from a
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singleNSB are scattered along straight lines, the so called “Bursa particularly in terms of the rotation law and the extensidrihe

lines” (Abramowicz et dl. 2007; Térok etlal. 2006).

e An additional peculiar property of twin kHz-QPOs in the four
BHBs where they have been simultaneously observed is ticht su
frequencies appear in couples obeying the rati@ to a high de-

gree of accuracy (see Fig.1 t MOOS)). Overlést

accretion disc.

The plan of the paper is as follows: in Sectidn 2 we introduce
the basic assumptions and equations employed in the defirfi
our general relativistic, vertically integrated tori. Ie&ion[3 we
derive the perturbation equations, and in Sedfion 4 wehisptop-

few years there has been an ongoing debate about the existencerties of the non-selfgravitating equilibrium models $tadIn Sec-
of the same phenomenology among kHz-QPOs in NSBs. Observa-tion[d, on the other hand, we present the results of the gl

tions, in fact, clearly indicate that Bursa lines = Avy, + B of
kHz-QPOs in NSBs are not compatible with a constant2 ratio

(A = 1.5, B = 0), but it remains controversial whether the peak
at 1.5 in the distribution of the observed; /vy, ratios is physical
or not (Belloni et all 2005; Torok et bl 2006; Belloni eflabov;
[Torok et all 2008; Boutelier et al. 2010).

ysis, while Sectiofil6 is devoted to a discussion of the inagilins
for explaining kHz-QPOs in NSBs. Finally, Sectioh 7 congadur
conclusions.

In the following we will assume a signatude-, +, +,+}
for the space-time metric and we will use Greek letjers, A, . ..
(running from 0 to 3) for four-dimensional space-time tensam-
ponents, while Latin letters 4, k, ... (running from 1 to 3) will
be employed for three-dimensional spatial tensor compsn#ve

Several models have been proposed over the years to explainalso adopt a geometrized system of units by settingG = 1.

the physical mechanism responsible for the generation afkH
QPOs in the X-ray spectra of binary syste tal.&99
Stella & Vietr! [1999; | Lamb & Miller | 2003:| Abramowicz et al.
2003 Rezzolla et al. 2008; Zhang 2004; Arras ét al. 2006pain
ticular, the model proposed by Rezzolla €tlal. (2003) forkpROs

in BHBs suggests the existence of an oscillating torus atdha
black hole, and identifies the time variability in the X-rayes-
tra with inertial-acoustic modeg{modes) of the relativistic thick
accretion torus which acts as a resonant cavity forptineode ax-
isymmetric oscillations. The frequencies of the fundaraeand
the first-overtone modes appear approximately i a 2 ra-
tio, and within the range of kHz-QPOs depending on the spin of
the black hole and the size of the torus. Moreover, the mogel b
Rezzolla et al| (2003) also accounts for the ! scaling of the fre-
quency, wherél/ is the mass of the black hole.

The main properties of the axisymmetriemode oscilla-
tions of relativistic, non-selfgravitating tori orbitinglack holes
have been investigated in a series of papers either using-a li
ear perturbative approach by Rezzolla étlal. (2003); Morgeal.
M) (hereafter Paper | and Paper II, respectively) aouiin
non-linear general relativistic hydrodynamic simulasiaof both,
non-selfgravitating tori | (Zanotti et al. 2008; Zanotti &t 2005;
[Montero et al 2007) and also selfgravitating tdri_(Montetal.
,). The linear perturbative approach, computaliyp
less demanding, allows for a more detailed investigatiotnefpa-
rameter space. Overall, those perturbative analysis coedirthe
results of non-linear hydrodynamic simulations which eded that
the lowest-order eigenfrequencies appear in a sequenceatifia-
tegers 2:3:4..., for a wide range of models. It is also worting

that some of these modes have been related in the analysis perw

formed by Blaes et all (2006) to surface gravity waves, atlea
the slender torus limit.

