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ABSTRACT

We calculate the cross-correlation function (CCF) between damped Ly-α systems
(DLAs) and Lyman break galaxies (LBGs) using cosmological hydrodynamic simula-
tions at z = 3. We compute the CCF with two different methods. First, we assume
that there is one DLA in each dark matter halo if its DLA cross section is non-zero. In
our second approach we weight the pair-count by the DLA cross section of each halo,
yielding a cross-section-weighted CCF. We also compute the angular CCF for direct
comparison with observations. Finally, we calculate the auto-correlation functions of
LBGs and DLAs, and their bias against the dark matter distribution. For these differ-
ent approaches, we consistently find that there is good agreement between our simu-
lations and observational measurements by Cooke et al. (2006a) and Adelberger et al.
(2005). Our results thus confirm that the spatial distribution of LBGs and DLAs can
be well described within the framework of the concordance ΛCDM model. We find
that the correlation strengths of LBGs and DLAs are consistent with the actual ob-
servations, and in the case of LBGs it is higher than would be predicted by low-mass
galaxy merger models.

Key words: cosmology: theory — stars: formation — galaxies: evolution – galaxies:
formation – methods: numerical

1 INTRODUCTION

According to the cold dark matter (CDM) model of struc-
ture formation, the spatial distribution of galaxies can be
understood as a result of gravitational instability of den-
sity fluctuations in the CDM, and the dark matter halo
mass function can be well described by analytic models
(Sheth & Tormen 1999). More precisely, hierarchical CDM
models predict that the massive galaxies at high redshift
(hereafter high-z) are clustered together in high-density
regions, while low-mass galaxies tend to be more evenly
spaced (Bardeen et al. 1986; Kaiser 1984). Under the as-
sumption that galaxies are produced from primordial den-
sity fluctuations owing to gravitational instability, one can
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estimate the average mass of galaxy host haloes based on
clustering data. For example, Adelberger et al. (1998) es-
timated the typical halo mass of LBGs at z ∼ 3 to be
1010.8M⊙ . Mhalo . 1012 M⊙ from observations of their
auto-correlation function (ACF).

Damped Lyman-α systems (DLAs), defined as quasar
absorption systems with column density of NHI > 2 × 1020

atoms cm−2 (Wolfe et al. 1986), probe the H i gas associ-
ated with high-z galaxies. Since stars are hardly formed in
warm ionized gas and are tightly correlated with cold neu-
tral clouds, the amount of H i gas is very important, be-
ing the precursor of molecular clouds (Wolfe et al. 2003).
DLAs dominate the H i content of the Universe at z ≃ 3
and contain a sufficient amount of H i gas mass to ac-
count for a large fraction of the present-day stellar mass
(Storrie-Lombardi & Wolfe 2000). The gas kinematics and
chemical abundances of DLAs can be measured and are doc-
umented in detail. However, the masses of DLA host haloes
(hereafter DLA haloes) remain poorly constrained, because
only about 20% of quasars exhibit DLA absorption per unit
redshift (Nagamine et al. 2007), and the scattered distribu-
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tion of DLAs in quasar sight lines precludes the use of DLAs
as tracers of dark matter halo mass.

Alternatively, the mass of DLA haloes can be probed
by the cross-correlation between DLAs and a galaxy pop-
ulation whose clustering and halo mass are well under-
stood. Cooke et al. (2006a,b) used 211 LBG spectra and
11 DLAs to measure the three dimensional (3-D) LBG
ACF and DLA-LBG CCF (see also Bouche et al. 2005;
Bouche & Lowenthal 2004; Gawiser et al. 2001). Their anal-
ysis started by counting the number of LBGs in 3-D cylindri-
cal bins centred on each of 11 DLAs, following the method
of Adelberger et al. (2003). They detected a statistically sig-
nificant result of DLA-LBG CCF, and estimated an average
DLA halo mass of 〈MDLA〉 ≈ 1011.2M⊙, assuming a single
galaxy per halo.

On the theoretical side, Nagamine et al. (2007) calcu-
lated the average DLA halo mass using a series of cosmo-
logical hydrodynamic simulations with different box sizes,
resolution and feedback strengths. They found a mean DLA
halo mass of 〈MDLA〉 = 1012.4 M⊙ with their Q5 run which is
somewhat larger than 〈MDLA〉 = 1011.2 M⊙ of Cooke et al.
(2006a). More recent work by Pontzen et al. (2008) showed
that the DLA cross-section is predominantly provided by
intermediate mass haloes, 109 < Mvir/M⊙ < 1011. These
results motivate us to further examine the distribution of
DLAs relative to that of LBGs. In this paper, we compute
the DLA-LBG CCF in cosmological SPH simulations, using
the sample of LBGs and DLAs obtained by Nagamine et al.
(2004a,b). We compare our results with the observational re-
sults by Adelberger et al. (2005) and Cooke et al. (2006a,b).

Our paper is organized as follows. In Section 2, we
briefly describe the features of our cosmological SPH sim-
ulations used in this paper. In Section 4 and Section 5,
we describe and report the methodology, binning method,
and the results for ‘unweighted’ and ‘weighted’ DLA-LBG
CCF, respectively. We then discuss the projected angular
CCF for the direct comparison with observational result by
Cooke et al. (2006a,b) in Section 6. The ACFs of LBG-LBG
and DLA-DLA are discussed in Subsections 7.1 and 7.2,
while the bias results are reported in Section 8. Finally, we
discuss the implications of our work in Section 9.

