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We derive a method to reconstruct Gaussian signals from linear measurements with Gaussian
noise. This new algorithm is intended for applications in astrophysics and other sciences. The start-
ing point of our considerations is the principle of minimum Gibbs free energy which was previously
used to derive a signal reconstruction algorithm handling uncertainties in the signal covariance. We
extend this algorithm to simultaneously uncertain noise and signal covariances using the same prin-
ciples in the derivation. The resulting equations are general enough to be applied in many different
contexts. We demonstrate the performance of the algorithm by applying it to specific example
situations and compare it to algorithms not allowing for uncertainties in the noise covariance. The
results show that the method we suggest performs very well under a variety of circumstances and is
indeed qualitatively superior to the other methods in cases where uncertainty in the noise covariance
is present.
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I. INTRODUCTION

The problem of signal inference consists of reconstruct-
ing a set of parameters or even a continuous field s from
some data set d, which is influenced in some way by the
signal,

d = f(s) + n. (1)

Two problems will arise. First, the function f may not
be invertible and, second, the noise term n will not be
known. In the Bayesian framework, one uses prior in-
formation on the signal and the noise term to calculate
a best estimate for the true signal realization or, ideally,
the whole probability distribution for the signal given the
prior information and the information contained in the
data.

Symmetry considerations and knowledge about the un-
derlying physics of the signal and the measurement pro-
cess may restrict the class of priors that one has to con-
sider. They might, however, still contain some free pa-
rameters that then become part of the inference problem.
The case in which the signal covariance contains uncer-
tain parameters was tackled in [1], producing a whole
class of filters for this problem. The filter that we extend
in this work was reproduced in [2], where the principle
of minimum Gibbs free energy was introduced (cf. also
Sect. III), and successfully applied in an astrophysical
setting in [3].

Here, we focus on the case where we can assume zero-
mean Gaussian priors both for the signal and for the
noise. The priors are therefore completely characterized
by the respective covariance matrices. Our goal is to ex-
tend the study of [2] to the case in which both the signal
covariance and the noise covariance contain parameters
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that are not known a priori. This is motivated mainly by
applications from the field of astrophysics. The theory
and resulting filter formulae, however, are of general ap-
plicability. Gaussian noise, e.g., is omnipresent in nearly
every area of the natural sciences and the situation in
which its variance is not precisely known should be a
rather common one.

Previous work dealing with the problem of unknown
noise variance has mainly dealt with specific applications.
One of these applications is the field of image recon-
struction. Here, it is usually assumed that the measured
picture is the sum of the underlying signal and a white
Gaussian noise term. Often, it is further assumed that
the noise level, i.e. its variance, is the same in every im-
age pixel. A comparison of different algorithms for noise
estimation under these assumptions can be found e.g. in
[4]. An example for an algorithm allowing for inhomoge-
neous noise is presented in [5], where a wavelet transform
of the image is applied and the lack of correlated noise
is exploited. Most of these algorithms, however, are not
derived by rigorous statistical calculations but rather by
a combination of intuition and experience.

From a mathematical viewpoint, the problem of an
unknown noise prior has received some attention in the
theory of density deconvolution, which deals with the in-
ference of the probability density for a signal from mea-
surements with additive noise. Here, the signal is usually
assumed to consist of independent identically distributed
variables. The case of Gaussian noise with unknown vari-
ance has been considered e.g. by [6] and [7].

In this work, we create a general setting with well de-
fined assumptions and a traceable derivation of a general
filter formula within a Bayesian framework, not loosing
sight of its applicability. Our result can accomodate a
host of different assumptions and models, such as cor-
related or uncorrelated noise. It allows for a distinction
between the data space and the signal space, with possi-
bly different numbers of degrees of freedom.
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The remainder of the paper is organized as follows. In
Sect. II we introduce our model for the measurement pro-
cess and the notation that is required. The derivation of
the filter formulas follows in Sect. III. We then demon-
strate the usefulness of our filter by applying it in a set
of mock observational situations in Sect. IV and discuss
the implications in Sect. V.