However, it remains unclear whether a kHz-QPO model based

on axisymmetric inertial-acoustic oscillations is flex@nough to
explain the rich phenomenology of kHz-QPOs in NSBs, and in pa
ticular to account for the distribution of the upper and towdr
kHz-QPOs along the “Bursa lines” observed in NSBs. To addres
this question we perform a global linear perturbative asialpf
equilibrium thick discs around neutron stars, whose esfametric

is described in the slow limit approximation. The set of pdyed
relativistic equations is reduced to the solution of an igie
problem, following the approach described in Paper | anbhlar-
der to explore exhaustively the deviations from ghe2 ratio that
axisymmetric inertial-acoustic oscillations display, e@nsider a

2 EQUILIBRIUM TORI IN THE HARTLE-THORNE
SPACETIME

Equilibrium thick discs around a rotating neutron star aoe-c
structed assuming that their self-gravity can be negleatetthat
the background spacetime takes the form of the Hartle-Tehoret-
ric (Hartle & Thorne 1968), which describes the metric aan
slowly rotating neutron star. Since we are interested inréiggon
of the spacetime around the equatorial plane, we use cidaldr
coordinategt, w, ¢, z), and consider only the zeroth-order terms
in the ratioz/w (Wilson!1972; Novikov & Thorrle 1973), where
w is the cylindrical radial coordinate (see Eq. (1) in Pap€otl
this form of the Kerr line element). Then the Hartle-Thornetric
in cylindrical coordinates derives from the Kerr metric,Boyer-
Lindquist coordinates, by retaining only those terms wisigdfirst
order in the ratioa/w, wherea is the Kerr parameter, and by re-
placing the spin of the black hole with the angular momentdm o
the neutron star. In this way we obtain

2
A = w2—2Mw+a2:w(1—%+—)
w
2M
(1—?)7 (1)
2
A = w4+w2a2+2Mwa2:w(1+a—+2%a—2)
w w
~ ot )
2Maw  2J

where M is the neutron star mass, ajids the angular momen-
tum of the neutron star (Rezzolla et IMOOD, which we assum
to be constant. Then the line element of the Hartle-Thorngicne
becomes

ds® = (1—%>dt2+<1—%> dw?®
() w

—2wwdgdt + w dg® + dz* .

4)

In order to construct hydrostatic equilibrium models ofatet
ing thick discs we solve the continuity equati®n, (pu®) = 0 and
the conservation of energy-momentufi,7°# = 0, where the
symbol V refers to a covariant derivative with respect to the met-
ric @). Here,T** = (e + p)u®u” + pg™? are the components of

much wider parameter space than that studied in Paper | and Il the stress-energy tensor of a perfect fluid, withbeing the compo-



nents of the 4-velocityy the rest-mass densitythe energy density
andp the pressure.

It is also useful to introduce an orthonormal tetrad cartigd
the local stationary observer and defined by the one-forntls wi
components

w' = wy/A/Adt

w” =dz,

w? = VA — wdt) /w ,
W — w/VAdw . (5)

In this frame, the components of the four velocity of the flare
denoted by” and the 3-velocity components are defined as

R i,
@ Wall .

v = — , i =w,z,¢.
wtue

s

(6)

We consider a perfect fluid that follows a polytropic equatad

state (EOS) = kp”, wherek andy = dInp/d1n p are the poly-
tropic constant and the adiabatic index, respectively.tNekow-

ing Paper | & 11, we introduce a vertically integrated prassu

H
@)= [y (7)
—H
and a vertically integrated rest-mass density
H
Y(w) = / pdz, (8)
—H

whereH = H (w) is the local “thickness” of the torus. We further
assume thaP andX: obey an “effective” polytropic EOS
P=Kx", 9)

so that andI” = dIn P/d1In X play the role of the polytropic
constant and of the adiabatic index, respectively.

After the vertical integration, we enforce the conditiofi&ip-
drostatic equilibrium and axisymmetriy&. assume), = 0 = 9,)
and simplify the equation of energy-momentum conservatioa

Bernoulli-type form|(Kozlowski et al, 1978)

o P ¢ L
— (82 Inu — mazﬂ) )

E+P
wherel = —u/u, is the specific angular momentufd,= v? /u’
is the angular velocity and

(u") 7% = —(gst + 29916 + V2gg0) -
After simple manipulations Eq_{IL0O) can be rewritten as

(ut 2
2

(10)

(11)

l
0; In Ut - T Ol 0:;Q = (aigtt =+ 2Q&Z~gt¢ + Q28ig¢¢) .

