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ABSTRACT

The determination of characteristic amplitudes and anisotropy of hot gas motions in
galaxy clusters from observations of the brightest resonance lines is discussed. Gas
motions affect (i) the spectral line shape through the Doppler effect and (ii) the radial
surface brightness profiles in lines during resonant scattering. Radiative transfer cal-
culations have been performed by the Monte Carlo method in the FeXXV resonance
line at 6.7 keV for the Perseus cluster (Abell426). It was shown that (a) radial mo-
tions reduce the scattering efficiency much more dramatically than purely tangential
motions; (b) large-scale gas motions weakly affect the scattering efficiency. The uncer-
tainty in measuring the characteristics of gas motions using resonant scattering has
been estimated for existing and future observations of clusters.
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1 INTRODUCTION

The intergalactic gas in galaxy clusters is the dominant (in
mass) baryonic component and accounts for about 15% of
the virial cluster mass. Falling into the potential well of a
cluster, the gas heats up to a temperature of 2–10 keV.
The presence of gas motions with velocities of hundreds and
thousands km s−1 in galaxy clusters is indirectly confirmed
both by high-angular-resolution X-ray data, namely the ob-
servations of substructure in surface brightness and temper-
ature distributions (e.g. see the review by Markevitch and
Vikhlinin (2007)), and by numerical simulations, which show
gas motions on various spatial scales, both far from the cen-
ter and in the central regions of clusters (Norman and Bryan
(1999); Inogamov and Sunyaev (2003); Dolag et al. (2005);
Vazza et al. (2009)).

The anisotropy, velocity amplitudes and scales of the
motions along the line-of-sight can be determined from the
shift and broadening of spectral lines (e.g. see Inogamov and
Sunyaev (2003)). However, measurements with a sufficient
energy resolution will become possible only after the launch
of an X-ray microcalorimeter on-board of the ASTRO-H
mission with an energy resolution of ∼ 4 eV at 6 keV (Mit-
suda 2009). For example, for the FeXXV line at 6.7 keV, a
shift of ∼ 10 eV emerges during gas motions with a velocity
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of 500 km s−1. The tangential component of gas motions is
even more difficult to determine1. Another method for diag-
nostics of gas motions is based on analysis of the scattering
in bright lines in the spectra of galaxy clusters (e.g. see the
review by Churazov et al. (2010)). The characteristic am-
plitudes of gas motions in galaxy clusters (Churazov et al.
2004; Sanders et al. 2010) and elliptical galaxies (e.g. see Xu
et al. (2002); Werner et al. (2009)) have been estimated by
comparing the surface brightness profiles in optically thin
and thick lines of the same ion. Finally, information about
the power spectrum of the velocities of gasmotions can be
obtained by considering the surface brightness or pressure
fluctuations. For example, using a Fourier analysis of the
surface brightness and gas temperature fluctuations in the
Coma cluster (A1656), Schuecker et al. (2004) claimed the
power spectrum of gas motions to be a Kolmogorov one. A
Kolmogorov turbulence power spectrum was also obtained
by Vogt and Enßlin (2003) using measurements of the spa-
tial Faraday rotation fluctuations.

In this paper, we are interested in what information
about the gas motions we can obtain by considering the
distortions of the surface brightness profiles in resonance
lines. We are interested in the reliability of determining the

1 Zhuravleva et al. (2010) proposed a method for determination
of tangential gas velocities based on analysis of the polarization
in resonance X-ray lines.
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directions, amplitudes and spatial scales of gasmotions in
real clusters from resonant scattering observations.

The velocity of ion motions can be represented as V =
Vbulk + Vturb + Vtherm. Here, Vbulk are the large-scale
(bulk) gas motions that affect both the line broadening and
the energy shift at the line center; Vturb are the gas mo-
tions on scales smaller than any characteristic sizes, in par-
ticular, the size of the region inside which the optical depth
in lines > 1 ( microturbulent motions), that cause only line
broadening; and Vtherm are the thermal ion motions leading
to the line broadening. Under conditions of galaxy clusters,
the thermal broadening of heavy-element lines can be much
smaller than that for other types of motions.

In this paper, we separately consider the influence of
large- and small-scale gas motions on the line profiles and
resonant scattering. The cluster model used and details of
our calculations are described. The main results and conclu-
sions are discussed.

2 LINE PROFILES

2.1 The Influence of Microturbulent Gas Motions

on the Line Profiles

As has been mentioned above, we will use the term “micro-
turbulence” to describe motions with spatial scales of ve-
locity variations much smaller than any characteristic size
present in the problem. Such motions lead to line broaden-
ing.

Microturbulence can arise, for example, from the merg-
ers of clusters, from buoyant bubbles of relativistic plasma or
convection caused by the mixing of thermal plasma and cos-
mic rays. Talking about turbulence, one usually refers to gas
motions with the same velocity dispersion in all directions.
However, the cases when anisotropic turbulence, radial and
tangential, appears are possible. For example, purely radial
motions naturally arise if the energy from the central ac-
tive galactic nucleus (AGN) powers shocks and sound waves
that propagate through the intergalactic medium mainly in
the radial direction away from the central source (e.g. see
Forman et al. (2005, 2007); Fabian et al. (2003, 2006)). In
contrast, tangential motions can naturally emerge in strati-
fied atmospheres, where internal waves carry the energy of
vertical motions away from the region of space under consid-
eration. This can give rise to two dimensional (tangential)
motions (Churazov et al. 2001, 2002; Rebusco et al. 2008).