2 SIMULATIONS

In this paper, we use two different cosmological
smoothed particle hydrodynamics (SPH) simulations
(Springel & Hernquist 2003b) performed with the GADGET-

2 code (Springel 2005). The simulation parameters of the
two runs (named D5 and G5) are summarised in Table 1.
The same set of runs has been used by Nagamine et al.
(2004a,b, 2007) to study the global properties of DLAs,
such as the DLA cross section, incidence rate, and H i

column density distribution functions.
The code we use is characterized by four main features.

First, it uses the entropy-conserving formulation of SPH
(Springel & Hernquist 2002), which explicitly conserves en-
tropy of the gas where appropriate. Second, highly over-
dense gas particles are treated with a sub-resolution model
for the interstellar medium (ISM) (Springel & Hernquist
2003a). The dense ISM is assumed to be made of a two-phase
fluid consisting of cold clouds in pressure equilibrium with

Run Lbox Np mDM mgas ǫ

D5 33.75 2× 3243 8.15× 107 1.26× 107 4.17
G5 100.0 2× 3243 2.12× 109 3.26× 108 12.3

Table 1. Simulations employed in this study. NP is the initial
number of gas and dark matter particles (hence ×2). mDM and
mgas are the masses of dark matter and gas particles in units of
h−1M⊙, respectively. ǫ is the comoving gravitational softening
length in units of h−1 kpc, which is a measure of spatial resolu-
tion. All runs adopt a ‘strong’ galactic wind feedback model.

a hot ambient phase. Cold clouds grow by radiative cooling,
and form the reservoir of baryons for star formation. Once
star formation occurs, the resulting supernovae (SNe) de-
posit energy into the ISM, heating the hot gas environment,
evaporating cold clouds, and transferring cold gas back into
the ambient phase. This establishes a self-regulation cycle
for star formation in the ISM, Additionally, the simulation
keeps track of metal abundance and the dynamical trans-
port of metals. Metals are produced by stars and returned
into the gas by SNe.

Third, a model for galactic winds is included to study
the effects of outflows on DLAs, galaxies, and intergalactic
medium (IGM). In this model, gas particles are driven out
of dense star-forming medium by assigning an extra momen-
tum in random directions (Springel & Hernquist 2003a). It
is assumed that the wind mass-loss rate is proportional to
the star formation rate, and the wind takes a fixed fraction
of the SN energy. For the D5 and G5 runs, a strong wind
speed of 484 kms−1 is adopted (as opposed to the ’weak’
wind speed of 242 kms−1; Springel & Hernquist (2003a)).
The dependence of the wind models on DLA properties was
discussed in detail by Nagamine et al. (2007). Fourth, the
code includes radiative cooling and heating with a uniform
UV background of a modified Haardt & Madau (1996) spec-
trum (Davé et al. 1999; Katz et al. 1996), where the reioni-
sation takes place at z ≃ 6.

We identify simulated galaxies by grouping the star par-
ticles using a simplified variant of the SUBFIND algorithm
proposed by Springel et al. (2001). This code computes an
adaptively smoothed baryonic density field for all star and
gas particles, and identifies the centres of individual galax-
ies as isolated density peaks. It finds the full extent of these
galaxies by processing the gas and star particles in the or-
der of declining density, adding particles one by one to the
galaxies.

Once the simulated galaxies and consituent particles
are identified, we then calculate the luminosity and spec-
trum of individual star particles using the mass, forma-
tion time, and metallicity using the population synthesis
code GALAXEV03 (Bruzual & Charlot 1993) that assumes
the Salpeter initial mass function with a mass range of
[0.1, 125]M⊙. The spectrum of each galaxy is obtained by
coadding the spectrum of constituent star particles, and the
broad-band colours are computed by convolving with filter
functions. The LBGs are then selected based on the UnGR
colour selection criteria as described in Nagamine et al.
(2004).

c© 2007 RAS, MNRAS 000, 1–12
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3 OUTLINE OF METHODS

Before we present the results of our calculations, let us de-
scribe the series of method that we use to measure the cor-
relations of DLAs and LBGs. First, we will examine the
simplest case in Section 4, where we assume that there is
only one DLA per halo at the center. We then discuss the
DLA cross-section-weighted CCF in Section 5 to examine
the effect of multiple DLA clouds in massive haloes. We
compute these two cases using the three dimensional co-
ordinates (x, y, z) of DLAs and LBGs. Next, to mimic the
observational estimates of two dimensional angular CCF, we
compute the angular CCF in Section 6. Finally we compute
the auto correlation functions of DLAs and LBGs separately
in Section 7, and discuss the biases and halo masses of DLAs
and LBGs in Section 8.

4 DLA-LBG CROSS-CORRELATION

The probability of finding an object 1 in volume δV1 at a
separation r from a randomly chosen object 2 can be writ-
ten as δP = n1 [1 + ξ12(r)] δV1 (Peebles 1980). The joint
probability of finding an object 1 in volume 1 (δV1) and
an object 2 in volume 2 (δV2) at a separation r is defined
as δP = n1n2 [1 + ξ12(r)] δV1δV2, where n1 and n2 are the
mean number densities of the two population. For the cross-
correlation, we replace object 1 and 2 with DLA and LBG,
then the joint probability between DLA and LBG is

δP = nDLAnLBG [1 + ξDLA−LBG(r)] δVDLAδVLBG, (1)

where nDLA and nLBG are the mean number densities of
DLAs and LBGs, and ξDLA−LBG(r) is the cross-correlation
function (CCF).