(12)
By using the metric terms of(4) inte {IL0), we derive the faling
force balance equation for a non-selfgravitating disc etartle-

Thorne spacetime
1 dP _  M/w-Qww+Q) (13)
E+Pdow (1-2) +Qw?(2w —Q)’

w

1

whereF is the vertically integrated energy density, defined in com-
plete analogy td{7) andl(8).

3 PERTURBATION EQUATIONS

We next perturb the hydrodynamical equations introducinteE
rian perturbations of the hydrodynamical variables witlaenfonic
time dependence of the type

(5vﬁ,5v4’,5Q) ~ exp(—iot) (14)
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Table 1. Main properties of the equilibrium models studied. Front tef
right the columns report: the name of the model, the type e€iéig angu-
lar momentum distribution, the constant coefficiéntthe power-law index
q (cf. eq[21) or its range of values, the minimum radial size fordbee-
sponding sequence of tori, and the maximum radial size toséguence of
tori. The angular momentum of the neutron star is set to be 0.1 in all
of the models.

Model L(w) le q Lopin Lmax
Al const. 3.60 0.0 0.4 1.9
A2 const. 3.65 0.0 0.5 5.7
A3 const. 3.70 0.0 0.5 10.0
A4 const. 3.75 0.0 0.4 16.8
A5 const. 3.80 0.0 0.8 29.9
A6 const. 3.85 0.0 0.7 71.4
B1 power-law 3.0 [0.1, 0.15] 2.5 374.3
B2 power-law 3.1 [0.08, 0.15] 2.1 348.6
B3 power-law 3.2 [0.07,0.15] 1.9 279.6
B4 power-law 3.3 [0.05, 0.15] 0.8 318.4
B5 power-law 3.4 [0.04, 0.15] 2.5 363.3
B6 power-law 3.5 [0.02, 0.15] 1.7 265.3
B7 power-law 3.6  [0.006, 0.15] 0.4 327.1
B8 power-law 3.7  [0.001, 0.15] 1.9 276.7
B9 power-law 3.8  [0.001, 0.15] 2.6 299.1
B10 power-law 3.9  [0.001, 0.15] 2.7 281.6
C1 power-law  2.59 0.2 3.3 160.8
Cc2 power-law  2.15 0.3 5.3 548.8
C4 power-law  2.19 0.3 7.6 575.1
C5 power-law  2.29 0.3 1.4 550.9
C6 power-law  2.35 0.3 1.9 545.1
c7 power-law  2.39 0.3 0.7 156.6
c8 power-law  1.79 0.4 51.5 593.9

whered@ = 0 P/(E+ P) and where we have defined the vertically
averaged velocity perturbations respectively as

S S b= L [T
VY = — dv¥d V= — 6v®dz. (15
1% 2H/4{v z, 14 2H/7HU z. (15)

We assume that the Eulerian perturbations in the metrictifome
can be neglectede. dg., = 0 (Cowling approximation; Cowling,
1941). While this condition does not hold in general, it esggmts
a very good approximation in the case of non-selfgravitgtani.

To eliminate the imaginary part from the system of equations
we introduce the following quantities

SU = i6V® SW =5V, (16)

and after a bit of straightforward algebra, we derive théfoing
set of ordinary differential equations

3/2 ’
O'A(SU—FO(%(SQI—F {A (i) O —
w w

VA A\
A3/2 Aw ’ A3/2 P
A (F) 2753 (Q_“’)E+P}5W’O’
17)
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oZ {Q + Qln ( 2) +
Aw' 2 w Aw A Aoca
(18)
~ A , A P’
1) I'—oU
0dQ + N + {\/Z E+P
~(1 1 _/(r°A A '
U\/Z(w—Q)Aw2 ~ _
_<w4A+A2Q(2w—Q) rew =0,

(19)

wherea = 1/(u%)?, T = I'P/E + P, and the index indicates
the derivative with respect t@.