II. SIGNAL MODEL AND NOTATION

We assume a linear measurement process where the
data are a superposition of a linear signal response and
a noise term,

d = Rs+ n. (2)

Here, both the data and noise and the signal can be finite-
dimensional vectors or continuous fields defined on some
manifold. The response matrix R maps a field in the
signal space to a field in the data space. In the continuous
limit the matrix vector product becomes

(Rs)i =

∫
dx Rixsx, (3)

where the index denotes the value of a field at this posi-
tion. In physical applications the data vector will always
be discrete, since only a finite number of measurements
can be taken, while the signal space might well be contin-
uous. The result of any numerical signal reconstruction,
however, will at best be a discretized version of the con-
tinuous field.

Further, we assume Gaussian prior statistics both for
the signal and for the noise contribution, i.e. s←↩ G(s, S),
n←↩ G(n,N), where

G(a,A) =
1√
|2πA|

exp

(
−1

2
a†A−1a

)
(4)

denotes a multivariate Gaussian distribution in a with
covariance matrix A. We use the dagger symbol to indi-
cate a scalar product,

a†b =

∫
dx a∗xbx, (5)

and the asterisk to denote complex conjugation. This
corresponds to the notation introduced in [8].

The problem of signal reconstruction is to find an op-
timal estimate m for the signal realization that the mea-
sured data arose from. Optimality in an L2-norm sense
leads to

m = 〈s〉P(s|d) :=

∫
Ds sP(s|d), (6)

i.e. the posterior mean. The integration is performed
over all possible signal configurations. In the discrete
case this becomes a product of one-dimensional integrals,∫

Ds =

∫ +∞

−∞
ds1

∫ ∞
−∞

ds2 · · · , (7)

where s = (s1, s2, . . . ) is the vector of signal values at lo-
cations 1, 2, . . . . Ideally, we would also like to obtain
some information on the posterior distribution P(s|d)
other than its mean. If the signal and noise covariances
are known, the posterior is a Gaussian G(s−m,D) with
mean

m = Dj, (8)

and covariance D, where j = R†N−1d is called the in-

formation source and D =
(
S−1 +R†N−1R

)−1
the in-

formation propagator [cf. 8] and the dagger attached to
a matrix denotes its hermitian conjugate.

In this paper we are concerned with the case in which
neither the signal covaricance matrix S nor the noise co-
variance matrix N are known. We parameterize these
matrices as sums of their eigenvalues p̃k and η̃j multi-
plied with the projectors onto the respective eigenspaces
S̃k and Ñj . The parameters can be rescaled by including
some numerical values s̃k and ñj in the projection-like
matrices, making the rescaled version of the parameteri-
zation

S =
∑
k

pkSk, (9)

N =
∑
j

ηjNj , (10)

where

pk =
p̃k
s̃k
, ηj =

η̃j
ñj

(11)

and

Sk = s̃kS̃k, Nj = ñjÑj . (12)

Furthermore, we define the pseudo-inverse matrices
S−1k = s̃−1k S̃k and N−1j = ñ−1j Ñj , so that S−1k Sk
and N−1j Nj are identity operators on the respective
eigenspaces.

We assume here that the eigenspaces corresponding
to the different eigenvalues are known a priori, e.g. from
symmetry considerations. However, the formalism allows
for eigenvalues of different eigenspaces becoming equal a
posteriori.

Finally, we also need to define some priors for the pa-
rameters pk and ηj . As was done in [1] and [2], we assume
each parameter to be a priori independent from all the
others and use inverse Gamma distributions, i.e. power
laws with exponential cutoff, as priors for the individual
parameters,

P(p, η) = P(p)P(η), (13)

P(p) =
∏
k

1

qkΓ(αk − 1)

(
pk
qk

)−αk

exp

(
− qk
pk

)
,(14)

P(η) =
∏
j

1

rjΓ(βj − 1)

(
ηj
rj

)−βj

exp

(
− rj
ηj

)
. (15)
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The parameters αk and βj determine the steepness of
the power law and the parameters qk and rj give the po-
sition of the cutoff. In the limit (αk, βj) → (1, 1) and
(qk, rj) → (0, 0), this turns into the so-called Jeffreys
prior, which is flat on a logarithmic scale and can there-
fore be characterized as non-informative.