Let consider how the anisotropy of turbulent gas mo-
tions changes the spectral line profiles. Let us assume that
the gas as a whole is at rest at each point of the cluster and
there is a Gaussian ion velocity distribution,

P (Vr, Vθ, Vφ) =
1

(2π)3/2σrσθσφ
(1)

× exp

[

−1

2

(

Vr

σr

)2
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(
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)2
]

,

where r, θ, φ are three spatial coordinates at a given point
(in the radial and tangential directions) and the set of three
quantities Σ2 =

(

σ2
r , σ

2
θ , σ

2
φ

)

characterizes the velocity dis-
persion in these directions. Writing the ion velocity vector

in some direction m = (mr,mθ,mφ) as V = Vm, the prob-
ability that the projection of the ion velocity vector onto the
direction m at a given point of space will be V is

P (V ) =
1√

2πσeff

exp

[

−1

2

(

V

σeff

)2
]

, (2)

where σeff can be represented as (given only the broadening
due to turbulence)

σ2
eff = (σturb,rmr)

2 + (σturb,θmθ)
2 + (σturb,φmφ)

2. (3)

Clearly, for isotropic turbulence, the velocity dispersion in
all directions is the same, i.e. σturb,r = σturb,θ = σturb,φ. For
radial turbulence, only the radial component remains and,
accordingly, for tangential turbulence, the radial component
of the velocity dispersion is zero. Thus, these three cases can
be described as follows:

Σ2 =












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2
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(σ2
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2
turb,φ), tangential

. (4)

The kinetic energy is related to the velocity dispersion as

εkin =
1

2
ρ(σ2

turb,r + σ2
turb,θ + σ2

turb,φ). Fixing the kinetic en-

ergy in all velocity components, we obtain
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ρ
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ρ
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1
ρ
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. (5)

Substituting (5) into (3), we find σ2
eff at fixed total kinetic

energy of turbulent motions:

σ2
eff =























2
3ρ
εkin, isotropic

2
ρ
εkin cos

2(α), radial

1
ρ
εkin sin

2(α), tangential

, (6)

where α is the angle between the direction of photon motion
m and the radius vector.

Analogously we can derive expressions for σeff by fixing
not the total energy but the velocity dispersion ξ in a given
direction. Assuming that σturb,r = σturb,θ = σturb,φ = ξ for
isotropic turbulence, σturb,r = ξ, σturb,θ = σturb,φ = 0 for
radial turbulence, and σturb,r = 0, σturb,θ = σturb,φ = ξ for
tangential turbulence, we obtain

σ2
eff =























ξ2, isotropic

ξ2 cos2(α), radial

ξ2 sin2(α), tangential

. (7)

To calculate the spectral line profile from the entire clus-
ter, let consider a spherically symmetric cluster and an in-
finitely thin, homogeneous spherical shell at distance r = 1
from the cluster center. The shell thickness along the line-

of-sight is approximately equal to
∆rr√
r2 −R2

=
∆r√
1−R2

,
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where ∆r is the shell thickness in the radial direction and
R is the projected radius in the plane of the sky. Let V
be the velocity along the line-of-sight and the Gaussian
ion velocity distribution (2) be valid. We will take into
account only the turbulent line broadening, i.e., σ2

eff =
(σturb,rmr)

2 +(σturb,θmθ)
2 +(σturb,φmφ)

2. At fixed velocity
dispersion in a given direction Eq. (7) will then be rewritten
as

σ2
eff =























ξ2, isotropic

ξ2(1−R2), radial

ξ2R2, tangential

. (8)

Substituting (8) into (2) and integrating (2) over the area
RdR, we obtain the following line profiles for isotropic, radial
and tangential turbulence:

1
∫

0

∆r√
2πs

R√
1−R2

(9)

× exp

(

−1

2

V 2

s2

)

dR, isotropic

1
∫

0

∆r√
2π

√
1−R2s

R√
1−R2

× exp

(

−1

2

V 2

s2(1−R2)

)

dR, radial

1
∫

0

∆r√
2πRs

R√
1−R2

× exp

(

−1

2

V 2

s2R2

)

dR, tangential ,

where s = ξ. The expressions for the line profiles at fixed
total kinetic energy are similar but with the substitution
s = 2εkin/3ρ, 2εkin/ρ, εkin/ρ for isotropic, radial and tan-
gential turbulence, respectively. Figure 1 shows the derived
averaged profiles that agree well with those from our nu-
merical simulations in the limit of a low temperature and
a large amplitude of gas motions. Note that the root-mean-
square (rms) line widths at fixed kinetic energy of turbulent
motions are identical for any anisotropy, although the line
shapes do not coincide.