To estimate ξDLA−LBG(r), we use the method of
Landy & Szalay (1993) and Cooke et al. (2006a):

ξDLA−LBG(r) =

DDLADLBG −DDLARLBG −RDLADLBG +RDLARLBG

RDLARLBG

,

(2)

where DDLADLBG is the number of pairs between the two
data samples of DLAs and LBGs separated by a distance
r ± δr, and likewise for other terms. The notation “RDLA”,
for example, represents the DLA sample that has random
coordinate positions but with an equivalent number density
as the original data sample “DDLA”.

The method of identifying DLAs in our simulations
is described in detail in Nagamine et al. (2004a) (see also
Hernquist et al. 1996; Katz et al. 1996a). Briefly, we set up
a cubic grid that completely covers each dark matter halo,
with the grid-cell size equivalent to the gravitational soft-
ening length ‘ǫ’ of each run. We then calculate the H i col-
umn density NHI of each pixel (i.e., a grid-cell on one of the
planes) by projecting the H i mass distribution, and iden-
tify those that exceed the DLA threshold of NHI > 2× 1020

atoms cm−2 as ‘DLA-pixels’. This method allows us to quan-
tify the DLA cross-section ‘σDLA’ of each halo, and the num-
ber of DLA-pixel is NDLA

i = σDLA/ǫ
2. Note that we have

not made any corrections for the self-shielding of neutral
gas in this work. Self-shielding may have significant impact

Unweighted σDLA-weighted
Run r0 γ r0 γ

D5 2.66 ± 0.23 1.50 ± 0.17 3.37 ± 0.36 1.77 ± 0.21
G5 3.03 ± 0.04 1.64 ± 0.03 3.43 ± 0.06 1.66 ± 0.03

Table 2. Best-fitting power-law parameters of unweighted and
σDLA-weighted DLA-LBG CCFs at z = 3. The correlation length
r0 is in units of h−1 Mpc. The confidence limit statistics for
this work are described in Section 5.1. For comparison, Cooke
(private communication) obtained r0 = 2.91 ± 1.0h−1 Mpc and
γ = 1.21+0.6

−0.3 for the 3-D CCF calculated with spherical shells,

and Cooke et al. (2006b) reported r0 = 3.32± 1.25h−1 Mpc and
γ = 1.74± 0.36 for the angular CCF.

at high H i column densities, and we are currently investi-
gating this issue with separate simulations (Nagamine et al.
2010).

Here we focus on the correlation signal at r &

0.4 h−1 Mpc, because this is the scale probed by Cooke et al.
(2006a,b). Therefore in this paper we are only concerned
about the overall halo positions and not the exact loca-
tions of individual DLA-pixel within each halo. The σDLA-
weighted CCF will be discussed in Section 5.

First, we select the LBGs that are brighter than
RAB=25.5 magnitude in the D5 and G5 runs. There are
30 (4030) LBGs in the D5 (G5) run. Nagamine et al. (2004)
have shown that the brightest galaxies with RAB < 25.5 in
our simulations satisfy the UnGR colour selection criteria for
LBGs (e.g., Steidel et al. 1999). Figure 2 of Nagamine et al.
(2004) shows that the D5 run underestimates the number
density of LBGs, while the G5 run agrees better with the
observation.

There are 22616 (25683) DLA haloes with σDLA > 0 in
the simulated volumes of the D5 (G5) run. The ‘random’
catalogues of LBGs and DLA haloes with random positions
were created with a random number generator from Nu-
merical Recipes (Press et al. 1992). The selected LBGs were
paired with DLA haloes, and the number of pairs that reside
in spherical shells of [log r, log r+∆log r] were counted. The
maximum pair separations probed for the D5 and G5 runs
are 10 and 35 h−1 Mpc, respectively, with 20 bins in a loga-
rithmic scale of distance r. The periodic boundary condition
was taken into account appropriately, and the pair-search
was extended to the next adjacent box where needed.

We correct all ξ(r) values by the integral constraint
(IC). This correction owes to the finite size of the observed
field-of-view, and it must be added to the computed corre-
lation function as follows:

ξ′(r) = ξ(r) + IC, (3)

where ξ′(r) and ξ(r) are the corrected and computed CCF
(or ACF) respectively. Following the method described in
Adelberger et al. (2005) and Lee et al. (2006), we calculate
the value of IC and find that it changes ξ(r) only slightly in
our simulations, with IC ∼ 10−2 for the D5 run.

Figure 1 shows the DLA-LBG CCF computed with
Eq. (2). We perform a least-square fit to the measured values
with a power-law ξ(r) = (r0/r)

γ , and find best-fitting pa-
rameters equal to (r0[h

−1 Mpc], γ) = (2.66±0.23, 1.50±0.17)
and (3.03 ± 0.04, 1.64 ± 0.03) for the D5 and G5 runs, re-

c© 2007 RAS, MNRAS 000, 1–12
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Figure 1. DLA-LBG CCFs at z = 3 calculated with the regular unweighted method (Equation 2). The variance of CCFs computed with
100 different random seeds is shown with vertical errorbars, and the open square symbols are the mean of 100 trials. The blue dashed
line is the least-square fit to the open square points. The red solid line and the short and long dashed lines are the angular and 3-D
best-fitting power-laws of Cooke et al. (2006a,b), respectively, and the yellow shade is their 1-σ error range for the angular CCF.

spectively. The fits are shown by the blue long-dashed lines
(see also Table 2), and the confidence limit statistics are
described in Section 5.1.