III. DERIVATION OF THE FILTER FORMULAS

With the priors for s, n, p, and η, we can calculate the
joint probability of the signal and the data by marginal-
izing over the parameters p and η,

P(s, d) =

∫
Dp
∫
Dη P(s, d|p, η)P(p, η)

=

∫
Dp
∫
Dη P(d|s, p, η)P(s|p)P(p, η) (16)

=

∫
Dp
∫
Dη G(d−Rs,N)G(s, S)P(p, η).

Solving the integrals yields

P(s, d) =
∏
k

Γ (γk) qαk−1
k

Γ (αk − 1) (2π)
ρk/2(

qk +
1

2
s†S−1k s

)−γk
∏
j

Γ (δj) r
βj−1
j

Γ (βj − 1) (2π)
µj/2

(17)

(
rj +

1

2
(d−Rs)†N−1j (d−Rs)

)−δj
,

where ρk = tr
(
S−1k Sk

)
, µj = tr

(
N−1j Nj

)
, γk = ρk/2 +

αk−1, and δj = µj/2+βj−1. Note that the posterior is
proportional to this joint likelihood for any given dataset.

One could construct the maximum a posteriori esti-
mator, however, this was shown in [1] to perform poorly
due to a perception threshold, i.e. modes with too little
power in the data are completely filtered out. A bet-
ter estimate for the posterior mean of the signal can be
constructed using the formalism of minimum Gibbs free
energy, introduced in [2]. The Gibbs energy is defined as

G = U − TSB , (18)

where U = 〈H〉P(s|d) is the internal energy, SB =

〈− logP(s|d)〉P(s|d) the Boltzmann entropy, H =

− logP(s, d) the information Hamiltonian, and T a tem-
perature parameter. Approximating the posterior with a
Gaussian with mean m and covariance D,

P(s|d) ≈ G(s−m,D), (19)

gives an approximate internal energy Ũ , an approximate
entropy S̃B , and therefore an approximate Gibbs energy

G̃(m,D) = Ũ(m,D)− T S̃B

= 〈H〉G(s−m,D) −
T

2
tr (1 + log (2πD)) . (20)

The approximate internal energy in our case, calculated
from the joint probability of Eq. (18), is

Ũ(m,D) ∼=
∑
k

γk

〈
log

(
qk +

1

2
s†S−1k s

)〉
G(s−m,D)︸ ︷︷ ︸

=:Ak

+
∑
j

δj

〈
log

(
rj +

1

2
(d−Rs)†N−1j (d−Rs)

)〉
G(s−m,D)︸ ︷︷ ︸

=:Bj

,

(21)

where we have dropped terms that are independent of m
and D. The logarithms can be expanded in an asymp-
totic power series, giving

Ak = log (q̃k)

−
∞∑
i=1

(−1)
i

iq̃ik

〈(
qk +

1

2
s†S−1k s− q̃k

)i〉
G(s−m,D)︸ ︷︷ ︸

=:Ãki

(22)

and

Bj = log (r̃j)−
∞∑
i=1

(−1)
i

ir̃ij〈(
rj +

1

2
(d−Rs)†N−1j (d−Rs)− r̃j

)i〉
G(s−m,D)︸ ︷︷ ︸

=:B̃ji

,

(23)

where we have chosen the linear dependencies to be cap-
tured by

q̃k =

〈
qk +

1

2
s†S−1k s

〉
G(s−m,D)

= qk +
1

2
tr
((
mm† +D

)
S−1k

)
(24)

and

r̃j =

〈
rj +

1

2
(d−Rs)†N−1j (d−Rs)

〉
G(s−m,D)

= rj +
1

2
tr
((

(d−Rm) (d−Rm)
†

+RDR†
)
N−1j

)
,

(25)

respectively.
Here, we restrict ourselves to the zeroth order solution,

i.e. we neglect all contributions from Ã and B̃. Further-
more we set T = 1. The case with T 6= 1 is discussed up
to second order in Appendix A.