The change in line width with distance from the clus-
ter center for various types of turbulence was considered by
Rebusco et al. (2008). It was shown that the linewidth is
constant along the radius for isotropic turbulence, the lines
are considerably broader at the cluster center than at the
edges for radial turbulence, and, on the contrary, the broad-
est lines are at the cluster edges for tangential turbulence.

2.2 The Influence of Large-Scale Gas Motions on

the Line Profiles

As was said in the Introduction, large-scale gas motions
cause the lines to be shifted and broadened. This is easy

Figure 1. Analytical spectral profiles of the helium-like iron
line at 6.7 keV for isotropic microturbulent (solid curves), radial
(dash-dotted curves) and tangential (dashed curves) gas motions.
The line broadening only due to turbulence is taken into account.
The profiles were calculated at fixed total kinetic energy and fixed
velocity amplitude of gas motions (9).

to see using the results of numerical simulations of galaxy
clusters. Figure 2 shows the spectral profiles of the helium-
like iron line at 6.7 calculated for the model cluster g676,
which is an example of a low-mass, dynamically quiet cold
cluster (see the “Velocity Field” Section and Table 1) by
taking into account the large-scale motions and thermal line
broadening. The profiles were calculated for nine lines-of-
sight. For the central panel, the line-of-sight passes through
the cluster center. The thin solid curves indicate the spectra
that emerge in the case of purely thermal broadening; the
profiles in the presence of gas motions are indicated by the
thick solid curves. The dashed curves indicate the Gaussian
line profile fits. The profiles averaged over the entire cluster
are shown in Fig. 3. We see that the profiles are broadened
and shifted in the presence of gas motions. Strong deviations
from the Gaussian profile are clearly seen at the cluster pe-
riphery, suggesting the presence of large-scale gas motions.

Depending on which cluster region we observe (the clus-
ter center or edge), the line profiles will be more sensitive
to radial or tangential gas motions. This is demonstrated in
Fig. 4, where the spectral profiles of the helium-like iron line
at 6.7 keV are shown for the model, dynamically quiet clus-
ter g6212 (see the “Velocity Field” Section and Table 1) cal-
culated in three cluster regions: the central region (∼70 kpc
in diameter) and two regions at a projected distance of ∼160
kpc from the center (∼145 kpc in diameter each). We sepa-
rately consider the influence of radial (dots) and tangential
(dashes) gas motions and compare with the profiles in the
case when the gas is at rest (solid curves). For this purpose,
we set the radial, tangential, or both velocity components
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Table 1. Basic parameters of the galaxy clusters from numerical
simulations.

Cluster Mvir,10
14M⊙ Rvir, Mpc Tmean, keV

g6212 1.61 1.43 1.5
g8 32.70 3.90 13

g51 19.21 3.26 8.6
g676 1.60 1.43 1.25

equal to zero in each cell of the computational volume and
repeated the radiative transfer computation procedure. We
exclude the motion of the cluster as a whole by subtracting
the weighted mean (within a sphere at the cluster center 50
kpc in radius) velocity.

In the cluster center the scale of gas motions is small
compared to the size of the central region. Therefore, we
see an almost symmetric and slightly broadened line. At
the cluster edges, the spatial scale of gas motions is com-
parable to the characteristic size of the region that makes
a dominant contribution to the emission. Therefore, we see
an asymmetric line with a shift of the central energy. Since
the surface brightness and (gas density) rapidly falls toward
the cluster edges, the regions along the line-of-sight located
near the plane of the sky passing through the cluster center
make a major contribution to the emission. Obviously, the
observed energy shift for these regions is produced mainly
by tangential motions.

3 THE INFLUENCE OF THE VELOCITY

FIELD ON RESONANT SCATTERING

The photon scattering probability in a given line is deter-
mined by (a) the optical depth at the line center, (b) the
deviation of the photon energy from the line energy, and (c)
the line width.

Turbulent gas motions in the direction of photon prop-
agation will broaden the line, reducing the optical depth
and the resonant scattering effect (see, e.g., Gilfanov et al.
(1987)). Indeed, the optical depth at the line center can be

found as τ =
∞
∫

0

nis0dl, where ni is the ion number density

and s0 is the scattering cross section at the line center:

s0 =

√
πhrecf

∆ED
, (10)

Here, re is the classical electron radius, f is the oscillator
strength of a given transition, and ∆ED is the Doppler line
width. The line broadening ∆ED can be divided into two
components: the purely thermal broadening and the broad-
ening due to turbulent motions, i.e.,

∆ED =
E0

c

√

2(σ2
therm + σ2

turb). (11)

Here, σturb is the velocity dispersion due to turbulent mo-
tions and σtherm is the thermal dispersion of ion velocities:

σ2
therm =

kT

Amp
, (12)

Figure 2. Profiles of the helium-like iron FeXXV line at 6.7 keV
for nine lines-of-sight in the model cluster g676 (see the table).
The cluster was divided into nine identical parts; the size of the
entire cube is 1 × 1 × 1 Mpc. For the central panel, the line of
sight passes through the cluster center. The thick, thin and dashed
curves indicate, respectively, the line profiles shifted and broad-
ened through gas motions, the profiles emerging only in the case
of thermal line broadening, and the Gaussian line profiles broad-
ened through the mean temperature and Vrms in each region.