Landy & Szalay (1993) showed that the variance of
ωp(rθ) obtained from Monte Carlo calculations agrees quite
well with the standard Poisson variance. Here, we follow
their method outlined in their Section 5.2 and repeat the
calculation of the CCF 100 times using different seeds for
generating the random positions for the ‘random’ sample to
examine the statistical variance of the measured CCF. The
variance of 100 trials is shown as vertical errorbars, and the
average of 100 trials is shown with the open square data
points. The red solid line and the yellow shade represent the
best-fitting result (r0 = 3.32 ± 1.25 and γ = 1.74 ± 0.36)
and the 1-σ errors of Cooke et al. (2006a,b) from their an-
gular CCF result. The result of the G5 run agrees well with
that of Cooke et al.’s, and its variance is small owing to a
larger sample than in the D5 run. The result of the D5 run
is somewhat shallower than that of the G5 run, which could
simply owe to relatively small sample of LBGs in D5 and its
small box-size.

Cooke et al. (2006a,b) published only the angular
CCFs. However, they can also estimate the 3-D radial CCF
using redshift information. The best-fitting parameters to
the radial CCF by Cooke (private communication) using
spherical shells is r0 = 3.39±1.2 h−1 Mpc and γ = 1.61±0.3,
which is shallower than the angular CCF results. As we will
further discuss in Section 6, the method of Adelberger et al.
(2003) adopts cylindrical shells at small distances, which
have larger volumes than spherical shells. The cylindrical
shell method uses long cylinders at small rθ and captures
all the potential LBGs near the DLAs, whereas the spherical
bins do not. This effect seems to result in the slightly steeper

γ in Cooke et al. (2006b) compared to the above spherical
shell case (Cooke; private communication). We regard the
comparison to the angular CCF of Cooke et al. (2006b) as
the primary one, because Cooke et al. argue that the angular
CCF calculated by the method of Adelberger et al. (2003)
is more robust than the 3-D radial calculation with spheri-
cal shells, and the values of (r0, γ) derived from both CCFs
should be equivalent theoretically (see Section 6).

5 σDLA-WEIGHTED CCF

In Section 4, we calculated the CCF assuming that there is
one DLA per halo. This assumption is valid as long as we are
concerned with the CCF at scales of r & 300 h−1 kpc. How-
ever, Nagamine et al. (2004b, Fig. 1) showed that the DLA
clouds have extended distributions in massive dark matter
haloes. Therefore, it may be more desirable to take the DLA
cross-section of each halo into account when calculating the
CCF, because the chance of finding a DLA in the actual ob-
servation is already cross-section weighted. Ideally, we would
use all the DLA pixels and find pairs with the nearby LBGs,
but this computation is prohibitively expensive owing to the
large number of DLA pixels.

A simple way to achieve this is to weight the number
of DLA-LBG pairs by the number of DLA-pixels of each
halo. Since the displacement between DLA-pixels within a
single halo is typically much smaller than the distance be-
tween LBG-DLA pairs, we do not count the individual pairs
between LBG and DLA-pixels. Instead, we treat it as if
all DLA-pixels are located at the halo centre, and weight
each DLA-LBG pair-count by the number of DLA-pixels Ni

(hereafter we drop the superscript ‘DLA’ for simplicity) and

c© 2007 RAS, MNRAS 000, 1–12
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Figure 2. DLA-LBG CCF at z = 3 calculated by the σDLA-weighted method (Equation 4). The yellow shade shows the upper and lower
limits of Cooke et al. (2006a,b)’s best-fitting power-laws. The variance of the CCF using 100 random seeds shown with vertical errorbars.
The blue dashed lines are the best-fittings for this work, and the red solid line and the short and long dashed lines are, respectively, the
angular and 3-D best-fitting power-laws of Cooke et al. (2006a,b).

compute the σDLA-weighted CCF as

ξDLA−LBG(r) =
NiDDLADLBG−NiDDLARLBG−NiRDLADLBG+NiRDLARLBG

NiRDLARLBG

.

(4)

For the ‘random’ DLA dataset, we shuffle the original Ni list
randomly and make new pairs with different DLA haloes.
Again, 10 realisations of the random dataset have been used
to examine the statistical variance of the estimated CCF.

The results for the σDLA-weighted CCF is shown in Fig-
ure 2. We find best-fitting parameters of (r0 [h

−1 Mpc], γ) =
(3.37 ± 0.36, 1.77 ± 0.21) and (3.43 ± 0.06, 1.66 ± 0.03) for
the D5 and G5 runs, respectively, as shown by the blue long-
dashed line (see also Table 2). (See Section 5.1 for the error
estimates.) Both results show good agreement with the best-
fitting values of Cooke et al. (2006b, r0 = 3.32 ± 1.25 and
γ = 1.74 ± 0.36). The result of D5 is somewhat noisy at
r . 1 h−1 Mpc, which originates from the noisy pair-count
of NiDDLADLBG.

The parameter values given in Table 2 clearly show that
the σDLA-weighted method gives larger values of r0 and a
slightly steeper power-law slope. In a CDM universe, the
number of low-mass haloes is far greater than that of mas-
sive haloes. Therefore, even a small weighting by Ni boosts
up the overall pair-count, yielding a stronger correlation sig-
nal compared to the unweighted case. The larger LBG sam-
ple in the G5 run makes its result more robust against the
weighting procedure than that of the D5 run. Therefore, the
difference in the slope γ between the two calculation meth-
ods is smaller in the G5 run than that of D5 run.

5.1 Confidence Limits

The χ2 test describes the goodness-of-fit of the model to
the data. To determine the confidence intervals of the two
parameters (γ and r0), we use the minimum χ2 method.
This statistic is written as

χ2 ≡
n
∑

i=1

(Oi − Ei)
2

σ2
i

, (5)

whereOi are the data points shown in the correlation figures,
Ei are the expected values in each bin i from the power-law,
and σi is the standard deviations in each bin obtained from
the 100 Monte Carlo calculations, as described earlier.