It was shown in [2] that the best Gaussian approxima-
tion to the posterior in the sense of minimum Kullback-
Leibler distance [9] can be found by minimizing the ap-

proximate Gibbs free energy G̃ with respect to m and
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D. Taking the functional derivatives of Eq. (20) with re-
spect to m and D and equating them to zero yields the
equations

m = Dj, (26)

j =
∑
j

δj
r̃j
R†N−1j d, (27)

D =

∑
k

γk
q̃k
S−1k +

∑
j

δj
r̃j
R†N−1j R

−1 . (28)

By comparing these expressions to the Wiener filter for-
mula, Eq. (8), we can read off the parameters pk = q̃k

γk

and ηj =
r̃j
δj

for the signal and noise covariance matrix,

respectively.
So altogether the equations that need to be solved si-

multaneously are

m = Dj (29a)

pk =
qk + 1

2 tr
((
mm† +D

)
S−1k

)
ρk
2 + αk − 1

(29b)

ηj =
rj + 1

2 tr
((

(d−Rs) (d−Rs)† +RDR†
)
N−1j

)
µj

2 + βj − 1
.

(29c)

Thus, we find both the posterior mean and the posterior
covariance for the signal. Note that the first two of these
three equations were already found in [1] and [2], where
the reconstruction of signals with unknown power spec-
tra is discussed. The term critical filter was coined in [1]
to refer to this filter since it belongs to a family of filters
lying on a line in the parameter plane of [1] that separates
the filters with a perception threshold from those with-
out. The additional uncertainty in the noise covariance
that we introduce here simply adds one more equation,
leading to an extended critical filter.

IV. APPLICATION TO SIMULATED SIGNALS

Here we demonstrate the performance of our signal
reconstruction algorithm under different circumstances.

A. Setup

Motivated by astrophysical applications, we consider a
real signal field on the sphere,

s : S2 −→ R. (30)

For simplicity, we set the response matrix R to be the
identity operator, so the data and noise are also fields on
the sphere,

d, n : S2 −→ R. (31)

In the numerical implementation, we use the HEALPix1

discretization scheme at a resolution of Nside = 16, which
leads to 3 072 pixels. We further assume homogeneous
and isotropic prior statistics for the signal, leading to a
covariance matrix that is diagonal in the basis given by
the spherical harmonics components,

S(`m)(`′m′) = 〈s`ms∗`′m′〉P(s) = δ``′δmm′C`, (32)

with the power spectrum components C` on its diagonal.
For this power spectrum we choose a simple power law

C` = (1 + `)
−2

(33)

and draw a random realization of the signal field from it.
We assume the noise to be uncorrelated in the position

basis, making the noise covariance matrix diagonal in this
basis,

Nn̂n̂′ = 〈nn̂nn̂′〉P(n) = δn̂n̂′σ2
n̂, (34)

where n̂ and n̂′ denote positions on the sphere. Within
this framework, we consider three cases for the noise
statistics. In the first one, we use homogeneous noise
with variance σ2

n̂ = 1/4 independent of n̂. For the sec-
ond case we divide the sphere into three zones. In the
northern third, we enhance the noise variance by a fac-
tor of nine and in the southern third we suppress it by a
factor of nine, while we leave it unchanged in the middle.
Finally, in the third case we again assume homogeneous
noise with variance 1/4, but we enhance the variance in
five percent of the pixels, randomly selected, by a factor
of 100. Both the signal and the three resulting data re-
alizations are shown in Fig. 1, along with the results of
different reconstructions that we discuss next.

B. Reconstructions

We first apply the standard Wiener filter formula, the
results of which are shown in the middle row of Fig. 1.
For this we assume the correct power spectrum to be
known, but we assume homogeneous noise with variance
1/4 in all three cases. In the case where this assump-
tion is correct, the reconstruction is known to be optimal
and this is confirmed by visual inspection of the outcome.
In the cases with inhomogeneous noise, the Wiener filter
fails to filter out the noise structures in the data in the
regions where the noise is underestimated and therefore
reproduces them in the reconstruction, as one would ex-
pect. This is true for the northern third in the second
case and the noisy pixels in the third case. The opposite
should happen in the southern third in the second case,
where the noise is overestimated. One would expect that

1 The HEALPix package is available from http://healpix.jpl.

nasa.gov.