Equations [(1I7)E(d9) are thes- and ¢-components of the
perturbed relativistic Euler equations and the perturbaaticu-
ity equation, respectively. They can be solved numericaliythe
eigenfrequencies and for the eigenfunctionspafode oscilla-
tions of an oscillating vertically integrated thick disctire Hartle-
Thorne spacetime. In practice, we solve the system of empsti
(I2)-[19) as an eigenvalue problem using a “shooting” naktho
(Press et al., 1986) in which, once the appropriate boundainy
ditions are provided, two trial solutions are found, staytirom the
inner and outer edges of the disc respectively, and thesthane
matched at an intermediate point where the Wronskian ofwioe t
solutions is evaluated. This procedure is iterated untéra of the
Wronskian is found, thus providing a value f@and a solution for
0Q,0U, anddW. The numerical method employed here to solve
the eigenvalue problem is the same as that discussed in Paper
Paper Il, where a more detailed discussion can be found.

4 EQUILIBRIUM MODELS

First of all, we fix the angular momentum of the star which is de
fined asJ = IQ,, whereQ, = 27 /P, is the angular velocity of
the star. In geometrized units we have

2
Ls (ﬁ) 7.1363 x 10~*

T=5 W

(20)

wherel 5 is the moment of inertia of the star in unitskif*>g cm?,
which we take ad4s = 1.0, while P; is the period of rotation
in units of sec. For instance, the typical Atoll source 4U 1608-
52 (van Straaten et dl. 2003) has a mass= 1.7M, a spin pe-
riod of P = 1.61ms, and the angular momentum, computed from
Eg. [20), is therefore/ = 0.15. Even assuming a binary system
with an accreting neutron star that rotates as fast as thesfas
known millisecond pulsar PSR J1748-2446ad, namely with&3-1
msec, and with a canonical mad$é = 1.4M¢, would yield to

J = 0.26.

In Sectiond b and’]6 below we report results obtained after
assuming/ = 0.1. However, we have also solved the eigenvalue
problem for the casd = 0.2, without finding any significant dif-
ference in the results, so that our conclusions remain unygth

Next we define the distribution of the specific angular mo-
mentum? = ¢(w) within the disc. We consider tori with distri-
butions of specific angular momentum that are constant inespa
i.e. {(w) = const., and also tori with non-constant distributions
of the specific angular momentfirwe note that(w) = const.
is a useful mathematical case which leads to analytic irdaga,
while non-constant distributions of the specific angulammatum
are a more realistic assumption. In the casé(af) = const., the
value of the specific angular momentum must satisfy the tiomdi
lins < £ < lump, Wherel,,s and 4., are the specific angular mo-
menta of the marginally stable and of the marginally bouriit ém
the Hartle-Thorne spacetime (see €.g. Abramowiczlet aDJp0
On the other hand, in the case of tori with non-constant ibistr
tions of the specific angular momentum, we consider a power-|
distribution of the type

{ =Ll

(21)

where both?. andq are positive constants. The power-law angu-
lar momentum distributions are chosen such that the paosifo
the cusp is always located between the marginally bound faad t
marginally stable orbits. The position of the cusp, as wethe po-
sition of the maximum rest-mass density, .« in the torus, are ob-
tained by imposing that the specific angular momentum aettves
points coincides with the Keplerian value (Kozlowski el978).
The inner edge of the torus;, is determined by fixing the poten-
tial gap AW, = Win — Weusp, defined as

Qde
1-Q¢°

AWiy = ln[(_ut)in] - ln[(_ut)cusp] - A " (22)

cusp
On the other hand, the outer edge of the tatus; is defined as
the position at whichlP = 0 and it is obtained by integration of the
hydrostatic balance equation {13). Then, for a given distion
of specific angular momentum, sequences of tori having theesa
wmax but different radial extents can be constructed by varyieg t
potential gapA Wi, .

In order to investigate how the axisymmetric oscillatiores d
pend on the parameters of the discs, we have constructeersasegu
of models, having different radial extents and differestributions
of specific angular momentum. The main properties of theouari
models considered are listed in Table 1. Models of class Adke
forth models A) are sequences of equilibrium tori with a ¢ans
distribution of specific angular momentum, while models B &n
have a specific angular momentum increasing outwards aogord
to Eq. [21). Unlike models A and C, which correspond to segegen
of discs with different radial sizes for a given pair of vadusf /.
andq, models B, refer to different disc sequences which not only
have different radial sizes but also different values of pbwer-
law indexq for each of the constant coefficiertts that is for each
set of models from B1 to B10, we have constructed discs with va
ues of the power-law index varying between the minimum and
maximum values listed in the fourth column of Table 1 at inter
vals of Aqg = 0.005. The last sequence, C8, correspond to discs
with a distribution of angular momentum having a power-law i
dexq ~ 0.4, close to the Keplerian valug,., = 0.5. Therefore,
all these models allow for an extensive investigation ofgaeme-
ter space in terms of disc sizes and distributions of spemifgular
momentum, varying from constant to almost Keplerian.