The region of confidence limits (Avni 1976) is given by

χ2
p = χ2

min +∆(df, p), (6)

where p is a confidence level (0 < p < 1), and df is a degree of
freedom written as df = n−c, where n is the number of bins
and c is the number of parameters. For this work, c = 2 and
n = 13 for G5 DLA-LBG CCFs (un-weighted and σDLA-
weighted), G5 LBG-LBG ACF, and G5 DLA-DLA ACFs
(un-weighted and σDLA-weighted); n = 14 for D5 DLA-LBG
3D and angular CCFs (un-weighted and σDLA-weighted);
and n = 17 for G5 DLA-LBG angular CCFs (un-weighted
and σDLA-weighted). The value ∆(df, p) is the expected in-
crement of χ2 to find the 68% and 95% confidence limits
above χ2

min. Its value is determined by the degree of free-
dom and probability within 1 and 2-σ limits. We calculate
the 1-σ confidence limits for all the correlation cases using
this method. As an example, we show the 1 and 2-σ confi-
dence levels for the weighted CCFs of D5 and G5 runs in
Figure 3.

c© 2007 RAS, MNRAS 000, 1–12
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Figure 3. Two parameter confidence limit contours for the weighted DLA-LBG cross correlation case using the minimum χ2 method.
The best fits of the two parameters are indicated by the cross at the center of the contours, and 1 and 2-σ limits are shown in black and
red contour lines, respectively.

6 ANGULAR CROSS CORRELATION

FUNCTION

In observational studies, a different method is usually used
to obtain the values of (r0, γ) compared with what we de-
scribed in Sections 4 and 5, because the precise estimation of
any LBG position along the line of sight is difficult to achieve
owing to redshift uncertainties caused by peculiar velocities
and galactic winds. With such imprecision, it is not possi-
ble to measure the CCF at scales r . 1h−1 Mpc reliably.
Therefore, rather than attempting to estimate the 3-D dis-
tance between DLAs and LBGs, observers usually employ
the angular CCF using the projected data on the sky. For
example, Cooke et al. (2006a,b) computed the angular CCF
using the method proposed by Adelberger et al. (2003). In
order to compare our results with those by Cooke et al’s, we
briefly describe the calculation method of Adelberger et al.
(2003), and then describe how we perform our measurement
of the angular CCF.

With a power-law assumption, the expected number of
pairs for the projected angular CCF is

ωp(rθ < rz) =
rγ0 r

1−γ
θ

2rz
B

(

1

2
,
γ − 1

2

)

Ix

(

1

2
,
γ − 1

2

)

, (7)

where B and Ix are the beta and incomplete beta functions
with (e.g., Press et al. 1992)

x ≡ r2z
(

r2z + r2θ
)−1

. (8)

Adelberger et al. (2003) proposed to count the number of
pairs in cylindrical shells of angular separation rθ ± δrθ
and redshift separation rz ± δrz, rather than using spher-
ical shells. By setting rz to

rz = max

(

1000 km s−1 (1 + zx)

H(z)
, 7rθ

)

, (9)

the lower limit ensures that the redshift errors do not lead
to the underestimate of the number of pairs, and the upper
limit allows sufficient distances to include enough correlated
pairs (Adelberger et al. 2003).

For our calculations, we focus at z = 3 and thus rz =
max(12.8 h−1 Mpc, 7rθ). With simple algebra, Equation (7)
can be converted to a more familiar power-law form:

ξ(rθ) = 2rmax
ωp(rθ)

rθ

[

B

(

1

2
,
γ − 1

2

)

Ix

(

1

2
,
γ − 1

2

)

]−1

=

(

rθ
r0

)−γ

, (10)

where rz is set to rmax. We change from spherical coor-
dinates to cylindrical coordinates, and set the number of
cylindrical bins to 20 in a logarithmic scale as before. All
pair searches are extended to the adjacent box using peri-
odic boundary conditions, if appropriate.

A few assumptions must be made while we deal with the
beta and incomplete beta functions. There are two param-
eters (γ and x) that must be given to calculate the values
of B and Ix. To calculate γ, we first plot Equation (10)
without B and Ix (i.e., 2rmaxωp(rθ)/rθ) and find the best-
fitting value of γ. The value of x is determined by rz and
rθ as shown in Equation (8). By setting rz = rmax, the an-
gular separation will be divided into two different regimes.
Within the smaller angular separation range (100 h−1 kpc <
rθ < 1.83 h−1 Mpc), the correlated pairs are counted up to
the maximum radial distance of rmax = ±12.8 h−1 Mpc for
a cylinder centred on an LBG or DLA, while in the larger
separation range (rθ > 1.83 h−1 Mpc) all the correlated pairs
within rmax = ±7rθ are counted. We calculate the values of
B and Ix (as well as the IC correction) separately for the
two different rθ regions. With the fixed values of γ obtained
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Figure 4. DLA-LBG angular CCFs at z = 3 computed by the unweighted method for the D5 and G5 runs. Other features are the same
as described in Figure 1.

Figure 5. DLA-LBG angular CCFs at z = 3 computed by the σDLA-weighted method for the D5 and G5 runs. Other features are the
same as described in Figure 1.

above and 20 different values of x, B and Ix can be calcu-
lated for each bin.

The angular CCF results of our calculations are shown
in Figures 4 and 5 for both the unweighted and the σDLA-
weighted method. The best-fitting power-law parameters are
given in Table 3. Again, the agreement with the results of
Cooke et al. (2006a,b) is within a good range. Similarly to
the 3-D CCF case, the σDLA-weighted case gives a slightly
larger r0 and steeper γ than the unweighted case. The un-

weighted case of D5 is shallow with γ = 1.55, but in the
σDLA-weighted case, γ ≃ 1.75 is recovered.