http://healpix.jpl.nasa.gov
http://healpix.jpl.nasa.gov
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signal

data

Wiener filter

critical filter

extended critical filter

3 2 1 0 1 2 3

FIG. 1. Comparison of different filter algorithms. Each column corresponds to a different setting. The signal, drawn from a
power law power spectrum, is the same in each case. The left column contains homogeneous noise, while in the middle column,
the noise is enhanced in the northern third of the sphere and suppressed in the southern third, and in the right column the
noise is enhanced in some individual pixels. The first row shows the signal realization and the second row the data. The third
row shows the reconstruction using the Wiener filter formula, assuming the correct power spectrum and under the assumption
of homogeneous noise; the fourth row shows the critical filter reconstruction, assuming the power spectrum to be unknown,
but still assuming homogeneous noise. The last row, finally, shows the extended critical filter reconstruction in which both the
signal power spectrum as well as the noise variance are assumed to be unknown.
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structures in the data that are actually due to the signal
get filtered out. This is actually happening, although it
is barely visible in the resulting maps.

Next we assume that the power spectrum is not known
a priori, i.e. we apply the critical filter. The resulting
maps are shown in the fourth row of Fig. 1. We use Jef-
freys prior for the power spectrum components C` and
the projection-like operators Sk become actual projec-
tions onto the `-th angular scale. Then we simply iterate
the first two lines of Eq. (29), while keeping the assump-
tion of homogeneous noise with variance 1/4. In the case
where our assumptions about the noise are true, the re-
sulting map is very close to the Wiener filter reconstruc-
tion, confirming the assessment of [1–3] that the critical
filter can yield a very accurate reconstruction, even if
the power spectrum is completely unknown. In the cases
where we have made false assumptions about the noise,
however, we see the same problems that the Wiener fil-
ter reconstruction has, only much stronger pronounced.
This is because the reconstructed power spectrum now
actually accounts for the features in the data that are
due to noise where this is underestimated. With this
power spectrum, the map reconstruction tends to favor
these features even more than in the case where the cor-
rect power spectrum was used. This amplifying effect is
again much more prominent where the noise was under-
estimated than where it was overestimated.

Finally, we account for the possibility that we might
have misestimated the noise statistics by applying the full
extended critical filter, derived in Sect. III. As projection-
like matrices Nj we choose projections onto the j-th pixel
of the map multiplied with our original guess for the noise
variance in that pixel, σ2

j = 1/4. In this way, the param-
eters ηj become correction factors for the noise variance
of each data point. For the prior parameters we choose
βj = 2 and we adapt rj such that 〈log (ηj)〉P(η) = 0. Af-

ter iterating the full set of equations (29), we obtain the
maps in the bottom row of Fig. 1. In the case with homo-
geneous noise, we still get a result that is similar to the
Wiener filter one. This shows that we do not lose much by
allowing for some uncertainty in the noise covariance. In
the cases in which our original noise estimate was wrong,
however, we obtain reconstructed maps of a much higher
quality than from the Wiener filter and critical filter. Ob-
viously, our algorithm succeeds in uncovering the false er-
ror bars in our dataset and correcting them. This works
especially well in the case where only individual pixels
have underestimated noise variance. This setting makes
it especially easy for the algorithm to infer the signal
statistics from all the other pixels and finding the pixels
in which the data points and the signal are inconsistent
with one another. However, even in the case where one
third of the space is covered with underestimated noise,
our algorithm still does a good job in reconstructing the
original signal.

Some further insight can be gained by looking at the re-
constructed power spectra. These are shown in Fig. 2. In
the case with homogeneous noise, the critical filter recov-

0.1

1

10

100

C
`
`

(2
`

+
1
)

(a)

0.1

1

10

100

C
`
`

(2
`

+
1
)

(b)

0.1

1

10

100

1 10

C
`
`

(2
`

+
1
)

`

(c)

theoretical
specific realization

critical filter
extended critical filter

FIG. 2. Comparison of the different reconstructed power spec-
tra. The solid line depicts the theoretical power spectrum
which is also used in the Wiener filter reconstructions. The
dashed line corresponds to the power of the specific signal re-
alization and the dash-dotted and dotted lines to the power
spectrum reconstructed with the critical filter and the ex-
tended critical filter, respectively. Panel (a) shows the case
with homogeneous noise, panel (b) the one in which the noise
is enhanced and suppressed in one third of the sphere each,
and panel (c) the one in which the noise is enhanced in indi-
vidual pixels.