E0 is the energy at the line center, k is the Boltzmann con-
stant, mp is the proton mass, A is the atomic weight of the
element, and c is the speed of light. For heavy elements A
is large (e.g., A = 56 for iron), therefore the thermal broad-
ening of heavy-element lines is noticeably suppressed, while
the broadening through gas motions is the same for all lines.

The presence of large-scale gas motions leads to a
change in the resonant scattering cross section. In the ref-
erence frame of the gas, the cross section is proportional

to exp











−

(

E
[

1− (Vm)
c

]

− E0

)2

2σ2











, where E is the photon

energy in the reference frame of the cluster, E0 is the transi-
tion energy, V is the velocity of large-scale gas motions, m
is the photon propagation direction, and σ is the Gaussian
line width determined by the thermal broadening and the
broadening through turbulent gas motions.

4 CLUSTER MODEL AND SCATTERING

CALCULATION

At present, the gas density and temperature distributions in
nearby X–ray bright galaxy clusters, such as Perseus clus-
ter, are well known. At the same time, there is almost no
information about the properties of the gas velocity field. It
seems natural to supplement the density and temperature



Resonant scattering in galaxy clusters for gas motions 5

Figure 3. Profiles of the helium-like iron FeXXV line at 6.7 keV
averaged over the entire model cluster g676. The notation is the
same as that in Fig. 2.

measurements with the results of numerical hydrodynamic
velocity calculations and to use such a combined model to
model the resonant scattering.

4.1 Gas Temperature and Density Distributions

The resonant scattering calculations were performed for the
Perseus galaxy cluster A426, whose electron temperature
and density profiles were taken from Churazov et al. (2003).
Correcting the profile for the Hubble constant H0 = 72 km
s−1 Mpc1, we find the electron density in cm−3 as

ne =
4.68 · 10−2

(

1 +
(

r
56

)2
)3/2·1.2

+
4.86 · 10−3

(

1 +
(

r
194

)2
)3/2·0.58

. (13)

The temperature distribution in keV is

Te = 7
1 +

(

r
100

)3

2.3 +
(

r
100

)3
, (14)

where r is in kpc. The iron abundance is assumed to be
constant in the cluster and equal to 0.5 of the solar one
from the tables by Anders and Grevesse (1989) and 0.74
of the solar if one uses the newer tables by Asplund et al.
(2009).

The mean temperature in the Perseus cluster is about
5-6 keV. At such temperatures, the strongest line in the
spectrum is the Kα line of helium-like iron at 6.7 keV that
corresponds to the 1s2(1S0) − 1s2p(1P1) transition with an
oscillator strength ∼ 0.7. The optical depth in this line from
the cluster center to infinity is ∼ 3.

Figure 4. Spectral profile of the helium-like iron FeXXV line at
6.7 keV calculated for the model cluster g6212 (see the table) at
the cluster center ( the size is ∼70 kpc) and in two regions at a
distance of 160 kpc from the center (the size is ∼145 kpc). The
solid, dotted, and dashed curves indicate, respectively, the profiles
when the gas is at rest, in the case of radial gas motions, and in
the case of tangential gas motions.

4.2 Velocity Field

The energy resolution of modern X-ray telescopes does not
allow the gas velocity field in galaxy clusters to be measured
directly. To make the assumption about the velocity field,
we will use the results of numerical cluster simulations taken
from the cosmological calculations of the large-scale struc-
ture (Dolag et al. 2005; Springel et al. 2001). The numerical
simulations give the three-dimensional structure of the gas
density and temperature and three velocity components de-
termined in a cube with a size of several Mpc. We considered
nine clusters differing in mass. The rms velocity amplitudes
in the coldest and hottest clusters are ∼ 200 and ∼ 1000 km
s−1, respectively.

To make the conclusion about the directions of motions,
let us compare the rms amplitude of the radial velocity Vr

with that of the tangential one
√

(V 2
θ + V 2

φ )/2. We exclude

the motion of the cluster as a whole by subtracting the
weighted mean (within a sphere at the cluster center 50 kpc
in radius) velocity. The rms amplitude Vrms was calculated
in spherical shells with radius r and thickness ∆r = 0.1r
separately for the velocity components along and perpen-
dicular to the radius. The results for the available nine clus-
ters show that the gas motions are almost isotropic. Figure
5 presents the results for three clusters. The rms amplitudes
of the velocities of radial gas motions are indicated by the
dashed curves; the solid curves indicate the amplitudes for
each velocity component in the tangential direction. We see
that the curves differ insignificantly at radii < 300−400 kpc
and, hence, the amplitudes of the gas motions are identical
in all directions.

Although the assumption that the gas motions are
isotropic is justified by our numerical simulations, it should
be remembered that in reality the gas motions are not nec-
essarily isotropic. For example, considering the velocities of
gas filaments in Hα in the Perseus cluster, Hatch et al. (2006)
showed that the gas at distances larger than 30 kpc from the
central galaxy (i.e., where the resonant scattering is signifi-
cant) entrained by AGN-inflated plasma bubbles is involved
predominantly into radial motions.