7 AUTO-CORRELATION FUNCTIONS

7.1 LBG auto-correlation

The auto-correlation function (ACF) also gives important
constraints on the distribution of the population under
study. In this section, we calculate the 3-D LBG ACF by
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Unweighted σDLA-weighted
Run r0 γ r0 γ

D5 2.75 ± 0.51 1.55 ± 0.20 3.30 ± 0.60 1.75 ± 0.23
G5 3.14 ± 0.28 1.65 ± 0.09 3.42 ± 0.32 1.69 ± 0.10

Table 3. Best-fitting power-law parameters for the angular CCF
at z = 3. The units of the parameters are the same as in
Table 2. The confidence limit statistics are described in Sec-
tion 5.1. For comparison, Cooke et al. (2006b) reported r0 =
3.32± 1.25h−1 Mpc and γ = 1.74± 0.36 for their angular CCF.

changing all subscripts in Equation (2) to ‘LBG’:

ξLBG−LBG(r) =

DLBGDLBG − 2DLBGRLBG +RLBGDLBG

RLBGRLBG

.

(11)

Our result for the ACF is shown in Figure 6, and the
best-fitting power-law parameters (see Section 5.1 for con-
fidence limit statistics) are r0 = 3.86 ± 0.13 h−1 Mpc and
γ = 1.60± 0.07. The last two data points were not included
for the power-law fit because they are likely underestimated
owing to the limited box-size. Our values of r0 and γ agree
well with the observational estimates of Adelberger et al.
(2003) and Adelberger et al. (2005), who measured the val-
ues of r0 = 4.0±0.6 h−1 Mpc and γ = 1.57±0.14 for the LBG
ACF at z ∼ 3, with a correction for the integral constraint.

The dark matter ACF (the red filled triangles in Fig-
ure 6) was also computed as described in Nagamine et al.
(2008) in order to calculate the bias of LBGs against the
dark matter distribution (see Section 8).

7.2 DLA auto-correlation

Similarly to the LBG ACF, it would be useful to compute
the DLA ACF in order to estimate the DLA host halo mass.
Observers also may be able to calculate the DLA ACF in
the future when they accumulate a large enough sample of
DLAs. In this section, we calculate the DLA ACF with both
the unweighted and the σDLA-weighted methods. By replac-
ing all subscripts to ‘DLA’ in Equations (11) and (4), we
obtain

ξDLA−DLA(r) =

DDLADDLA − 2DDLARDLA +RDLARDLA

RDLARDLA

(12)

and

ξweighted
DLA−DLA(r) =

NiNjD
i
DLA

D
j

DLA
−2NiNjD

i
DLA

R
j

DLA
+NiNjR

i
DLA

R
j

DLA

NiNjR
i
DLA

R
j

DLA

,

(13)

where NiNjD
i
DLAD

j
DLA and NiNjD

i
DLAR

j
DLA are the num-

bers of data-data pairs and data-random pairs, weighted by
the number of DLA pixels Ni and Nj . As before, 100 differ-
ent realisations of random dataset have been used to exam-
ine the statistical variance.

Our DLA ACF result is shown in Figure 7, and we find

Figure 6. LBG auto-correlation function at z = 3 for the G5
run. The yellow shade shows the 1-σ range of the best-fitting
power-law of Adelberger et al. (2005). The variance of the ACF
using 100 random seeds is shown with vertical errorbars. The
red solid and blue dashed lines are the best-fitting power-laws of
Adelberger et al. (2005) and this work, respectively. The last two
data points were not included for the power-law fit. The red filled
triangles show the dark matter ACF at the same redshift.

r0 γ

LBG-auto 3.86 ± 0.13 1.60 ± 0.07
DLA-auto (unweighted) 2.50 ± 0.03 1.63 ± 0.02

DLA-auto (σDLA-weighted) 2.87 ± 0.05 1.63 ± 0.03

Table 4. ACFs of LBGs and DLAs for the G5 run. The results of
unweighted and σDLA-weighted methods are given for the DLA
ACF. r0 is in units of h−1 Mpc. The confidence limit statistics
are described in Section 5.1. For comparison, Adelberger et al.
(2005) reported r0 = 4.0 ± 0.6h−1 Mpc and γ = 1.57 ± 0.14 for
the LBGs at z ≃ 3.

the best-fitting power-law parameters (see Section 5.1 for
confidence limit statistics) of r0 = 2.50 ± 0.03 h−1 Mpc and
γ = 1.63 ± 0.02 for the unweighted ACF, and r0 = 2.87 ±
0.05 h−1 Mpc and γ = 1.63 ± 0.03 for the σDLA-weighted
ACF, as summarised in Table 4. The values of γ are similar
to those for the LBG ACF with γ ≃ 1.6, but r0 is much
smaller. This is owing to the lower average DLA halo mass
compared to the LBG host haloes, as we will discuss further
in Section 8.