ers the true power spectrum almost perfectly, while the
extended critical filter misses some power on the smallest
scales, i.e. some of the small-scale power in the data is
falsely attributed to noise and therefore not represented
in the signal power spectrum. This effect is small, how-
ever, and does not greatly influence the resulting map.
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Wiener filter

critical filter

extended critical filter

0.0 0.5 1.0 1.5 2.0

FIG. 3. Absolute value of the pixelwise difference between the reconstructed maps and the signal realization. Each row shows
the results for a different filter algorithm. As in Fig. 1, the left column shows the case with homogeneous noise, the middle
column the one with enhanced noise in the northern third of the sphere and suppressed noise in the southern third, and the
right column shows the case where the noise is enhanced in individual pixels. Note that the color bar differs from the one used
in Fig. 1.

extended critical filter

0.15 0.25 0.35 0.45 0.55

FIG. 4. Pixelwise uncertainty of the extended critical filter reconstructions. The left panel shows the case with homogeneous
noise, the middle panel the case with enhanced noise in the northern third and suppressed noise in the southern third, and the
right panel the case with enhanced noise in individual pixels.

In the case in which the noise is highly inhomogeneous,
being higher and lower in one third of the data space each,
the extended critical filter misses quite a lot of power on
small scales. This results in the slightly oversmoothed
map seen in Fig. 1. The critical filter, however, that

operates under wrong assumptions for the noise statis-
tics, overestimates the power on small scales significantly.
This is in agreement with the very noisy reconstructed
map.

It is in the third case, in which the noise is greatly
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enhanced in individual pixels, that the extended criti-
cal filter shows its full strength. While the critical filter
attributes the power in the faulty pixels to the signal
and therefore overestimates the signal power by orders of
magnitude, the extended version accounts for the mises-
timated error bars and does not account for these pixels
in the signal power spectrum. While the result is a power
spectrum that is slightly underestimated on the smallest
scales, this is again only a comparatively small error, still
leading to a good reconstruction.

These findings are confirmed by Fig. 3, which shows
the differences of the nine reconstructions and the sig-
nal realization. Our extension of the critical filter clearly
brings the strongest improvement in the case where the
noise is enhanced in individual pixels, while also lowering
the error in the case with an extended region of underes-
timated noise.

Finally, we plot the standard deviation per pixel of the
Gaussian approximation (19) to the posterior probabil-
ity distribution, i.e. the square root of the diagonal of
the covariance matrix in the pixel basis, σ =

√
diag(D),

in Fig. 4 for the extended critical filter. This can be
interpreted as an estimate for the 1σ-error bar of the re-
constructed maps. The region with enhanced noise in the
second scenario is clearly marked out by a higher uncer-
tainty of the reconstruction due to the corrected entries
of the noise covariance matrix entering the information
propagator D. Note, however, that the full posterior is
non-Gaussian and the 1σ range can therefore not neces-
sarily be interpreted as a 68% confidence interval, espe-
cially since we are using a zeroth order approximation to
calculate the Gaussian approximation. In fact, in our ex-
ample only about 50% of the pixels of the reconstructions
lie within 1σ of the correct signal.

V. DISCUSSION

Using the formalism of minimum Gibbs free energy we
have extended the critical filter algorithm, developed in
[1] and [2], to an algorithm that allows for uncertainties
both in the signal covariance and in the noise covariance.
We have demonstrated the performance of our algorithm,
Eqs. (29), by applying it to a set of mock observations
on the sphere.

These applications have shown that the extended crit-
ical filter performs outstandingly if only a few individual
data points have a misestimated error bar. However, even
in a case where large portions of the data are affected, the
algorithm was shown to perform inarguably better than
the critical filter, using a fixed – and faulty – assumption
about the noise statistics. We have also compared the
results to those obtained from a Wiener filter reconstruc-
tion, using the correct power spectrum, which is known
to be optimal if the assumptions about the noise statis-
tics are correct. This filter was demonstrated, however,
to lead to reconstructed maps that are much further from
the true signal than the results of the extended critical

filter in the cases where the assumptions are not correct.