To make reasonable assumptions about the properties
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Figure 5. Rms amplitudes of the radial velocity of gas motions
(dashed curves) and rms amplitudes of the tangential velocity
√

(V 2
θ + V 2

φ )/2 (solid curves) versus distance from the cluster

center for three model clusters taken from numerical simulations.

of the velocity field in our radiative transfer calculations,
we analyzed the power spectra found in hydrodynamic sim-
ulations of cluster formation. An example for one cluster
is shown in Fig. 6. Details of the method for calculat-
ing the power spectrum are given in Arevalo et al. (2011).
Most of the numerical simulations suffer from an insufficient
dynamic range of wave numbers needed to reliably deter-
mine the shape of the power spectrum. In particular, adap-
tive smoothing, which is especially significant for the SPH
method (the solid curve in Fig. 6), leads to a cutoff in the
power spectrum at large k. At the same time, non-adaptive
smoothing leads to a sharp rise of the power spectrum at
large wave numbers, which is related to Poissonian noise on
these scales, in particular, when there are no particles at all
within the cell. The true power spectrum at large k must lie
between the dashed and solid curves shown in Fig. 6. The
cutoff in the power spectrum at small wave numbers is re-
lated, in particular, to the choice of the size of the computa-

Figure 6. Power spectrum of the velocities of gas motions in
the cluster g676 (see the table) from numerical simulations. To
construct the spectra, we used the results of SPH simulations
smoothed adaptively (solid curve) and non-adaptively (dashed
curve). The Kolmogorov power spectrum ∼ k−2/3 is indicated by
the dash-dotted curve.

tional volume centered on the cluster. We discuss this effect
in a separate publication (Zhuravleva et al. 2011). In Fig.
6, the dash-dotted curve indicates the Kolmogorov power
spectrum2 ∼ k−2/3. One can see that the assumption about
a Kolmogorv spectrum appears as a reasonable compromise,
although the Kolmogorov slope in the simulated clusters is
observed in a fairly narrow range of wave numbers.

Yet another problem can be associated with an insuf-
ficient resolution of SPH simulations on small scales. The
scales that are resolved in simulations range from tens of
kpc at the cluster center to several hundred kpc at the
edges. An additional spatial scale arises in the scattering
problem - the characteristic photon mean free path in scat-
tering, i.e., the size at which an optical depth of the order of
unity is accumulated. It is useful to compare this scale with
the resolution of SPH simulations. For the cluster g676, the
power spectrum is shown in Fig. 6; we see that on k 6 0.02
kpc−1 the simulations are resolved. On shorter scales (large
wave numbers), the calculations of the velocity field with an
adaptive window (solid curve) and a non-adaptive window
(dashed curve) give large difference in results. This discrep-
ancy means that the simulation resolution limit was reached.
The corresponding spatial scale3 is ∼ 50 kpc. In this case,

2 The Kolmogorov spectrum has such a slope when the total
energy associated with the motions with a given scale of wave
numbers k is considered.
3 We use the relation k = 1/l between the spatial scales and wave
numbers without the factor 2π.
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an optical depth of the order of unity near the cluster cen-
ter is accumulated at a size 1/(nis0) ∼ 150 kpc. Thus, the
resolution of our simulations is sufficient for our purposes.

In the subsequent simulations, we assumed the power
spectrum of the velocity fluctuations to be k3P (k) ∼ k−2/3.

4.3 Monte Carlo Simulations of Scattering

To simulate multiple scattering, we used the Monte Carlo
method (Pozdnyakov et al. 1983). Details of the simulations
of scattering in lines are discussed in Sazonov et al. (2002);
Churazov et al. (2004) and Zhuravleva et al. (2010). The
line energies and oscillator strengths were taken from the
ATOMDB4 and NIST Atomic Spectra Database5 databases.

During the scattering, the photon direction m is se-
lected by taking into account the scattering phase function,
which is a combination of Rayleigh and isotropic scattering
phase functions (Hamilton 1947; Chandrasekhar 1950). For
isotropic scattering, the new photon direction m′ is drawn
randomly. For Rayleigh scattering, the probability that the
photon after its scattering will propagate in the direction
m′ is P (m′, e′) ∝ (e′ · e)2, where the direction of the elec-
tric field is e′ = (e − m′ cos(α))/(

√

1− cos2(α)) and α is
the angle between the electric vector e before the scattering
and the new photon direction m′, i.e. cos(α) = (e ·m′).

The initial photon position (or initial weight) is chosen
in accordance with the volume emissivity of various clus-
ter regions. To calculate the line emissivity, we used the
APEC code (Smith et al. 2001). The ionization balance was
taken from Mazzotta et al. (1998). For a randomly chosen
initial direction of photon propagation m, we find the pho-
ton energy E with a Gaussian distribution with mean E0

and standard deviation ∆ED/
√
2, where ∆ED was found

from Eq. (11). Since the gas density is low, the pressure
effects on the line broadening are neglected. We also ne-
glect the contribution from the radiative decay of levels to
the broadening by assuming the levels to be infinitely thin.
When simulating the scattering process, we find the velocity
of the scattering ion in such a way that the photon energy
in the reference frame of the ion is exactly equal E0 and
the scattering occurs. Thus, the ion velocity in the direction
of photon motion is Vion =