3 Note thal9) considered an alternative arieathe dis-
tribution of the specific angular momentum.
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Figure 1. Eigenfrequencies for the fundamental mode of axisymmetric
modes for some representative tori with constant and natanndistribu-
tions of specific angular momentum. Each line correspondsgequence
of tori having the sameomax but different radial extentd, and the solid
circles correspond to the values of the Keplerian radiadyafic frequency
atwmax in the Hartle-Thorne metric.

5 RESULTSOF THE GLOBAL ANALYSIS

The main properties of axisymmetric oscillations of torairlartle-
Thorne background are analogous to those found for tori in a
Schwarzschild and Kerr spacetimes (Paper | and Paper IBr-Ov
all, a fundamental mode of oscillation and a sequence of-over
tones are found (collectively referred to asmode oscillations)
which depend on the position of the rest-mass density marimu
on the radial size of the disc, on the distribution of anguler-
mentum, while they are rather independent of the equation of
statel(Rezzolla et Al. 2003; Montero el al. 2004; Zanottl (20D 3;
IZanotti et al! 2005; Montero etlal. 2007). These propertas ke

summarized as follows:

e The eigenfrequencies gFmode oscillations increase as the
radial size of the disc decreases.

e The fundamental-mode tends to the values of the radial
epicyclic frequency at the position of the rest-mass dgnsix-
imum as the radial size of the tori tends to zero.

e For any radial extent, the model with the largest fundamenta
mode eigenfrequency has its rest-mass density maximuntekbca
at the position at which the epicyclic frequency has a marimu

e The ratio between the frequency of the fundamental-mgjle (
and its first overtoneo( ) for tori with constant distributions of spe-
cific angular momentun,(cw) = const., appear approximately in
a 2:3 ratio. As the size of the tori tends to zero, the ratiof tends
too1/f ~ 1.52.

e The ratio between the frequency of the fundamental-mgjle (
and its first overtoneof) for tori with nonconstant distributions
of specific angular momentund(w) = ¢.ww? can deviate signif-
icantly fromoy/f ~ 3/2 for very small discs. As the size of the
disc increases the / f ratio tends tw: /f ~ 1.44.

In Figure[d, we show the eigenfrequencies (in units of Hz and
scaled for a neutron star masd$ = 1.6M)) for the fundamental
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Figure 2. Ratio o1/ f as function of the radial size of the disc for models
with a constant distribution of specific angular momentum, models Al
to A6.
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Figure 3. Ratio 01/ f as function of the radial size of the disc for some
representative models with a nonconstant distributionpefcéic angular
momentum, i.e. models B and C.

mode corresponding to some representative tori of our sa(npl,

A6, B9 with ¢ = 0.03, B1 withg = 0.135, C2, and C7) and re-
ported as a function of the radial size of the disc expresseuiis

of the gravitational radir, = GM/c*. Each line corresponds to

a sequence of tori having the samg,.x but different radial ex-
tentsL and the solid circles correspond to the values of the Keple-
rian radial epicyclic frequency atmax in the Hartle-Thorne metric
(Abramowicz et &ll. 2003). As expected for modes behavingceff
tively as sound waves trapped in the disc, the eigenfredesde-
crease likel,~! as the radial extent of the torus increases. Note also
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that, as was shown in Paper | and Paper Il for tori orbitingiado

a Schwarzschild and a Kerr black hole, the eigenfrequemditse
fundamental mode tend to the values of the radial epicycte f
quency atomax as the radial dimension of the discs tends to zero.
As their size diminishes, the role of pressure gradientslénthe
disc becomes negligible and the discs effectively behavimgs of
particles in circular orbits, oscillating with the epicigcfrequency

at the maximum rest-mass density point.