8 BIAS AND HALO MASSES

Comparing the correlation functions of DLAs and LBGs
with that of dark matter gives the measure of ‘bias’ for the
spatial distribution of these populations against that of dark
matter. Each observation probes certain spatial scales, and
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Figure 7. DLA auto-correlation function calculated with unweighted and σDLA-weighted method for the G5 run. The variance of ACFs
using 100 random seeds is shown with vertical errorbars. The blue dashed lines are best-fits for this work.

one can compute the average bias and a corresponding av-
erage halo mass of the observed sample. In Figure 8, we
show the bias of the simulated DLAs and LBGs, defined as
b ≡

√

ξi/ξDM, as a function of distance r, where i = LBG
or DLA. This definition is based on the linear bias model,

ξi(r) = b2i ξDM(r). (14)

The corresponding expression for the cross-correlation is
(Gawiser et al. 2001)

ξDLA−LBG(r) = bDLA bLBG ξDM(r). (15)

Therefore, the two lines for the CCF in Figure 8 are in fact
showing

√
bDLAbLBG, as indicated on the axis on the right-

hand-side. Taking the ratio of the above two expressions
gives (Cooke et al. 2006b)

ξDLA−LBG(r)

ξLBG

=
bDLA

bLBG

. (16)

We also show the observed range of bias for the LBGs at
z = 3 by Adelberger et al. (2005) as a yellow shaded region.
In all cases shown in Figure 8, the bias of simulated DLAs
and LBGs slowly decreases with increasing distance. The
upturn at r = 20h−1 Mpc for the LBG ACF is probably
just noise. We take a simple average of bias values across
the logarithmic bins at r = 1.40 − 14.5 h−1 Mpc, and find
b̄ = 2.65, 2.48, 2.24, 2.17 and 1.94 for LBG ACF, DLA-
LBG CCF (σDLA-weighted), DLA-LBG CCF (unweighted),
DLA ACF (σDLA-weighted), and DLA ACF (unweighted),
respectively. The values of r0 also reflect the sizes of average
bias values. We took the above range of scales for taking the
average because most of the recent observations are probing
the scale of r ≃ 1− 10 h−1 Mpc.

Gawiser et al. (2007) used the results of
Adelberger et al. (2005) to obtain an average bias of
b̄LBG = 2.5 ± 0.4 for LBGs at z ∼ 3. Our average bias
value of 2.60 for the LBG ACF is very close to that

of Adelberger et al. (2005), and at the lower end of the
estimate of b̄LBG = 3.0± 0.5 by Lee et al. (2006)

The model of Sheth & Tormen (1999) shows that an
understanding of the unconditional mass function can pro-
vide an accurate estimation of the large-scale bias fac-
tor. From our average bias, we calculate the mean halo
mass for LBGs and DLAs (using the unweighted and the
σDLA-weighted results) based on the method described in
Mo & White (2002), as shown in Table 5. Our calculation
of LBG halo mass is very close to that by Adelberger et al.
(2005), MLBG

halo = 1011.2 − 1011.8M⊙ (yellow shade in Fig. 8),
which is very encouraging. Finally, Bouche et al. (2005)
estimated 〈logMDLA〉 = 11.13 ± 0.13 from observations
and 〈logMDLA〉 = 11.16 from simulations. These values
are somewhat higher than the upper limit of our un-
weighted DLA halo mass and close to our σDLA-weighted
one. Cooke et al. (2006a) also obtained a similar value of
Mhalo ≃ 1011.2M⊙.

Alternatively, we can directly calculate the mean
DLA halo mass using the simulation result without going
through the bias argument. For the G5 run, the mean is
log〈MDLA

halo 〉 = 11.5 and 〈logMDLA
halo 〉 = 11.3. These val-

ues are somewhat higher than the mean halo mass re-
ported in Table 5. However, the values of 〈Mhalo〉 in Ta-
ble 5 are computed from the average bias within the range
of r = 1.40−14.5 h−1 Mpc, and they could become higher if
we included the bins at smaller scales. Since observers probe
mostly r ≃ 1 − 10h−1 Mpc, the values reported in Table 5
are more appropriate for comparison with observations.

Bouche & Lowenthal (2004) defined the parame-
ter α as the ratio of correlation functions: α ≡
bCCF(MDLA)/bACF(MLBG). If the value of α is larger (or
smaller) than unity, then the mean halo mass of DLAs is
more (or less) massive than that of the LBGs. The ratio
of the average bias of LBG ACF and DLA-LBG CCF is
α = 0.727 for our results. This value is in good agree-
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bias log〈Mhalo〉

LBG-auto 2.67+0.28
−0.06 11.53+0.22

−0.06

DLA-auto (unweighted) 1.94+0.11
−0.13 10.71+0.16

−0.19

DLA-auto (σDLA-weighted) 2.17+0.14
−0.13 11.02+0.14

−0.16

Table 5. Average biases and halo masses of LBGs and DLAs
for the G5 run. The plus and minus values next to the average
bias show the upper and lower limits at 1.40 < r < 14.5 h−1 Mpc.
Mean halo masses are computed from the second column following
Mo & White (2002) and given in units of M⊙.

Figure 8. The biases of all correlation functions at z = 3 that
we computed in this paper for the G5 run. The tick marks on
the left-hand-side show the host halo masses calculated with the
method described in Mo & White (2002). The yellow shade shows
the upper and lower limits by Adelberger et al. (2005).

ment with the observational estimates of α = 1.62 ± 1.32
(Bouche & Lowenthal 2004), α = 0.73± 0.08 (Bouche et al.
2005), and α = 0.771 (Bouche et al. 2005; Mo & White
2002).

9 DISCUSSION AND CONCLUSIONS

Our study represents a first attempt to calculate the DLA-
LBG cross-correlation function at z = 3 using cosmologi-
cal SPH simulations. We calculated the DLA-LBG CCFs in
several different approaches: 3-D, angular, unweighted, and
σDLA-weighted. We also computed the auto-CF of LBGs
and DLAs, and the bias against dark matter. In compar-
ison to the observational data by Adelberger et al. (2005);
Cooke et al. (2006a,b), we find good agreement between our
simulations and observational measurements. Our results
suggest that the spatial distribution of DLAs and LBGs are
strongly correlated.