(

1− E0

E

)

c. We find the other
two ion velocity components Vion1 and Vion2 in the direc-
tions m1 and m2 orthogonal to m as (Vgas,m1)+Vgauss

and (Vgas,m2)+Vgauss, where Vgauss is the velocity with
a Gaussian distribution. We take into account the velocity
dispersion in the directions m1 and m2 according to Eqs.
(7) or (6). As a result, the velocity of the scattering ion is
Vtot = Vionm + Vion1m1 + Vion2m2. Accordingly, after the
selection of a new photon direction by taking into account
the scattering phase matrix, we find the photon energy after
the scattering as E = E0 (1 + (Vtot ·m′) /c). In this case,
we neglect the change in photon direction when going from
the laboratory reference frame to the reference frame of the
ion and vice versa, because V/c ≪ 1. This approximation
also assumes the velocity field and the gas distribution to

4 http://cxc.harvard.edu/atomdb/WebGUIDE/index.html.
5 http://physics.nist.gov/PhysRefData/ASD/index.html.

be constant on the time scales of the photon propagation
through the cluster.

5 RESULTS

To calculate the influence of the velocity field on the scatter-
ing, we generate a random realization of the power spectrum
with a given shape and normalization for each velocity com-
ponent and make the inverse Fourier transform to obtain
the velocity field with given properties.

We performed our calculations for three velocity fields.
A. The regime of microturbulence: there are no

large-scale motions, microturbulence leads to line broaden-
ing through isotropic, radial, and tangential turbulence with
Vrms = 500 km s−1.

B. The sensitivity to large-scale gas motions: the
power spectrum is flat at small k up to ks and then falls
off as the Kolmogorov one (see Fig. 8c). In this case, the
flat power spectrum at small k implies the absence of large-
scale motions with sizes > 1/ks. The bulk of the power is
related to wave numbers of the order of ks. Our calculations
were performed for several values of ks (ls): 0.005 kpc−1 (200
kpc), 0.05 kpc−1 (20 kpc), and 0.2 kpc−1 (5 kpc). The rms
amplitude of the velocity Vrms is 500 km s−1 in all cases.

C. The sensitivity to small-scale motions: the
power spectrum is cut off at k > ks (see Fig. 8d); in this
case, the decrease in the characteristic amplitude of the ve-
locity is compensated by the line broadening, i.e., the power
is transferred to microturbulence (the shortest scales).

In all three cases, the total energy in large- and small-
scale motions is the same. The results are presented in Figs.
7 and 8 (corresponding to cases A, B, and C).

Figure 7 shows the ratio of the fluxes in the helium-like
iron line at 6.7 keV with and without scattering in the case
when there are no gas motions and in the case of different
microturbulence designated in the figure (case A). The case
of fixed velocity amplitude is indicated by the thick curves.
The corresponding results of our calculations at fixed total
energy are indicated by the thin curves. We see that when
the gas is at rest, the optical depth is maximal, the line flux
at the cluster center is strongly suppressed and the flux at
the edges increases due to the scattering. When the gas mo-
tions are tangential, it is clear that the optical depth in the
line calculated in the radial direction will not change. Since
the photons produced in the cluster center moving in the ra-
dial direction make a major contribution to the scattering,
the changes in brightness profiles are insignificant. The ra-
dial gas motions that directly affect the optical depth for the
photons emerging from the cluster center and that reduce
considerably the scattering efficiency have the strongest ef-
fect on the resonant scattering. Note that the optical depth
in this case decreases by almost a factor of 3. Clearly, the
case of isotropic turbulence is intermediate.

Considering large-scale gas motions (case B), note that
when the bulk of the power of the motions is on large scales,
the scattering is almost as efficient as that in the case when
the gas is at rest (Fig. 8a, the curve with long dashes). In
this case, a bulk motion of large gas volumes (the scales
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Figure 7. The upper panels: the ratio of the fluxes in the helium-like iron FeXXV line at 6.7 keV with and without scattering in the
cluster A426 for gas motions on various scales. The left upper panel: the sensitivity to large-scale motions (case B, see the “Results”
Section). The curves correspond to different values of ks (see the lower left panel). The curve for microturbulence is presented for
comparison. The right upper panel: the sensitivity to small-scale motions when the power spectrum (see the lower right panel) of the
velocities of gas motions is cut off at various k (case C, see the “Results” Section). The lower panels: the power spectra of the velocities
of gas motions in galaxy clusters assumed in the calculations. The left lower panel: the power spectrum is flat at small ks (=0.005, 0.05,
and 0.2) and then falls off as the Kolmogorov one ( see the “Results” Section). The right lower panel: the power spectrum for ks = 0.05
(see the left panel) is cut off at k > 0.005, 0.05, 0.1 and 0.2 (see the “Results” Section).

of the motions are larger than rc) inside which the scat-
tering actually takes place. An increase in ks, i.e. assuming
the power spectrum to be flat at small k (with the total
energy of the motions conserved), leads to suppression of
the role of large-scale motions and to an increase in the ve-
locity dispersion on small scales. This immediately leads to
a decrease in the optical depth in the line and resonance

scattering effect is less strong (the curve with short dashes
and the dash-dotted curve; the dotted curve is drawn for
comparison with the case of isotropic microturbulence).