A key feature of the axisymmetrijemodes oscillations of tori
around black holes is that the eigenfrequencies of the fuedtal
mode and the first overtone appear in an approximately 2:3 har
monic sequence, although deviations are possible, incpéatifor
the nonconstant specific angular momentum case. This ée&ur
also present in the case of sub-Keplerian discs in the Hahtene
spacetime. In Figurlgl 2 we show the ratig/ f as a function of the
radial size of the disc for models with a constant distribtof
specific angular momentum, i.e. models Al to A6. As the size of
the disc decreases tlag/ f ratio increases and tends to a value of
~ 1.52, independently of the constant distribution of specificiang
lar momentum. On the other hand, the behaviour obthe ratio,
as the disc size decreases, is more complex for nonconstguat a
lar momentum disc. In Figuid 3 we plot the ratio/ f as function
of the radial size of the disc for some representative modéts
a nonconstant distribution of specific angular momentuneséh
models belong to the sequences B and C, and the values ofrthe co
stant coefficienf. and of the power-law index are also shown in
Figure[3. We observe that for small discs, the f ratio decreases
as the power-law indexincreases for a given value of constant co-
efficient/., i.e. there exists a variation of abdt% in theo: / f ra-
tio for small discs. In particulan, / f has an upper limit of- 1.52
(for discs with an almost constant distribution of specifigalar
momentum), and a lower limit of 1.15 for models with a power-
law indexgq close to the Keplerian valug,., = 0.5. On the other
hand, for large-size discs the/ f ratio tends tw; / f ~ 1.44.

6 IMPLICATIONSFOR KHZ-QPOSIN NEUTRON STAR
LOW MASS X-RAY BINARIES

Based on these properties of the axisymmetinodes oscillations
of thick discs, Rezzolla et Al (2003) proposed a model of -kHz
QPOs in BHBs that explains the observed frequencies in tefms
p-modes oscillations of a small accretion thick disc orlgjtitose to
the black hole (Schnittman & Rezzolla 2006). This model aot®
very well for theM ~! scaling of the observed frequencies, for the
observed variations in the relative strength of the pediat, dre
interpreted as due to variations in the perturbations thatarus
is experiencing, and for the fact that twin kHz-QPOs in therfo
BHBs show frequencies obeying the radio 2 to a high degree of
accuracy. As discussed in the Introduction, on the othed htnre
phenomenology of kHz-QPOs in NSBs present peculiar festure
that distinguish them from those detected in BHBs. In paldic
the upper and lower kHz-QPOs frequenaigsandv, can vary by
hundred of Hertz along straight lines = Avy, + B, with B # 0.
For convenience, we have listed in Table 2 the best fit linaeamp-
eters obtained by Belloni etlal. (2005, 2007) for the Atolis@s,
Z sources, Sco X-1 and Cir X-1, highlighting the linear ctatien
betweenv;; andvy, (errors at & significance level).

Left and right panels of Figur&€] 4 show the frequency of the
upper kHz-QPO versus the frequency of the lower kHz-QPO for

Table 2. Best fit linear parameters obtained by Belloni et al.(200872 for
the Atoll sources, Z sources, Sco X-1 and Cir X-1.

Source A B

Atoll sources  0.94+ 0.02 350+ 15
Z sources 0.85-0.01 383+ 8
Sco X-1 0.73:0.01 469+ 7
Cir X-1 2.34+0.47 104+ 58

each class of available NSBs. We have indicated Atoll sarce
with an asterisk, Z sourd@svith open circles, Sco X-1 with solid
circles, Cir X-1 with squares and XTE J1807-294 with triawgl

In addition, for all models for which we have solved the eigen
value problem and that are listed in Table 1, we have ploiteithe
relevant range of frequencies for kHz-QPOs, the first-overtver-
sus the fundamental mode frequencies (left panel) and tende
overtone frequency against the fundamental mode frequeigtyt
panel). As it is shown in both panels of Figlide 4, the portién o
the plot covered by the observational data intersect onlgimally
with the values obtained from the eigenmode analysis. ltiquéar,

we show on the left panel, that there are discs (mostly B nsdpdel
with fundamental mode frequengy> 500 Hz and a first-overtone
frequency which can be in agreement with most obseryednd

vy kHz-QPO frequencies for Sco X-1, and for some Z sources
and Atoll sources. This range of fundamental mode freq@snci
(f > 500 Hz) indicates that the corresponding suitable models
would be small in size (L smaller thas 50r,), and would have

a nonconstant distribution of specific angular momentum ¢&lm
els).