Let us summarise some of the main conclusions of this

Figure 9. Summary of best-fitting power-law parameters for all
correlation functions that we obtained in earlier sections. Long
blue, red, and green dashed cross lines are for the LBG ACF, the
angular CCF, and the 3-D CCF of Cooke et al. (2006a,b), respec-
tively. The LBG ACF of Adelberger et al. (2003) is shown in a
short blue dashed line and of Adelberger et al. (2005) is shown in
red.

work. In the first part of this paper, our results on the 3-D
CCF calculated with spherical shells (Table 2) are to be com-
pared with the 3-D spherical shell result by Cooke (private
communication), r0 = 3.39±1.2 h−1 Mpc and γ = 1.61±0.3.
Our results are consistent with Cooke’s within the error. The
shallow slope of Cooke’s above estimate probably owes to the
limited sample size in the spherical shell at small distances,
as we discussed in Sections 4 and 6.

In the second part, we have replaced the spheri-
cal shell method with the projected approach used in
Adelberger et al. (2003) and Cooke et al. (2006b), and cal-
culate the best-fitting values given in Table 3. Encourag-
ingly, our results are within the upper and lower limits of
the observational measurement by Cooke et al. (2006a,b).
We corrected all CFs in this paper with the integral con-
straint.

Finally, we also analysed the auto-correlation functions
of LBGs and DLAs at z = 3 (Table 4) found in our simula-
tions. Our results for the best-fitting parameters of the LBG
ACF agree well with Adelberger et al. (2005). Our results
show that LBGs are more strongly correlated than DLAs,
and have higher mean halo mass.

Figure 9 summarises the best-fitting power-law param-
eters for all the correlation functions that we obtained in
the earlier sections. In most cases, the slope γ falls into
the range ≈ 1.5 − 1.7 and the variation is not very large.
The correlation length r0 shows a larger variation from
2.5 h−1 Mpc to 4h−1 Mpc, depending on the sample and
calculation method. This trend is similar to that seen by
Cooke et al. (2006b, Fig. 8). In general, the σDLA-weighted
method gives a larger r0 than the unweighted method.
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Finally, the LBG bias, derived from the LBG ACF in
Section 8, has led to the upper and lower limits of the
LBG dark matter halo mass of log〈Mhalo〉 = 11.53+0.22

−0.06 (see
Table 5). This result is consistent with observational esti-
mates of the LBG halo mass of Mhalo ∼ 1012M⊙, (e.g.,
Adelberger et al. 1998; Steidel et al. 1998) and within the
limit of Mhalo = 1011.2 −1011.8M⊙ (Adelberger et al. 2005).
Similarly, we derived the DLA biases, and obtained the mean
DLA halo masses as shown in Table 5. Cooke et al. (2006a)’s
measurement showed a DLA galaxy bias of bDLA ∼ 2.4
and an average DLA halo mass of Mhalo ∼ 1011.2M⊙.
Our average DLA bias (b = 1.94 and b = 2.17 for un-
weighted DLA ACF and weighted DLA ACF, respectively)
and halo mass estimates (log〈MDLA

halo 〉=10.71 and 11.02 for
un-weighted DLA ACF and weighted DLA ACF, respec-
tively) are in good agreement with theirs. We also exam-
ined the ratio of bias values defined as α ≡ bCCF/bACF

(Bouche & Lowenthal 2004), and found that our value of
α = 0.727 agrees well with the observational estimates. This
again shows that the mean halo mass of DLAs is less than
that of the LBGs. The fact that 〈MLBG

halo 〉 is greater than
〈MDLA

halo 〉 is a natural outcome because the LBG sample is
limited to the bright star-forming galaxies with RAB < 25
and M⋆ ≃ 1010 − 1011M⊙, whereas the DLA H i gas is
present in numerous lower mass haloes below the LBG
threshold.

Motivated by our earlier successes of our simulations
to reproduce the physical properties of LBGs such as stel-
lar mass, SFR, and colours (Nagamine et al. 2004), in this
work we examined another observational method, i.e. DLA-
LBG CCF, to further check the consistency between ob-
servations and simulations. We found good agreement be-
tween our results and observations. Furthermore, there
are accumulated evidence that suggest high halo masses
for LBGs (e.g., Adelberger et al. 1998; Baugh et al. 1998;
Giavalisco et al. 1998; Katz et al. 1999; Kauffmann et al.
1999; Mo & Fukugita 1996; Mo et al. 1999; Papovich et al.
2001; Shapley et al. 2001; Steidel et al. 1998). There-
fore, the scenario that the majority of LBGs is
merger-induced starburst systems associated with low-
mass haloes (Lowenthal et al. 1997; Sawicki & Yee 1998;
Somerville et al. 2001; Weatherley & Warren 2003) does not
appear to be a favored model for LBGs.

In our simulations, we estimated the H i column den-
sities using a pixel size that is much larger than the typical
quasar beam size, which is of the order of parsecs. This may
have some impact on our estimates of NHI and the corre-
sponding statistics such as the H i column density distribu-
tion function. For example, if the ISM is clumpy on smaller
scales than our pixel size, there could be high-density neu-
tral clouds below our resolution scale that are self-shielded
and contain larger amounts of H i . Unfortunately, owing to
limitations in computational resources, it is not possible for
us at the moment to run such a high-resolution cosmolog-
ical simulation with the same box size as we have used in
this paper. In future work, we will nevertheless attempt to
check the dependence of our NHI estimates on numerical
resolution, and perform more rigorous resolution tests.
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