We also see from Fig. 8b that the earlier we “cut off”
the power spectrum (case C), i.e. the larger the power is
in the small-scale motions affecting the line broadening, the
weaker is the resonant scattering.
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Figure 8. Ratio of the fluxes in the helium-like iron FeXXV line
at 6.7 keV with and without scattering in the cluster A426 for
isotropic, radial, and tangential microturbulent gas motions (case
A). The thick and thin curves correspond to the cases of fixed
velocity amplitude and fixed total kinetic energy, respectively.

6 CONCLUSIONS

We considered the influence of large- and small-scale
anisotropic gas motions on the resonant scattering in the
FeXXV line at 6.7 keV for the Perseus cluster as an exam-
ple. The model velocity field is taken from the results of hy-
drodynamic simulations of galaxy cluster formation (Dolag
et al. (2005)).

We showed that (1) the resonant scattering is sensitive
mainly to small-scale gas motions, (2) it is particularly sen-
sitive to radial motions, (3) large-scale gas motions affect
mainly the shift of the line center and (4) the directions
of small-scale motions can be estimated by considering the
broadening of spectral lines and the resonant scattering in
lines simultaneously.

The sensitivity to anisotropy of microturbulent motions
is illustrated by the following example: at fixed total kinetic
energy corresponding to Vrms = 500 km s−1, the expected
decrease in FeXXV line flux at the center (R < 10 kpc) of
the cluster A426 is a factor of 0.77, 0.9 and 0.61 for isotropic,
radial, and tangential turbulence, respectively. At fixed ve-
locity dispersion in one direction (Eq. (7)), the correspond-
ing decreases are a factor of 0.84, 0.9, and 0.63, respectively.
In other words, if a significant anisotropy of small-scale gas
motions is allowed, then the same ratio of the line fluxes
corresponds to different characteristic velocity amplitudes.
For example, for the case considered above (Fig. 7), approx-
imately the same ratio of the line fluxes from a region 10 kpc
in radius arises at Vrms = 500 km s−1 for isotropic motions,
Vrms ≈ 200 km s−1 for radial motions, and Vrms ≈ 1700
km s−1 for tangential motions. Note that such a large dif-

Figure 9. Ratio of the FeXXV line flux to the total flux, includ-
ing the continuum and neighboring lines, versus detector energy
resolution for a cluster with a mean temperature of 5 keV. Only
the thermal line broadening is taken into account.

ference is related, in particular, to a nonlinear dependence
of the line flux ratio on the velocity of gas motions. For a
larger region (r < 30 kpc), a comparable line flux ratio arises
at Vrms = 500 km s−1 (isotropic motions), Vrms ≈ 300 km
s−1 (radial motions), and Vrms ≈ 1200 km s−1 (tangential
motions). In this case, the difference between the velocity
amplitudes is about a factor of 4. Of course, the presence
of purely radial or purely tangential motions in clusters is
unlikely and the typical uncertainty is not so great. Note
also that the results of our calculations, obtained under the
assumption of isotropic gas motions, can be used to set con-
servative upper limits on the amplitude of purely radial mo-
tions, while robust constraints on the amplitude of tangen-
tial motions are difficult to obtain from resonant scattering
observations.

Large-scale gas motions affect weakly the scattering ef-
ficiency. For example, we see from Fig. 8a that if the whole
power of the motions is on scales of 200 kpc, then the scat-
tering efficiency at the cluster center is a factor of 1.13 lower
than that in the case when the gas is at rest. In contrast,
if the bulk of the power is concentrated on small scales, for
example, on scales of ∼ 5 kpc, then the scattering efficiency
decreases by a factor of 1.56 (see Figs. 8a and 8b).

Note that the considered line of helium-like iron at
6.7 keV has bright forbidden and intercombination lines
as well as satellites. The optical depths of the forbidden
and intercombination (1s2 − 1s2p(3P0)) lines are almost
zero, while the oscillator strength of the intercombination
(1s2 − 1s2p(3P1)) line is a factor of 10 smaller than that
of the resonance line and its optical depth is ∼ 0.26. The
satellites correspond to the transitions from excited states
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and have a negligible optical depth at a low matter density.
Thus, only the resonance transition is essentially involved in
the scattering itself. Clearly, the lower the detector energy
resolution, the more difficult to measure the suppression of
the flux in the resonance line through scattering. In Fig. 9,
the ratio of the 6.7 keV line flux to the total flux, including
the continuum and neighboring lines, Fline/Ftot is plotted
against the detector energy resolution. We see that the 6.7
keV line flux for a cluster with a mean temperature of ∼ 5
keV accounts for 50% of the total incoming flux in the en-
ergy range E0 ±∆/2 even at an energy resolution ∆ ∼ 100
eV.

Apart from their influence on the surface brightness pro-
file, gas motions change the degree of polarization in X-ray
lines, which results from resonant scattering in the presence
of a quadrupole moment in the radiation field. Zhuravleva et
al. (2010) showed that in the presence of isotropic microtur-
bulent or large-scale gas motions, the degree of polarization
in galaxy clusters can decrease by several times. Clearly,
depending on the directions of microturbulent motions, the
degree of polarization will also change.