On the contrary, we do not find models lying above the line
with constant slope3 : 2, which would be needed to explain
the observed twin QPOs with;, < 500 Hz. As shown in Fig-
ure[d, the fundamental mode frequency decreases as thefsize o
the disc increases or as the distribution of specific anguar
mentum approaches the Keplerian profile. Bh¢f ratio tends to
o1/ f ~ 1.44 as the size of the disc increases or to smaller values
for small discs with (see Figuid 3). This reflects in the tewge
that models show, to concentrate towards3he2 ratio line as the
fundamental mode frequency tends to zero (left panel ofre[di

The possibility that the observed, and vy kHz-QPO fre-
guencies correspond to the fundamental frequency and teeitie
ond overtone of an oscillating torus, encounters similfficdities
(see right panel of Figufé 4). Although the area covered ytm-
putedp-modes oscillations match some of the observed kHz-QPO
frequencies, particularly those of Z sources within the range
150 — 500 Hz, the observations of most of the Atoll sources, of Cir
X-1 and of several Z sources remain unexplained.

Overall, the properties of axisymmetriemode oscillations
of vertically integrated thick discs are such that, in a pietversus
vr,, the first-overtone and the fundamental mode frequencgvioll
a straight line for whichA may depart from an exaét : 2 ratio
by 30% (in the case of discs with a nonconstant distribution of the
specific angular momentum), but for whigh~ 0.

44U 1728-34, 4U 0614+09, 4U 1705-44, KS 1731-260, 4U 1735444,
1608-52, 4U1636-53, 4U 1820-30, 4U 1915-05, XTE J2123-058.
5 GX 17+2, GX 5-1, GX 340+0, Cyg X-2, CX 349-2.
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Figure 4. Left panel shows a linear plot of the frequency of the uppez KHPO versus the frequency of the lower kHz QPO with an aktésisthe Atoll
sources, circles for the Z sources, solid circles for Sco, Xeluares for Cir X-1 and triangles for XTE J1807-294. We alkx, in the relevant range of
frequencies for kHz QPOs, the first-overtone versus thedomahtal mode frequencies for all models listed in Table ghRbanel shows the second-overtone

versus the fundamental mode frequencies instead.

7 CONCLUSIONS

We have performed a detailed analysis of the oscillatiope@ries
of a thick disc (torus) around a slowly rotating neutron .s@ur
approach extends previous investigations by Rezzolld ¢2a03)
and_Montero et all (2004) by considering a much wider paramet
space and by solving the linear perturbative eigenvalubleno
in the Hartle-Thorne metric. In particular, the rotatiomwlaf the
torus spans the whole range between a constant distribotite
specific angular momentum and an almost Keplerian rotatdm.
have computed a fundamental mode of oscillations and a seque
of overtones which can in principle be all excited dependinghe
perturbation acted upon the torus.

We showed there are discs (B and C models) with fundamental
mode frequency’ 2> 500 Hz and a first-overtone frequency which
can be in agreement with most observedandv kHz-QPO fre-
quencies for Sco X-1, and for some Z sources and Atoll sources

However, when these results are used for explaining kHz-
QPOs in neutron star low mass X-ray binaries with twin QPOs
with v, < 500 Hz, a major difficulty arises. In fact, unlike kHz-
QPOs in black hole binaries, the upper and the lower kHz-QPOs
in neutron star binaries obey a linear relatian = Avy + B,
with A significantly different from1.5 (e.g. A = 0.94 for Atoll
sources,A 0.85 for Z sources andA 0.73 for Sco X-

1) and B # 0. On the contrary, the computed axisymmefpic
modes, either in the ratie, / f or o2/ f follow a straight line with
0.8 < A < 1.5 and withB ~ 0 for o1/f, and withA > 1.5
and B = 0 for o2/ f. Therefore, unless additional physical effects
are taken into account, such as the interaction of the aegritick
disc with the surface of the neutron star, the presence ofg ma
netic field (Balbus & Hawley 1991), or non-axisymmetric sit-
ities (Papaloizou & Pringle 1984; Kiuchi etlal. 2011), axispet-

ric p-modes oscillations of a thick disc around a neutron starado n
provide an explanation for the observed twin QPOs in newtan
X-ray binaries withv;, < 500 Hz.

~
~
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