The choice of the two-sphere as the space on which our
signal is defined was motivated by astrophysical applica-
tions, where we could think of the signal as an all-sky
field or some quantity defined on the surface of a star or
a planet. Applications in other fields of physics are abun-
dant. However, it should be noted that there is nothing
special about the sphere. We could equally well have cho-
sen a euclidean space, using the power spectrum defined
in Fourier space instead of the angular power spectrum.

Furthermore, our choice of the identity operator as re-
sponse matrix was made only on account of simplicity.
It allowed us to represent the data in the same fashion
as the signal. It should be clear, however, that the de-
rived filter formulas, Eqs. (29), are valid for any response
matrix, even a singular one. Applications of the critical
filter with non-trivial response matrices were presented in
[1] and [3] and such a response would not pose a problem
for the extended version of the filter.

The problem of signal reconstruction with some un-
certainty in the noise variance is certainly one of general
interest. There are several ways in which uncertainty in
the noise variance might arise. It may be due to ques-
tionable assumptions that enter in the calculation of the
error bars of the data. Another possibility is that it arises
from the definition of the signal itself. The quantity of
interest may only be part of what has been measured in
the first place in which case the rest of the data would be
noise with essentially unknown variance. All these factors
come together in the reconstruction problem considered
in [3]. An extension of that reconstruction, using addi-
tional sets of data and the improved algorithm presented
here, is planned [10].

It should be noted, however, that even with the ex-
tended critical filter, some knowledge about either the
parameters in the signal covariance or the ones in the
noise covariance is needed to arrive at a sensible recon-
struction. Leaving them both completely free would lead
to a degeneracy between signal and noise that cannot be
resolved. Only by assigning an informative prior to at
least one of the two sets of parameters is this degener-
acy broken. Furthermore, the functional bases in which
the signal and noise covariances are diagonal, i.e. their
eingenspaces, need to differ to allow for a separation of
noise from signal.
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Appendix A: Higher order solutions

Here we briefly list the results for nontrivial temper-
atures up to second order, i.e. considering terms up to
i = 2 in Eqs. (22) and (23). Since the first order terms are
zero for our choice of q̃k and r̃j , we list only the resulting
filter formulas for the zeroth and second order internal
energy.

1. Zeroth order

The zeroth order solution with arbitrary temperature
is rather similar to the one with T = 1 presented in

Sect. III. It is given by

m = D′j, (A1)

j =
∑
j

δj
r̃j
R†N−1j d, (A2)

D′ =

∑
k

γk
q̃k
S−1k +

∑
j

δj
r̃j
R†N−1j R

−1 (A3)

D = TD′. (A4)

The mean m is completely unchanged. However, the co-
variance D of the Gaussian approximation is now T times
the information propagator D′, i.e. the Gaussian approx-
imation becomes wider at higher temperature.

2. Second order

The second order solution is given by

m = D′j, (A5)

j =
∑
j

δj
r̃j
YjR

†N−1j d, (A6)

D′ =

∑
k

γk
q̃k
Xk +

∑
j

δj
r̃j
YjR

†N−1j R

−1 , (A7)

Xk = 1 +
1

q̃2k
tr

((
mm† +

1

2
D

)
S−1k DS−1k

)
− 1

q̃k
S−1k D, (A8)

Yj = 1 +
1

r̃2j
tr

((
(d−Rm) (d−Rm)

†
+

1

2
RDR†

)
N−1j RDR†N−1j

)
− 1

r̃j
R†N−1j RD, (A9)

D = T

D′−1 −∑
k

γk
q̃2k
S−1k

(
mm†

)
S−1k −

∑
j

δj
r̃2j
R†N−1j

(
(d−Rm) (d−Rm)

†
)
N−1j R

−1 . (A10)

Again, the only effect of the temperature is to broaden
the approximate Gaussian. However, in the second order
solution the operators Xk and Yj appear, destroying the
one-to-one correspondence between the terms in these
expressions for D, D′, and j and the Wiener filter for-

mula Eq. (8). Therefore, the values of the parameters pk
and ηj are not immediately determined by these equa-
tions. Note, however, that the goal was not to determine
the signal and noise covariance matrices, but to find the
optimal Gaussian approximation to the signal posterior,
given by m and D.
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