7 ACKNOWLEDGEMENTS

This study was supported by the RAS Programs P19 and
DPS 16, the Program for Support of Leading Scientific
Schools (grant NSh-5069.2010.2), and the Russian Foun-
dation for Basic Research (project no. 09-02-00867-a). S.
Sazonov is grateful to the Dynasty Foundation for support.
I. Zhuravleva is grateful to the International Max Planck
Research School (IMPRS).

REFERENCES

E. Anders and N. Grevesse, Geochim. Cosmochim. Acta
53, 197 (1989).

P. Arevalo et al., Astrophys. J. (2011, submitted).
M. Asplund, N.Grevesse,A. J. Sauval and P. Scott, Ann.
Rev. Astron. Astrophys. 47, 481 (2009).

S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford,
1950).

E. Churazov, M. Brueggen, C. R. Kaiser et al., Astrophys.
J. 554, 261 (2001).

E. Churazov,W. Forman, C. Jones and H. Boehringer, As-
trophys. J. 590, 225 (2003).

E. Churazov, W. Forman, C. Jones et al., Mon. Not. R.
Astron. Soc. 346, 29 (2004).

E. Churazov, R. Sunyaev, W. Forman and H. Boehringer,
Mon. Not. R. Astron. Soc. 332, 792 (2002).

E. Churazov, I. Zhuravleva, S. Sazonov and R. Sunyaev,
Space Sci. Rev. 104 (2010).

K. Dolag, F. Vazza, G. Brunetti and G. Tormen, Mon. Not.
R. Astron. Soc. 364, 753 (2005).

A. C. Fabian, J. S. Sanders, S. W. Allen et al., Mon. Not.
R. Astron. Soc. 344, L43 (2003).

A. C. Fabian, J. S. Sanders, G. B. Taylor et al., Mon. Not.
R. Astron. Soc. 366, 417 (2006).

W. Forman, C. Jones, E. Churazov et al., Astrophys. J.
665, 1057 (2007).

W. Forman, P. Nulsen, S. Heinz et al., Astrophys. J. 635,
894 (2005).

M. R. Gilfanov, R. A. Sunyaev and E.M. Churazov, Sov.
Astron. Lett. 13, 3 (1987).

D. R. Hamilton, Astrophys. J. 106, 457 (1947).
N. A. Hatch, C. S. Crawford, A. C. Fabian, R. M. John-
stone, J. S. Sanders, proceedings of the The X-ray Uni-
verse 2005 (ESA SP-604), ed. A. Wilson, 604, 689 (2006)

N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 29, 791
(2003).

M. Markevitch and A. Vikhlinin, Phys. Rev. 443, 1 (2007).
P. Mazzotta, G. Mazzitelli, S. Colafrancesco and N. Vitto-
rio, Astron. Astrophys. 133, 403 (1998).

K. Mitsuda, High Resolution X-ray Spectroscopy: Towards
IXO, proceedings of the international workshop held at
the Mullard Space Science Laboratory of University Col-
lege London, ed. G. Branduardi-Raymont and A. Blustin
(2009)

M. L. Norman and G. L. Bryan, Numerical Astrophysics :
Proceedings of the International Conference on Numeri-
cal Astrophysics held at the National Olympic Memorial
Youth Center, ed. Shoken M. Miyama, Kohji Tomisaka
and Tomoyuki Hanawa, Astrophysics and space science
library, v. 240, p.19 (1999).

L. A. Pozdnyakov, I. M. Sobol and R. A. Syunyaev, Astro-
phys. Sp. Phys. Rev. 2, 189 (1983).

P. Rebusco, E. Churazov, R. Sunyaev et al., Mon. Not. R.
Astron. Soc. 384, 1511 (2008).

J. S. Sanders, A. C. Fabian, R. K. Smith and J. R. Peterson,
Mon. Not. R. Astron. Soc. 402, L11 (2010).

S. Y. Sazonov, E. M. Churazov and R. S. Sunyaev, Mon.
Not. R. Astron. Soc. 333, 191 (2002).

P. Schuecker, A. Finoguenov, F. Miniati et al., Astron. As-
trophys. 426, 387 (2004).

R. K. Smith, N. S. Brickhouse, D. A. Liedahl and J. C.
Raymond, Astrophys. J. 556, L91 (2001).

V. Springel, N. Yoshida and S. D. M. White, New Astron.
6, 79 (2001).

F. Vazza, G. Brunetti, A. Kritsuk et al., Astron. Astrophys.
504, 33 (2009).

S.Vogt and T. A. Enßlin, Astron. Astrophys. 412, 373
(2003).

N. Werner, I. Zhuravleva, E. Churazov et al., Mon. Not. R.
Astron. Soc. 398, 23 (2009).

H. Xu, S. M. Kahn, J. R. Peterson et al., Astrophys. J. 579,
600 (2002).

I.Zhuravleva, E. Churazov, S. Sazonov et al., Mon. Not. R.
Astron. Soc. 403, 129 (2010).

I. Zhuravleva et al., (2011, in preparation).


